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PREFACE

The purpose of this technical memorandum is to present the results of an investigation of the
relationship between fillet and whole-fish contaminant concentrations and develop equations for the
estimation of whole-fish concentrations for several analytes. Fish were collected from several sites
in Tennessee and Chio and analyzed for contaminants; analyses were conducted on fillet portions
as well as the remaining carcasses of 31 bass and 10 catfish. This work was performed under Work
Breakdown Structure 1.4.12.2.3.04.05.02 (Activity Data Sheet 8304). Publication of this document
meets an Environmental Restoration Risk Assessment Program milestone for FY 96.
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EXECUTIVE SUMMARY

In aquatic systems, many contaminants accumulate in fish. To assess the risks that these
contaminants may present to human consumers, fish are frequently collected, and the contaminant
concentrations of the muscle portion (i.e., fillet) are determined. However, many consumers,
including piscivorous animals and some human groups, consume the entire fish. For these cases, the
use of fillet contaminant concentrations for risk assessment may be inadequate. Because of
chemical-specific differences in assimilation rates and affinities for various tissue compartments,
fillet concentrations may not accurately represent or predict concentrations in the whole body.

Use of fillet data to assess risks to piscivorous wildlife and to persons who consume whole fish
requires methods to estimate whole-fish concentrations from fiilet data. The objective of this report
is to investigate the relationship between fillet and whole-fish contaminant concentrations and
develop equations for estimating whole-fish concentrations for several analytes.

This report provides contaminant-specific equations to describe the relationship between fillet
and whole-body contaminant concentrations. Transferability of these equations is limited by the
range of contaminant concentrations, the number of species, and the fish sizes represented in the data
presented herein. However, these conversion equations still provide an alternative that should be
better than using fillet concentrations to represent whole body values. :
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1. INTRODUCTION

In aquatic systems. many contaminants accumulate in fish. To assess the risks that these
contaminants may present to human consumers, fish are frequently collected, and the contaminant
concentrations are analyzed. Because most people consume only the muscle portion of fish, the fillet
portion of the fish is typically the only part analyzed to provide data for human health risk
assessments. While fish fillet data may be suitable to assess risks to the majority of the human
population, piscivorous animals, such as mink, otter, herons, and kingfishers, typically consume
more than just muscle tissue and often consume the entire fish. Therefore, the use of fillet data may
not accurately represent risks that contaminants in fish present to wildlife. In addition, not al! people
restrict theniselves to consuming only fish fillets. Persons in some cuitures and locations may catch,
prepare, and consume whole fish, Whole-body contaminant information in fish is needed but is not
readily available.

Fillet concentrations may not accurately represent or predict concentrations in the whole body
because of chemical-specific differences in assimilation rates and affinities for various tissue
compartments (Heit 1979, Ray et al. 1984, Goldstein et al. 1996). The greatest differences are
expected for those substances that have high affinities for hard tissues (bones and scales). Bone
seeking elements, such as calcium, strontium, and lead (Bowen 1979), would therefore be likely to
be more abundant in whole fish than in muscle tissue only. Elements that bind to proteins, such as
mercury, selenium, and cadmium (Bowen 1979), are enriched in muscle tissue and organs (i.e., the
kidneys), but large differences between whole body and fillet concentrations are less likely because
much of the whole fish that is not muscle is nevertheless proteinaceous soft tissue. Elements whose
concentrations in soft tissue are to some extent homoeostatically controlled, such as potassium and
zinc, might increase in hard tissues (and therefore whole fish) in response to increased exposure
while muscle concentrations remain unchanged.

Fat soluble organic contaminants, such as dichlorodiphenyl-trichlorcethane or polychlorinated
biphenyis, accumulate in tissues rich in lipids. If lipid contents of fiilets and whole fish are similar,
concentrations of fat-soluble contaminants would be expected to be similar. However, species that
store much of their lipid reserves within the abdominal cavity, rather than within muscle tissue,
would likely exhibit higher whole-body than fillet concentrations.

Use of fillet data to assess risks to piscivorous wildlife and to persons who consume whole fish
requires methods to estimate whole-fish concentrations from fillet data. The objective of this report
ts to investigate the relationship between fillet and whole-fish contaminant concentrations and
develop equations for the estimation of whole-fish concentrations for several inorganics,
polychlorinated biphenyls, and chlordane. )

2. METHODS

Black bass (largemouth bass Micropterus safmoides and spotted bass M punctulatis} and
catfish (channel catfish Jetafurus punctatus and blue catfish Jetalurus furcatus) were collected from
several sites in Tennessee and Ohio for contaminant analysis as part of the Clinch River
Environmental Restoration Program at the UU.8. Department of Energy’s (DOE’s) Oak Ridge
Reservation {(ESD-ORNL 1996) and a baseline risk assessment at DOE’s Portsmouth Gaseous
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Diftusion Plant (ORNL 1995). In addition to analyzing fillet portions (i.e., muscle tissue) for
cantaminants, the remaining carcasses (i.e., whole body minus the fillets) of 31 bass and 10 catfish
were also analyzed for the same contaminants (Table 1). Catfish fillets were analyzed with the skin
off, and bass samples were analyzed with skin on and scales removed. The sites sampied included
those with a known history of contamination and those believed to be uncontaminated
{Le., background). For the statistical analysis, sites were combined to provide a wide range of
contaminant concentrations.

Table 1. Data sources and ranges of key variables used in statistical analysis
of fillet to whole-body contaminant relationships

Weight Length
Analyte WNumber and Species Sites range (g) range {cm)
All metais 12 Black bass (largemouth  Portsmouth , OH 162603 24.5-34.5
and spotted) Hinds Creek, TN
PCEs’ 31 Black bass {largemouth  Portsmouth , OH 1622829 24.5-54.0
and spotted) Hinds Creek, TN
Watts Bar Reservoir, TH
Norris Reservoir, TN
L0 catfish {channel and Watts Bar Reservoir, TN 350-996 359482
blue)
Chlordane 20 Black bass Watts Bar Reservoir, TN 489-2829 24.5-54.0
(largemouth) Norris Reservoir, TN

L0 catfish (channel and Watts Bar Reservoir, TN~ 350-996 359-482
blue)
*PCBs=palychlorinated biphyenis

Samples were analyzed for either inorganic compounds (11 metals) or organic compounds
(polychlorinated biphenyls and chlordane constituents) or both {Table 1). For the purpose of our
analysis, total polychlorinated biphenyl concentration was calculated as the sum of Aroclor 1254 and
Aroclor 1260 and total chlordane as the sum of five chlordane constituents (alpha-chiordane,
gamma-chlordane, oxychlordane, cis-nonachler, and trans-nonachlor). For all analytes, one half of
the reported detection limit was used for results that were reported as non-detects (i.e., less than the

detection limit).
Whole body concentration {C,,,) was calculated as
Con = (CoW +C oW (W +W ) (B

where Cpand C, are the contamimant concentration (mg/kg) in the fillet and carcass, and W, and W,
are the weight (g) of the fillet (both sides) and carcass, respectively.

Throughout the analysis, the following underlying model was used to relate whole body
contaminant concentrations (C_,) and fillet concentrations {C,):

C,o =k +ke(C) (2)
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where b>0 and k' is assumed to be zero, resulting in a relationship that passes through the point
(Cue C3=(0. 0). For this reduced two-parameter model, taking logs an both sides of Eq. (2) changes
the model to a standard linear regression model of In(C,,,) and In(C,). Theretore, all concentration
values were natural log transformed for statistical analyses. For some applications, it might be
reasonable to consider k™>(}, in which case a nonlinear or weighted estimation method should be used
to estimate the unknown parameters.

A logical progression of statistical tests was established to determine the most appropriate
equation for the conversion of fillet concentration to whole body concentration for each contaminant
{Fig. 1). This series of statistical tests was performed for each contaminant by species group. The
first question addressed was whether the measured fillet concentration was different from the
calculated whole-body concentration. A paired t-test was used to determine if the average difference
of the transformed fillet and whole-body concentrations was different from zero (P<0.05 for all
analyses). If no significant difference was found, it was concluded that the fillet concentration could
be used as the whole body concentration. If the difference was significant, the anaiysis proceeded
to the next step.

The second question addressed was whether the regression model
In(C,;} = In{k) + beln(C)) 3)

produced a slope, b, which differed significantly from 0. If the slope was not different from zero, it
was determined that the existing data were not adequate to derive a reasonable relationship for that
contaminant. In this case, the average whole-body concentration was used to estimate the whole
body concentration regardless of the fillet concentration (i.e., slope equals 0.

If the slope differed from 0, then evaluations determined whether it differed significantly
from L. If the slope did not differ from 1, then the following equation was used to define the
relationship between whole body and fillet concentrations: .

Coe = kg*Cy (4)

where k; is the mean whole body-to-fillet ratio as estimated from the antilog of the mean difference
(d) of the logs (Table 2); i.e.,

ky= e (5)
where d is the mean difference of In(C;) minus In(C,,) for each analvte by species combination.

[ the regression analysis revealed that the slope was significantly different from 1, the
estimated model was then used as shown in Eq. (3) to define the conversion equation. A stepwise
regression analysis was alse performed to determine if whole-body weight or fillet lipid content were
significant explanatory variables in addition to the fillet concentration for predicting whole-body
contaminant concentration. Both of these variables were natural log-transformed for the regression
analysis. If the addition of either variable produced a significant regression model, this expanded
mode] was included as an alternate conversion equation.
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Fig. 1. Flow diagram describing statistical procedures used to determine equations far estimating
whole-fish contaminant concentrations from fillet values.
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3. RESULTS

The analytical results and detatled sample information are presented in the Appendix to this
report. The relationship between fillet and whole-body concentrations for each analyte is illustrated
in Fig. 2. A one-to-one line (dotted line) is included as a reference to the expected distribution of
points if fillet and whole body concentrations were equal. Paired t-tests revealed that whole body
concentrations of all analytes were significantly different from fillet concentrations (Table 2). Only
for mercury were concentrations higher in the fillet than in the whole body.

The regression of fillet concentration on whole body concentration revealed a slope not
different from 0 for Cd, Cu, Pb, Ni, U, V. and Zn. For each of these metals, the analysis suggests that
within the range of concentrations represented by the data, the concentration in the whole body was
fairly constant regardiess of the concentration in the fillet. For these contaminants, the best estimate
for whole-body concentration is a constant value calculated as the mean whole body concentration
of the data in the analysis. The relationship for each of these analytes is indicated as a horizontal
dashed line in the appropriate panels of Fig. 2. The reader should note that the range of fillet
concentrations used in this analysis is relatively narrow and that the concentrations represent
background values that would be expected at an uncontaminated site.

For four cases (chromium, polychlorinated biphenyls for bass, and chlordane for both catfish
and bass) the regression analysis determined that the slope was not significantly different from 1
{Table 2). For these analytes, the resulting conversion equation is a simple multiplier of the fillet
concentration. The relationships described by the conversion equation for these analytes is indicated
as dashed lines in the appropriate panels of Fig. 2.

For the remaining analytes (As, Hg, Se, and polychlorinated biphenyls for catfish) the slopes
were significantly different from 1 (Table 2). For these analytes, the regression model (intercept and
slope) as determined by the regression analysis is recommended for estimating whole body
concentrations from fillet concentrations. The relationships described by this model are indicated
as solid lines in Fig. 2. For analysis of the catfish polvchlorinated biphenyl data, one outlier value
(open circle in PCB-Catfish panel of Fig. 2) was removed. This point was determined to have a
disproportionate effect on the regression, resulting in a relationship that falls below the 1:1 line at
C¢>1.5 although none of the actual observations are below the 1:1 line.

For arsenic and mercury, the addition of a second explanatory variable significantly improved
the predictive capabilities of each model which are offered as alternative conversion equations
{Table 2). For arsenic, the inclusion of whole-body weight in the regression is recommended if the
information is available. Likewise, for mercury, the inciusion of percent lipid content of the fillet
also significantly improves the regression model.

4, DISCUSSION

Little information has been published that defines the relationship between fillet and
whole-body contaminant concentrations for chemicals other than mercury. This assessment found
that mercury levels were generally higher in muscle tissue than in the whole body for bass. A similar
relationship was described by Goldstein et al. (1996) for channel catfish and carp Cyprinus carpio,
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and their regression models were similar to the bass model herein {see mercury panel in Fig. 2). Ray
et al. (1982) found similar results for mercury tissue compartments (concentrations in
musclez liver>kidney>gonad) in striped bass Morone saxarilis. Becker and Bigham (unpublished
data) found higher concentrations of methyi mercury in the fillets of bluegill sunfish Lepomis
macrochirus than in the whole body, but no differences for white perch Morene americana,
smallmouth bass Microprerus dolomieu, and gizzard shad Dorosoma cepedianum. However, in their
study, fillet and whole body concentrations were not derived from the same fish. Phillips et al.
(1987) concluded that fillet and whole body concentrations of mercury were not different for walleye
Stizostedion vitreum and white crappie Pomoxis annularis, though they also did not have fillet and
whole body data from the same individuals and also had smal] sample sizes (N=3 to 10).

Because this analysis was performed on a limited set of contaminant data, several limitations
and uncertainties should be considered. All inferences from this analysis are constrained by the
limited range of available data. Due to a relatively narrow range of contaminant concentrations in
this study and the lack of related studies suggesting otherwise, this analysis was limited to a singie
model type where the y-intercept passes through the origin. This model included two forms: one
linear (Fig. 3A) and the ather curvilinear (Fig. 3B). However, it is possible that for some
contaminants a different model form would be a better descriptor. For example, it may be the case
for some chemicals that the y-intercept does not intersect the origin (Fig. 3C). A different model
form would be required if whole body and fillet concentrations converge at high concentrations
(Fig. 3D). The model given by Eq. 3 has the capability to handle these cases when k>0. Additional
data that represent a larger range of tissue concentrations are necessary to more accurately determine
the most appropriate mode! form.

Other limitations of the conversion equations presented here include variations in within-body
contaminant distribution among fish of different sizes and species. Although fish size was a
significant co-variable in only one case (arsenic) in the analysis, it is possible that with data over a
larger size range, this factor would have been found to improve the estimate of whole-body
contaminant concentration for other contaminants. As fish grow, changes are expected in the
proportion of the body made up of muscle, the distribution of lipids, and the apportionment of energy
and contaminants to reproductive tissue (Ray et al. 1982). For similar reasons differences are
expected among sexes, although this expectation was not tested in this analysis due to smail sample
stzes. Among-species differences exist in physiology, body structure, and lipid apportionment;
therefore, differences in the fillet-to-whole~-body contaminant relationships among species are
possible. For example, the ratio of whole-body to fillet concentrations of hydrophobic contaminants
(e.g., polychlorinated biphenyls and chlordane) would be expected to be higher in bass, which store
much of their lipids in the peritoneal cavity, than in catfish, which store a greater proportion of lipids
in muscle tissue. However, significant differences were not distinguishable between catfish and bass
in regression models for polychlorinated biphenyls and chlordane, largely due to the high variation
in the largemouth bass data.

Because of the limitations described previously, any extrapolation of the conversion equations
presented here outside of the bounds within which these relationships were determined should be
done with caution. These bounds include the species and size range of fish used and the range of
contaminant concentrations. However, given the shortcomings of these conversion equations, they
still provide an alternative that should be better than using fillet concentrations to represent whole

body values.

Although the fillet concentrations differed significantly from whole body concentrations for
all anaiytes, the differences for most were relatively small. For chromium, selenium, and chlordane
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(in catfish), fillet and whole-body concentrations differed by less than 20%. The largest differences
were observed for Cd, Pb, Ni, U, and V, which were 4- to 8-fold higher in the whole body than in
the fillet. Differences of similar magnitude will likely occur in the ecological risk calculations using
these data. Because equations used to calculate the ecological risk to piscivorous animals are
generally linear, a two-fold difference in contaminant concentration would result in a two-fold

difference in risk.
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