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EXECUTIVE SUMMARY

This report presents guidelines for evaluating uncertainty in mathematical egquations and computer
models applied to assess human health and environmental risk. Uncertainty analyses involve the propagation
of uncertainty in model parametersand model structure to obtain confidence statementsfor the estimate of risk
and identify the model components of dominant importance. Uncertainty analyses are required when thereis
no a priori knowledge about uncertainty in the risk estimate and when there is a chance that the failure to
assess uncertainty may affect the selection of wrong options for risk reduction. Uncertainty analyses are
effectivewhen they are conducted in an iterative mode. When the uncertainty intherisk estimateisintolerable
for decision-making, additional data are acquired for the dominant model components that contribute most to
uncertainty. This processis repeated until the level of residua uncertainty can be tolerated.

Inthisreport, analytical and numerical methodsfor error propagation are presented al ong with methods
for identifying the most important contributors to uncertainty. Monte Carlo simulation with either Simple
Random Sampling (SRS) or Latin Hypercube Sampling (LHS) is proposed as the most robust method for
propagating uncertainty through either simple or complex models. A distinction is made between simulating
astochastically varying assessment endpoint (i.e., thedistribution of individual risksin an exposed population)
and quantifying uncertainty due to lack of knowledge about a fixed but unknown quantity (e.g., a specific
individual, the maximally exposed individual, or the mean, median, or 95%-tile of the distribution of exposed
individuals).

Emphasisis placed on the need for subjective judgment to quantify uncertainty when relevant dataare
absent or incomplete. Therefore, theresultsof an uncertainty analysiswill differ among risk assessorsbecause
of differencesin the interpretation of the current state of knowledge. Despite these differences, the subjective
confidenceintervalsfrom an uncertainty analysis should produce areasonably "high" probability of bounding
the true risk provided that risk assessors avoid overconfidence in quantifying the level of certainty associated
with important model components.



1. INTRODUCTION

When hazardous substances arerel eased into the environment, an evaluation is necessary to determine
the possible impact these substances may have on human health and other biota. To address this question, a
risk assessment is performed to quantify the potential detriment and evaluate the effectiveness of proposed
remediation measures. A baseline risk assessment performed according to currently recommended United
States Environmental Protection Agency (EPA) methods (EPA, 1989) produces asingle point estimate of risk.
Such point estimates fail to address the inherent uncertainty in the estimates of risk. At best, the single values
obtained from this method may be considered as upperbound (conservative) estimates of risk to amaximally
exposed individual. The chance of underestimating the true risk to an exposed individua is minimized.
However, the chance of overstating the risk may be large.

A less biased approach to risk assessment uses uncertainty analysis to estimate the degree of
confidence that can be placed in the risk estimate. A discussion of uncertainty is critical to the full
characterization of risk to more fully evaluate the implications and limitations of the risk assessment (EPA,
1992). To date, an uncertainty analysis, if performed at all, is usually restricted to a qualitative statement of
confidencein the result; for instance, uncertainty in the point estimate that isless than one order of magnitude
(afactor of 10) isconsidered "low," uncertainty in the point estimate greater than one order of magnitude but
lessthan two orders of magnitude (afactor of 100) isconsidered "moderate,” and uncertainty that exceedstwo
orders of magnitude is considered "high" (EPA, 1989). Unfortunately, these qualitative statements of
uncertainty are difficult to assess, let alone defend, particularly when the assessment involves potential
exposure to severa contaminants transferred over anumber of different pathways (Hoff man and Hammonds,
1994).

A moredefensible approach isto perform aquantitative analysis of uncertainty using either analytical
or numerical techniques to propagate uncertainty in the components of the risk assessment equations into an
assessment of uncertainty inthe overall result. If the risk assessment process can bemodified to permit severa
iterations, then uncertainty analysis can be a valuable tool for identifying and ranking the contaminants and
exposure pathways of concern. Such rankings can be used to guide the acquisition of additional datato reduce
uncertainty in risk estimates. An uncertainty analysisis additionally useful to weigh the benefits against the
costs of alternative remedial actions.

The primary objective of this report is to address the issue of uncertainty in quantitative risk
assessments and present methods that can be used to perform a quantitative uncertainty analysis on risk
estimates. This report is intended as a supplement to EPA's Exposure Assessment Guidance (1992) and
provides the reader with an introduction to the concepts and approaches of quantitative uncertainty analysis.
In addition, the manuscript suggests criteria for deciding when a quantitative analysis of uncertainty is
necessary and when such analyses may not be necessary.

2. CRITERIA FOR PERFORMING A QUANTITATIVE UNCERTAINTY
ANALYSIS

For most risk assessment analysts, a primary question is: Isit necessary to perform an uncertainty
analysis? Thissection providesguidelinesto identify 1) situationsthat might not warrant aformal quantitative



uncertainty analysis and 2) those situations that most likely would require such an analysis to evauate the
amount of confidence to be placed in the risk estimate.

Some circumstances exist in which it may not be necessary to undertake a formal quantitative

assessment of uncertainty; the criteria delineating the need for aformal assessment should be identified at the
outset of planning the risk assessment. A suggested set of criteriais given in the following list.

1.

If screening calculations indicate that the risk is clearly below regulatory or risk levels of concern, a
guantitative uncertainty analysismay not be necessary. Detailed analyseswill likely demonstrate that
thetruerisk iseven lessthaninitially estimated because screening cal cul ations are designed to provide
arisk estimate that is highly unlikely to underestimate the true risk.

If the cost of remediation required to reduce exposure or risk islow, aquantitative uncertainty analysis
might not bewarranted. For small contaminated siteswith inexpensive remediation possibilities, itis
more sensible to clean up the property than to undertake a detailed analysis of risk and its attendant
uncertainty. Quantitativeuncertainty analyses, however, might still beuseful in eval uating theamount
of contamination that will remain after remediation.

If the characterization of the nature and extent of the amount of contamination in a given
environmental media at a Site is inadequate to permit even a bounding estimate (an upper and lower
estimate of risk), a quantitative uncertainty analysis cannot be performed. Under these conditions it
is not even feasible to perform an exposure or risk assessment, unless the assessment is restricted to
apreliminary lower bound screening estimate (alower bound risk isnot likely to overestimate thetrue
risk). Inthiscase, if theavailable datadescribing the amount of environmental contamination suggests
that exposures and risks will be unacceptable (risks that are above criteria set by regulators), plans
for remediation can begin even before the extent of contamination source term is sufficiently
characterized. Once the extent of contamination is more fully characterized, quantitative uncertainty
analysis would be useful in guiding cost-effective measures for remediation of the contamination.

The following situations describe conditions that should justify quantitative uncertainty analyses as

part of the risk assessment process:

1.

A quantitative uncertainty analysis should be performed when it becomes necessary to disclose the
potential bias associated with risk assessments performed using only single values for model
parameters. The combination of point values, some conservative (upper 95% confidence limit) and
sometypical (average), yields apoint estimate of exposure and/or risk that is different from atrue but
unknown value. Theextent of thisdifferenceisunknown. For example, in many casesarisk assessor
who uses federal or state guidelines to obtain parameter values or who uses computer codes with
default assumptions as parameter values will not know the degree of conservatism in the calculation.
At most, the assessor may have some prior knowledge that the model combines many conservative
assumptions, so the result should be undoubtedly conservative. The combination of point valuesoften
yields an estimated risk that is much greater than is reasonable for agiven situation. Therefore, itis
imperative to disclose uncertainty in all risk assessments unless the cost of remedial action and the
conseguences of being wrong are low (NAS, 1994)

A guantitative uncertainty analysis should be performed if initial screening calculations, using
conservatively biased point estimates, indicate the need for further investigation before taking action.
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Conservatively biased screening cal cul ations made with approaches similar to those recommended in
NCRP Commentary No. 3 (1989) can be used to designate pathways and/or contaminantsas definitely
low priority when the result is clearly below a regulatory standard or concern. Pathways or
contaminants classified as definitely low priority could be excluded from further analysis, however,
the remaining pathways and contaminants should be studied in depth using a quantitative uncertainty
analysis (Hoffman et al., 1993).

3. A guantitative uncertainty analysis should be performed when it is necessary to set priorities among
sites, contaminants, exposure pathways, and toxicity or risk factors requiring further research before
making final decisions. Withtheincreased availability of inexpensive, powerful computers, sensitivity
analyses can be easily performed to investigate which input variables contribute most to the overall
uncertainty intherisk estimate. Theinput parameterswith the highest priority for further investigation
would be those that cause the greatest effect on the overall uncertainty of therisk. More knowledge
about these parameters should effectively lower the uncertainty in the calculated risk estimate.

4, A quantitative uncertainty analysis should be performed when the consequences of an erroneous risk
estimate are high. In this case, it may be useful to delay the decision, assign the assessment task to
multiple independent groups for independent analyses of risk and uncertainty, and invest in the
gathering of critical data needed to reduce the uncertainty in the risk estimate. For example, a
guantitative uncertainty analysis should be performed when the cost of regulatory or remedial action
is high and the risk of exposureis marginal. At some Superfund sites and corresponding military or
weapons facilities, the anticipated costs of cleanup may exceed $100 million per facility. Such large
costs require that the estimated risks, which are truly high and deserving strong interventions, be
distinguished from those that have been exaggerated due to the application of sets of compounded
assumptions with a conservative bias.

3. METHODSFOR UNCERTAINTY ANALYSIS

This section describes methods and examples of using error propagation techniques to quantify
uncertainty in environmental and human healthrisk assessment. Themethodsinvolveboth analytical equations
for smple models and numerical approaches involving the use of a computer for more complex models.
Among the numerical approaches to uncertainty analyses, Monte Carlo methods are given the most attention
in this report.

For situationsrequiring aquantitative uncertainty analysis, an iterative approach should beused. The
first step of thisapproach would bethe use of smplebounding (or screening) cal cul ationsto determine whether
further investigation iswarranted before making adecision (Hoffman et al., 1993). Bounding calculationsare
intentionally biased to produce very high confidencethat the true valueis not above the calculated value or that
the true value is not below the calculated value. If further studies are needed, a quantitative uncertainty
analysis organized at the level of a secondary screening calculation using conservative estimates of
uncertainties for each variable can be employed to indicate where studies should be focused. As new
information is obtained, the analysisis repeated, each time identifying information needs until a decision is
possible or until time or resource limitations force a decision. Within thisiterative approach, the cost of risk
reduction actions must be considered at each stage along with the aternative risks of these actions.



Please note that the examples presented in this manuscript are hypothetical. The subjective
probability distributions presented in these examples are for demonstration purposes only.

3.1 LIMITING THE SCOPE THROUGH SCREENING

When taking into account the various exposure pathways for every hazardous substance found at a
contaminated site, arisk assessment can become lengthy and complicated. An uncertainty analysis on every
parameter involved in a scenario such as this is impractical because of the numerous pathways and
contaminants involved. Therefore, the first step in any risk assessment should be to focus the scope of the
problem on the primary contaminants and pathways likely to dominate the overall risk.

Tolimit the risk assessment problem, the objective(s) of the assessment must be clearly defined. Once
the objectives have been defined, ascreening procedure can be used to identify the contaminants and exposure
pathways warranting a more detailed analysis (Hoffman and Gardner, 1983; Hoffman et al., 1991; NCRP,
1989). Infact, screening can be considered afirst step in the approach to uncertainty analysisin that arough
estimate is provided of lower and upperbounds of risk. Upperbound estimates can be obtained from a set of
conservative assumptionsto producearesult that isnot likely to underestimate the risk to amaximally exposed
individual. Lower bound estimates can be obtained by removing the conservatism in these assumptions and
producing aresult that isunlikely to overestimatetherisk to amaximally exposed individual. Thecurrent EPA
baseline risk assessment methods are often appropriate as a conservative upperbound estimate of risk aslong
asthe parameters are sel ected in amanner such that the actual risk to amaximally exposed individua will not
be underestimated. Thismethod isuseful for rapidly identifying pathwaysand contaminantsthat may be given
low priority for further investigation because further attempts to evaluate this situation should only produce
lower risk estimates. A lower bound screening calculation, however, is useful for rapidly identifying
contaminants that warrant immediate consideration for remedial action. Examples of assumptionsused inthe
genera approaches for performing conservative and nonconservative screening are provided in Table 3.1.

A dsituation where a screening procedure would be useful is as follows. assume that there are
approximately 100 contaminants present at asite in four different environmental media, each giving riseto 5
to 10 different exposure pathways. What can be done to guide the assessment to those contaminants and
exposure pathways warranting a more detailed investigation including an uncertainty analysis? Before
embarking on aformal quantitative uncertainty analysis, the scope of this problem should be narrowed. This
is best accomplished by performing screening calculations to aid in identifying pathways and contaminants
warranting further investigation. Conservatively-based screening estimates will typically show that al but a
few situations are of low priority with respect to potential health risk. Nonconservative screening estimates,
however, may indicate that although no situation warrants immediate action, some contaminants may be
sufficiently important to justify further investigation because limits of concern are approached.



Table 3.1. Example assumptionsused for conservative and nonconservative screening (Hoffman et al., 1991)

Conservative Screening

Non-conser vative Screening

Maximum or 95% UCL concentration
reported for a defined location

Models used to estimate concentrations in
various media for which samples were not
taken or adequate data does not exist

Reasonabl e estimate of maximum diet and
occupancy times assumed

Human receptor exposed for 70 years

Multiple pathway exposure to the
maximally exposed individual considered

Exposure to dredged sediment considered
separately from the consumption of water,
fish, and irrigated agricultural produce

Calculated exposure should not
underestimate actual maximum exposures

Screening approach most useful for
identifying definitely low priority
contaminants

Average of detected values reported for a defined
location

Only measured concentrations in specific
environmental media are considered

Estimates of diet and occupancy times are
generally less than those assumed for reasonable
maximum

Probability of exposure period being less than 70
years considered in estimates of diet and
occupancy times

Multiple pathway exposure to the maximally
exposed individual not considered

Dredging of sediment not considered; use of
water for irrigation not considered

Calculated exposure should not overestimate
potential maximum exposures

Screening approach most useful for identifying
definitely and potentially high priority
contaminants.




To distinguish between low priority, potentialy high priority, and high priority contaminants and
pathways, one must establish baseline screening values. These should be chosen based on adistinction between
risks that are acceptable versus those that are clearly unacceptable. In most cases, this distinction may be
influenced by risks permitted by current regulatory standards. Anexample of screening valuesfor carcinogens
is provided in Fig. 3.1, and alist for noncarcinogens is presented in Fig. 3.2 (Blaylock et a., 1991). Two
primary sourcesthat are useful for equations and parameter valuesto use in screening calculations are NCRP
(1989; in press) for metals and radionuclides and Lyman et al. (1982) for organic chemicals.

3.2 MODEL UNCERTAINTY

The term model uncertainty is used to represent lack of confidence that the mathematical model isa
"correct" formulation of the assessment problem. Model uncertainty existsif thereisa possibility of obtaining
an incorrect result even if exact values are available for al of the model parameters. The best method for
ng model uncertaintiesisthrough model validation (Hoffman et a., 1984), aprocessin which the model
predictions are compared to humerous independent data sets obtained under conditions similar to those for
which therisk assessment isto be performed. Model validation isoften limited because of lack of data, limited
experimental opportunities, and inadequate financia resources. In many instances, the endpoint of the
assessment cannot be confirmed through direct measurement, asis the case with health effects at low doses.

In this report, it is assumed that the uncertainty in the estimate of risk can be calculated from an
estimate of uncertainty in each of the parameters used in the risk assessment equations. This approach is
sometimes referred to as a "parameter uncertainty analysis' (IAEA, 1989). The technique of parameter
uncertainty analysis provides a quantitative way to estimate the uncertainty in the model result assuming the
structure of the model is correct. However, if there is additional uncertainty due to model structure, this
uncertainty should be examined either by alternative models or by the addition of parameters to the risk
assessment model. Many risk assessment model s are built upon empirical relationships. When dealing with
amodel that is composed of empirical relationships, it usually can be assumed that the correct values for the
modd parameterswill produce the correct valuefor the model result, provided that the conditions under which
parameter values have been obtained are directly relevant to the conditions of the assessment.

For the examples presented in this report, the bounds of uncertainty for each model parameter are
defined so that the unknown, true value lies within these limits. It is assumed that the correct values for the
modd parameters will produce the correct value for risk; therefore, no correction is made for the possibility
of additional uncertainty introduced by using an incorrect mode.

3.3 GENERAL APPROACH TO UNCERTAINTY ANALYSIS

To perform parameter uncertainty analysis, one should use the following steps (IAEA, 1989):

1 Define the assessment endpoint. (For baseline risk assessments at Superfund sites, thisis usually a
reasonable estimate of the risk to a maximally exposed individual over a defined period of time.)
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2. List al uncertain parameters (include additional parameters if necessary to represent uncertainty in
model structure).

3. Specify maximum range of potential values relevant for unknown parameters with respect to the
endpoint of the assessment.

4, Specify a subjective probability distribution for values occurring within this range.
5. Determine and account for correlations among parameters.
6. Using either analytical or numerical procedures, propagate the uncertainty in the model parametersto

produce a (subjective) probability distribution of model predictions.

7. Derive quantitative statements of uncertainty in terms of a subjective confidence interval for the
unknown value [representing the prediction endpoint (e.g., excess cancer risk or Hazard Index)].

8. Rank the parameters contributing most to uncertainty in the model prediction by performing a
sengitivity analysis.

9. Obtain additional data for the most important model parameters and repeat steps 3 through 8.
10. Present and interpret the results of the analysis.

The assessment endpoint will determine the center and spread of the probability distributions used to
represent uncertainty in the parameters of the mathematical model used to perform the assessment. For
example, if the assessment is targeted at a maximally exposed individual, the distributions obtained for the
uncertain model parameters should be representative of individuals who are likely to be those with the highest
exposure. These individuals may eat more fish, may drink more water, may live longer in the region, etc.
Distributions chosen that are centered on the "average” or "typical"” person might not include those who may
be considered maximally exposed. In other words, if thereisinterest in values occurring in the extremes of a
distribution, the conditions that bring about these extremes should be modeled explicitly, and the uncertainty
analysis should be centered on these extreme conditions.

Steps 3 and 4 are usually accomplished by using professional judgment based on an extensive review
of availableliterature, collected data, and interviewswith experts on the parameter of interest. Inaddition, one
can incorporate correlations among the parameters by either specifying a correlation coefficient or changing
the mode structure to include the additional parameters that determine interdependencies among the origina
parameters of interest.

After the subjective probability distributions for the model parameters are analyzed, one obtains a
subjective probability distribution for the risk, using one of the methods described in the following sections of
this chapter. From this qualitative expression, one can formulate a quantitative description of therisk in the
form of asubjective Cl in which the unknown risk should lie. The term "subjective ClI" is used to denote that
theprobability distribution specified for the uncertain model parametershave been derived using acombination
of data and judgment.



3.4SPECIFYING PROBABILITY DISTRIBUTIONSFORUNCERTAIN MODEL PARAMETERS

To perform a quantitative uncertainty analysis, probability distributions must be assigned to each of
theuncertain parameters. Thedistributions may result directly from data obtained from aproper experimental
design, but usually subjective judgment must be used to reflect the degree of belief that the unknown value for
a parameter lies within a specified range. Where data are limited but uncertainty is relatively low (less than
afactor of 10), arange may be used to specify auniform distribution. If thereisknowledge about amost likely
value or midpoint, in addition to a range, a triangular distribution may be assigned. When the range of
uncertainty exceeds afactor of 10, it is often prudent to assume a probability distribution of the logarithms of
the parameter values; therefore, when the range of uncertainty is very large, alog-uniform or log-triangular
distribution may be more appropriate than the uniform or triangular distribution. The assumption of normal,
lognormal, or empirical distributions is usually dependent on the availability of relevant data. Many other
distribution types are suitable for Monte Carlo analysis. A few of these other types are the gamma, beta,
Poisson, Weibul, and a variety of discrete distributions (Decisioneering, Inc., 1994; Palisade Corporation,
1991).

When there is doubt about the effect of different distributions, then different distributions should be
assumed and the effect analyzed. In genera, as long as the mean and variance of a distribution are held
constant, the exact shape of the distribution of a parameter in a risk assessment equation will have minimal
effect on the mean, variance, and, to a genera extent, the 90% subjective confidence interva of the model
prediction (Gardner, 1988; O'Neill et al., 1981). This is particularly evident when no single parameter
dominatesthe overal uncertainty in themodel prediction and if the extent of interdependence among the model
parametersis small.

Theestimation of likely rangesand statistical distributionsfor each uncertain parameter requiresahigh
level of expertise. Statistical information required for quantifying the uncertain parameters of interest usually
cannot be abtained directly from reference material. Furthermore, published statistical distributions of data
for the uncertainty analysis should be scrutinized as these data might not apply to the conditions under
consideration. Under no circumstance should a risk assessor treat an uncertain assumption or parameter
asa constant simply because data are unavailable to define arange and distribution. Inthe absence of data,
it may be necessary to contact experts outside Martin Marietta Energy Systems, Inc. (MMES) and United
States Department of Energy (DOE) organi zationsto obtain the essential dataand/or for assistancein deriving
uncertainty estimates. Where judgment isused to derive estimates of uncertainty, the assumptionsand sources
of information used should be documented.

When dealing with several different distributions, it is more efficient (easier and faster) to use
numerical methods (e.g., Monte Carlo analysis) to propagate uncertainty through arisk assessment model than
to use various analytical methods (algebraic equations). Analytical methods are options, however, when one
has similar distributionsfor al of the parameters and when the risk assessment model consists of setsof fairly
simple equations.

3.5 ANALYTICAL METHODS FOR UNCERTAINTY ANALYSIS
For relatively simple equations, a quantitative uncertainty analysis can be performed using analytical
methods for statistical error propagation. The analytical approach most frequently used for uncertainty

analysis of smple equations is variance propagation (IAEA, 1989; Martz and Waller, 1982; Morgan and
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Henrion, 1990).

A smple addition moddl may best demonstrate an example of variance propagation. For an additive
model, the mean value of theresult isequal to the sum of the mean values of the model parameters; thevariance
of the result, assuming statistical independence among the parameters, is equal to the sum of the variances of
the parameters (Hoffman and Gardner, 1983; IAEA, 1989).

P
Me= D (31)
r= 20 (32)

where
p = the number of parametersin the model.

In a series of summations of uncertain parameters, the result will tend to conform to a normal
distribution even if the shapes of the distributions assigned to the model parameters are other than normal
(Central Limit Theorem).

However, the basic form of EPA risk assessment models is a multiplicative chain of parameters for
each contaminant and exposure pathway. Multiplicative models can be reduced to additive form by
logarithmically transforming the variables. Thisisshown in Egs. 3.3 and 3.4.

Y=axbxc (3.3)
In(Y) =In(a) + In(b) + In(c) (3.9

Therefore, the distribution of Y will tend to be approximately lognormal even when the parameters a,
b, and c are assigned distribution shapes other than lognormal (Hoffman and Gardner, 1983). For
multiplications, the median value (or geometric mean) issmply the exponential of the sum of the mean values
of the logarithms for the model parameters:

_ M
Xg’R—e R (3.5

where
X g'R

the geometric mean of the result

Mg the (resulting) sum of the means of logarithms of the model parameters

The geometric standard deviation isfound by taking the square root of the sum of the variances of the
log transformed parameters and exponentiating (Hoffman and Gardner, 1983; IAEA, 1989):

11



s -e/® (36)

gR

where

the geometric standard deviation of the result

SR

0R2

the variance of the logarithms

The upper confidencelimit isdetermined by multiplying the median va ue by the square (or some other
power) of S;r. The lower confidence limit is obtained by dividing the median by the square (or some other
power) of S;r. The use of the square of S, will lead to a95% CI assuming that the distribution of the model
prediction will belognormal. Taking S, to apower of 1.65will lead to a90% ClI for alognormal distribution
using the following equations:

ng,f:ng'ngl-65 (3.7)
X
R_ g,R
Xs g 165 (38)
a.R

where
ngz the 95% upper confidence limit of the result

X5R= the 5% lower confidence limit of the result.

The formula used to estimate the mean and variance of logarithms for each uncertain parameter
depends on the type of (subjective) probability distribution chosen to represent the uncertain parameter.
Equations describing the mean and variance of logarithms of lognormal, log-uniform, and log-triangular
distributions are provided in Appendix A.

Example 3.1
Situation. Let usassumethat methyl-mercury has beeninadvertently released to anearby lake. Using
the technique of variance propagation, obtain a 90% CI on the hazard quotient (HQ) to a maximally exposed

individual. After reviewing the literature, available data, and consulting with other experts, the (subjective)
probability distributions shown in Table 3.2 are obtained for this problem.
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Table 3.2. Information for Example 3.1

Standard

Parameter Distribution Minimum Maximum Mean Deviation
Fish concentration
(C), mg/kg Log-Normal 7.10E-2 3.43E-2
Intake (1), kg/d Log-Uniform 2.00E-2 1.30E-1 6.50E-2
Body mass (BM), Log-Triangle 4.50E+1 1.20E+2 7.00E+1
kg
RfD, mg/kg-day Log-Triangle 1.50E-4 3.00E-3 3.00E-4

Note:  The mean given for the I, BM, and RfD is the most likely value (mode). The distributions describe the
uncertainty associated with estimating an unknown value for each model parameter.

Solution. Theform of the equation used for this problem is as follows:

where
HQ =
C =
I =
BM =

RID =

HQ=Cx I x (BM)™ x (RfD)™.

hazard quotient (unitless)

concentration in the contaminated medium (mg/kg)

(3.9)

estimated intake rate of the contaminant for oneyear averaged over oneyear (kg/day)

body mass (kg)

reference dose for the chemical of interest (mg/kg-day)

By log-transformation, Eq. 3.9 becomes:

In(HQ) = In(C) + In(1) - In(BM) - In(RfD).

(3.10)

The logarithmic mean and variance, assuming independence among the model parameters, of the HQ
isfound by applying Egs. 3.1 and 3.2. The equations given in Appendix A must be used to find the mean and
variance of logarithmsfor each of themodel parameters. EquationsA.1and A.2 (Appendix A) produceamean
of thelogarithmsfor the fish concentration of -2.75 and avariance of thelogarithmsfor the fish concentration

of 0.21.
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EquationsA.3and A .4, for thelog-uniform distribution, will be used to find p (the mean of logarithms)
and o° (the variance of logarithms) for the intake:
0g

= In(0.02) ;ln(0-13) - _208 (3.12)
22
- % -0.29 512

Equations A.5 and A.6, given for the log-triangular distribution, are used for the body mass and
reference dose (RfD). To demonstrate, the p and o* for the body massiis calculated as follows:

T %[In(?O) +In(120) + In(45)] = 4.28 (3.13)

OEM = 1—::3[(In(45))2+ (In(120))?- (In(45))(In(120)) + (In(70))*~ (In(70))(In(45) + In(120))] ~ (3.14)

0= 0.04 (3.15)

Thissame processis performed for the RfD, from which amean value of -7.58 and avariance of 0.41
is obtained. The mean of logarithms and thereby the geometric mean of the HQ is calculated as follows:

Hpo™= (-2.75)+(-2.98)+ (- 4.28) + (7.58) = - 2.43 (3.16)
X =e'=e"24-009 (3.17)

g.HQ

The variance of the HQ and, consequently, the geometric standard deviation of the HQ can then be
calculated:
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Ofg=0.21+0.29+0.04+ 0.41=0.95 (3.18)
ST eV V0% 2 65 (3.19)

The upper and lower confidence limits for a 90% subjective Cl are caculated as:

Xas 2= Xy 110 Syro- = (0.09)(2.65)1%-0.45 (3.20)

X1 Koo __(0.09) 0o

Sg’HQl.GS (2.65)1'65

(3.21)

Therefore, thereis high confidence (at asubjective level of 90%) that the HQ should lie between 0.02
and 0.45.

Variance propagationisastraight-forward processfor smpleadditive and | ogarithmically transformed
multiplicative models where the parameters are statistically independent. For more complex calculations,
variance propagation techniques are more difficult to apply analytically, and in some cases their use may not
be practical or possible.

3.6 NUMERICAL METHODSFOR UNCERTAINTY ANALYSIS

To overcome problemsencountered with analytical variance propagation equations, numerical methods
areuseful in performing an uncertainty analysis. Perhapsthe most commonly applied numerical techniqueand,
as mentioned previoudly, the one that will be discussed most in this commentary is Monte Carlo simulation
(Rubinstein, 1981). Other approaches include 1) differential uncertainty analysis (Cacuci, 1981; Worley,
1987), inwhichthe partia derivatives of the model responsewith respect to the parametersare used to estimate
uncertainty; 2) Monte Carlo analysis of statistical simplifications of complex models (Downing et al., 1985;
Mead and Pike, 1975; Morton, 1983; Myers, 1971); 3) nonprobabilistic methods [for example: fuzzy sets,
fuzzy arithmetic, and possihility theory (Ferson and Kuhn, 1992)]; and 4) first-order analysisemploying Taylor
expansions (Scaviaet al., 1981). Thelast approach isbased on computer implementation of the mathematical
approaches used to formulate the analytical solutions to the error propagation for simple equations and is
related to the first approach.

Monte Carlo analysis is usually performed using two random sampling processes: Simple Random
Sampling (SRS) and Latin Hypercube Sampling (LHS) (Iman and Conover, 1980; 1982; Iman and
Shortencarier, 1984; IAEA, 1989; McKay et a., 1979; Morgan and Henrion, 1990). In SRS, arandom value
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is sampled from each distribution specified for each uncertain model parameter, and a single estimate of the
desired endpoint is calculated. This processis repeated for a specified number of samples or iterations. The
result isaprobability distribution of the model endpoint. Simple Random Sampling, however, isless efficient
than its counterpart, LHS, when the sample size isless than afew thousand.

Instandard LHS, the distribution for each parameter is divided into sections of equal probability. The
number of sections equals the number of samples or iterations to be made in the Monte Carlo simulation.
During the sampling, the random numbers are selected by chance within each section, but only one random
number is chosen from each section. Once arandom number has been selected from a section, that sectionis
excluded from the rest of the analysis. The distributions are thereby represented more efficiently than with
SRS, and it takes less sampling effort to reach a stable mean and variance of the prediction endpoint (IAEA,
1989). An dternative to standard LHS is midpoint LHS which provides an even more uniform sampling of
the distributions (Morgan and Henrion, 1990). The primary difference between these techniques is that
midpoint LHS chooses the median of each section instead of sampling randomly within the section.

Monte Carlo analysis may be performed in many ways. One may write a numerical code or use one
of severa currently available software packages. Several available Monte Carlo smulation programs are
presented in the following list.

MOUSE Klee (1986)
TAM3 Gardner (1988), Kanyar and Nielsen (1989)

PRISM Gardner et a. (1983), Gardner and Trabalka (1985)
Crystal Ball Decisioneering, Inc. (1994)

@RISK Palisade Corporation (1991)

ORMONTE Williams and Hudson (1989)

GENII/SUNS Leigh et al. (1992)

The following example provides a more detailed description of a Monte Carlo simulation.

Example 3.2

Situation. Use the scenario presented in Example 3.1 to demonstrate the use of Monte Carlo
simulation. With 90% (subjective) confidence, what is the risk to the maximally exposed individua? This
example does not address dependencies among parameters; the effect of correlations among parameters will
be demonstrated in Example 3.4.

Solution. To begin aquantitative uncertainty analysis, one must describe the uncertainty about each
variable with a (subjective) probability distribution. Thisis done through judgment after extensive review of
al relevant data. Theinformation presentedin Table 3.2 isused asinput for aMonte Carlo simulation for this
problem.
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When running a Monte Carlo technique, values are selected at random from (subjective) probability
distributions for each uncertain variable to produce a prediction. This procedure is repeated for a specified
number of iterations and forms a distribution of predicted values. A sample of randomly selected values
obtained by running 500 iterations of LHS for this problem is provided in Table 3.3.

Table 3.3. Sample of random values obtained from 500 iterations of LHS for Example 3.2

Sample Fish concentration Intake Body mass Reference dose HQ
number (ma/kg) (kg/d) (kg) (mg/kg-d) (unitless)
1 1.01E-01 3.40E-02 4.71E+01 5.25E-04 1.38E-01
2 1.14E-01 1.19E-01 7.68E+01 5.64E-04 3.15E-01
3 8.11E-02 1.05E-01 6.78E+01 1.76E-04 7.10E-01
4 6.51E-02 3.63E-02 7.50E+01 3.00E-04 1.05E-01
499 9.40E-02 9.21E-02 7.04E+01 2.71E-03 4.53E-02
500 8.60E-02 2.66E-02 8.15E+01 8.96E-04 3.13E-02

This process yields a (subjective) probability distribution for the HQ. Figure 3.3 contains the result
for therisk after 500 iterationsusing LHS. From this Monte Carlo simulation, a90% CI of [1.70E-2, 4.17E-
1] isobtained and indicated by tick marks on the graph provided in Fig. 3.3. Thisimpliesthat after taking into
account the uncertainties on the parameters, oneis highly confident (at a subjective level of 90%) that the true
HQ should lie between 1.70E-2 and 4.17E-1. Since the 95% upper confidence limit is still below an HQ of
1, there is high confidence that the maximally exposed individual for this scenario is not exposed to an
unacceptable level of risk, and remediation should not be warranted.

Once familiar with the Monte Carlo smulation software package, this technique becomes very
efficient. Evenif arisk analysis becomes more complicated, the Monte Carlo technique doesnot. Onereason
that the Monte Carlo calculations are more useful than other approaches to uncertainty analysisis that the
alternative variance propagation techniques can become complicated and time consuming for more involved
risk analyses. Setting up smulations to run on the computer is much more efficient and accurate than
performing hand cal culations. The inputsrequiredfor Monte Carlo simulationsarethe (subjective) probability
distributions and uncertainty bounds for each parameter. To come up with these (subjective) probability
distributions and uncertainty bounds, one must apply professional judgment after extensively reviewing the
available literature and data. With the various input distributions, the Monte Carlo simulation program then
providesaforecast of therisk in terms of asubjective probability distribution about which Clsfor therisk can
be obtained. A demonstration of this technique for a more complicated risk analysis situation is presented in
the following example.
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Fig. 3.3. Subjective probability distribution of the hazard quotient for Example 3.2

Example 3.3

Situation. Let usassumethat asthe result of waste management practices, amixture of contaminants
is released inadvertently to the environment. Through various pathways, this contamination is transported to
aquatic systems such asrivers and lakes where fish and other biota are exposed. After further investigation,
it is discovered that the contaminants released were Aroclor-1254, Aroclor-1260, chlordane, and methyl-
mercury. Suppose that contaminated fish are caught and eaten by humans. What is the hazard index and the
total lifetime cancer risk to the maximally exposed individua ?

To perform this risk assessment, the HQs for chlordane and methyl-mercury will be calculated from
the following equation.

Cl
H = —
Q BV RID (3.22)
where
HQ = hazard quotient (unitless),
C = concentration in the contaminated medium (mg/kg),

I = estimated intake rate of the contaminant for oneyear averaged over oneyear (kg/day),
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BM

body mass (kg),

RfD

reference dose for the chemical of interest (mg/kg-day).

The HQsfor various chemicals are summed for each exposure pathway to obtain a hazard index for
agivenarea(EPA, 1989). Theexcesslifetime cancer risk for Aroclor-1254, Aroclor-1260, and chlordanewill
be determined using the following equation.

ClI'S
LR= 3.23
BM (3.23)
where
LR = excess lifetime cancer risk (unitless),
C = concentration in the contaminated medium (mg/kg),

I = estimated intake rate of the contaminant for thirty years averaged over aseventy year

lifetime (kg/day),
BM = body mass (kg),
SF = slope factor (or cancer potency factor) for the contaminant of interest (mg/kg-day).

To quantify the uncertainty associated with each of the parametersintroduced in these equations, one
must derive (with the use of aconsiderable amount of judgment) subjective probability distributionsfrom very
limited sets of data and other relevant facts in the published literature. Once these distributions have been
specified, one can use Monte Carlo techniquesto obtain a probability distribution of the hazard index and the
total lifetime cancer risk. From these propagated distributions, subjective Cls (90%) can be obtained for use
in setting limits for decision making.

Table 3.4 containsvaluesfor the estimates of uncertainty on each of the parametersthat would be used
in an environmental risk assessment of Aroclor-1254, Aroclor-1260, chlordane, and methyl-mercury in the
fish potentially harvested from a contaminated fresh water system.

Solution: The values given in Table 3.4 were used to find the median, the lower 5% subjective
confidence limit, and the upper 95% subjective confidence limit for the noncarcinogen hazard index for
chlordane and methyl-mercury and for the total cancer risk involved with the given concentrations of Aroclor-
1254, Aroclor-1260, and chlordanein fish. These values (presented in Table 3.5) were obtained by using 500
iterations of the LHS Monte Carlo technique.
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Table 3.4. Subjective probability distributions specified for the Monte Carlo Analysis of Example 3.3

Subjective
Chemical Parameter Probability Minimum Maximum Mean Standard Units
Distribution (Mode) Deviation

Aroclor-1254 Fish Conc. Log-Normal 4.00E-03 3.79E+00 5.34E-01 2.26E+00 mg/kg

Intake Log-Uniform 1.65E-02 8.25E-02 kg/day

Body Mass Log-Triangle 4,50E+01 1.20E+02 7.00E+01 kg

Slope Factor Triangle 0.00E+00 1.00E+01 7.70E+00 (mg/kg-day)*
Aroclor-1260 Fish Conc. Log-Normal 3.19E-01 2.29E+00 9.75E-01 5.16E-1 mg/kg

Intake Log-Uniform 1.65E-02 8.25E-02 kg/day

Body Mass Log-Triangle 4,50E+01 1.20E+02 7.00E+01 kg

Slope Factor Triangle 0.00E+00 1.00E+01 7.70E+00 (mg/kg-day)*
chlordane Fish
(carcinogen) Concentration Log-Normal 3.96E-02 3.06E-01 1.27E-01 6.98E-02 mg/kg

Intake Log-Uniform 1.65E-02 8.25E-02 kg/day

Body Mass Log-Triangle 4,50E+01 1.20E+02 7.00E+01 kg

Slope Factor Triangle 0.00E+00 5.00E+00 1.30E+00 (mg/kg-day)*
chlordane Fish
(non-carc) Concentration Log-Normal 3.96E-02 3.06E-01 1.27E-01 6.98E-02 mg/kg

Intake Log-Uniform 2.00E-02 1.30E-01 kg/day

Body Mass Log-Triangle 4,50E+01 1.20E+02 7.00E+01 kg

RfD Log-Triangle 3.00E-05 1.90E-03 6.00E-05 mg/kg-day
methyl Fish
mercury Concentration Log-Normal 2.55E-02 157E-01 7.10E-02 3.43E-02 mg/kg

Intake Log-Uniform 2.00E-02 1.30E-01 kg/day

Body Mass Log-Triangle 4,50E+01 1.20E+02 7.00E+01 kg

RfD Log-Triangle 1.50E-04 3.00E-03 3.00E-04 mg/kg-day




Table 3.5. Results obtained from Monte Carlo simulation using valuesin Table 3.4

5% Subjective 95% Subjective
Chemica Type of Result Confidence Median Confidence
Aroclor-1254 cancer risk 1.7E-05 3.4E-04 7.8E-03
Aroclor-1260 cancer risk 4.7E-04 2.5E-03 9.2E-03
chlordane cancer risk 2.3E-05 1.0E-04 4.9E-04
Total cancer risk” 8.6E-04 3.6E-03 1.4E-02
chlordane noncarcinogen HQ  6.2E-02 5.5E-01 3.3E+00
methyl mercury noncarcinogen HQ  1.8E-02 8.8E-02 4.1E-01
Total HI" 1.2E-01 6.6E-01 3.5E+00

"Risks may not be directly additive due to the random sampling used in the analysis.

Asshownin Table 3.5, the primary chemical contributing to thetotal cancer risk isAroclor-1260, and
the chemical contributing the majority of thetotal hazard index ischlordane. The parameter that has the most
effect on the total uncertainty in the total cancer risk and the total hazard index can aso be determined by
performing a sensitivity analysis.

In this example, the method used for the sensitivity analysis was to square the Spearman Rank
Coefficients and adjust them to 100% (Decisioneering, Inc., 1994). The approximate relative contribution of
each parameter to the variance of thetotal cancer risk and thetotal hazard index wasanayzed. The parameters
having the greatest effect are considered to be the parameters for which additional data should reduce the
amount of overall uncertainty in the results.

For the total cancer risk, the amount of fish ingestion was identified as having the most effect on the
overall uncertainty in thetotal cancer risk contributing approximately 34.7% of the overall uncertainty. The
next most important parameter is the concentration of Aroclor-1260 in the fish, contributing approximately
24.1% of the overall uncertainty. One might expect the latter result because of Aroclor-1260 contributing the
majority of therisk. For the total hazard index, the sensitivity analysis showed that the two parameters that
are the most significant contributors to the total uncertainty are the RfD for chlordane (contributing
approximately 48.3% of the overall uncertainty) and the amount of fish ingested (contributing approximately
30.6% of the overall uncertainty).

Other methods of performing sensitivity analyses are introduced in Subsect. 3.7.
Example 34

Situation. The purpose of this exampleisto study the effect of correlation coefficients on the model
result. Two scenarios are investigated.
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(@D} The effect of the correlation between body mass and intake on the total cancer risk and the total HI
for the situation given in Example 3.3 isanalyzed. First, assume that a minimum correlation of 0.3
has been determined to exist between body massand intake, and second, comparetheresultswith those
obtained with a corréation of 0.5, 0.7, and 0.9.

2 The effect of a correlation existing between the fish concentration and the intake on the total cancer
risk and the total HI for the situation described in Example 3.3 isanalyzed. This correlation would
exist for those fishermen who eat only a certain species of fish. Assumethat a correlation of 0.7 has
been determined for this example.

Solution. (1) In this case, rank correlations are used (Decisioneering, Inc., 1994) to account for
interdependencies between body mass and intake. As can be seen from Table 3.6, where the results are
produced from 500 iterations using LHS, the correlation coefficients do not have adramatic effect on the total
risk. Thevauesfor thetotal cancer risk and the total hazard index are virtually the same. A dlight difference
isdetected in the 5% lower confidencelimit and 95% upper confidence limit valuesfor correlation coefficients
of 0.7 and 0.9. Onereason that the correlation does not have an obviouseffect on theresultsisthat uncertainty
in the body massis not an important contributor to the overall uncertainty.

Table 3.6. Resultsabtained for correlations between body mass and intake for Part 1 of Example 3.4

Rank Correlation Coefficient

0.3 0.5 0.7 0.9

Total cancer risk
5% LCL 9.2E-4 9.8E-4 1.0E-3 11E-3
50% (median) 3.4E-3 3.4E-3 3.5E-3 3.5E-3
95%UCL 14E-2 14E-2 13E-2 12E-2

Total HI

5% LCL 14E-1 14E-1 15E-1 16E-1
50% (median) 6.7E-1 6.9E-1 6.9E-1 6.7E-1
95% UCL 3.8E+0 3.3E+0 3.3E+0 3.1E+0

(2) Rank correlations were also used (Decisioneering, Inc., 1994) to account for interdependencies
between fish concentration and intake. Table 3.7 summarizesthe results obtained in Example 3.3 and presents
the results obtained when accounting for a correlation coefficient of 0.7 between the fish concentrations and
intake for thetotal cancer risk and thetotal HI. Ascan be seen from Table 3.7, the correl ation coefficient has
a definite effect on the lower and upper confidence limit values for both the total cancer risk and the total
hazard index. The difference in the lower and upper confidence limit values that result from this correlation
is because of the importance of the two correlated parameters to the overall uncertainty.
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Thisexampleshowsthat correlation coefficientscan beeasily incorporated into an uncertainty analysis
and should be fully considered when the effect is between important parameters or when the risk assessor is
interested in the extremes of the distribution.

Table 3.7 Results obtained for a correlation between fish concentration and intake for Part 2 of Example 3.4

No Correlation (Ex. 3.3) 0.7 Correlation

Total cancer risk
5% LCL 8.6E-04 6.1E-04
50% (median) 3.6E-03 3.1E-03
95% UCL 1.4E-02 2.1E-02

Total HI

5% LCL 1.2E-01 8.8E-02
50% (median) 6.6E-01 6.7E-01
95% UCL 3.5E+00 4.8E+00

3.7 ALTERNATIVE METHODS FOR SENSITIVITY ANALYSIS

Although not employed in Example 3.3, the use of scatter plotsof the Monte Carlo samplesof theinput
parameters against the Monte Carlo simulations of the model result is another method of identifying important
parameters (Iman and Helton, 1988). For example, suppose that the risk is determined by the addition of two
independent parameters, which parameter isthe most important? This can be determined by graphing the 500
Monte Carlo samples of parameter 1 against the 500 simulations of the model result and comparing thisgraph
against the same for parameter 2 as demonstrated in Fig. 3.4. Asone can see, amore distinct trend exists for
parameter 2 than for parameter 1. Therefore, one can concludethat the most important parameter to the overall
uncertainty in the model result is parameter 2.

Many other methods are availablefor performing sensitivity analyses. Some of these methodsinclude
1) smple regression (on the untransformed and transformed data) (Brenkert et al., 1988), 2) multiple and
piecewise multiple regression (on transformed and untransformed data) (Downing et a., 1985), 3) regression
coefficients and partial regression coefficients (Bartell et al., 1986, Gardner et a., 1981), 4) stepwise
regression and correlation ratios (on untransformed and transformed data) and 5) differential sensitivity
analysis (Griewank and Corliss, 1991; Worley, 1987). Other references that discuss the use of statistical
regressions of the randomly selected values of the uncertain parameters on the values produced for the model
predictionsto determinetheimportance of parameters contributing to the overal uncertainty inthe model result
include IAEA (1989), Iman et a. (1981a; 1981b), Iman and Helton (1991), and Morgan and Henrion (1990).
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Result=P + P, ot "

Fig. 3.4. Scatter plotsof parameter 1 and parameter 2 against the model result
3.8 ADVANTAGESOF AN UNCERTAINTY ANALYSIS

One of the stepsin arisk assessment isto rank theimportance of the pathways and chemicalsin terms
of their potential contribution to the total risk. The first attempt at thisis performed by screening. Screening
identifies those pathways and chemicals that could be of potential concern. However, if the risk assessor
attemptsto rank the pathways and chemicals at this stage, the wrong conclusions may be reached because the
uncertainty involved is not necessarily equal among contaminants and exposure pathways. This is best
demonstrated in the following example.

Example 3.5

Situation. Upon investigation of apotentially contaminated site, it was discovered that anearby lake
and the surrounding soils were contaminated with methyl-mercury and inorganic mercury, respectively. The
95% upper confidence limit on the mean value for the concentration of the inorganic mercury in soil isfound
to be 700 mg/kg, and the 95% upper confidence limit on the mean value for the concentration of methyl-
mercury infishis3.05x 10" mg/kg. Considering theingestion of soil and theingestion of fish, which pathway
is the most hazardous to the maximally exposed individual ?

Solution. A summary of the values used in thisexampleis provided in Table 3.8. Thevauesfor the
HQs for the two pathways will be compared with each other for two situations: 1) by using aform of EPA's
generic equations and 2) by incorporating uncertainty analysis. The exposure frequency for the soil ingestion
pathway was included directly in this example because of its wide range of possible values. The exposure
frequency for the fish ingestion pathway was included in the calculation of the intake parameter.
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Table 3.8 Information for Example 3.5.

Standard
Parameter Distribution Minimum Maximum Mean Deviation
Fish concentration
(Cp), mg/kg Log-Normal 2.06E-1 4.22E-2
Intake of Fish (1),
ko/d Log-Uniform 2.00E-2 1.30E-1 6.50E-2
Soil concentration
(Cy), mg/kg Log-Normal 3.11E+2 1.50E+2
Intake of Sail (lg),
ko/d Log-Uniform 5.00E-5 2.00E-4 1.00E-4
Exposure frequency
(EFY) Log-Uniform 2.70E-1 7.00E-1 7.00E-1
Body mass (BM), kg Log-Triangle 4.50E+1 1.20E+2 7.00E+1
Inorganic mercury
RfD (RfD,y), mg/kg- Log-Uniform 3.00E-4 3.00E-2 3.00E-4
d
Methyl mercury RfD
(RfDyw), ma/kg-d Log-Triangle 1.50E-4 3.00E-3 3.00E-4

* Note: The mean given for the |, BM, and RfD is the most likely value (mode).

_ GIBR _ (700)(LOE-04)(0.7) _,

H -
Qs BM'RfD,,,

HQpp=

Cili _ (3.05E-01)(6.5E-02) _

(70)(3.0E- 04)

.33

0.94

BM

‘RfD,

(70)(3.0E- 04)

(3.24)

(3.25)

From these calculations, one would conclude that the risk to the maximally exposed individual results
from the soil-ingestion pathway. However, by incorporating the uncertainties for the parameters and using
Monte Carlo simulation, one obtains different results. After a Monte Carlo ssimulation run of 500 iterations
of LHS, the 95% upper confidence limit of the HQ for the soil ingestion pathway is 0.72, and the 95% upper
confidence limit of the HQ for the fish ingestion pathway is1.20. Thisimpliesthat the fish ingestion pathway
isthe source of most of therisk to themaximally exposed individual. Thereversal of theranking from the EPA
calculationsis primarily because of thelarge uncertainty on the RfD for inorganic mercury. If the uncertainty

25



of this parameter had not been taken into account, an inaccurate conclusion and, possibly, an inappropriate
course of action would have resulted.

An uncertainty analysis through a quantitative description provides better direction for further
investigation. If aquantitative uncertainty analysisisused routinely in risk assessment, specific areasthat need
further study can be determined and ranked, thereby preventing misdirected investigation and unwarranted
remedial action, which in turn should result in saving limited experimental and financial resources.

3.9BRIEFINTRODUCTIONTOUNCERTAINTY ANALYSISFORANASSESSMENT ENDPOINT
THAT ISA DISTRIBUTION OF VALUES ASOPPOSED TO A SINGLE VALUE

Thegeneral subject of thisreport to this point has coincided with uncertainty about atrue but unknown
value [referred to in IAEA Safety Series No. 100 (1989) as "Type B" uncertainty]. However, some risk
assessments may have an endpoint defined as a stochastic variable. An example would be the variability of
doses among individualsin a population whereby the individuas are selected from the population at random.
Anuncertainty analysisdealing with stochastic variability only isreferred to as"Type A" uncertainty in IAEA
Safety SeriesNo. 100 (1989). Both"Type A" and "Type B" uncertainty occur when the assessment objective
isto estimate the distribution of individual doses or risks within an exposed population group where the true
shape and spread of this distribution is uncertain (i.e., unknown). The goa of this section, therefore, isto
briefly describe the process of uncertainty analysis when the assessment endpoint is a stochastic variable and
when there is lack of knowledge about the true distribution that describes this variable.

To distinguish between "Type A" and "Type B" uncertainty, Monte Carlo smulation must be applied
intwo dimensions. First, numerous sets of alternative values are obtained from marginal probability density
functions (PDF,’' s) representing subjective degrees of belief about quantitiesthat are fixed but unknown with
respect to the assessment endpoint (Fig. 3.5). Fixed quantities include parameters that do not vary with the
assessment endpoint, such as the total amount of the contaminant released. Fixed quantities also include the
mean, variance, and shape of those parameter distributionsthat describe variability among individuals, aswell
as values that describe correlations among these parameters. The aternative sets of fixed values represent
"Type B" uncertainty.

Second, for each dternative set of fixed values, Monte Carlo procedures are used to simulate
alternative distributions of parameter values that vary with respect to the assessment endpoint (PDF,’s) and
corresponding distributions of individual risks, each with its own unique mean, variance, and shape (Fig. 3.6).
Each of these distributions is an individual representation of "Type A" uncertainty. The set of alternative
distributions represents "Type B" uncertainty. The alternative distributions are then used to construct
confidence intervals for the unknown risk at any given fractile or for the unknown fractile at any given value
of risk (Fig. 3.7). The order of importance for the parameters that contribute most to the confidence interval
at agiven fractile will depend on the fractile of interest (IAEA, 1989). Additional readings on this issue can
be obtained from a number of authors (Bogen, 1990; Frey, in press; Helton, 1993; Hofer, 1990; Kaplan and
Garrick, 1981).

When performing an uncertainty analysis where there is both stochastic variability and lack of
knowledge uncertainty, correct interpretation of the results requires that these two sources of uncertainty be
analyzed separately. Variousdistributionsrepresenting the endpoint, which areanalogousto thevariousval ues
obtained for the result in an uncertainty analysis where only true but unknown values are considered, are
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ASSESSMENT WITH AN ENDPOINT THAT IS A FIXED BUT UNKNOWN QUANTITY
(i.e. those which only have a single true value)

UNCERTAINTY IS ENTIRELY OF TYPE 'B'

EXAMPLE:
Risk to a specific individual from a given release, or
Risk to the Average Member of a Critical Group

Farameter X: Source Term parameter that is fixed but unknown
Parameter ¥: Environmental Transport parameter that is fixed but unknown
Parameter Z: Dosimetric and risk conversion parameter that is fixed but unknown

Parameter X Parameter ¥ Parameter Z
= = o
il 7 7 o ?
o o o -
X Y Z

THE TRUE VALUE OF EACH PARAMETER IS UNKNOWN,
EACH DISTRIBUTION REPRESENTS A SET OF POSSIBLE ALTERNATIVE
VALUES FOR THAT PARAMETER

MODEL OUTPUT R =1(X.Y.Z)

P(R)

R

Fig. 3.5. Use of a Monte Carlo approach to estimate “ Type B” uncertainty when the assessment endpoint isa
fixed but unknown quantity (Hoffman and Hammonds, 1994)
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ASSESSMENT WITH AN ENDPOINT THAT IS A DISTRIBUTION OF ACTUAL INDIVIDUAL EXPOSURES OR RISKS

EXAMPLE: Distribution of risks to unspecified individuals in a population

Parameter X: Source Term parameter that is fixed but unknown
Parameter ¥': Enviranmental Transport parameter that varies par exposed indhvidual
Parameter 2 Dosimelric and risk conversion parameter that varies per exposed individual

Parametar X Parametar ¥ Parameter £
Family of Algrmative Disiribastions Farnily of Altarnative Disiributions
i
= =
g z g
] 5
X ¥ g

¥ and Z ara TYPE 'A’, bul the true disirnibutions for these perameaters are unknown:

The mean and standard deviation that are unigue 1o each allernative distribution ana
Random Sampling (1 value themsehves sampled from TYPE B PDF's, representing subjective dagreas of balief about
far each simulation) the frue bul unknown maan and standard deviation for the unknown true Gisiributicn.

Trus value of X unknown: TYPE ‘B

Paramaiar X

randomly

chosen values

P{X)

Y

T, Y, )

(a4, 4, L4)
(X5, "5, L5)

FAMILY OF ALTERNATIVE DISTRIBUTIONS
Fig. 3.6. Use of a Monte Carlo approach to distinguish between “Type A” and “ Type B” uncertainty when

the assessment endpoint is a true but unknown distribution of values representing variability among
unspecified individualsin an exposed population (Hoffman and Hammonds, 1994)
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TWO INTERPRETATIONS FOR ALTERMATIVE REALIZATIONS OF ASSESSMENT
ENDPOINTS REPRESENTING TYPE 'A’ UNCERTAINTY

(1) TYPE '8 uncertainty il the estimate of the trua mean dose Is of interest

Distribution of Mean Values

Urartainty of mean

M——pfg
[

P{R=r)

|

whaere B = X, Y', Z)

@ TYPE 'B' uncertainty if the estimate of tha true distribution is of interest

Central Extimate of CCOF and Confidence Interval

PiRA=r]

PR >r)

Fig. 3.7. Numerous alter native distributions produced through Monte Carlo simulation of “ Type A” and
“Type B” uncertainty can be used to derive confidence intervals for the mean value and any fractile of the
true but unknown distribution (Hoffman and Hammonds, 1994)
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obtained. The combination of these types of uncertainty anaysisisfacilitated using Monte Carlo simulation.

3.10 GUIDANCE FOR INTERPRETING THE RESULT OF AN UNCERTAINTY ANALYSIS

Incorporating a quantitative uncertainty analysisinto adose or risk assessment provides amajor tool
for decison making. A quantitative uncertainty analysis will allow the assessor to evaluate the relative
importance of the contaminants and pathways more accurately. In this manner, quantitative uncertainty
analysisallowsthe assessor to seewherefurther study isneeded or where decisions can be madein the presence
of uncertainty. Not only does a quantitative uncertainty analysis allow a ranking of the pathways and
contaminants that contribute most to the overall uncertainty in the result, but it also provides a subjective
probability distribution about which confidence intervals can be formed to represent the uncertainty in the
assessment endpoint.

Theinformation obtained from a quantitative uncertainty analysis can be used to guide decisions. For
example, if a 5% lower confidence limit is above a regulatory standard of concern, then it is likely that the
standard will beviolated. If the 95% upper confidence limit isbelow the standard, it islikely that the standard
will not beviolated. If the 95% upper confidence limit is above the standard, but the 50th percentile is bel ow
the standard, further study should be recommended on those parametersthat dominate the overall uncertainty.
However, if the 50th percentileis above the standard, further study may still be recommended, but under some
circumstances one may opt to proceed with regulatory action depending on the cost-effectiveness of measures
for risk reduction.

4, SUMMARY

The basdline risk assessment methods currently recommended by EPA do not explicitly account for
uncertainty and may tend to produce overly conservative estimates of risk by combining, through
multiplication, several conservatively biased valuesfor parametersin the risk assessment equation. Therefore,
EPA's baseline risk assessment methods should be more appropriately viewed asan initial screening tool. A
moreinformative approach to estimating risksisto incorporate aquantitative uncertainty analysisinto therisk
assessment. Quantitative uncertainty analysis may be facilitated by using either analytical error propagation
equations (i.e., variance propagation techniques) or by using numerical approacheswith the aid of acomputer
(i.e., Monte Carlo simulation). Thelatter ismorerobust for varying levels of uncertainty and risk assessment
models of varying levels of complexity.

Quantifying uncertainty in the risk estimate provides more information to the risk assessment and is
the first step in identifying the need for additional data. The most difficult task in quantitative uncertainty
analysis, however, is associated with justifying judgmental decisions that are made to obtain subjective
probability distributionsfor the uncertain model parameters. Theextent of knowledgerequired to exercisethis
judgment often exceeds the capacity of any oneindividual. Therefore, the judgment of several experts must
often be solicited, if not formally €elicited, to defensibly estimate parameter and model uncertainty.
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APPENDIX A

The following distributions are suggested for subjective probability distributions in analysis of
multiplicative models.

Log-Normal Distribution:

the mean of the logarithms
the variance of the logarithms

u

02

However, if you have a situation where you are given only the arithmetic mean and arithmetic variance, then
1 and o® can be estimated with the following equations (Hoffman and Gardner, 1983):

5 Al
(3] "
X

(A.2)

where
the arithmetic mean of the distribution

X
S the standard deviation of the distribution.

Log-Uniform Distribution (Hoffman and Gardner, 1983):

_ [In(min) + In(max)]
2

&:M (A4

12

(A.3)

Asymmetrical Log-Triangular Distribution (Beauchamp, 1991; Johnson and Kotz, 1970):



p:%[ln(H )+ In(b) + Ina)] (A5)

0°= %[[ln(a)]2+ [In(b)]%- [In(@)][In(b)] + [In(H *)] - [In(H *)][In(&) + In(b)]] (A.6)
where
H = the mode of the triangular distribution,
b = the maximum of the triangular distribution,

a the minimum of the triangular distribution.

Thefollowing distributions are suggested for use as subjective probability distributionsin analysis of
additive models.

Normal Distribution:
The mean vaue of the normal distribution is smply the value at the 50 percentile. With a
normal distribution, the median, mode, and mean are the same. The variance of the normal

distribution is the second central moment of the variable or the standard deviation squared.

Uniform Distribution:

a (min+max)

5 (A7)

g2 (max- min)2

5 (A.8)

Asymmetrical Triangular Distribution (Beauchamp, 1991; Johnson and Kotz, 1970):

X= %(H “+b+a) (A.9)



In addition to these suggested distributions, a few more distributions that one may use are custom
designed, Poisson, Weibull, gamnma, beta distributions, and any number of discrete distributions
(Decisioneering, Inc., 1994; Palisade Corp., 1991).

52:1—18[(a)2+(b)2—(a)(b)+(H “)(a+b)] (A.10)



