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1. INTRODUCTION

Theoveral objectiveof thisdocument isto providethe Oak Ridge Operations-Environmental Restoration
(ORO-ER) technical community with an introduction to various decision analysis applications and their
relevancetowards the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA)
process. Thelong-term goa of investigating the decision analysisliteratureisto find specific applicationsthat
are useful inthe collection of dataand the selection of aternatives. A secondary goal isto usethesetechniques
to facilitate technical presentations in a manner that produces results which are responsive to the needs and
preferences of decison-makers. This will alow the decision-makers to better use the data collected for
assessment efforts.  These methods will supplement the current implementation of activities such as
programmatic prioritization, the Data Quality Objective (DQO) process, and the Remedia Investigation
(RI)/Feasibility Study (FS) process.

Environmental decision-making is perceived by many as a process that poses unique problems at levels
of complexity and uncertainty that can overwhelm attempts to treat the resulting decisions analytically. Any
attempts to reduce the remediation problem to an analytical decision problem are often viewed asinvolving a
morass of mathematicsthat can cast suspicion on theresults. Although thereis somevalidity to thisviewpoint,
currently there is not enough emphasis on using analytica tools for assisting the decision-making process.
Experiencefrom the application of decision techniquesin other areasfaced with problemsof similar scopeand
uncertaintiescan provide beneficia effectsfor decision processesin conducting remediation effortsat the ORO-
ER.

Quantitative decision methods can be devel oped during environmental restoration projectsthat incorporate
stakeholder input and can complement current efforts that are undertaken for data collection and alternatives
evaluation during the CERCLA process. These decision-making tools can supplement current United States
Environmental Protection Agency (EPA) guidance aswell asfocuson problemsthat arise asattemptsare made
to makeinformed decisionsregarding remedia alternativeselection. Inthisdocument, backgroundinformation
is provided on decision theory and decision tools that are available for determining environmental solutions
which can supplement the existing RI/FS decision framework. In examining the use of such applications, the
use of decison anaysis tools and their impact on collecting data and making environmental decisions is
discussed. Thisisdone by using abroad risk-based conceptua formulation of the CERCLA decision problem
and attempts to address the uncertainties inherent in the decision process while allowing for stakeholder inpuit.
Wewill look at the construction of objective functions for quantifying different risk-based decision rules that
incorporate stakeholder concerns. Objective functions represent a quantitative method for implementing the
DQO process. Based on such defined objective functions, a project can evaluate the impact of different risk
and decision selection strategies on data worth and aternative selection. Included are genera methods for
integrating resultsof risk analyseswith other pertinent information so that an informed decision can bereached
for aparticular site.



2. THE ROLE OF DECISION ANALYSISIN ENVIRONMENTAL
REMEDIATION

Decison analysis implements decision theory with the aid of concepts from management science,
operations research, and economics and differs from the decision theory through the addition of these applied
methodologies. These additions make the methods more generally applicable while eliminating their axiomatic
gualities. In decision theory, if one accepts the premises and axioms in practice, one should make the
recommended choices. Decision analysisisless prescriptive.

Definitions of decision analysis are largely afunction of convenience:

*  "providesthe link between the economic framework in which decisions are made and the results of the
technical analyses on which decisions are based" (Freeze et a. 1990)

*  provides useful ways of analyzing the selection of a choice of action under conditions of uncertainty
(Mansfield 1980)

* includesanumber of principlesand techniquesfor the systematic study of decision-making with uncertain
conditions (Baker and Kropp 1985)

* "aformalization of common sense for decision problems which are too complex for informal use of
common sense” (Keeney 1982)

Sinceitsinception, the development of the RI/FS process has used the fundamental concepts of decision
analysis to construct asound framework for environmental decision-making. Thegoal of the RI/FSis". .. to
gather informati on sufficient to support aninformed risk management decis on regarding which remedy appears
to be most appropriate for agiven site...by identifying and characterizing hazardsin away that will contribute
directly to the selection of an appropriate remedy" (EPA 1989). The approach is designed to be a dynamic,
flexible process that can and should be tailored to specific circumstances of individua sites; it is not intended
to be arigid step-by-step approach that must be conducted identically at every site. However, all too often,
the RI (site characterization) and FS (remedial alternative evaluation) become distinct processes where data
analysisand aternative eval uation processes are conducted in mannersthat fulfill their own independent needs,
rather than contributing to an overall technical understanding of the site that can be communicated to the
appropriate decison-makers. Thisiscontrary to specific EPA guidance (EPA 1988): "It isimportant to note
that the RI and FS are to be conducted concurrently and that data collected in the RI influence the devel opment
of remedial alternativesin the FS..." The end result can be uninformed decisions that are based on individual
subjective judgement and/or political processes rather than on the technical understanding that has been or
could be developed through the RI/FS process. The RI/FS process is described in various EPA guidance
documents and is the methodol ogy that the Superfund program has established for characterizing the nature
and extent of environmental risks posed by hazardouswaste sitesand for eval uating potential remedial options.

The central challenge faced by those implementing the RI/FS processis to determine how best to use the
flexibility built into the process to conduct timely, effective, and efficient cleanups. A significant barrier to
conducting theseinvestigationsistheinherent uncertai ntiesassoci ated with the characterization and remediation
of hazardous waste sites. While these uncertainties can foster a scientific impulse to want to know more, this
desire competes with the overall objective of performing efficient, timely cleanups. Theobjective of the RI/FS



process must be kept in mind throughout the process; moreover, the objective is not the unobtainable goal of
removing all uncertainty but rather to gain information sufficient to support an informed risk management
decision concerning which remedial option appearsto be the most appropriatefor agiven site. The appropriate
level of analysis needed to meet this objective can only be reached through constant strategic thinking and
careful planning concerning the essential data needed to reach aremedy selection decision.

As hypotheses are tested and either rejected or confirmed, adjustments or choices as to the appropriate
course for further investigations and analyses are required. These choices, like the remedy selection process
itself, involve balancing awide variety of factors, including technical, practical, and economic considerations.
Broadly speaking, there are nine evaluation criteriain the FS process that, to some extent, are used to make
the following decisions:

* |saction necessary?

* Isactive action necessary? (Isingtitutiona control enough?)
*  Which alternative to select?

«  Aremore data needed, and if so how much?

These are the same questions that are addressed in any decision analysis process. A thorough decision
analysisisusually composed of five steps (Fischoff et al. 1981). Table 1 outlinessome of thegenera paralels
between the CERCLA process and these steps.

Table 1. Decision analysisand CERCLA

Decision Step CERCLA Step Step Description

1. Sructure the Problem Data Quality Objectives Define the decision problem by specifying
the technical objectives and identifying data
needs.

2. Assessing Probabilities Remedial Investigation Quantify the uncertainties about the present

and future states of the system to be studied
through data collection, assessment, and

judgement.

3. Assessing Preferences Risk Management Consider subjective value judgement and
attitude towards risk.

4. Evaluating Alternatives Feasibility Study Evaluate potential remedial alternatives
against relevant criteria.

5. Sensitivity & Information Data Quality Assessment Reexamine analysis to determine sufficiency

Value of current information and value of additional

data.




3. CONSTRUCTION OF THE OBJECTIVE FUNCTION

Selecting a course of action is often a subjective process that leads to conflict between different
stakehol ders because different decision-makers sometimes have fundamental val ue conflictsthat prevent them
from reaching aconsensus. Constructing different objective functionsthat account for different valuescan aid
indistinguishing where conflictsreally exist asopposed to wherethey simply appear to exist and can also serve
asaforum for resolving disagreements. In addition, assuming the decision-maker isableto quantify the amount
of allowable uncertainty in the selection process, definition of objective functions can be used to demonsirate
when current knowledge is sufficient to support an informed decision.

The purpose of risk analysis activities under CERCLA isto provide information to aid the evaluation of
proposed remediation dternatives. Thealternativesto be evaluated are often explicitly selected to meet arange
of cleanup criteria, land use options, and compliance points. The cleanup criteria may be based on an
acceptable human cancer risk level, alevel at which no toxic effects to human health is expected, or they may
be based on levels that are expected to have no ecological impacts. These criteria may be developed under
current land use and reasonable future uses, such asindustrial or residential use, and may be evaluated on-site
or a a number of other off-site compliance points.

Thecriteriaused for evauating alternativesin the FS are described in detail in Guidance for Conducting
Remedial Investigations and Feasibility Studies Under CERCLA (EPA 1988). The first two criteria,
protection of human health and the environment and compliance with federal and state regulations, are termed
threshold criteriaand must be satisfied by al proposed remedia action technologies. All alternativesthat pass
theprimary criteriaareweighed against the next fivecriteria: long-term effectiveness; short-term effectiveness;
reduction of toxicity, mobility, and volume; implementability; and cost, so that decision-makers will be able
to select the appropriate site remedy. Currently, the final two criteria, state and community acceptance, are
then addressed after comments on the RI/FS report have been received. These criteria form the basis of
decision rules for alternative selection under CERCLA.

A clear decision rule (or rules) around which quantitative work can be developed is necessary to alow an
explicit application of mathematical logic to decision-making. This usually involves defining an objective
function that representsthe problemto be solved. Objectivefunctionsuse different indicesand arethe primary
functions used to evaluate environmental problems with respect to avariety of RI/FS criteria. Constructing
an objective function can help distinguish where true conflicts exist and serve as a forum for resolving
disagreements. In essence, the objective function serves as a measure for comparing various alternatives for
remediation. They are usually based on cost (payoff or loss), but other forms of measurement are possible as
well. Broadly speaking, the objective function can incorporate three factors:

*  Understanding of the problem via predictive models and the data necessary to use these models
*  Assessment of the costs involved (this can include risk-aversion; e.g., some costs are unacceptable)
*  Preference of decision-makers (relative weighting of which criteria are important to the decision)

The objective function should comprise components that represent important facets of the problem and
should be constructed in an interpretable fashion. The objective function is usually constructed so that the
optimal aternative will produce a minimum or maximum value. Common elements can be found in various

types of objective functions, particularly in the environmental field. Such components include:
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Time horizon—the amount of time which the project will continue, usually measured in years. Thetime
factor isimportant for long-term projects as certain quantities change over time (e.g., value of thedollar).
These quantities need time-scaling factors to estimate a meaningful objective function.

Alternative cost—the cost of an alternativein agiven year. Thisincludes personnel required to operate
the technology, maintenance, etc.

Resource value—the equivalent value of aresource to be protected (e.g., aquifer, endangered species, a
human life). Assigning a measurement to such intangibles is often an unpleasant but unavoidable task
in constructing meaningful objective functions.

Utility—the concept of decision-makers weighting factors to better reflect the relative desirability of
various outcomes derives from utility theory (discussed in subsequent sections of thisreport). Thisisa
highly subjective assignment that is unavoidable in many situations. However, there are utility models
available to assist in quantifying the utility decision.

Efficiency—the degree to which an aternative can reduce some parameter of interest (e.g., risk,
contaminant concentration, contaminant flux).

Probability of failure—this is the probability that the aternative chosen will fail to achieve the goal
defined by thedecision criteria. Thisvalue can benumerically estimated asinthe output of aprobabilistic
risk assessment or a subjective estimate based on previous experience.

Cost of faillure—any costs associated with the failure of the chosen aternative to remediate the process.
This may include litigation or cost of a second remediation. It may also encompass the loss of resource
values discussed previoudly.

Benefits—the benefit of implementing a given dternative (e.g., profit). For many environmental
remediation scenarios, thisis zero.

These componentsmay be derived from secondary objectivefunctionsthemselves. CERCLA sitesusudly

addressthese different functions (except for cost and risk) in aqualitative manner when devel oping the detailed
analysisof dternativesinthe FS. They areall used, either implicitly or explicitly, in the nine FS criteriaupon
which decisions are based. However, since these criteria are often not quantitatively identified early in the
project, this can result in core problems not being clearly identified and technically resolved. Quantitative
eval uation of themore contenti ous objectivefunctionsidentified by thedecision-makerscan assistin dternative
selection and ensure that data collection efforts are designed to meet the needs of those decision-makers.

A very general exampleof an objectivefunction based on arisk/cost/benefit strategy (addressed inthe next

section) is constructed as
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the number of years

the benefit of aternativej in year t

the cost of alternative| in year t

the probabilistic cost of failure for aternativej in year t
the number of years

the objective function for the jth aternative.

Therefore, for each year, one determines the benefits, costs, and risks and scales their differences. The
sum of those valuesisthe objective function value for the jth aternative. If the decision-maker wasthe owner
of a new waste management facility, C(t) represents the capital and operational costs associated with the
facility. The benefits B(t) represents the profit of running the facility. R(t) represents the probabilistic cost
associated with the failure of the facility.

An example can be found in aFinkel and Evans report (1987), where three alternatives were considered
for the remediation of a hazardous waste site which poses a potentia risk to human health. Each method has
varying performance levels and costs of implementation. The objective function measured in dollarsis the
"total societal cost." In this example, one would choose the aternative that minimizes the objective function.
The objective function is constructed as

®@R) =C, + V(1 - e)R,

where
C, = cost of implementing the alternative,
e, = ¢efficiency of alternative a,
v = cost of failure (million $/cancer), and
R = hedthriskin the absence of any controls (cancers).

Although one may not be comfortable explicitly addressing the costs of failure in this manner (i.e.,
assigning adollar value to human life), it is always present, at least implicitly, in any decision ruleif any sort
of risk isto be tolerated. Only the implementation of a Zero Risk strategy can avoid thisissue.

If each component of an objective function were known with certainty, then the decision would be
completely analytical. Typically, at least one of the componentsis not known with complete certainty thereby
introducing uncertainty into the objective function and ultimately into thedecision. Issuesin objectivefunction
analysis are discussed in the next section.

The objective function concept has applications in various decision scenarios and construction of the
function can have variousforms based on the previoudy described decision elements and simple mathematical
operations. The careful construction of an objective function that represents the problem and aternatives
available is an important step in the process. It can help identify areas of uncertainty and disagreement and
provides a foundation for other important concepts (e.g., data worth).



4. DECISION MAKING AND OBJECTIVE FUNCTION ANALYSIS

A central feature of objective functions for environmental cleanups is risk, usually represented by the
resultsof arisk assessment or of specification of the probability of failure. Decision-makersmust contend with
thefact that their decisions cannot be made with certainty for the majority of environmental problems and that
theanaysisof risk must reflect thisuncertainty. For our purposes, theterm "risk" isused in abroader fashion
than that associated with human health and ecological risk assessments for CERCLA activities. Risk can be
generally defined as the consequences of making a "wrong" decision relative to different criteria (e.g.,
engineering, human health, ecological, economical, regulatory concerns, aswell as others) and ismeasured as
the probability and associated costs of an adverse effect. These risks arise from the need to satisfy a number
of conflicting technical objectives (and their associated uncertainties) as well as the need to satisfy additional
legal and political constraints. The nature of the risk strategy chosen has an influence on how the objective
function is constructed to represent the decision. A number of different strategies are available to attempt to
mitigate risks (Crouch and Wilson 1982), including Zero Risk, As Low As Reasonably Achievable (ALARA),
and Best Available Control Technology (BACT).

In Zero Risk, any alternative that involves an element of risk is rejected. Although perhaps the ideal
strategy to implement, it soon becomes clear that it is impossible to carry out in practice. The objective
function for this strategy would be based on eiminating the risk element and ignoring the other possible
elements of an objective function. However, every action, including no-action, involves some element of risk
and this strategy is rarely tenable. In ALARA, risks are mitigated to levels that are as low as reasonably
achievable based on adecision rule that specifieswhat isreasonable. However, athough workable, the open-
ended nature of these decision rules often lead to inconsistent applications of risk reduction. In addition, they
are sometimes inefficient in reducing risk since a broader objective function is often able to effect a smilar
reduction in risk while optimizing other variables (e.g., cost). In BACT, the best available technology is used,
and an analysisinvolving an objective function is usually not required. However, identifying this technology
isoftendifficult. BACT isusually interpreted to consist of atested and commercially available design which
can be implemented at a reasonable cost. This strategy can also be inefficient in risk reduction from a cost
basis, but was nonetheless incorporated into the Clean Air Acts of the 1970s.

The preferred framework in EPA guidance is the Risk/Cost/Benefit Analysis approach. This method
requires an explicit identification of the values assigned to variousrisks. Thisisrecommended not because it
will give the optimal decision every time, since no method can, but because it requires that all values which
influence the decision are explicitly recognized and discussed. Within this framework, the general objective
function (or similar variants) introduced in the previous section play akey rolein measuring outcomes against
decision criteria.

Once an objective function has been determined, it may be approached in either a deterministic or
probabilistic manner. In adeterministic approach, all quantities are assumed to be known with certainty and
thechoiceisclear within that decision framework. However, rarely areall the componentsof aproblem known
exactly. In aprobabilistic approach, likelihoods are assigned to values of components or outcomes and an
expected value for the abjective function isused. Thisalowsflexibility in the decision framework and leads
to abroader analysis of capahilities, including sengitivity issues and data worth.



4.1 DETERMINISTIC METHODS

A large part of formal theory in the social sciencesand especially in economics and management sciences
isrelated to the field of decision-making under certainty. Thisfield typically reduces the decision problem
down to aset of dternatives from which one (or more than one) must be selected that maximize (or minimize)
some given objective function. This leaves the choice of the objective function as the core of the problem.
Environmental problems have an economic context and therefore profit and loss are often suitable. But as part
of the CERCLA process, the index used can take any form of the objective functions described previoudly.

To illustrate some general principles for decison-making under certainty, we will use an example
consisting of a site with contaminated soil and two possible outcomes (future land uses): residential or
industrial. The scenario that occurs controls the costs of implementing the necessary cleanup. The
decision-maker has also estimated how well each action would do in these two possible outcomes. These costs
alsoinclude possible pendtiesfor not completely cleaning up thesiteinitialy if residential land uselater arises.
Assumethat the decision-maker hasto decide between three remedial aternatives regarding the cleanup of the
contaminated site. Alternative 1 involves minimal or no action. Alternative 2 involves intensive cleanup.
Alternative 3isanintermediate cleanup. For thisdiscussion, we neglect thelikelihood of each of the outcomes.

In ardatively perfect world, the success of each strategy (called the payoff) could be computed with
certainty. Inthat case, the strategy to pick isthe one with the highest payoff (or in this case, the smallest 10ss).
This would be a fairly easy decision to make. Of course, nothing is this simple in reality, especialy when
decisions regarding environmental problems, remedial actions, and their inherent uncertainty are concerned.
The outcomes, which are, in fact, uncertain, are referred to as states of nature and are considered
uncontrollable. The selection of a particular course of action is controllable. Therefore, in this case we have
one controllable variable (the course of action to take) and one uncontrollable variable (the state of nature that
occurs). A common way to summarize the decision problem is a table of losses. The dtatistical decision
literature commonly treats losses as non-negative, so we will adopt this practice. The loss table for this
exampleis shown in the first three columns of Table 2. We now describe several non-probabilistic methods
for making a decision on the particular aternative to implement. The boldest approach is to choose the
alternativewith thelowest possibleloss. In this case, thiswould mean choosing Alternative 1 with an estimated
lossof 5if thereisanindustrial future land use. Thisiscertainly an optimistic approach. Thistype of decision
strategy is called the minimin approach: we minimize the minimum loss. Of courseg, this alternative also has
the largest possible loss, but thisis not the concern with this decision strategy. This strategy isillustrated in
the fourth column of Table 2.

Table 2. Non-probabilistic decision strategies

State of Nature -Loss $K Decision Strategies $K
Alternative
Industrial Residential Minimin Minimax Minimax-Regret
1 5 50 5 50 20=max(5-5,50-30)
2 20 30 20 30 15=max(20-5,30-30)
3 10 40 10 40 10=max(10-5,40-30)




On the other end of the spectrum isthe most conservative approach: choose the action with the smallest
maximum loss. In this case, the choice would be Alternative 2, with a loss of $30,000. This is called the
minimax approach: we minimize the maximum loss. With this (pessimistic) approach the decision-maker is
most concerned with the worst thing that could possibly happen. Thisisillustrated in the fifth column of Table
2.

Another (less straightforward) approach is based on the assumption that relative payoffs are more
significant than absolute payoffs (Baker and Kropp 1985). This approach is a step up in sophistication from
the minimin and minimax approaches. To illustrate this approach, suppose we choose Alternative 2 and yet
anindustrial land use occurs. We may then feel "regret” because we could have limited our losses to $5000
had we decided on Alternative 1. However, if residential land use occurs we would feel no regret because
aternative 2 is the best choice if residential land use occurs. With this in mind we define the regret for any
alternative/state pair to be the difference between the loss for this choice and state and the best possible loss
for that state. In our example, it isthe difference between thelossfor agiven land use and the smallest possible
lossfor that particular land use. We illustrate this by cal culating the maximum regret for each alternative for
the decision at hand in the last column of Table 2. Alternative 3 is preferred because it is the action with the
smallest possibleregret. Thisiscalled the minimax-regret approach, becauseit minimizesthe maximumregret.

Our exampleillustrates that the type of strategy employed can influence the decision that is made. This
process also operates at the subjective decision-making level. If more than one decision-maker is involved,
different decision-makers may arrive at conflicting conclusionsbased on different strategies. Thisisfrequently
realized in environmental cleanup situations where two primary decision-makers are often the owner-operator
[known under CERCLA asthe Potentially Responsible Party (PRP)] and the regulator(s). The owner-operator
hasafinancia interest in the outcome and often feelsthat the "uncontrollable” statein termsof risk isactualy
somewhat controllable. Therefore, they may tend to choose a minimin approach, either consciously or
unconscioudly, to simultaneously ensure protection and minimize financial losses. The regulator, on the other
hand, having no assurances that the outcome isin fact "controllable" and having less of afinancial interest in
the selection of an alternative, would lean towards a minimax approach to ensuring protection given a
worst-case outcome at some point in the future (e.g., returnto residential land use). Thiscan lead to more cost,
but it is often the best way to ensure the protection against risk in anon-probabilistic framework. Thefact that
these decision strategies are non-probabilistic and that the majority of environmental restoration activitiesare
inherently uncertain make these types of strategies less applicable to cleanup decisions. Non-probabilistic
decision gtrategies are intuitive and applicable to decisions of the sort that people make everyday; however,
whenthese strategiesare applied to more complicated decision problems, they often come up short becausethey
are not able to take al the technical information that exists into account. With this in mind, we turn to
potentially more useful, though less intuitive, probabilistic decision strategies for evauating environmental
problems.

4.2 PROBABILISTIC METHODS
A natura desire in decision-making isto somehow incorporate the likelihood of each possible outcome.
This is the key to the probabilistic approach. A method of probabilistic estimation is the expected value

approach. Next, we discuss this method and the role of utility theory in estimation.

Thefirst step in the expected-value approach is an estimation of the likelihood of each possible outcome.
Assume that in our previous example the decision-maker iswilling to assign probabilities and state that there
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isa75% chance that there will be an industrial land use and that there is a 25% chance future land use will be
residential. The best manner for incorporating this information is to calculate the expected value for agiven
decision. Thisis defined as the sum of the products of the loss for each outcome times the probability of that
outcome. For example, the expected value for the contamination problem is:

lossif residential x probability that residential occurs
+

lossif industrial x probability that industrial occurs
Substituting the losses and probabilities:
Expected loss of Alternative 1 implementation = 5x 0.75+ 50 x 0.25= 3.75 + 12.5= 16.25

Therefore, the expected loss of Alternative 1 is $16,250. Table 3 illustrates the expected value of al the
alternatives given the above assumptions.

Alternative 1 represents the preferred alternative with the expected value approach because it represents
the minimum expected loss. One may observe that if Alternative 1 is selected, the losses are either $5000 or
$50,000; actual losseswill not be $16,250. The expected value approach isuseful to estimate how the strategy
would do inthelong run (i.e., over many trials). If anindustria land useisto occur 75% of the time, then,
over the course of many future scenarios, Alternative 1 would be the best selection because losses are
minimized most of the time. The expected-value approach is useful when

Table 3. Expected value table

State of Nature
Alternative
Industrial $K Residential $K Expected Value $K
1 3.75 125 16.25
2 15 (20*.75) 7.5 (30*.25) 225
3 7.5 (10*.75) 10 (40*.25) 175

one decision guides many other decisions (i.e., the decision will be "tried” many times). The same procedure
can bedonewith regret: we definethe expected regret for aparticular course of action and choose the strategy
with the smallest expected regret. Even though these values will be different from those obtained using the
expected value approach, one can show that the decision reached isthe same. Thisisillustrated in Table 4.
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Table 4. Expected regret table

State of Nature

Alternative
Industrial $K Residential $K Expected Value $K
1 0 5 5
2 11.25 0 11.5
3 7.5 2.5 7.5

There are serious limitations to the expected value approach when applied to environmental problems.
For example, if one of the possible outcomes involved the extinction of a species or a catastrophic type of
impact, then these unquantifiabl e types of outcomes lose their immediacy in an expected-value framework. It
may be that a particular aternative is the best to choose using an expected-value approach but the decision-
maker would still be hard-pressed to consider this alternative seriously unless the probability of extinction or
failurewas"low enough.” The question of irreversibility and of the occurrence of an adverse effect, that istoo
important to quantify in dollar terms, raises the question of whether a profit/lossindex is the appropriate one
for certain decision problems (e.g., the kind encountered within the RI/FS process). In instances where the
consequences of an adverse effect are of a priceless magnitude, a more appropriate index must be selected to
minimize (or maximize). Even if the expected value approach is not used, just the act of identifying and
expressing the actions and their potential payoffsin apayoff tableisasignificant step towards making a better
decision, no matter what the decision. Asillustrated with the expected value approach, whether or not you will
want to maximize expected gain (or, equival ently, minimize expected regret) depends on your attitude towards
risk. Theincorporation of attitudes toward risk leads us to yet another step up in sophistication.

The foundation of the study of attitudes towards risk and their relevance in decision-making waslaid in
von Neumann and Morgenstern (1953). The authors ambitiousgoal wasto "find the mathematically complete
principles which define "rational behavior" for the participants in a socia economy and to derive from them
the general characteristics of that behavior." The "mathematically complete principles’ take the form of
relatively innocuous axioms that alow one to treat aversion to risk separately from probability judgements:

*  Preferencesaretrangitive(i.e., if adecision-maker prefers A to B and B to C, then she/he prefers A to C).

* A decison-maker will always choose the higher probability of winning an identical prize.

*  Thelawsof probability govern a decision-maker's attitude towards alottery. Shefheisjust aswilling to
play the lottery 100 times as playing its probabilistic equivalent once (also known as "no fun in
gambling").

* Thereisa"certain equivalent”" between the extreme outcomes of alottery. In other words, if someoneis
offered a chance to receive either an item of small value or of great value dependent upon the flip of a
coin, she/he would be willing to accept an intermediate sure thing (the "certain equivaent").

*  Thedecison-maker isindifferent between the certain equivaent and the coin flip in the previous axiom.

In other words, thereis no "rush” to take the chance.

11



Assuming these axioms, von Neumann and Morgenstern showed that a rational decision-maker's
preferences can be assigned specific valuesréative to each other. Thisnumber attached to apossible outcome
is caled the utility of the outcome. There are two fundamental implications of these axioms:

* A decison-maker's preferences can be encoded in terms of a utility function. This utility function
represents a scaling of the values the decision-maker assigns to outcomes that captures higher attitude
toward accepting risk.

* A decision-maker's preference for various aternatives may be measured by calculating expected utility
defined as the sum of utilities of possible outcomes weighted by their probabilities of occurrence). The
preferred alternative will have the highest expected utility.

von Neumann and Morgenstern's fundamental result was that arational decision-maker will maximize
expected utility. That is, they will choose the action whose expected utility isthe highest. Certainly people do
not aways adhere to the axioms above, and therefore they do not actually always maximize utility
unconscioudly. Thistheory is not designed to explain or incorporate irrational human behavior; rather, it is
designed to indicate how people should make choices if their decisions are to be in accord with their own
preferences. Thedifficulty initseveryday use, however, isthat although utility theory can clarify the meaning
of economic consequences, utility values are abstractions not represented by any physical measures of value
that can be interpreted easily.

Thetheory presented in von Neumann and M orgenstern show that, assuming the axioms, every individual
possesses a utility function with regard to comparable outcomes. In practice, the utility function is estimated
by atrial-and-error approach whereby the utilities of non-extreme outcomes are gradually refined. Once the
utility of possible outcomes is calculated, it is a simple matter to maximize the utility, assuming that the
probability of the outcomesis known (itself not an easy task).

Limitations onthe application of utility theory to environmental remediation problemsare similar to those
discussed previoudy for the expected value approach when one of the potential outcomes is totaly
unacceptable. However, for other environmental problems, the utility approach does allow one to construct
risk-based analyses that are not necessarily dollar-based and that incorporate the decision-maker's attitude
towards risk. Table 5 summarizes the deterministic and probabilistic decision strategies discussed in the
previous two sections.
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Table 5. Summary of decision strategies

Decision Type Strategy Name Strategy Description

Deterministic Minimin Select the course of action with the smallest minimum
loss among all possible outcomes. Gamble on the best
possible outcome.

Minimax Select the course of action with the smallest maximum
loss among all possible outcomes.
Avoid the worst possible outcome.

Minimax-Regret Select the course of action with the smallest maximum
regret among all possible outcomes. Where regret is the
loss due to not picking the best course of action.

Probabilistic Expected-Value Select the course of action with the minimum expected
loss over the long run (i.e. over many trials).
Expected-Regret Select the course of action with the smallest expected
minimum loss among all possible outcomes.
Expected-Utility Select the course of action that has the highest expected
utility.

4.3 DATA WORTH AND THE VALUE OF PERFECT INFORMATION

Viewing the objectivefunction in aprobabilistic manner can be useful in eval uating the amount and worth
of data needed to support adecision. A fundamental concept in the statistical decision theory literature isthat
of dataworth—the value of datain making decisions between alternative courses of action. In particular, we
will look at the quantification of upper bounds on how much one should be willing to spend to obtain data.
Data worth can have broad applications for the environmenta restoration process. These concepts can
influence two problem-solving processes central to environmental cleanup activities: data collection and
alternatives selection. Asin any type of formalized decision approach, there is more to gain than just the
guantitative output; walking through the process is itself advantageous in understanding the process of
evaluating historical data, collecting new data, and making decisions based on current knowledge.

Complete information about a problem is an ideal but often excessively expensive statusto achieve. In
some applications, complete characterization would cost more than the penalty for choosing the wrong
aternative. The purpose of the "value of perfect information” concept is to address the quantification of the
maximum price one should pay to remove al uncertainty from the decision process. In practice, the value of
perfect information can serve as arough upper bound on the price one should pay for any data collection and
istherefore a measure of dataworth. In the following text, we illustrate its application to the quantification
of upper bounds on data worth, as well as its use as a means of exploring the sensitivity of a decision to
uncertainty. We also discuss potentia applications of these methods to the types of decisions required under
CERCLA when considering remedial alternatives.

In the decision science literature, the definition of perfect information depends on the conceptualization
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of processes involved, and it does not aways necessarily mean the knowledge about what is going to happen.
In particular, perfect information is sometimes referred to as the exact knowledge of the parameter valuesin
themodel of reality used to compute the objectivefunction. Thisisnot alwaysthe same asknowing the future.
For example, if the problem depends on the results of a risk assessment, and probability distributions are
assigned to represent the exposure variables and the dose-response rel ationship, then perfect informationisthe
knowledge of the parameters in the stochastic process, which may themselves be used to estimate the
probability that the risk exceeds some regulatory limit, not whether it will or not.

Assume we had to make a decision now and we have some method of choosing the alternative. Further
assume that the objective function is constructed so that itsminimization is preferable. If we had perfect data,
then we would know the parameter valuesin themodel. In this case we would choose the dternative with the
smallest costsbased onthe perfect data. The difference between the costs associated with the decision we made
using the data we have now and the smallest cost possible for the perfect data is called the value of perfect
information. The value of perfect information isthe most that any data could be worth within the constraints
of the objectivefunction weareusing. Of course, wedon't know what the perfect dataare; if wedid, wewould
choose the best alternative based on the perfect data. This does not mean that we cannot investigate the value
of perfect information as afunction of what the perfect datamight be. Thereare severa mannersinwhichthis
can be carried out. Before discussing these methods, we introduce some notation.

Suppose that one must choose from a set of available alternatives. These aternatives may be discrete
(e.g., finite number of distinct alternatives), continuous (e.g., depth of piling to use for abridge), or amixture
of both (e.g., finite number of distinct alternatives, some of which have "optimizable" design parameters). In
evaluating the objective function, one has a set of input parameters (e.g., risk, benefit, cost, etc.) for each of
the alternatives, x will denotethisset. For agiven alternative a, and input parameters x, let F(a; x) denotethe
value of the objective function. Let f(x) denote the probability distribution of the input parameters x that will
be used to evaluate the objective function. This represents our uncertainty regarding the "true” values of the
input parameters. Let a’ denote the alternative with the smallest expected val ue of the objective function (i.e.,
smallest expected cost)! given the uncertainty specified.

Let x; denote the "true" value of the input parameters x, and let a; denote the aternative that minimizes
F(a; x7); i.e,

F(ar; x1) < F(&xy) for al alternatives a.
If & isthe aternative selected given our current understanding of the problem, then the value of perfect
information isthedifferencein the objectivefunction for the alternative chosen and the correct dternative given
the true state of nature. Thisis denoted by VPI(a’; x;) and is given by

VPI(@'; X;) = F@’; x1) - F(ar; Xq).

Therefore, implicit in this definition is that the value of perfect information depends on:

1) our current uncertainty regarding the true state of nature described by f(x), and

'Finkel and Evans (1987) state that a decision maker can do no better than to choose the strategy with the
lowest expected cost without the benefit of perfect information. However, other decision rules are possible.
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2) thetrue state of nature.

In most cases, we will not have the luxury of perfect information. However, this does not mean that we
should abandon the concept. In particular, we can explore various quantities related to perfect information:

*  What the value of perfect information is expected to be
*  What the value of perfect information distribution looks like

* How the vaue of perfect information depends on the input parameters, for each aternative (not
necessarily the one that would be selected now)

*  How thevalue of perfect information depends on uncertainty in the input parametersfor each aternative
The expected value of perfect information for afixed dternativea’, denoted by EVPI ('), isthe sum over

all input parameters of the value of perfect information weighted by the probability that the parameter values
represent the true state of nature, and is given by

EVPI(a") - f [B(a*; X) - ®(a,; )] f(x) dx

where
the alternative selected if x isthe state of nature
the probability distribution for the input parameter(s) x.

&
fe)

Although any statistic of the distribution of values of perfect information could be potentially useful, the
expected valueis often suggested as the upper bound on dataworth (Freeze et al. 1992, Davis and Dvoranchik
1971, Merkhofer 1987). An obvious drawback to this method, as well as any method that uses f(x), isthat it
depends on what the distribution f(x) is that describes our current uncertainty. This distribution is aso
sometimes called the "prior” distribution. If one has little confidence in this distribution, then one may not be
comfortable with results that are computed based thereon. For this reason, it may be useful to either explore
thevalue of perfect information deterministically (e.g., study dependencies of the value of perfect information
on the various input parameters) or even analyze the dependency of the expected value of perfect information
on the uncertainty in one or more parameters. Although these methods may be prohibitive for objective
functions with many input parameters, screening senditivity analyses can be performed that may help exhibit
asmaller set of "most important” parameters suitable for such an analysis.

We will illustrate some of these methods with a simple example inspired by those in Finkel and Evans
(1987). We are to decide between three adternatives in the remediation of a hazardous waste site. These
aternatives consist of 1) do nothing, 2) implement an aternative that will reduce risk by 70% at a cost of $8
million, and 3) implement an dternative that will reduce risk by 99% at a cost of $40 million. The objective
function is the "total societal cost" and is calculated by

®(@R)=C, +v(1-¢)R
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where
C., = cost of the aternative a (million $)

a

= efficiency of the alternative a

ea
v = cost of failure (million $/death)
R = hedthriskinthe absence of any controls (degths)

For the purpose of this example, we assume that the costs are a one-time cost and that the value of life
has been determined to be $1 million. The only input parameter isthen the health risk R. Our uncertainty as
toitstrue valueisassumed to be represented by aprobability distribution f(R). Asin Finkel and Evans(1987),
we assume that f(R;m,s) is adequately represented by a lognormal distribution with geometric mean and
standard deviation of m and s, respectively.

In this case, the expected value of perfect information for a given aternative a is determined by

EVPI(a;p,0) = ] [©(a; R-®(a*; R)] f(R;i,0) dR

where a* isthe dternative that minimizes @if Risthe truerisk.

Figure 1 (Appendix A) shows a graph of the objective function as afunction of risk for each alternative.
This graph facilitates a deterministic visualization of the impact of risk in the objective function. It isuseful
in identifying break points where the minimization of the objective function changes dternatives. This
minimization of social cost isgiven by the dashed line. If one knew the exact value of therisk R, then it would
be ardatively smple matter to choose the aternative. Figure 2 (Appendix A) shows graphs of the value of
perfect information for each aternative as a function of R. This is the difference between the value of the
objectivefunction for an alternative and the val ue of thelowest objectivefunctionfor agivenrisk. Wereiterate
that these graphs are independent of the distribution for the risk.

The expected value of perfect information depends on the uncertainty in the risk R described by the
lognormal distribution. At early stagesof the remediation process, one may not be comfortablewith specifying
theparametersof thisdistribution. For thisreason, it may bedesirableto consider the expected value of perfect
information asafunction of these parametersfor each aternative. Figure 3 (Appendix A) showscontour maps
of the expected value of perfect information as a function of m and s for each aternative. These graphs
illustrate regions of m and s where an aternative can be expected to produce large vaues of expected value
of perfect information and regions where the expected value of perfect information becomes very sensitive to
values of the parameters. It may become therefore easier to identify "stable” alternatives (i.e., onesin which
the expected value of perfect information does not radically changein any region of m and s) and *dominating”
alternatives (one in which the expected value of perfect information is comparatively low in al regions).

Figure 4 (Appendix A) shows how the alternative selected depends on the uncertainty intherisk, R. This
graphisaprobabilisticanalogy to Fig. 1 asit also reveals"break" lineswherethe decision changes. Theresults
of this graph agree with our intuition: as the uncertainty in the risk grows (i.e., s increases), eventually
Alternative 3, the most expensive yet most effective, is the one selected. Such a graph could prove quite
valuableif one can smply bound the uncertainty and/or mean of therisk. For example, if oneisrelatively sure
that the geometric mean of therisk isabove 4, then no matter what the uncertainty, Alternative 3 should bethe
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oneselected. Therefore, therewould beno point in reducing theuncertainty. However, if onemay suspect that
the geometric mean is less than 4, then there could be sufficient justification for attempting to better estimate
the uncertainty.

Frequently, one may only want to (or only be ableto) consider the reduction in uncertainty in afew of the
input parameters. Although one can formally define the concept of the perfect information of certain data, a
smpler method is to explore the dependence of the expected value of perfect information as a function of the
uncertainty inthevariousinput parameters. Thismay aidin not only providing boundson certain types of data
but al so can be used to compare the worth of some datarel ative to the remaining uncertainty in other variables.
Indeed, it may be that there is no advantage in reducing the uncertainty in one parameter past a certain point
without reducing another parameter's uncertainty aswell. Thisinsight could prove quite valuable.

Continuing with the example discussed in the previous section, we briefly illustrate these methods. As
in Finkel and Evans (1987), we assume that the risk is calculated by the formulaR=D P, where D isthetotal
population dose (average individual dose in mg/kg/day times population exposed) and P is the potency
(incrementa probability of cancer incidence per mg/kg/day). What we wish to explore is how the expected
value of perfect information, aswell asthe dternative sel ected, depends on the uncertainty inthese parameters.
Sincetheproduct of lognormal distributionsislognormal, assuming that both dose and potency arelognormally
distributed makes the mathematics tractable. In particular, the geometric standard deviation of R can be
calculated in terms of the those of D and P. Assuming that one has predetermined that the geometric mean is
approximately 1.4, Fig. 5 shows how the aternative selected depends on the uncertainty in the dose and
potency. From Fig. 5 (Appendix A) we can deduce that if the uncertainty in the potency cannot be reduced
below 2, thereislittle usein reducing the uncertainty in dose below about 0.8. Similar comments can be made
regarding reducing the uncertainty in potency.

Often in environmental problems, several aternatives exist which all satisfactorily pass regulation and
risk-based criteria. The decision boilsdown to oneof cost. Frequently, there arelarge uncertaintiesin the cost
estimates of remediation aternatives. This is due in large part to contingencies, some of which data may
eliminate. Assuming that the objective is to smply minimize this cost, the concept of the value of perfect
information can be used to justify further collection of data. The objective function in thiscaseisthen just the
cost of the alternative, which may be decomposed into various factors (e.g., cost of implementation, cost of
failure).

Evenfor morecomplicated problems, similar methods can be applied, thereby potentially offering valuable
insight that can be made available at the early stages of any remediation and/or data collection effort.

4.4 SUBJECTIVE INPUT

The use of some subjective judgement is always necessary in the evaluation of adecision. Often, auseful
objective function will require subjective judgement as an input variable. A decision framework can
incorporate human judgement by calling on qualitative expertise to estimate the value of an element in an
objective function when empirical data are judged insufficient or are unobtainable. This can be accomplished
by using either formal or informal expert elicitation processes. The sensitivity and importance of the outcome
versustheincreased cost and effort of formal methodsisthe determining factor in selecting between formal and
informal methods.
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Formal processes require the presence of an interviewer and a considered expert (or experts) in thefield
for which the variable needs to be estimated. The formal processes have the advantage of being able to better
minimize many types of bias documented in the decision literature. These biases have been generally
categorized into two groupings. subject bias and assessment bias. Subject bias is the tendency for the expert
to introduce a cognitive bias into the estimates through the thought process of assigning numerical valuesto
events. The assessment bias is the result of systematic error introduced by the assessment method.

Subject biasfallsinto two categories: management biasand expert bias. Management biasisthetendency
for the subject to treat a variable as a goa rather than as an uncertain variable. This results in the over- or
underestimation of a variable that is of concern based on whether the proposed management strategy is to
minimize or maximizethe quantity. Expert biasisbased on the observation in numerous studiesthat an expert
will consistently underestimate the amount of uncertainty that existsin the variable. Thisisusualy the result
of the subject attempting to meet the perception that an expert is expected to be certain about their specialty.

Assessment bias is often inherent in the methods used to aggregate the subjective individual inputs from
agroup. Simpleaveraging and Monte Carlo analyses based on discrete probability distributionscan compound
individua biases and do not account for differences in knowledge between members of the group. Group
dynamics can also influence efforts to come to consensus probabilities.

In addition to countering biases, formal processes have anumber of side benefitsthat include clarification
of theissuescentral tothedecision, greater confidencein theresults, and facilitation of communi cation between
involved decision-makers (Merkhofer 1987). It can be difficult to justify the necessity of forma methods for
a certain decision, but given the continued necessity for decision-makers to make decisons on limited
knowledge, these elicitation techniques can assi st in making science-based policy decisionswhen hard evidence
is unavailable.

5. POTENTIAL APPLICATIONSFOR ER ACTIVITIES

Experts from many fields have called upon government to take a more scientific approach to making
decisons. Aswe have seen, the assessment and alternatives eval uation methodol ogy that underlies CERCLA
has roots in decision anaysis. However, the long-term answer to the question of whether more quantitative
decison methods have applicability in the environmental field can only be answered by the continued
trandation of decision theory into more practical approaches. These practical approaches have to promote
solutions to the complex, highly uncertain, and politically sensitive problems that are at the core of
environmental cleanups on government-owned land. Of course, the intent of this document isto identify key
areas where decision analysistools can make a contribution to decision processesfor ORR-ER; this cannot be
done by summarizing the decision literature one. Practical investigations and applications of some of these
techniques must be conducted to determine their usefulness.

Environmental decision-making operates at a number of different levels. At the programmatic level,
making equitable and defensible budget decisions that maximize risk reduction for resources expended is an
annual challenge. At the site level, data must be collected to support the selection of aternatives between
competing technol ogies. Technologies must be chosen and funded and alternative ways of cleanup established
to achieve long-term risk reduction. The practica application of decision analysis methods to these diverse
problems lies in the ability to incorporate subjective judgement into objective functions that represent the
problem to be solved. An areawhere decision analysis applications have already met with adegree of success
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isin fiscal resource allocation. Fair resource alocation decisons are difficult to make due to increasing
competition for federal funds, increasing ES& H requirements, the lack of sufficient quantitative data, and the
wide range of issues that must be addressed and balanced. Because of these complexities, the best means of
approaching resource allocation decision-making is to incorporate subjective judgement. One method being
successfully applied to support fiscal budget decisions at the DOE-ORO ER Program is the Environmental
Restoration Benefit Assessment Matrix (ERBAM).

In the past, subjective judgement has played a maor role in the ER fiscal funding decision-making
process. However, the dlicitation and use of management and expert opinionto justify yearly resource requests
has been unstructured, informal, and undocumented. Recently, the need for defensibility and accountability
of such subjective decisions regarding the activities undertaken by the DOE ER Program has increased.
Stakeholdersareincreasingly interested in the processes and criteria DOE usesfor making decisionsregarding
which sitesmerit action first. 1n addition, increasing competition for federal resources heightens the pressure
on the DOE ER Program to defend decisions regarding the use of scarce federal dollars. Such pressure has
precipitated the need to have aformalized approach for eliciting and using subjectivejudgement in atechnically
defensible manner to prioritize and justify fiscal funding decisions. A viable analytical system for making
decisionsregarding which projects, of agiven set of diverse and fiscal activities (i.e., operational, compliance,
improvement, programmatic coordination/planning, etc.) are to be funded and implemented within budget
constraints requires the use of human judgement. In addition, when quantitative data are not consistently
available for a set of candidate projects competing for resources, the integration of human judgement into a
technically defensible process can support afast, smple, and accurate comparative analysis of fiscal budget
decisions.

Decision anaysistechniques have been applied to successfully devel op and implement adecision-support
tool used to evaluate and prioritize a set of candidate fiscal ER projects for resource alocation. Thetool is
embedded in a qualitative risk management process that relies on management judgement and technical
expertise. Thedecision model has been designed for managers and technical expertsto usein evauating fiscal
budget decisions (e.g., ER projects a al five sites, the Off-site Program, and Central ER) within a common
framework that incorporates a hierarchy of relevant ER objectives, the appropriate decision parameters (e.g.,
scalesfor measuring performance), and asuitable objectivefunction (e.g., ameans of estimating performance).

The ERBAM isarisk-based prioritization tool based on multiattribute utility analysis (MUA). MUA is
useful as abasisfor priority systems similar to ERBAM, but like many formal decision analysis techniques,
can be difficult to apply correctly. We now discuss the elements and application of the ERBAM briefly,
followed by adiscussion of decision analysis techniques that can serve to reduce bias and application errors.
The ERBAM is best described through a brief overview of its four primary elements:

» Decision criteria
*  Procedure for generating a score
*  Procedure for combining scores

*  Rule/Output

These elements areillustrated in Fig. 6 (Appendix A).
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The decision/selection criteriaare used to define the risks and benefits associated with funding decisions.
Six impact criteriaare addressed in themodel, including public health, environmental protection, site personnel
safety, stakeholder preference, mission, and cost-effectiveness.

The procedure for generating a score involves the development of an objectives hierarchy, the
establishment of performance scales, and the development of an objective function. Simply, an objectives
hierarchy is assembled by determining the relative importance of the decision criteria and assigning them the
appropriate weights. To establish performance scales, an ER project is viewed as an effort to reduce either
1) the magnitude of a unwanted consegquence or 2) the likelihood of an unwanted consequence occurring. The
ERBAM measuresrisk as:

W, x § x L

where
W, = weight of impact
S = severity of impact
L; = likelihood of impact occurring

The ERBAM is designed to measure the reduction of risk, both in terms of severity and likelihood of
occurrence, for agiven project by requiring value judgement using a no action scenario and comparing that
judgement to a valuation of residual risks after a project has been implemented. The objective function is

where
W, = weight of impact
S = Severity of impact before project implementation
S. = Severity of impact after project implementation
L; .= likelihood of impact occurring before implementation
L;, = likelihood of impact occurring after implementation

The procedure for combining scores involves the evaluation of a candidate project with respect to each
of the six ERBAM decision criteria. This process yields six independent numerical values that represent the
"benefits’ a project provides in a given area of concern. The summation of the values represents the "net
benefit score” that can be used to generate an initia ranking of candidate fiscal budget decisions.

The rule/output involves the ranking of budget decisions by net benefit score (from highest to lowest),
enabling managersto distribute a projected amount of fiscal funding among projects beginning with those that
provide the greatest or most valuable benefits overall. To determine which of these projects provide the
greatest return on ER investment, a benefit-cost analysis can be conducted.

The identification of decision criteria, the development of an objectives hierarchy, the construction of
performance scales, and designation of an objective function can be handled in avariety of ways, including the
use of influence diagrams and other decision analysis techniques. Such techniques help reduce the bias and
support the quantification of uncertainty in this type of decision-making process.

Relative to ER's programmatic and budget prioritization objectives, this approach to making fiscal
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resource allocation decisions provides many benefits and isillustrated in Table 6.

Table 6. Benefits of ER prioritization tool

ER OBJECTIVES HOW ERBAM SUPPORTSER OBJECTIVES

Use limited resources more effectively Helps eliminate decision errors and biases
Promotes consistency and "level playing field"
Reduces duplicity of effort
Controls the role of politics in decision making

Improve decision-making efficiency Provides framework for organizing information and exploring
issues
Facilitates communication among parties
Serves as a catalyst for action

Improve decision-making defensibility Documents underlying assumptions and logic
Promotes consensus

Source: Merkhofer, 1994

Any process that relies on subjective judgement can fall prey to decision bias. Both formal and informal
decision analysis techniques can be used to reduce both subject bias (management and expert) and assessment
bias. One such formal technique includes the development of influence diagrams that graphically display the
influences between key choicesand uncertaintiesin adecision problem. Thediagramsareintuitively digestible
by non-experts and relatively smpleto generate. Aninformal means of reducing decision biasisto establish
an expert panel that is responsible for approving the evaluating and scoring of the activities.

Once afunding decision has been made to conduct aremedial action at a contaminated site, an additional
decison must be made concerning which aternative to implement. Data must be collected and evaluated
against certain decision rules as embodied in the RI/FS process. This is more complex than the resource
allocation decision because there are more than two aternatives (to fund or not to fund), and the decision-
makers and decision criteriavary from siteto site.

Under CERCLA, the decisions about how much data to collect and the criteria for decision-making are
established during the DQO process. This process consists of developing qualitative and quantitative
statements that help specify the quality of data required to support decisions during remedia activities. Data
of known or acceptabl e precision, accuracy, compl eteness, representativeness, and comparability are necessary
for the construction of defensibledecisions. Indeed, the development of DQOsisan important step in assuring
quality datafor site or facility characterization, fate and transport modeling, and exposure estimation. These
statementsare established before data collection during the project scoping and sampling and analysis planning
phases. Construction and evaluation of objective functions that represent the environmental problem can be
used to quantitatively implement the DQO process from project inception to remedial design and ensure that
thegoal of directing the datacollection processtowards alternative selectionisachieved in adefensiblemanner.

Thequantitative eval uation of DQOsthrough the construction and use of objectivefunctionsand dataworth

conceptsis an effective means for implementing the intent of the CERCLA process. Objective functions can
be devel oped for action and no-action scenarios and used for optimizing the collection of site data in the RI.
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As remedid alternatives are identified and refined, the objective function also should be reworked so that
additional datais collected for the purpose of reducing uncertainties in the developed objective function. The
DQO process becomesthe forum for carrying thisinformation through the process and eval uating the specific
decisions embodied by the Rl and FS. "The value of obtaining additional data or increasing data quality has
traditionally been based on professional judgement for RI/FS projects. The intent of the DQO processis to
provide a systematic approach for the evaluation of the risk associated with a wrong decision and for
determining levels of uncertainty associated with decisions to provide a framework for the RPM (Remedia
Project Manager)" (EPA 1987). Decision analysis applications that can give a rough estimate of an upper
bound on dataworth, such asthe value of perfect information described earlier, will assist in meeting the goals
of the DQO process. However, the standardization of an objective function or decision selection strategiesfor
consistent implementation at all contaminated sites on the ORO-ER would not serve the needs of decision-
makers since the flexibility needed to make sound decisions would be eiminated. The use of objective
functionsfor alternative selection at contaminated sites must be conducted on asite-by-site basis, based onthe
conceptual model for the particular site and the needs of the involved decision-makers. No single algorithm
or strategy fits all approaches to environmental decision-making.

6. CONCLUSION

A systematic decision approach cannot remove the subjectivity from the decision process since different
individuals (facing the same situation and having the same information) can arrive at different "optimum”
decisions. Further, as noted by Finkel and Evans (1987), even an "optimal" decison may not lead to an
"optimal" outcome. This effect and the lack of a guarantee of satisfactory results should not be construed as
a failing of formal decison methods. The value gained by implementing a systematic approach is in the
clarification of the logic behind the decision and the identification of the real issuesthat can delay consensus.
Although the quantitative results of a decision analysis will not actually make the decision relative to which
aternative is most appropriate, it is worthwhile to evaluate how the results of different decision-making
strategies may affect the alternative selected. It should be emphasized that no approach to decision-making
is fool-proof, and, as noted by Baker and Kropp (1985), "decision science has not evolved a universally
accepted methodology for analyzing socia decisionsinvolving risk.”

The decision-making methods based on the calculation of objective functions rely more heavily on the
calculation of numbers for making decisions than more commonly used subjective practices. Thisis often
unavoidableif the project goa is athorough development of the assessment problem. Despite this emphasis,
thedecision-makerswill requireaclear, concise communication of the numerical results, the uncertainties, and
the smplifying assumptions upon which results are based. The tendency to overburden the decision-makers
with numerical details must be avoided. Equally important for the decision-making process is to clearly
identify areas where no numerical results are possible and value judgements are required.

Although formal decision-making tools place a lot of power in the hands of assessors, it must be kept in
mind that decision-making for environmental problems should not be performed by assessors: "Balancing the
benefits against the risks belongs not in the domain of science but to society. The judgement is a value
judgement-a socia rather than ascientific decision.” (Commoner 1977). However, it isthejob of the assessor
to present unbiased descriptions of the benefits and risks of possible solutions for an environmental problem
in a manner that is conducive to decision-making. The word risk implies uncertainty, and therefore any
environmental decision that involves risk requires a thorough evaluation and presentation of the uncertainties
present. The methods presented here can provide a firm foundation for investigating environmental decision
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problems that involve risk while conforming with and maintaining the intent of the environmental laws and
guidance that govern assessment activities.

An obvious drawback to al of these methods is that it can seem tedious to bear the technical burdens
involved, and it can be difficult to communicate the results. Voices from the past have anticipated resistance
to formal approaches, as evidenced by R. Howard's words from almost 30 years ago (Howard, 1967):

"...itisinevitable that in the future both technical and managerial decision makers will employ formal
logical methods in decision making. The transition probably will be painful .”

However, with the limited resources available for environmental cleanup, with the costs associated with
some remediation aternatives exceeding hundreds of millions of dollars, and with the likelihood that all

decisionswill be subject tointense scrutiny, aninvestment into formal approaches may reap rewardsthat easily
absorb the costs of any such "painful transition.”
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APPENDIX A

Figures



Figure 1. Total social cost for each alternative and minimum social cost as a function of risk
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Figure 2. Value of perfect information for each alternative as a function of risk
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Figure 3. Expected value of perfect information for each alternative as a function of the uncertainty in risk
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Figure 4. Sensitivity of alternative selected to uncertainty in risk
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Figure5. Sensitivity of alternative selected to uncertainty in dose and potency
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Figure 6. Elements and applications of ERBAM, arisk-prioritization tool



