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EXECUTIVE SUMMARY 

This report presents guidelines for evaluating uncertainty in mathematical equations and computer
models applied to assess human health and environmental risk.  Uncertainty analyses involve the propagation
of uncertainty in model parameters and model structure to obtain confidence statements for the estimate of risk
and identify the model components of dominant importance.  Uncertainty analyses are required when there is
no a priori knowledge about uncertainty in the risk estimate and when there is a chance that the failure to
assess uncertainty may affect the selection of wrong options for risk reduction.  Uncertainty analyses are
effective when they are conducted in an iterative mode.  When the uncertainty in the risk estimate is intolerable
for decision-making, additional data are acquired for the dominant model components that contribute most to
uncertainty.  This process is repeated until the level of residual uncertainty can be tolerated.

In this report, analytical and numerical methods for error propagation are presented along with methods
for identifying the most important contributors to uncertainty.  Monte Carlo simulation with either Simple
Random Sampling (SRS) or Latin Hypercube Sampling (LHS) is proposed as the most robust method for
propagating uncertainty through either simple or complex models.  A distinction is made between simulating
a stochastically varying assessment endpoint (i.e., the distribution of individual risks in an exposed population)
and quantifying uncertainty due to lack of knowledge about a fixed but unknown quantity (e.g., a specific
individual, the maximally exposed individual, or the mean, median, or 95%-tile of the distribution of exposed
individuals).

Emphasis is placed on the need for subjective judgment to quantify uncertainty when relevant data are
absent or incomplete.  Therefore, the results of an uncertainty analysis will differ among risk assessors because
of differences in the interpretation of the current state of knowledge.  Despite these differences, the subjective
confidence intervals from an uncertainty analysis should produce a reasonably "high" probability of bounding
the true risk provided that risk assessors avoid overconfidence in quantifying the level of certainty associated
with important model components.
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1. INTRODUCTION 

When hazardous substances are released into the environment, an evaluation is necessary to determine
the possible impact these substances may have on human health and other biota.  To address this question, a
risk assessment is performed to quantify the potential detriment and evaluate the effectiveness of proposed
remediation measures.  A baseline risk assessment performed according to currently recommended United
States Environmental Protection Agency (EPA) methods (EPA, 1989) produces a single point estimate of risk.
Such point estimates fail to address the inherent uncertainty in the estimates of risk.  At best, the single values
obtained from this method may be considered as upperbound (conservative) estimates of risk to a maximally
exposed individual.  The chance of underestimating the true risk to an exposed individual is minimized.
However, the chance of overstating the risk may be large.

A less biased approach to risk assessment uses uncertainty analysis to estimate the degree of
confidence that can be placed in the risk estimate.  A discussion of uncertainty is critical to the full
characterization of risk to more fully evaluate the implications and limitations of the risk assessment (EPA,
1992).  To date, an uncertainty analysis, if performed at all, is usually restricted to a qualitative statement of
confidence in the result; for instance, uncertainty in the point estimate that is less than one order of magnitude
(a factor of 10) is considered "low," uncertainty in the point estimate greater than one order of magnitude but
less than two orders of magnitude (a factor of 100) is considered "moderate," and uncertainty that exceeds two
orders of magnitude is considered "high" (EPA, 1989).  Unfortunately, these qualitative statements of
uncertainty are difficult to assess, let alone defend, particularly when the assessment involves potential
exposure to several contaminants transferred over a number of different  pathways (Hoffman and Hammonds,
1994).

A more defensible approach is to perform a quantitative analysis of uncertainty using either analytical
or numerical techniques to propagate uncertainty in the components of the risk assessment equations into an
assessment of uncertainty in the overall result.  If the risk assessment process can be modified to permit several
iterations, then uncertainty analysis can be a valuable tool for identifying and ranking the contaminants and
exposure pathways of concern.  Such rankings can be used to guide the acquisition of additional data to reduce
uncertainty in risk estimates.  An uncertainty analysis is additionally useful to weigh the benefits against the
costs of alternative remedial actions. 

The primary objective of this report is to address the issue of uncertainty in quantitative risk
assessments and present methods that can be used to perform a quantitative uncertainty analysis on risk
estimates.  This report is intended as a supplement to EPA's Exposure Assessment Guidance (1992) and
provides the reader with an introduction to the concepts and approaches of quantitative uncertainty analysis.
In addition, the manuscript suggests criteria for deciding when a quantitative analysis of uncertainty is
necessary and when such analyses may not be necessary.

2.  CRITERIA FOR PERFORMING A QUANTITATIVE UNCERTAINTY
ANALYSIS 

For most risk assessment analysts, a primary question is:  Is it necessary to perform an uncertainty
analysis?  This section provides guidelines to identify 1) situations that might not warrant a formal quantitative
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uncertainty analysis and 2) those situations that most likely would require such an analysis to evaluate the
amount of confidence to be placed in the risk estimate.

Some circumstances exist in which it may not be necessary to undertake a formal quantitative
assessment of uncertainty; the criteria delineating the need for a formal assessment should be identified at the
outset of planning the risk assessment.  A suggested set of criteria is given in the following list.

1. If screening calculations indicate that the risk is clearly below regulatory or risk levels of concern, a
quantitative uncertainty analysis may not be necessary.  Detailed analyses will likely demonstrate that
the true risk is even less than initially estimated because screening calculations are designed to provide
a risk estimate that is highly unlikely to underestimate the true risk.

2. If the cost of remediation required to reduce exposure or risk is low, a quantitative uncertainty analysis
might not be warranted.  For small contaminated sites with inexpensive remediation possibilities, it is
more sensible to clean up the property than to undertake a detailed analysis of risk and its attendant
uncertainty.  Quantitative uncertainty analyses, however, might still be useful in evaluating the amount
of contamination that will remain after remediation.

3. If the characterization of the nature and extent of the amount of contamination in a given
environmental media at a site is inadequate to permit even a bounding estimate (an upper and lower
estimate of risk), a quantitative uncertainty analysis cannot be performed.  Under these conditions it
is not even feasible to perform an exposure or risk assessment, unless the assessment is restricted to
a preliminary lower bound screening estimate (a lower bound risk is not likely to overestimate the true
risk).  In this case, if the available data describing the amount of environmental contamination suggests
that exposures and risks will be unacceptable (risks that are above criteria set by regulators), plans
for remediation can begin even before the extent of contamination source term is sufficiently
characterized.  Once the extent of contamination is more fully characterized, quantitative uncertainty
analysis would be useful in guiding cost-effective measures for remediation of the contamination.

The following situations describe conditions that should justify quantitative uncertainty analyses as
part of the risk assessment process:

1. A quantitative uncertainty analysis should be performed when it becomes necessary to disclose the
potential bias associated with risk assessments performed using only single values for model
parameters.  The combination of point values, some conservative (upper 95% confidence limit) and
some typical (average), yields a point estimate of exposure and/or risk that is different from a true but
unknown value.  The extent of this difference is unknown.  For example, in many cases a risk assessor
who uses federal or state guidelines to obtain parameter values or who uses computer codes with
default assumptions as parameter values will not know the degree of conservatism in the calculation.
At most, the assessor may have some prior knowledge that the model combines many conservative
assumptions, so the result should be undoubtedly conservative.  The combination of point values often
yields an estimated risk that is much greater than is reasonable for a given situation.  Therefore, it is
imperative to disclose uncertainty in all risk assessments unless the cost of remedial action and the
consequences of being wrong are low (NAS, 1994)

2. A quantitative uncertainty analysis should be performed if initial screening calculations, using
conservatively biased point estimates, indicate the need for further investigation before taking action.
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Conservatively biased screening calculations made with approaches similar to those recommended in
NCRP Commentary No. 3 (1989) can be used to designate pathways and/or contaminants as definitely
low priority when the result is clearly below a regulatory standard or concern.  Pathways or
contaminants classified as definitely low priority could be excluded from further analysis; however,
the remaining pathways and contaminants should be studied in depth using a quantitative uncertainty
analysis (Hoffman et al., 1993).

3. A quantitative uncertainty analysis should be performed when it is necessary to set priorities among
sites, contaminants, exposure pathways, and toxicity or risk factors requiring further research before
making final decisions.  With the increased availability of inexpensive, powerful computers, sensitivity
analyses can be easily performed to investigate which input variables contribute most to the overall
uncertainty in the risk estimate.  The input parameters with the highest priority for further investigation
would be those that cause the greatest effect on the overall uncertainty of the risk.  More knowledge
about these parameters should effectively lower the uncertainty in the calculated risk estimate.

4. A quantitative uncertainty analysis should be performed when the consequences of an erroneous risk
estimate are high.  In this case, it may be useful to delay the decision, assign the assessment task to
multiple independent groups for independent analyses of risk and uncertainty, and invest in the
gathering of critical data needed to reduce the uncertainty in the risk estimate.  For example, a
quantitative uncertainty analysis should be performed when the cost of regulatory or remedial action
is high and the risk of exposure is marginal.  At some Superfund sites and corresponding military or
weapons facilities, the anticipated costs of cleanup may exceed $100 million per facility.  Such large
costs require that the estimated risks, which are truly high  and deserving strong interventions, be
distinguished from those that have been exaggerated due to the application of sets of compounded
assumptions with a conservative bias.

3.  METHODS FOR UNCERTAINTY ANALYSIS 

This section describes methods and examples of using error propagation techniques to quantify
uncertainty in environmental and human health risk assessment.  The methods involve both analytical equations
for simple models and numerical approaches involving the use of a computer for more complex models.
Among the numerical approaches to uncertainty analyses, Monte Carlo methods are given the most attention
in this report.

For situations requiring a quantitative uncertainty analysis, an iterative approach should be used.  The
first step of this approach would be the use of simple bounding (or screening) calculations to determine whether
further investigation is warranted before making a decision (Hoffman et al., 1993).  Bounding calculations are
intentionally biased to produce very high confidence that the true value is not above the calculated value or that
the true value is not below the calculated value.  If further studies are needed, a quantitative uncertainty
analysis organized at the level of a secondary screening calculation using conservative estimates of
uncertainties for each variable can be employed to indicate where studies should be focused.  As new
information is obtained, the analysis is repeated, each time identifying information needs until a decision is
possible or until time or resource limitations force a decision.  Within this iterative approach, the cost of risk
reduction actions must be considered at each stage along with the alternative risks of these actions.
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Please note that the examples presented in this manuscript are hypothetical.   The subjective
probability distributions presented in these examples are for demonstration purposes only.

3.1  LIMITING THE SCOPE THROUGH SCREENING

When taking into account the various exposure pathways for every hazardous substance found at a
contaminated site, a risk assessment can become lengthy and complicated.  An uncertainty analysis on every
parameter involved in a scenario such as this is impractical because of the numerous pathways and
contaminants involved.  Therefore, the first step in any risk assessment should be to focus the scope of the
problem on the primary contaminants and pathways likely to dominate the overall risk. 

To limit the risk assessment problem, the objective(s) of the assessment must be clearly defined.  Once
the objectives have been defined, a screening procedure can be used to identify the contaminants and exposure
pathways warranting a more detailed analysis (Hoffman and Gardner, 1983; Hoffman et al., 1991; NCRP,
1989).  In fact, screening can be considered a first step in the approach to uncertainty analysis in that a rough
estimate is provided of lower and upperbounds of risk.  Upperbound estimates can be obtained from a set of
conservative assumptions to produce a result that is not likely to underestimate the risk to a maximally exposed
individual.  Lower bound estimates can be obtained by removing the conservatism in these assumptions and
producing a result that is unlikely to overestimate the risk to a maximally exposed individual.  The current EPA
baseline risk assessment methods are often appropriate as a conservative upperbound estimate of risk as long
as the parameters are selected in a manner such that the actual risk to a maximally exposed individual will not
be underestimated.  This method is useful for rapidly identifying pathways and contaminants that may be given
low priority for further investigation because further attempts to evaluate this situation should only produce
lower risk estimates.  A lower bound screening calculation, however, is useful for rapidly identifying
contaminants that warrant immediate consideration for remedial action.  Examples of assumptions used in the
general approaches for performing conservative and nonconservative screening are provided in Table 3.1.

A situation where a screening procedure would be useful is as follows:  assume that there are
approximately 100 contaminants present at a site in four different environmental media, each giving rise to 5
to 10 different exposure pathways.  What can be done to guide the assessment to those contaminants and
exposure pathways warranting a more detailed investigation including an uncertainty analysis?  Before
embarking on a formal quantitative uncertainty analysis, the scope of this problem should be narrowed.  This
is best accomplished by performing screening calculations to aid in identifying pathways and contaminants
warranting further investigation.  Conservatively-based screening estimates will typically show that all but a
few situations are of low priority with respect to potential health risk.  Nonconservative screening estimates,
however, may indicate that although no situation warrants immediate action, some contaminants may be
sufficiently important to justify further investigation because limits of concern are approached. 
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Table 3.1.  Example assumptions used for conservative and nonconservative screening (Hoffman et al., 1991)

Conservative Screening Non-conservative Screening

Maximum or 95% UCL concentration
reported for a defined location

Average of detected values reported for a defined
location

Models used to estimate concentrations in
various media for which samples were not
taken or adequate data does not exist

Only measured concentrations in specific
environmental media are considered

Reasonable estimate of maximum diet and
occupancy times assumed

Estimates of diet and occupancy times are
generally less than those assumed for reasonable
maximum

Human receptor exposed for 70 years Probability of exposure period being less than 70
years considered in estimates of diet and
occupancy times

Multiple pathway exposure to the
maximally exposed individual considered

Multiple pathway exposure to the maximally
exposed individual not considered

Exposure to dredged sediment considered
separately from the consumption of water,
fish, and irrigated agricultural produce

Dredging of sediment not considered;  use of
water for irrigation not considered

Calculated exposure should not
underestimate actual maximum exposures

Calculated exposure should not overestimate
potential maximum exposures

Screening approach most useful for
identifying definitely low priority
contaminants

Screening approach most useful for identifying
definitely and potentially high priority
contaminants.
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To distinguish between low priority, potentially high priority, and high priority contaminants and
pathways, one must establish baseline screening values.  These should be chosen based on a distinction between
risks that are acceptable versus those that are clearly unacceptable.  In most cases, this distinction may be
influenced by risks permitted by current regulatory standards.  An example of screening values for carcinogens
is provided in Fig. 3.1, and a list for noncarcinogens is presented in Fig. 3.2 (Blaylock et al., 1991).  Two
primary sources that are useful for equations and parameter values to use in screening calculations are NCRP
(1989; in press) for metals and radionuclides and Lyman et al. (1982) for organic chemicals.

3.2  MODEL UNCERTAINTY 

The term model uncertainty is used to represent lack of confidence that the mathematical model is a
"correct" formulation of the assessment problem.  Model uncertainty exists if there is a  possibility of obtaining
an incorrect result even if exact values are available for all of the model parameters.  The best method for
assessing model uncertainties is through model validation (Hoffman et al., 1984), a process in which the model
predictions are compared to numerous independent data sets obtained under conditions similar to those for
which the risk assessment is to be performed.  Model validation is often limited because of lack of data, limited
experimental opportunities, and inadequate financial resources.  In many instances, the endpoint of the
assessment cannot be confirmed through direct measurement, as is the case with health effects at low doses.

In this report, it is assumed that the uncertainty in the estimate of risk can be calculated from an
estimate of uncertainty in each of the parameters used in the risk assessment equations.  This approach is
sometimes referred to as a "parameter uncertainty analysis" (IAEA, 1989).  The technique of parameter
uncertainty analysis provides a quantitative way to estimate the uncertainty in the model result assuming the
structure of the model is correct.  However, if there is additional uncertainty due to model structure, this
uncertainty should be examined either by alternative models or by the addition of parameters to the risk
assessment model.   Many risk assessment models are built upon empirical relationships.  When dealing with
a model that is composed of empirical relationships, it usually can be assumed that the correct values for the
model parameters will produce the correct value for the model result, provided that the conditions under which
parameter values have been obtained are directly relevant to the conditions of the assessment.

For the examples presented in this report, the bounds of uncertainty for each model parameter are
defined so that the unknown, true value lies within these limits.  It is assumed that the correct values for the
model parameters will produce the correct value for risk; therefore, no correction is made for the possibility
of additional uncertainty introduced by using an incorrect model.

3.3  GENERAL APPROACH TO UNCERTAINTY ANALYSIS 

To perform parameter uncertainty analysis, one should use the following steps (IAEA, 1989):

1. Define the assessment endpoint.  (For baseline risk assessments at Superfund sites, this is usually a
reasonable estimate of the risk to a maximally exposed individual over a defined period of time.)
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High priority- require
immediate

consideration for
remedial action

Require further
investigation before

taking action

SI not used as criterion to
establish low priority for

further consideration

10-3

10-4

10-5

10-6

10-7

10-2

10-3

10-4

10-5

10-6

10-2

Require further
investigation before

taking action

Require further
investigation before

either taking action or
designating low priority

Low priority for further
consideration

SI

Conservative Estimate of
Exposure

Nonconservative Estimate of
Exposure

Screening index (SI) = exposure multiplied by a lifetime cancer slope factor

Fig. 3.1. Criteria for conservative and nonconservative screening of carcinogens (Blaylock et al., 1991)



8

High priority- require
immediate

consideration for
remedial action

Require further
investigation before

taking action

SI not used as criterion to
establish low priority for

further consideration

10

1

.1

100

10

1

.1

.01

100

Require further
investigation before

taking action

Require further
investigation before either

taking action or
designating low priority

Low priority for further
consideration

SI

Conservative Estimate of
Exposure

Nonconservative Estimate of
Exposure

Screening index (SI) = exposure divided by reference dose factor (RfD)

Fig. 3.2 Criteria for conservative and nonconservative screening of noncarcinogens (Blaylock et al., 1991)
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2. List all uncertain parameters (include additional parameters if necessary to represent uncertainty in
model structure).

3. Specify maximum range of potential values relevant for unknown parameters with respect to the
endpoint of the assessment.

4. Specify a subjective probability distribution for values occurring within this range.

5. Determine and account for correlations among parameters.

6. Using either analytical or numerical procedures, propagate the uncertainty in the model parameters to
produce a (subjective) probability distribution of model predictions.

7. Derive quantitative statements of uncertainty in terms of a subjective confidence interval for the
unknown value [representing the prediction endpoint (e.g., excess cancer risk or Hazard Index)].

8. Rank the parameters contributing most to uncertainty in the model prediction by performing a
sensitivity analysis.

9. Obtain additional data for the most important model parameters and repeat steps 3 through 8.

10. Present and interpret the results of the analysis.

The assessment endpoint will determine the center and spread of the probability distributions used to
represent uncertainty in the parameters of the mathematical model used to perform the assessment.  For
example, if the assessment is targeted at a maximally exposed individual, the distributions obtained for the
uncertain model parameters should be representative of individuals who are likely to be those with the highest
exposure.  These individuals may eat more fish, may drink more water, may live longer in the region, etc.
Distributions chosen that are centered on the "average" or "typical" person might not include those who may
be considered maximally exposed.  In other words, if there is interest in values occurring in the extremes of a
distribution, the conditions that bring about these extremes should be modeled explicitly, and the uncertainty
analysis should be centered on these extreme conditions.

Steps 3 and 4 are usually accomplished by using professional judgment based on an extensive review
of available literature, collected data, and interviews with experts on the parameter of interest.  In addition, one
can incorporate correlations among the parameters by either specifying a correlation coefficient or changing
the model structure to include the additional parameters that determine interdependencies among the original
parameters of interest.

After the subjective probability distributions for the model  parameters are analyzed, one obtains a
subjective probability distribution for the risk, using one of the methods described in the following sections of
this chapter.  From this qualitative expression, one can formulate a quantitative description of the risk in the
form of a subjective CI in which the unknown risk should lie.  The term "subjective CI" is used to denote that
the probability distribution specified for the uncertain model parameters have been derived using a combination
of data and judgment.
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3.4 SPECIFYING PROBABILITY DISTRIBUTIONS FOR UNCERTAIN MODEL PARAMETERS

To perform a quantitative uncertainty analysis, probability distributions must be assigned to each of
the uncertain parameters.  The distributions may result directly from data obtained from a proper experimental
design, but usually subjective judgment must be used to reflect the degree of belief that the unknown value for
a parameter lies within a specified range.  Where data are limited but uncertainty is relatively low (less than
a factor of 10), a range may be used to specify a uniform distribution.  If there is knowledge about a most likely
value or midpoint, in addition to a range, a triangular distribution may be assigned.  When the range of
uncertainty exceeds a factor of 10, it is often prudent to assume a probability distribution of the logarithms of
the parameter values; therefore, when the range of uncertainty is very large, a log-uniform or log-triangular
distribution may be more appropriate than the uniform or triangular distribution.  The assumption of normal,
lognormal, or empirical distributions is usually dependent on the availability of relevant data.  Many other
distribution types are suitable for Monte Carlo analysis.  A few of these other types are the gamma, beta,
Poisson, Weibul, and a variety of discrete distributions (Decisioneering, Inc., 1994; Palisade Corporation,
1991). 

When there is doubt about the effect of different distributions, then different distributions should be
assumed and the effect analyzed.  In general, as long as the mean and variance of a distribution are held
constant, the exact shape of the distribution of a parameter in a risk assessment equation will have minimal
effect on the mean, variance, and, to a general extent, the 90% subjective confidence interval of the model
prediction (Gardner, 1988; O'Neill et al., 1981).  This is particularly evident when no single parameter
dominates the overall uncertainty in the model prediction and if the extent of interdependence among the model
parameters is small. 

The estimation of likely ranges and statistical distributions for each uncertain parameter requires a high
level of expertise.  Statistical information required for quantifying the uncertain parameters of interest usually
cannot be obtained directly from reference material.  Furthermore, published statistical distributions of data
for the uncertainty analysis should be scrutinized as these data might not apply to the conditions under
consideration.  Under no circumstance should a risk assessor treat an uncertain assumption or parameter
as a constant simply because data are unavailable to define a range and distribution.  In the absence of data,
it may be necessary to contact experts outside Martin Marietta Energy Systems, Inc. (MMES) and United
States Department of Energy (DOE) organizations to obtain the essential data and/or for assistance in deriving
uncertainty estimates.  Where judgment is used to derive estimates of uncertainty, the assumptions and sources
of information used should be documented.

When dealing with several different distributions, it is more efficient (easier and faster) to use
numerical methods (e.g., Monte Carlo analysis) to propagate uncertainty through a risk assessment model than
to use various analytical methods  (algebraic equations).  Analytical methods are options, however, when one
has similar distributions for all of the parameters and when the risk assessment model consists of sets of fairly
simple equations.

3.5  ANALYTICAL METHODS FOR UNCERTAINTY ANALYSIS 

For relatively simple equations, a quantitative uncertainty analysis can be performed using analytical
methods for statistical error propagation.  The analytical approach most frequently used for uncertainty
analysis of simple equations is variance propagation (IAEA, 1989; Martz and Waller, 1982; Morgan and
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Henrion, 1990).

A simple addition model may best demonstrate an example of variance propagation.  For an additive
model, the mean value of the result is equal to the sum of the mean values of the model parameters; the variance
of the result, assuming statistical independence among the parameters, is equal to the sum of the variances of
the parameters (Hoffman and Gardner, 1983; IAEA, 1989). 

where
p = the number of parameters in the model.

In a series of summations of uncertain parameters, the result will tend to conform to a normal
distribution even if the shapes of the distributions assigned to the model parameters are other than normal
(Central Limit Theorem).

However, the basic form of EPA risk assessment models is a multiplicative chain of parameters for
each contaminant and exposure pathway.  Multiplicative models can be reduced to additive form by
logarithmically transforming the variables.  This is shown in Eqs. 3.3 and 3.4.

Y = a x b x c (3.3)

ln(Y) = ln(a) + ln(b) + ln(c) (3.4)

Therefore, the distribution of Y will tend to be approximately lognormal even when the parameters a,
b, and c are assigned distribution shapes other than lognormal (Hoffman and Gardner, 1983).  For
multiplications, the median value (or geometric mean) is simply the exponential of the sum of the mean values
of the logarithms for the model parameters: 

where
Xg,R = the geometric mean of the result

µR = the (resulting) sum of the means of logarithms of the model parameters

The geometric standard deviation is found by taking the square root of the sum of the variances of the
log transformed parameters and exponentiating (Hoffman and Gardner, 1983; IAEA, 1989):
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where
Sg,R = the geometric standard deviation of the result

FR
2 = the variance of the logarithms

The upper confidence limit is determined by multiplying the median value by the square (or some other
power) of Sg,R.  The lower confidence limit is obtained by dividing the median by the square (or some other
power) of Sg,R.  The use of the square of Sg,R will lead to a 95% CI assuming that the distribution of the model
prediction will be lognormal.  Taking Sg,R to a power of 1.65 will lead to a 90% CI for a lognormal distribution
using the following equations:

where
= the 95% upper confidence limit of the resultX R

95

= the 5% lower confidence limit of the result.X R
5

The formula used to estimate the mean and variance of logarithms for each uncertain parameter
depends on the type of (subjective) probability distribution chosen to represent the uncertain parameter.
Equations describing the mean and variance of logarithms of lognormal, log-uniform, and log-triangular
distributions are provided in Appendix A.

Example 3.1

Situation.  Let us assume that methyl-mercury has been inadvertently released to a nearby lake.  Using
the technique of variance propagation, obtain a 90% CI on the hazard quotient (HQ) to a maximally exposed
individual.  After reviewing the literature, available data, and consulting with other experts, the (subjective)
probability distributions shown in Table 3.2 are obtained for this problem.
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Table 3.2.  Information for Example 3.1

Parameter Distribution Minimum Maximum Mean 
Standard
Deviation

Fish concentration

(C), mg/kg Log-Normal 7.10E-2 3.43E-2

Intake (I), kg/d Log-Uniform 2.00E-2 1.30E-1 6.50E-2

Body mass (BM),

kg

Log-Triangle 4.50E+1 1.20E+2 7.00E+1

RfD, mg/kg-day Log-Triangle 1.50E-4 3.00E-3 3.00E-4
Note: The mean given for the I, BM, and RfD is the most likely value (mode).  The distributions describe the
uncertainty associated with estimating an unknown value for each model parameter.

Solution.  The form of the equation used for this problem is as follows:

HQ = C x I x (BM)-1 x (RfD)-1. (3.9)

where

HQ = hazard quotient (unitless)

C = concentration in the contaminated medium (mg/kg)

I = estimated intake rate of the contaminant for one year averaged over one year (kg/day)

BM = body mass (kg)

RfD = reference dose for the chemical of interest (mg/kg-day)

By log-transformation, Eq. 3.9 becomes:

ln(HQ) = ln(C) + ln(I) - ln(BM) - ln(RfD). (3.10)

The logarithmic mean and variance, assuming independence among the model parameters, of the HQ
is found by applying Eqs. 3.1 and 3.2.  The equations given in Appendix A must be used to find the mean and
variance of logarithms for each of the model parameters.  Equations A.1 and A.2 (Appendix A) produce a mean
of the logarithms for the fish concentration of -2.75 and a variance of the logarithms for the fish concentration
of 0.21.
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F2
BM'0.04 (3.15)

µHQ' (&2.75)% (&2.98)% (&4.28)% (7.58)'&2.43 (3.16)

Xg,HQ' e
µHQ' e &2.43'0.09 (3.17)

Equations A.3 and A.4, for the log-uniform distribution, will be used to find µ  (the mean of logarithms)
and F2 (the variance of logarithms) for the intake:

Equations A.5 and A.6, given for the log-triangular distribution, are used for the body mass and
reference dose (RfD).  To demonstrate, the µ  and F2 for the body mass is calculated as follows:

This same process is performed for the RfD, from which a mean value of -7.58 and a variance of 0.41
is obtained.  The mean of logarithms and thereby the geometric mean of the HQ is calculated as follows:

The variance of the HQ and, consequently, the geometric standard deviation of the HQ can then be
calculated:
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The upper and lower confidence limits for a 90% subjective CI are calculated as:

Therefore, there is high confidence (at a subjective level of 90%) that the HQ should lie between 0.02
and 0.45.

Variance propagation is a straight-forward process for simple additive and logarithmically transformed
multiplicative models where the parameters are statistically independent.  For more complex calculations,
variance propagation techniques are more difficult to apply analytically, and in some cases their use may not
be practical or possible.

3.6  NUMERICAL METHODS FOR UNCERTAINTY ANALYSIS 

To overcome problems encountered with analytical variance propagation equations, numerical methods
are useful in performing an uncertainty analysis.  Perhaps the most commonly applied numerical technique and,
as mentioned previously,  the one that will be discussed most in this commentary is Monte Carlo simulation
(Rubinstein, 1981).  Other approaches include 1) differential uncertainty analysis (Cacuci, 1981; Worley,
1987), in which the partial derivatives of the model response with respect to the parameters are used to estimate
uncertainty; 2) Monte Carlo analysis of statistical simplifications of complex models (Downing et al., 1985;
Mead and Pike, 1975; Morton, 1983; Myers, 1971); 3) nonprobabilistic methods [for example: fuzzy sets,
fuzzy arithmetic, and possibility theory (Ferson and Kuhn, 1992)]; and 4) first-order analysis employing Taylor
expansions (Scavia et al., 1981).  The last approach is based on computer implementation of the mathematical
approaches used to formulate the analytical solutions to the error propagation for simple equations and is
related to the first approach.

Monte Carlo analysis is usually performed using two random sampling processes: Simple Random
Sampling (SRS) and Latin Hypercube Sampling (LHS) (Iman and Conover, 1980; 1982; Iman and
Shortencarier, 1984; IAEA, 1989; McKay et al., 1979; Morgan and Henrion, 1990).  In SRS, a random value
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is sampled from each distribution specified for each uncertain model parameter, and a single estimate of the
desired endpoint is calculated.  This process is repeated for a specified number of samples or iterations.  The
result is a probability distribution of the model endpoint.  Simple Random Sampling, however, is less efficient
than its counterpart, LHS, when the sample size is less than a few thousand.

In standard LHS, the distribution for each parameter is divided into sections of equal probability.  The
number of sections equals the number of samples or iterations to be made in the Monte Carlo simulation.
During the sampling, the random numbers are selected by chance within each section, but only one random
number is chosen from each section.  Once a random number has been selected from a section, that section is
excluded from the rest of the analysis.  The distributions are thereby represented more efficiently than with
SRS, and it takes less sampling effort to reach a stable mean and variance of the prediction endpoint (IAEA,
1989).  An alternative to standard LHS is midpoint LHS which provides an even more uniform sampling of
the distributions (Morgan and Henrion, 1990).  The primary difference between these techniques is that
midpoint LHS chooses the median of each section instead of sampling randomly within the section.

Monte Carlo analysis may be performed in many ways.  One may write a numerical code or use one
of several currently available software packages.  Several available Monte Carlo simulation programs are
presented in the following list.

MOUSE Klee (1986)

TAM3 Gardner (1988), Kanyar and Nielsen (1989)

PRISM Gardner et al. (1983), Gardner and Trabalka (1985)

Crystal Ball Decisioneering, Inc. (1994)

@RISK Palisade Corporation (1991)

ORMONTE Williams and Hudson (1989)

GENII/SUNS Leigh et al. (1992)

The following example provides a more detailed description of a Monte Carlo simulation.

Example 3.2

Situation.  Use the scenario presented in Example 3.1 to demonstrate the use of Monte Carlo
simulation.  With 90% (subjective) confidence, what is the risk to the maximally exposed individual?  This
example does not address dependencies among parameters; the effect of correlations among parameters will
be demonstrated in Example 3.4.

Solution.  To begin a quantitative uncertainty analysis, one must describe the uncertainty about each
variable with a (subjective) probability distribution.  This is done through judgment after extensive review of
all relevant data.  The information presented in Table 3.2 is used as input for a Monte Carlo simulation for this
problem. 
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When running a Monte Carlo technique, values are selected at random from (subjective) probability
distributions for each uncertain variable to produce a prediction.  This procedure is repeated for a specified
number of iterations and forms a distribution of predicted values.  A sample of randomly selected values
obtained by running 500 iterations of LHS for this problem is provided in Table 3.3.

Table 3.3.  Sample of random values obtained from 500 iterations of LHS for Example 3.2

Sample
number

Fish concentration
(mg/kg)

Intake
(kg/d)

Body mass
(kg)

Reference dose
(mg/kg-d)

HQ
(unitless)

1 1.01E-01 3.40E-02 4.71E+01 5.25E-04 1.38E-01

2 1.14E-01 1.19E-01 7.68E+01 5.64E-04 3.15E-01

3 8.11E-02 1.05E-01 6.78E+01 1.76E-04 7.10E-01

4 6.51E-02 3.63E-02 7.50E+01 3.00E-04 1.05E-01

. . . . . .

. . . . . .

. . . . . .

499 9.40E-02 9.21E-02 7.04E+01 2.71E-03 4.53E-02

500 8.60E-02 2.66E-02 8.15E+01 8.96E-04 3.13E-02

This process yields a (subjective) probability distribution for the HQ.  Figure 3.3 contains the result
for the risk after 500 iterations using LHS.  From this Monte Carlo simulation, a 90% CI of [1.70E-2, 4.17E-
1] is obtained and indicated by tick marks on the graph provided in Fig. 3.3.  This implies that after taking into
account the uncertainties on the parameters, one is highly confident (at a subjective level of 90%) that the true
HQ should lie between 1.70E-2 and 4.17E-1.  Since the 95% upper confidence limit is still below an HQ of
1, there is high confidence that the maximally exposed individual for this scenario is not exposed to an
unacceptable level of risk, and remediation should not be warranted.

Once familiar with the Monte Carlo simulation software package, this technique becomes very
efficient.  Even if a risk analysis becomes more complicated, the Monte Carlo technique does not.  One reason
that the Monte Carlo calculations are more useful than other approaches to uncertainty analysis is that the
alternative variance propagation techniques can become complicated and time consuming for more involved
risk analyses.  Setting up simulations to run on the computer is much more efficient and accurate than
performing hand calculations.  The  inputs required for Monte Carlo simulations are the (subjective) probability
distributions and uncertainty bounds for each parameter.  To come up with these (subjective) probability
distributions and uncertainty bounds, one must apply professional judgment after extensively reviewing the
available literature and data.  With the various input distributions, the Monte Carlo simulation program then
provides a forecast of the risk in terms of a subjective probability distribution about which CIs for the risk can
be obtained.  A demonstration of this technique for a more complicated risk analysis situation is presented in
the following example.
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Fig. 3.3. Subjective probability distribution of the hazard quotient for Example 3.2

Example 3.3

Situation.  Let us assume that as the result of waste management practices, a mixture of contaminants
is released inadvertently to the environment.  Through various pathways, this contamination is transported to
aquatic systems such as rivers and lakes where fish and other biota are exposed.  After further investigation,
it is discovered that the contaminants released were Aroclor-1254, Aroclor-1260, chlordane, and methyl-
mercury.  Suppose that contaminated fish are caught and eaten by humans.  What is the hazard index and the
total lifetime cancer risk to the maximally exposed individual?

To perform this risk assessment, the HQs for chlordane and methyl-mercury will be calculated from
the following equation. 

where

HQ = hazard quotient (unitless),

C = concentration in the contaminated medium (mg/kg),

I = estimated intake rate of the contaminant for one year averaged over one year (kg/day),
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LR' C0I0SF
BM

(3.23)

BM = body mass (kg),

RfD = reference dose for the chemical of interest (mg/kg-day).

The HQs for various chemicals are summed for each exposure pathway to obtain a hazard index  for
a given area (EPA, 1989).  The excess lifetime cancer risk for Aroclor-1254, Aroclor-1260, and chlordane will
be determined using the following equation.

where

LR = excess lifetime cancer risk (unitless),

C = concentration in the contaminated medium (mg/kg),

I = estimated intake rate of the contaminant for thirty years averaged over a seventy year
lifetime (kg/day),

BM = body mass (kg),

SF = slope factor (or cancer potency factor) for the contaminant of interest (mg/kg-day).

To quantify the uncertainty associated with each of the parameters introduced in these equations, one
must derive (with the use of a considerable amount of judgment) subjective probability distributions from very
limited sets of data and other relevant facts in the published literature.  Once these distributions have been
specified, one can use Monte Carlo techniques to obtain a probability distribution of the hazard index and the
total lifetime cancer risk.  From these propagated distributions, subjective CIs (90%) can be obtained for use
in setting limits for decision making.

Table 3.4 contains values for the estimates of uncertainty on each of the parameters that would be used
in an environmental risk assessment of Aroclor-1254, Aroclor-1260, chlordane, and  methyl-mercury in the
fish potentially harvested from a contaminated fresh water system.

Solution:  The values given in Table 3.4 were used to find the median, the lower 5% subjective
confidence limit, and the upper 95% subjective confidence limit for the noncarcinogen hazard index for
chlordane and methyl-mercury and for the total cancer risk involved with the given concentrations of Aroclor-
1254, Aroclor-1260, and chlordane in fish.  These values (presented in Table 3.5) were obtained by using 500
iterations of the LHS Monte Carlo technique.



Table  3.4.  Subjective probability distributions specified for the Monte Carlo Analysis of Example 3.3

Chemical Parameter
Subjective
Probability
Distribution

Minimum Maximum Mean
(Mode)

Standard
Deviation

Units

Aroclor-1254 Fish Conc. Log-Normal 4.00E-03 3.79E+00 5.34E-01 2.26E+00 mg/kg

Intake Log-Uniform 1.65E-02 8.25E-02 kg/day

Body Mass Log-Triangle 4.50E+01 1.20E+02 7.00E+01 kg

Slope Factor Triangle 0.00E+00 1.00E+01 7.70E+00 (mg/kg-day)-1

Aroclor-1260 Fish Conc. Log-Normal 3.19E-01 2.29E+00 9.75E-01 5.16E-1 mg/kg

Intake Log-Uniform 1.65E-02 8.25E-02 kg/day

Body Mass Log-Triangle 4.50E+01 1.20E+02 7.00E+01 kg

Slope Factor Triangle 0.00E+00 1.00E+01 7.70E+00 (mg/kg-day)-1

chlordane
(carcinogen)

Fish
Concentration Log-Normal 3.96E-02 3.06E-01 1.27E-01 6.98E-02 mg/kg

Intake Log-Uniform 1.65E-02 8.25E-02 kg/day

Body Mass Log-Triangle 4.50E+01 1.20E+02 7.00E+01 kg

Slope Factor Triangle 0.00E+00 5.00E+00 1.30E+00 (mg/kg-day)-1

chlordane
(non-carc)

Fish
Concentration Log-Normal 3.96E-02 3.06E-01 1.27E-01 6.98E-02 mg/kg

Intake Log-Uniform 2.00E-02 1.30E-01 kg/day

Body Mass Log-Triangle 4.50E+01 1.20E+02 7.00E+01 kg

RfD Log-Triangle 3.00E-05 1.90E-03 6.00E-05 mg/kg-day

methyl
mercury

Fish
 Concentration Log-Normal 2.55E-02 1.57E-01 7.10E-02 3.43E-02 mg/kg

Intake Log-Uniform 2.00E-02 1.30E-01 kg/day

Body Mass Log-Triangle 4.50E+01 1.20E+02 7.00E+01 kg

RfD Log-Triangle 1.50E-04 3.00E-03 3.00E-04 mg/kg-day

20
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Table 3.5.  Results obtained from Monte Carlo simulation using values in Table 3.4

Chemical Type of Result
5% Subjective
Confidence Median

95% Subjective
Confidence

Aroclor-1254 cancer risk 1.7E-05 3.4E-04 7.8E-03

Aroclor-1260 cancer risk 4.7E-04 2.5E-03 9.2E-03

chlordane cancer risk 2.3E-05 1.0E-04 4.9E-04

Total cancer risk* 8.6E-04 3.6E-03 1.4E-02

chlordane noncarcinogen HQ 6.2E-02 5.5E-01 3.3E+00

methyl mercury noncarcinogen HQ 1.8E-02 8.8E-02 4.1E-01

Total HI* 1.2E-01 6.6E-01 3.5E+00

*Risks may not be directly additive due to the random sampling used in the analysis.

As shown in Table 3.5, the primary chemical contributing to the total cancer risk is Aroclor-1260, and
the chemical contributing the majority of the total hazard index is chlordane.  The parameter that has the most
effect on the total uncertainty in the total cancer risk and the total hazard index can also be determined by
performing a sensitivity analysis. 

In this example, the method used for the sensitivity analysis was to square the Spearman Rank
Coefficients and adjust them to 100% (Decisioneering, Inc., 1994).  The approximate relative contribution of
each parameter to the variance of the total cancer risk and the total hazard index was analyzed.  The parameters
having the greatest effect are considered to be the parameters for which additional data should reduce the
amount of overall uncertainty in the results. 

For the total cancer risk, the amount of fish ingestion was identified as having the most effect on the
overall uncertainty in the total cancer risk contributing approximately 34.7% of the overall uncertainty.  The
next most important parameter is the concentration of Aroclor-1260 in the fish, contributing approximately
24.1% of the overall uncertainty.  One might expect the latter result because of Aroclor-1260 contributing the
majority of the risk.  For the total hazard index, the sensitivity analysis showed that the two parameters that
are the most significant contributors to the total uncertainty are the RfD for chlordane (contributing
approximately 48.3% of the overall uncertainty) and the amount of fish ingested (contributing approximately
30.6% of the overall uncertainty).  

Other methods of performing sensitivity analyses are introduced in Subsect. 3.7.

Example 3.4

Situation.  The purpose of this example is to study the effect of correlation coefficients on the model
result.  Two scenarios are investigated. 
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(1)  The effect of the correlation between body mass and intake on the total cancer risk and the total HI
for the situation given in Example 3.3 is analyzed.  First, assume that a minimum correlation of 0.3
has been determined to exist between body mass and intake, and second, compare the results with those
obtained with a correlation of 0.5, 0.7,  and 0.9. 

(2) The effect of a correlation existing between the fish concentration and the intake on the total cancer
risk and the total HI for the situation described in Example 3.3 is analyzed.  This correlation would
exist for those fishermen who eat only a certain species of fish.  Assume that a correlation of 0.7 has
been determined for this example.

Solution.  (1)  In this case, rank correlations are used (Decisioneering, Inc., 1994) to account for
interdependencies between body mass and intake.  As can be seen from Table 3.6, where the results are
produced from 500 iterations using LHS, the correlation coefficients do not have a dramatic effect on the total
risk.  The values for the total cancer risk and the total hazard index are virtually the same.  A slight difference
is detected in the 5% lower confidence limit and 95% upper confidence limit values for correlation coefficients
of 0.7 and 0.9.  One reason that the correlation does not have an obvious effect on the results is that uncertainty
in the body mass is not an important contributor to the overall uncertainty. 

Table 3.6.  Results obtained for correlations between body mass and intake for Part 1 of Example 3.4

Rank  Correlation  Coefficient

0.3 0.5 0.7 0.9

Total cancer risk  

5% LCL 9.2E-4 9.8E-4 1.0E-3 1.1E-3

50% (median) 3.4E-3 3.4E-3 3.5E-3 3.5E-3

95%UCL 1.4E-2 1.4E-2 1.3E-2 1.2E-2

Total HI

5% LCL 1.4E-1 1.4E-1 1.5E-1 1.6E-1

50% (median) 6.7E-1 6.9E-1 6.9E-1 6.7E-1

95% UCL 3.8E+0 3.3E+0 3.3E+0 3.1E+0

(2) Rank correlations were also used (Decisioneering, Inc., 1994) to account for interdependencies
between fish concentration and intake.  Table 3.7 summarizes the results obtained in Example 3.3 and presents
the results obtained when accounting for a correlation coefficient of 0.7 between the fish concentrations and
intake for the total cancer risk and the total HI.  As can be seen from Table 3.7, the correlation coefficient has
a definite effect on the lower and upper confidence limit values for both the total cancer risk and the total
hazard index.  The difference in the lower and upper confidence limit values that result from this correlation
is because of the importance of the two correlated parameters to the overall uncertainty.
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This example shows that correlation coefficients can be easily incorporated into an uncertainty analysis
and should be fully considered when the effect is between important parameters or when the risk assessor is
interested in the extremes of the distribution.
 
Table 3.7  Results obtained for a correlation between fish concentration and intake for Part 2 of Example 3.4

No Correlation (Ex. 3.3) 0.7 Correlation

Total cancer risk

5% LCL 8.6E-04 6.1E-04

50% (median) 3.6E-03 3.1E-03

95% UCL 1.4E-02 2.1E-02

Total HI

5% LCL 1.2E-01 8.8E-02

50% (median) 6.6E-01 6.7E-01

95% UCL 3.5E+00 4.8E+00

3.7  ALTERNATIVE METHODS FOR SENSITIVITY ANALYSIS 

Although not employed in Example 3.3, the use of scatter plots of the Monte Carlo samples of the input
parameters against the Monte Carlo simulations of the model result is another method of identifying important
parameters (Iman and Helton, 1988).  For example, suppose that the risk is determined by the addition of two
independent parameters, which parameter is the most important?  This can be determined by graphing the 500
Monte Carlo samples of parameter 1 against the 500 simulations of the model result and comparing this graph
against the same for parameter 2 as demonstrated in Fig. 3.4.  As one can see, a more distinct trend exists for
parameter 2 than for parameter 1.  Therefore, one can conclude that the most important parameter to the overall
uncertainty in the model result is parameter 2.

Many other methods are available for performing sensitivity analyses.  Some of these methods include
1) simple regression (on the untransformed and transformed data) (Brenkert et al., 1988), 2) multiple and
piecewise multiple regression (on transformed and untransformed data) (Downing et al., 1985), 3) regression
coefficients and partial regression coefficients (Bartell et al., 1986, Gardner et al., 1981),  4) stepwise
regression and correlation ratios (on untransformed and transformed data)  and 5) differential sensitivity
analysis (Griewank and Corliss, 1991; Worley, 1987).  Other references that discuss the use of statistical
regressions of the randomly selected values of the uncertain parameters on the values produced for the model
predictions to determine the importance of parameters contributing to the overall uncertainty in the model result
include IAEA (1989), Iman et al. (1981a; 1981b), Iman and Helton (1991), and Morgan and Henrion (1990).
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Fig. 3.4. Scatter plots of parameter 1 and parameter 2 against the model result

3.8  ADVANTAGES OF AN UNCERTAINTY ANALYSIS 

One of the steps in a risk assessment is to rank the importance of the pathways and chemicals in terms
of their potential contribution to the total risk.  The first attempt at this is performed by screening.  Screening
identifies those pathways and chemicals that could be of potential concern.  However, if the risk assessor
attempts to rank the pathways and chemicals at this stage, the wrong conclusions may be reached because the
uncertainty involved is not necessarily equal among contaminants and exposure pathways.  This is best
demonstrated in the following example.

Example 3.5

Situation.  Upon investigation of a potentially contaminated site, it was discovered that a nearby lake
and the surrounding soils were contaminated with methyl-mercury and inorganic mercury, respectively.  The
95% upper confidence limit on the mean value for the concentration of the inorganic mercury in soil is found
to be 700 mg/kg, and the 95% upper confidence limit on the mean value for the concentration of methyl-
mercury in fish is 3.05 x 10-1 mg/kg.  Considering the ingestion of soil and the ingestion of fish, which pathway
is the most hazardous to the maximally exposed individual?

Solution.  A summary of the values used in this example is provided in Table 3.8.  The values for the
HQs for the two pathways will be compared with each other for two situations:  1) by using a form of EPA's
generic equations and 2) by incorporating uncertainty analysis.  The exposure frequency for the soil ingestion
pathway was included directly in this example because of its wide range of possible values.  The exposure
frequency for the fish ingestion pathway was included in the calculation of the intake parameter.
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HQSP'
Cs0Is0EFs

BM0RfDIM

'
(700)(1.0E&04)(0.7)

(70)(3.0E&04)
'2.33 (3.24)

HQFP'
Cf0If

BM0RfDMM

'
(3.05E&01)(6.5E&02)

(70)(3.0E&04)
'0.94 (3.25)

Table 3.8  Information for Example 3.5.

Parameter Distribution Minimum Maximum Mean
Standard
Deviation

Fish concentration
(CF), mg/kg Log-Normal 2.06E-1 4.22E-2

Intake of Fish (IF),
kg/d Log-Uniform 2.00E-2 1.30E-1 6.50E-2

Soil concentration
(CS), mg/kg Log-Normal 3.11E+2 1.50E+2

Intake of Soil (IS),
kg/d Log-Uniform 5.00E-5 2.00E-4 1.00E-4

Exposure frequency
(EFs) Log-Uniform 2.70E-1 7.00E-1 7.00E-1

Body mass (BM), kg Log-Triangle 4.50E+1 1.20E+2 7.00E+1

Inorganic mercury
RfD (RfDIM), mg/kg-
d

Log-Uniform 3.00E-4 3.00E-2 3.00E-4

Methyl mercury RfD
(RfDMM), mg/kg-d Log-Triangle 1.50E-4 3.00E-3 3.00E-4

* Note: The mean given for the I, BM, and RfD is the most likely value (mode).

From these calculations, one would conclude that the risk to the maximally exposed individual results
from the soil-ingestion pathway.  However, by incorporating the uncertainties for the parameters and using
Monte Carlo simulation, one obtains different results.  After a Monte Carlo simulation run of 500 iterations
of LHS, the 95% upper confidence limit of the HQ for the soil ingestion pathway is 0.72, and the 95% upper
confidence limit of the HQ for the fish ingestion pathway is 1.20.  This implies that the fish ingestion pathway
is the source of most of the risk to the maximally exposed individual.  The reversal of the ranking from the EPA
calculations is primarily because of the large uncertainty on the RfD for inorganic mercury.  If the uncertainty
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of this parameter had not been taken into account, an inaccurate conclusion and, possibly, an inappropriate
course of action would have resulted.

An uncertainty analysis through a quantitative description provides better direction for further
investigation.  If a quantitative uncertainty analysis is used routinely in risk assessment, specific areas that need
further study can be determined and ranked, thereby preventing misdirected investigation and unwarranted
remedial action, which in turn should result in saving limited experimental and financial resources.

3.9 BRIEF INTRODUCTION TO UNCERTAINTY ANALYSIS FOR AN ASSESSMENT ENDPOINT
THAT IS A DISTRIBUTION OF VALUES AS OPPOSED TO A SINGLE VALUE 

The general subject of this report to this point has coincided with uncertainty about a true but unknown
value [referred to in IAEA Safety Series No. 100 (1989) as "Type B" uncertainty].  However, some risk
assessments may have an endpoint defined as a stochastic variable.  An example would be the variability of
doses among individuals in a population whereby the individuals are selected from the population at random.
An uncertainty analysis dealing with stochastic variability only is referred to as "Type A" uncertainty in IAEA
Safety Series No. 100 (1989).  Both "Type A" and "Type B" uncertainty occur when the assessment objective
is to estimate the distribution of individual doses or risks within an exposed population group where the true
shape and spread of this distribution is uncertain (i.e., unknown).  The goal of this section, therefore, is to
briefly describe the process of uncertainty analysis when the assessment endpoint is a stochastic variable and
when there is lack of knowledge about the true distribution that describes this variable.

To distinguish between "Type A" and "Type B" uncertainty, Monte Carlo simulation must be applied
in two dimensions.  First, numerous sets of alternative values are obtained from marginal probability density
functions (PDFu’s) representing subjective degrees of belief about quantities that are fixed but unknown with
respect to the assessment endpoint (Fig. 3.5).  Fixed quantities include parameters that do not vary with the
assessment endpoint, such as the total amount of the contaminant released.  Fixed quantities also include the
mean, variance, and shape of those parameter distributions that describe variability among individuals, as well
as values that describe correlations among these parameters.  The alternative sets of fixed values represent
"Type B" uncertainty. 

Second, for each alternative set of fixed values, Monte Carlo procedures are used to simulate
alternative distributions of parameter values that vary with respect to the assessment endpoint (PDFv’s) and
corresponding distributions of individual risks, each with its own unique mean, variance, and shape (Fig. 3.6).
Each of these distributions is an individual representation of "Type A" uncertainty.  The set of alternative
distributions represents "Type B" uncertainty.  The alternative distributions are then used to construct
confidence intervals for the unknown risk at any given fractile or for the unknown fractile at any given value
of risk (Fig. 3.7).  The order of importance for the parameters that contribute most to the confidence interval
at a given fractile will depend on the fractile of interest (IAEA, 1989).  Additional readings on this issue can
be obtained from a number of authors (Bogen, 1990; Frey, in press; Helton, 1993; Hofer, 1990; Kaplan and
Garrick, 1981).

When performing an uncertainty analysis where there is both stochastic variability and lack of
knowledge uncertainty, correct interpretation of the results requires that these two sources of uncertainty be
analyzed separately.  Various distributions representing the endpoint, which are analogous to the various values
obtained for the result in an uncertainty analysis where only true but unknown values are considered, are 
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Fig. 3.5. Use of a Monte Carlo approach to estimate “Type B” uncertainty when the assessment endpoint is a
fixed but unknown quantity (Hoffman and Hammonds, 1994)
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Fig. 3.6. Use of a Monte Carlo approach to distinguish between “Type A” and “Type B” uncertainty when
the assessment endpoint is a true but unknown distribution of values representing variability among

unspecified individuals in an exposed population (Hoffman and Hammonds, 1994)
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Fig. 3.7. Numerous alternative distributions produced through Monte Carlo simulation of “Type A” and
“Type B” uncertainty can be used to derive confidence intervals for the mean value and any fractile of the

true but unknown distribution (Hoffman and Hammonds, 1994)
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obtained.  The combination of these types of uncertainty analysis is facilitated  using Monte Carlo simulation.

 3.10  GUIDANCE FOR INTERPRETING THE RESULT OF AN UNCERTAINTY ANALYSIS 

Incorporating a quantitative uncertainty analysis into a dose or risk assessment provides a major tool
for decision making.  A quantitative uncertainty analysis will allow the assessor to evaluate the relative
importance of the contaminants and pathways more accurately.  In this manner, quantitative uncertainty
analysis allows the assessor to see where further study is needed or where decisions can be made in the presence
of uncertainty.  Not only does a quantitative uncertainty analysis allow a ranking of the pathways and
contaminants that contribute most to the overall uncertainty in the result, but it also provides a subjective
probability distribution about which confidence intervals can be formed to represent the uncertainty in the
assessment endpoint.

The information obtained from a quantitative uncertainty analysis can be used to guide decisions.  For
example, if a 5% lower confidence limit is above a regulatory standard of concern, then it is likely that the
standard will be violated.  If the 95% upper confidence limit is below the standard, it is likely that the standard
will not be violated.  If the 95% upper confidence limit is above the standard, but the 50th percentile is below
the standard, further study should be recommended on those parameters that dominate the overall uncertainty.
However, if the 50th percentile is above the standard, further study may still be recommended, but under some
circumstances one may opt to proceed with regulatory action depending on the cost-effectiveness of measures
for risk reduction.

4.  SUMMARY 

The baseline risk assessment methods currently recommended by EPA do not explicitly account for
uncertainty and may tend to produce overly conservative estimates of risk by combining, through
multiplication, several conservatively biased values for parameters in the risk assessment equation. Therefore,
EPA's baseline risk assessment methods should be more appropriately viewed as an initial screening tool.  A
more informative approach to estimating risks is to incorporate a quantitative uncertainty analysis into the risk
assessment.  Quantitative uncertainty analysis may be facilitated by using either analytical error propagation
equations (i.e., variance propagation techniques) or by using numerical approaches with the aid of a computer
(i.e., Monte Carlo simulation).  The latter is more robust for varying levels of uncertainty and risk assessment
models of varying levels of complexity.

Quantifying uncertainty in the risk estimate provides more information to the risk assessment and is
the first step in identifying the need for additional data.  The most difficult task in quantitative uncertainty
analysis, however, is associated with justifying judgmental decisions that are made to obtain subjective
probability distributions for the uncertain model parameters.  The extent of knowledge required to exercise this
judgment often exceeds the capacity of any one individual.  Therefore, the judgment of several experts must
often be solicited, if not formally elicited, to defensibly estimate parameter and model uncertainty.
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APPENDIX A

The following distributions are suggested for subjective probability distributions in analysis of
multiplicative models.

Log-Normal Distribution:

µ = the mean of the logarithms
F2 = the variance of the logarithms

However, if you have a situation where you are given only the arithmetic mean and arithmetic variance, then
µ and F2 can be estimated with the following equations (Hoffman and Gardner, 1983):

where
= the arithmetic mean of the distributionx̄

s = the standard deviation of the distribution.

Log-Uniform Distribution (Hoffman and Gardner, 1983):

Asymmetrical Log-Triangular Distribution (Beauchamp, 1991; Johnson and Kotz, 1970):
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where
H* = the mode of the triangular distribution,
b = the maximum of the triangular distribution,
a = the minimum of the triangular distribution.

The following distributions are suggested for use as subjective probability distributions in analysis of
additive models.

 Normal Distribution:

The mean value of the normal distribution is simply the value at the 50 percentile.  With a
normal distribution, the median, mode, and mean are the same.  The variance of the normal
distribution is the second central moment of the variable or the standard deviation squared.

Uniform Distribution:

Asymmetrical Triangular Distribution (Beauchamp, 1991; Johnson and Kotz, 1970):



s 2'
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18
[(a)2% (b)2& (a)(b)% (H ()2(a%b)] (A.10)

In addition to these suggested distributions, a few more distributions that one may use are custom
designed, Poisson, Weibull, gamma, beta distributions, and any number of discrete distributions
(Decisioneering, Inc., 1994; Palisade Corp., 1991).  


