This page intentionally left blank
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

2.0 SUMMARY OF ECO-SSLs FOR ZINC ... 2

3.0 ECO-SSL FOR TERRESTRIAL PLANTS 4

4.0 ECO-SSL FOR SOIL INVERTEBRATES 4

5.0 ECO-SSL FOR AVIAN WILDLIFE ... 9
 5.1 Avian TRV ... 9
 5.2 Estimation of Dose and Calculation of the Eco-SSL 14

6.0 ECO-SSL FOR MAMMALIAN WILDLIFE 14
 6.1 Mammalian TRV ... 14
 6.2 Estimation of Dose and Calculation of the Eco-SSL 19

7.0 REFERENCES ... 21
 7.1 General Zinc References .. 21
 7.2 References for Plants and Soil Invertebrates 22
 7.3 References Rejected for Use in Deriving Plant and Soil Invertebrate Eco-SSLs .. 24
 7.4 References Used in Deriving Wildlife TRVs 73
 7.5 References Rejected for Use in Derivation of Wildlife TRV 82
LIST OF TABLES

Table 2.1 Zinc Eco-SSLs (mg/kg dry weight in soil) 4
Table 3.1 Plant Toxicity Data - Zinc ... 6
Table 4.1 Invertebrate Toxicity Data - Zinc 8
Table 5.1 Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV) - Zinc ... 11
Table 5.2 Calculation of the Avian Eco-SSLs for Zinc 15
Table 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV) - Zinc .. 16
Table 6.2 Calculation of the Mammalian Eco-SSLs for Zinc 20

LIST OF FIGURES

Figure 2.2 Typical Background Concentrations of Zinc in U.S. Soils 3
Figure 5.1 Avian TRV Derivation for Zinc 14
Figure 6.1 Mammalian TRV Derivation for Zinc 21

LIST OF APPENDICES

Appendix 5-1 Avian Toxicity Data Extracted and Reviewed for Wildlife Toxicity Reference Value (TRV) - Zinc
Appendix 6-1 Mammalian Toxicity Data Extracted and Reviewed for Wildlife Toxicity Reference Value (TRV) - Zinc
1.0 INTRODUCTION

Ecological Soil Screening Levels (Eco-SSLs) are concentrations of contaminants in soil that are protective of ecological receptors that commonly come into contact with and/or consume biota that live in or on soil. Eco-SSLs are derived separately for four groups of ecological receptors: plants, soil invertebrates, birds, and mammals. As such, these values are presumed to provide adequate protection of terrestrial ecosystems. Eco-SSLs are derived to be protective of the conservative end of the exposure and effects species distribution, and are intended to be applied at the screening stage of an ecological risk assessment. These screening levels should be used to identify the contaminants of potential concern (COPCs) that require further evaluation in the site-specific baseline ecological risk assessment that is completed according to specific guidance (U.S. EPA, 1997, 1998, and 1999). The Eco-SSLs are not designed to be used as cleanup levels and the United States (U.S.) Environmental Protection Agency (EPA) emphasizes that it would be inappropriate to adopt or modify the intended use of these Eco-SSLs as national cleanup standards.

The detailed procedures used to derive Eco-SSL values are described in separate documentation (U.S. EPA, 2003, 2005). The derivation procedures represent the collaborative effort of a multi-stakeholder group consisting of federal, state, consulting, industry, and academic participants led by what is now the U.S. EPA Office of Solid Waste and Emergency Response (OSWER).

This document provides the Eco-SSL values for zinc and the documentation for their derivation. This document provides guidance and is designed to communicate national policy on identifying zinc concentrations in soil that may present an unacceptable ecological risk to terrestrial receptors. The document does not, however, substitute for EPA’s statutes or regulations, nor is it a regulation itself. Thus, it does not impose legally-binding requirements on EPA, states, or the regulated community, and may not apply to a particular situation based upon the circumstances of the site. EPA may change this guidance in the future, as appropriate. EPA and state personnel may use and accept other technically sound approaches, either on their own initiative, or at the suggestion of potentially responsible parties, or other interested parties. Therefore, interested parties are free to raise questions and objections about the substance of this document and the appropriateness of the application of this document to a particular situation. EPA welcomes public comments on this document at any time and may consider such comments in future revisions of this document.
2.0 SUMMARY OF ECO-SSLs FOR ZINC

Zinc is found in almost all minerals and is ranked as the twenty-third most abundant element in the earth's crust. The principal ores of zinc are sphalerite, smithsonite, calamine, and franklinite (O'Neill, 2001; Lide, 2005). Elemental zinc is not found in the environment but instead occurs in compounds in the 2+ oxidation state, often as zinc sulfide or zinc oxide (HSDB).

Zinc is released to the environment from both natural and anthropogenic sources, the latter being the most important. Zinc has many commercial uses as coatings to prevent corrosion for electrical apparatus such as dry cell batteries, and mixed with other metals to make alloys like brass, and bronze (O'Neill, 2001). Zinc compounds such as zinc chloride, zinc oxide and zinc sulfate are used in herbicides, fungicides and bacteriostats. Zinc may also be released to the environment from its use in rubbers, paints, and cosmetics (ATSDR, 2005; Goodwin, 1998; ANL, 2005) and as the result of metal smelting, mining, electroplating, coal and oil combustion, and waste incineration (ATSDR, 2005; Ursinyova, 1999). Urban runoff from building siding and roofs, automobile brakes, tires, and oil leakage is another important source of zinc in the environment (Davis, 2001)(HSDB).

Total zinc content in soils is dependent on the composition of the parent rock material (Kiekens, 1990; HSDB). The total amount of zinc in soils is distributed as one of three forms: 1) free ions (Zn2+) and organo-zinc complexes in soil solution; 2) adsorbed and exchangeable zinc in the colloidal fraction of the soil and 3) secondary minerals and insoluble complexes in the solid phase of the soil. The distribution of zinc among the forms is dependant on the concentration of Zn2+ and other ions in the solution, the kind and amount of adsorption sites associated with the solid phase of the soil, the concentration of all ligands capable of forming organo-zinc complexes, and pH and redox potential of soil (Alloway, 1990). Background concentrations reported for many metals in U.S. soils are described in Attachment 1-4 of the Eco SSL guidance (U.S. EPA, 2003). Typical background concentrations of zinc in U.S. soils are plotted in Figure 2.1 for both eastern and western U.S. soils.

Zinc is expected to demonstrate low mobility in most soils, and is strongly adsorbed to soils at pH 5 or greater (Evans, 1989; Blume, 1991; Christensen, 1996). Only those fractions of zinc in soil which are soluble or may be solubilized are bioavailable. Compared to total zinc content of soils, concentrations of zinc in soil solution are low. The solubility of zinc increases at decreasing pH (Alloway, 1990). The bioavailability of zinc in soils is also influenced by total zinc content, pH,
organic matter, microbial activity, moisture, and interactions with other macro and micronutrients (Kiekens, 1990; HSDB).

Zinc is an essential trace element for higher plants and animals. In higher plants zinc is absorbed as the divalent cation (Zn $^{2+}$) which is a metal component of enzymes or a functional, structural or regulatory cofactor of a large number of enzymes. Zinc is involved in carbohydrate and protein metabolism and is required for the synthesis of indoleacetic acid. In plants, zinc deficiency is commonly indicated by stunted growth, interveinal chlorosis, and leaf symptomatology such as small leaves, malformations, and dieback while zinc excess commonly produces iron chlorosis (Chapman, 1966, Kiekens, 1990).

In animals, zinc is an essential nutrient for regulating a number of metalloenzymes (ATSDR, 2005). Absorption of zinc occurs from all segments of the intestine, although the largest proportion of zinc absorption occurs from the duodenum (ATSDR, 2005). Following absorption by the intestine, zinc is rapidly distributed to the liver, kidneys, prostate, muscles, bones, and pancreas. Zinc salts adversely affect tissues, interfere with the metabolism of other ions such as copper, calcium, and iron, and inhibit erythrocyte production and function (ATSDR, 2005; WHO, 2001; ECB, 2004; HSDB).

Zinc deficiency has been associated with dermatitis, anorexia, growth retardation, poor wound healing, hypogonadism with impaired reproductive capacity, and impaired immune function (ATSDR, 2005). Nutritional requirements of zinc for common mammalian and avian test organisms are compiled in Attachment 4-3 of the Eco-SSL guidance (U.S. EPA, 2003, 2005). Zinc excess in avian species is associated with decreased body weight, gizzard and pancreatic lesions, and biochemical changes (WHO, 2001). Mammalian studies have shown vomiting, depressed growth rate, purgation, and ataxia (Clarke, 1981; Friberg, 1986; HSDB).

The Eco-SSL values derived to date for Zinc are summarized in Table 2.1.

<table>
<thead>
<tr>
<th></th>
<th>Plants</th>
<th>Soil Invertebrates</th>
<th>Wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>160</td>
<td>120</td>
<td>46</td>
</tr>
<tr>
<td>Avian</td>
<td></td>
<td></td>
<td>79</td>
</tr>
<tr>
<td>Mammalian</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eco-SSL values were derived for all receptor groups. The Eco-SSL values for zinc range from 46 mg/kg dry weight (dw) for avian wildlife to 160 mg/kg dw for terrestrial plants. The Eco-SSL for avian wildlife is less than the 25th percentile of reported background soil concentrations of zinc in western U.S. soils and less than the 75th percentile for eastern U.S. soils (Figure 2.1). The Eco-SSL for mammalian wildlife is less than the 96th percentile for both eastern and western U.S. soils (Figure 2.1). The Eco-SSLs for plants and soil invertebrates are higher than the 95th percentile for both eastern and western U.S. soils. The avian and mammalian Eco-SSL values are based on exposures of receptors consuming zinc in soil invertebrates.
3.0 ECO-SSL FOR TERRESTRIAL PLANTS

Of the papers identified from the literature search process, 680 papers were selected for acquisition for further review. Of those papers acquired, 78 met all 11 Study Acceptance Criteria (U.S. EPA, 2003; Attachment 3-1). Each of these papers were reviewed and the studies were scored according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 3-2). Thirty-nine study results received an Evaluation Score greater than ten (U.S. EPA, 2003; Attachment 3-1). These studies are listed in Table 3.1.

The studies in Table 3.1 are sorted by bioavailability score. There are five studies with a bioavailability score of 2 that are eligible for Eco-SSL derivation. These results were used to derive the plant Eco-SSL for zinc (U.S. EPA, 2003; Attachment 3-2). The Eco-SSL is the geometric mean of the maximum acceptable toxicant concentration (MATC) values for three species under different test conditions (pH and % organic matter (OM)) and is equal to 160 mg/kg dw.

4.0 ECO-SSL FOR SOIL INVERTEBRATES

Of the papers identified from the literature search process, 162 papers were selected for acquisition for further review. Of those papers acquired, 26 met all 11 Study Acceptance Criteria (U.S. EPA 2003; Attachment 3-1). Each of these papers were reviewed and the studies were scored according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 3-2). Forty studies received an Evaluation Score greater than ten. These studies are listed in Table 4.1.

The studies in Table 4.1 are sorted by bioavailability score. There are six studies with a bioavailability score of 2 that are eligible for Eco-SSL derivation. These results were used to derive the soil invertebrate Eco-SSL for zinc (U.S. EPA, 2003; Attachment 3-2). The Eco-SSL is the geometric mean of the EC10 and MATC values for at least three test species under different test conditions (pH and OM%) and is equal to 120 mg/kg dw.
Table 3.1 Plant Toxicity Data - Zinc

<table>
<thead>
<tr>
<th>Reference</th>
<th>IP Number</th>
<th>Study ID</th>
<th>Test Organism</th>
<th>Soil pH</th>
<th>OM%</th>
<th>Bio-availability Score</th>
<th>ERE</th>
<th>Tox Parameter</th>
<th>Tox Value (Soil Conc at mg/kg dw)</th>
<th>Total Evaluation Score</th>
<th>Eligible for Eco-SSL Derivation?</th>
<th>Used for Eco-SSL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>White et al., 1979b</td>
<td>57096</td>
<td>d</td>
<td>soybean</td>
<td>6.5</td>
<td>1.2</td>
<td>2</td>
<td>GRO</td>
<td>MATC</td>
<td>185</td>
<td>13</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>p</td>
<td>oats</td>
<td>4.3</td>
<td>0.8</td>
<td>2</td>
<td>GRO</td>
<td>MATC</td>
<td>143</td>
<td>18</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>b</td>
<td>oats</td>
<td>5.3</td>
<td>2.6</td>
<td>2</td>
<td>GRO</td>
<td>MATC</td>
<td>155</td>
<td>18</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>u</td>
<td>oats</td>
<td>5.7</td>
<td>1.3</td>
<td>2</td>
<td>GRO</td>
<td>MATC</td>
<td>159</td>
<td>18</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Sheppard et al., 1993</td>
<td>4146</td>
<td>b</td>
<td>lettuce</td>
<td>6.3</td>
<td><1</td>
<td>2</td>
<td>GRO</td>
<td>MATC</td>
<td>173</td>
<td>12</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>IP Number</th>
<th>Study ID</th>
<th>Test Organism</th>
<th>Soil pH</th>
<th>OM%</th>
<th>Bio-availability Score</th>
<th>ERE</th>
<th>Tox Parameter</th>
<th>Tox Value (Soil Conc at mg/kg dw)</th>
<th>Total Evaluation Score</th>
<th>Eligible for Eco-SSL Derivation?</th>
<th>Used for Eco-SSL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Haan et al., 1985</td>
<td>5048</td>
<td>e</td>
<td>oats</td>
<td>5.4</td>
<td>7</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>283</td>
<td>11</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>l</td>
<td>mustard</td>
<td>5.3</td>
<td>2.6</td>
<td>2</td>
<td>GRO</td>
<td>LOAEC</td>
<td>105</td>
<td>18</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>a</td>
<td>oats</td>
<td>4.2</td>
<td>0.7</td>
<td>2</td>
<td>GRO</td>
<td>LOAEC</td>
<td>95</td>
<td>17</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>n</td>
<td>mustard</td>
<td>4.2</td>
<td>0.7</td>
<td>2</td>
<td>GRO</td>
<td>LOAEC</td>
<td>95</td>
<td>17</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Singh and Jeng, 1993</td>
<td>12400</td>
<td></td>
<td>Ryegrass</td>
<td>6.0</td>
<td>0.1</td>
<td>2</td>
<td>GRO</td>
<td>NOAEC</td>
<td>50</td>
<td>14</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Monette, 1978</td>
<td>45950</td>
<td>a</td>
<td>spinach</td>
<td>6.9</td>
<td>1.9</td>
<td>2</td>
<td>GRO</td>
<td>NOAEC</td>
<td>20</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Monette, 1978</td>
<td>45950</td>
<td>b</td>
<td>barley</td>
<td>6.9</td>
<td>1.9</td>
<td>2</td>
<td>GRO</td>
<td>NOAEC</td>
<td>20</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>White et al., 1979b</td>
<td>57096</td>
<td>a</td>
<td>soybean</td>
<td>5.5</td>
<td>1.2</td>
<td>2</td>
<td>GRO</td>
<td>LOAEC</td>
<td>131</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Rehab and Wallace, 1978</td>
<td>46710</td>
<td>b</td>
<td>cotton</td>
<td>6.6</td>
<td>2.4</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>283</td>
<td>14</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>zc</td>
<td>oats</td>
<td>5.7</td>
<td>5.7</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>319</td>
<td>18</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>d</td>
<td>oats</td>
<td>5.6</td>
<td>2.3</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>361</td>
<td>17</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>z</td>
<td>oats</td>
<td>5.9</td>
<td>2.3</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>169</td>
<td>17</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>g</td>
<td>mustard</td>
<td>5.6</td>
<td>2.3</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>177</td>
<td>17</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Rehab and Wallace, 1978</td>
<td>46710</td>
<td>a</td>
<td>cotton</td>
<td>6.6</td>
<td>2.4</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>283</td>
<td>14</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Dang et al., 1990</td>
<td>12906</td>
<td>E</td>
<td>onion</td>
<td>8.3</td>
<td>0.5</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>141</td>
<td>11</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Dang et al., 1990</td>
<td>12906</td>
<td>H</td>
<td>Fenugreek</td>
<td>8.3</td>
<td>0.5</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>283</td>
<td>11</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>zb</td>
<td>Seradela</td>
<td>5.6</td>
<td>5.2</td>
<td>1</td>
<td>GRO</td>
<td>LOAEC</td>
<td>102</td>
<td>17</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>ze</td>
<td>Seradela</td>
<td>5.7</td>
<td>5.7</td>
<td>1</td>
<td>GRO</td>
<td>LOAEC</td>
<td>95</td>
<td>17</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>zi</td>
<td>oats</td>
<td>5.6</td>
<td>5.2</td>
<td>1</td>
<td>GRO</td>
<td>NOAEC</td>
<td>440</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>zh</td>
<td>oats</td>
<td>7.1</td>
<td>3.7</td>
<td>1</td>
<td>GRO</td>
<td>NOAEC</td>
<td>475</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Kadar and Morvai, 1998</td>
<td>12988</td>
<td>a</td>
<td>Carrot</td>
<td>7.0</td>
<td>1.032</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>57</td>
<td>17</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Kadar and Morvai, 1998</td>
<td>12988</td>
<td>b</td>
<td>garden pea</td>
<td>7.0</td>
<td>1.032</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>34</td>
<td>17</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>kl</td>
<td>mustard</td>
<td>5.9</td>
<td>2.3</td>
<td>1</td>
<td>GRO</td>
<td>NOAEC</td>
<td>420</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Singh et al., 1991</td>
<td>12701</td>
<td></td>
<td>wheat</td>
<td>8.2</td>
<td>0.086</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>113</td>
<td>13</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

Geometric Mean: 160

Data Not Used to Derive Plant Eco-SSL:

- De Haan et al., 1985
- Roszyk et al., 1988
- Roszyk et al., 1988
- Singh and Jeng, 1993
- White et al., 1979
- Rehab and Wallace, 1978
- Roszyk et al., 1988
- Roszyk et al., 1988
- Roszyk et al., 1988
- Monette, 1978
- White et al., 1979
- Singh et al., 1991

Eco-SSL for Zinc | June 2007
<table>
<thead>
<tr>
<th>Reference</th>
<th>IP Number</th>
<th>Study ID</th>
<th>Test Organism</th>
<th>Soil pH</th>
<th>OM%</th>
<th>Bio-availability Score</th>
<th>ERE</th>
<th>Tox Parameter</th>
<th>Tox Value (Soil Conc at mg/kg dw)</th>
<th>Total Evaluation Score</th>
<th>Eligible for Eco-SSL Derivation?</th>
<th>Used for Eco-SSL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kucharski and Niklewska, 1992</td>
<td>13292</td>
<td></td>
<td>common bean Phaseolus vulgaris</td>
<td>7.1</td>
<td>0.32</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>330</td>
<td>13</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Biro et al., 1998</td>
<td>12986</td>
<td>b</td>
<td>red clover Trifolium pratense L.</td>
<td>7.0</td>
<td>3.00</td>
<td>1</td>
<td>GRO</td>
<td>MATC</td>
<td>90</td>
<td>11</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Biro et al., 1998</td>
<td>12986</td>
<td>a</td>
<td>alfalfa Medicago sativa</td>
<td>7.0</td>
<td>3.00</td>
<td>1</td>
<td>GRO</td>
<td>NOAEC</td>
<td>270</td>
<td>11</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Mehta and Singh, 1988</td>
<td>13724</td>
<td></td>
<td>mustard Brassica sp.</td>
<td>8.5</td>
<td>0.55</td>
<td>1</td>
<td>GRO</td>
<td>NOAEC</td>
<td>30</td>
<td>11</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>zm</td>
<td>mustard Brassica sp.</td>
<td>7.1</td>
<td>3.7</td>
<td>0</td>
<td>GRO</td>
<td>MATC</td>
<td>157</td>
<td>16</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>t</td>
<td>oats Avena sp.</td>
<td>7.0</td>
<td>3.3</td>
<td>0</td>
<td>GRO</td>
<td>MATC</td>
<td>162</td>
<td>16</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Sheppard et al., 1993</td>
<td>4146</td>
<td>c</td>
<td>mustard Brassica rapa</td>
<td>7.9</td>
<td>2.70</td>
<td>0</td>
<td>GRO</td>
<td>MATC</td>
<td>424</td>
<td>12</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Roszyk et al., 1988</td>
<td>13624</td>
<td>zf</td>
<td>oats Avena sp.</td>
<td>7.1</td>
<td>3.7</td>
<td>0</td>
<td>GRO</td>
<td>NOAEC</td>
<td>475</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Voros et al., 1998</td>
<td>12985</td>
<td>a</td>
<td>red clover Trifolium pratense L.</td>
<td>7.5</td>
<td>6.50</td>
<td>0</td>
<td>GRO</td>
<td>NOAEC</td>
<td>275</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Voros et al., 1998</td>
<td>12985</td>
<td>b</td>
<td>red clover Trifolium pratense L.</td>
<td>7.5</td>
<td>6.50</td>
<td>0</td>
<td>GRO</td>
<td>NOAEC</td>
<td>275</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

EC_{10} = Effect concentration for 10% of test population
EC_{25} = Effect concentration for 25% of test population
EC_{50} = Effect concentration for 50% of test population
ERE = Ecologically relevant endpoint
GRO = Growth
LOAEC = Lowest observed adverse effect concentration
MATC = Maximum acceptable toxicant concentration. Geometric mean of NOAEC and LOAEC.
N = No
NOAEC = No observed adverse effect concentration
ns = Not specified
OM = Organic matter content
PHY = Physiology
REP = Reproduction
Y = yes
cnb = Could Not Be Determined
Table 4.1 Invertebrate Toxicity Data - Zinc

<table>
<thead>
<tr>
<th>Reference</th>
<th>IP Number</th>
<th>Study ID</th>
<th>Test Organism</th>
<th>Soil pH</th>
<th>OM%</th>
<th>Bio-availability Score</th>
<th>ERE</th>
<th>Tox Parameter</th>
<th>Tox Value (Soil Conc at mg/kg dw)</th>
<th>Total Evaluation Score</th>
<th>Eligible for Eco-SSL Derivation?</th>
<th>Used for Eco-SSL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smit et al., 1998</td>
<td>11279</td>
<td>Springtail</td>
<td>Folsomia candida</td>
<td>4.8</td>
<td>2.4</td>
<td>2</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>99</td>
<td>15</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Korthals et al., 1998</td>
<td>13828</td>
<td>Nematode</td>
<td>multiple</td>
<td>4.1</td>
<td>4.0</td>
<td>2</td>
<td>POP</td>
<td>MATC</td>
<td>35</td>
<td>13</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Korthals et al., 1996</td>
<td>4402</td>
<td>Nematode</td>
<td>multiple</td>
<td>4.1</td>
<td>3.2</td>
<td>2</td>
<td>POP</td>
<td>MATC</td>
<td>141</td>
<td>13</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Smit and Van Gestel, 1997</td>
<td>4434</td>
<td>Springtail</td>
<td>Folsomia candida</td>
<td>4.5</td>
<td>1.9</td>
<td>2</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>116</td>
<td>17</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Smit and Van Gestel, 1998</td>
<td>6159</td>
<td>b Springtail</td>
<td>Folsomia candida</td>
<td>4.7</td>
<td>2.4</td>
<td>2</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>136</td>
<td>17</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Smit and Van Gestel, 1998</td>
<td>6159</td>
<td>d Springtail</td>
<td>Folsomia candida</td>
<td>4.7</td>
<td>2.4</td>
<td>2</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>355</td>
<td>17</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996</td>
<td>10987</td>
<td>Springtail</td>
<td>Folsomia candida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>399</td>
<td>13</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Donkin and Dusenbery, 1994</td>
<td>7877</td>
<td>b Nematode</td>
<td>Caenorhabditis elegans</td>
<td>5.1</td>
<td>3.0</td>
<td>2</td>
<td>MOR</td>
<td>LC<sub>50</sub></td>
<td>255</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Van Gestel and Hensbergen, 1997</td>
<td>10987</td>
<td>Springtail</td>
<td>Folsomia candida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>863</td>
<td>14</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996</td>
<td>4056</td>
<td>a Springtail</td>
<td>Folsomia candida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>548</td>
<td>14</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996</td>
<td>4056</td>
<td>b Springtail</td>
<td>Folsomia candida</td>
<td>5.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>548</td>
<td>14</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996</td>
<td>4056</td>
<td>c Springtail</td>
<td>Folsomia candida</td>
<td>4.5</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>548</td>
<td>14</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon et al., 1997</td>
<td>4442</td>
<td>a Earthworm</td>
<td>Eisenia fetida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>LOAEC</td>
<td>190</td>
<td>13</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Smit and Van Gestel, 1998</td>
<td>6159</td>
<td>a Springtail</td>
<td>Folsomia candida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>269</td>
<td>17</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Van Gestel et al., 1993</td>
<td>6828</td>
<td>Earthworm</td>
<td>Eisenia andrei</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>423</td>
<td>12</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Smit and Van Gestel, 1998</td>
<td>6159</td>
<td>c Springtail</td>
<td>Folsomia candida</td>
<td>7.0</td>
<td>2.0</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>10</sub></td>
<td>1059</td>
<td>17</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Posthuma et al., 1997</td>
<td>758</td>
<td>Springtail</td>
<td>Folsomia candida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>548</td>
<td>15</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996a</td>
<td>7870</td>
<td>Earthworm</td>
<td>Eisenia fetida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>466</td>
<td>12</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Posthuma et al., 1997</td>
<td>2380</td>
<td>a Earthworm</td>
<td>Enchytraeus crypticus</td>
<td>6.4</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>50</sub></td>
<td>188</td>
<td>13</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996c</td>
<td>4067</td>
<td>c Earthworm</td>
<td>Eisenia fetida</td>
<td>6.0</td>
<td>5.0</td>
<td>1</td>
<td>REP</td>
<td>NOAEC</td>
<td>97</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996c</td>
<td>4067</td>
<td>d Earthworm</td>
<td>Eisenia fetida</td>
<td>4.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>NOAEC</td>
<td>161</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996c</td>
<td>4067</td>
<td>e Earthworm</td>
<td>Eisenia fetida</td>
<td>5.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>NOAEC</td>
<td>183</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon et al., 1994</td>
<td>4364</td>
<td>Earthworm</td>
<td>Eisenia fetida</td>
<td>6.3</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>50</sub></td>
<td>276</td>
<td>11</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon et al., 1997</td>
<td>4442</td>
<td>c Earthworm</td>
<td>Eisenia fetida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>50</sub></td>
<td>234</td>
<td>13</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Smit and Van Gestel, 1996</td>
<td>7869</td>
<td>a Springtail</td>
<td>Folsomia candida</td>
<td>6.0</td>
<td>3.3</td>
<td>1</td>
<td>REP</td>
<td>EC<sub>50</sub></td>
<td>348</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

Data not Used to Derive Soil Invertebrate Eco-SSL

- Spurgeon and Hopkin, 1996: 4067 a Earthworm Eisenia fetida
- Spurgeon and Hopkin, 1996: 4067 b Earthworm Eisenia fetida
- Peredney and Williams, 2000b: 56449 y Nematode Caenorhabditis elegans
- Peredney and Williams, 2000b: 56449 aa Nematode Caenorhabditis elegans
- Donkin and Dusenbery, 1994: 7877 b Nematode Caenorhabditis elegans
- Van Gestel and Hensbergen, 1997: 10987 Springtail Folsomia candida
- Sandifer and Hopkin, 1996: 4056 a Springtail Folsomia candida
- Sandifer and Hopkin, 1996: 4056 b Springtail Folsomia candida
- Sandifer and Hopkin, 1996: 4056 c Springtail Folsomia candida
- Spurgeon et al., 1997: 4442 a Earthworm Eisenia fetida
- Smit and Van Gestel, 1998: 6159 a Springtail Folsomia candida
- Smit and Van Gestel, 1998: 6159 c Springtail Folsomia candida
- Van Gestel et al., 1993: 6828 Earthworm Eisenia andrei
- Sandifer and Hopkin, 1997: 758 Springtail Folsomia candida
- Spurgeon and Hopkin, 1996a: 7870 Earthworm Eisenia fetida
- Posthuma et al., 1997: 2380 a Earthworm Enchytraeus crypticus
- Posthuma et al., 1997: 2380 b Earthworm Enchytraeus crypticus
- Spurgeon and Hopkin, 1996c: 4067 c Earthworm Eisenia fetida
- Spurgeon and Hopkin, 1996c: 4067 d Earthworm Eisenia fetida
- Spurgeon and Hopkin, 1996c: 4067 e Earthworm Eisenia fetida
- Spurgeon et al., 1994: 4364 Earthworm Eisenia fetida
- Spurgeon et al., 1997: 4442 c Earthworm Eisenia fetida
- Smit and Van Gestel, 1996: 7869 a Springtail Folsomia candida

Geometric Mean: 120

Eco-SSL for Zinc | June 2007
Table 4.1 Invertebrate Toxicity Data - Zinc

<table>
<thead>
<tr>
<th>Reference</th>
<th>IP Number</th>
<th>Study ID</th>
<th>Test Organism</th>
<th>Soil pH</th>
<th>OM%</th>
<th>Bio-availability Score</th>
<th>ERE</th>
<th>Tox Parameter</th>
<th>Tox Value (Soil Conc at mg/kg dw)</th>
<th>Total Evaluation Score</th>
<th>Eligible for Eco-SSL Derivation?</th>
<th>Used for Eco-SSL?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smit and Van Gestel, 1996</td>
<td>7869</td>
<td>b</td>
<td>Springtail Folsomia candida</td>
<td>6.0</td>
<td>3.0</td>
<td>1</td>
<td>REP</td>
<td>EC50</td>
<td>185</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Neuhauser et al., 1985a</td>
<td>17707</td>
<td></td>
<td>Earthworm Eisenia fetida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>MOR</td>
<td>LC50</td>
<td>232</td>
<td>14</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Conder and Lanno, 2000</td>
<td>46691</td>
<td></td>
<td>Earthworm Eisenia andrei</td>
<td>6.5</td>
<td>10.0</td>
<td>1</td>
<td>MOR</td>
<td>ILL</td>
<td>631</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Peredney and Williams, 2000a</td>
<td>53082</td>
<td></td>
<td>Nematode Caenorhabditis elegans</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>MOR</td>
<td>LC50</td>
<td>670</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Peredney and Williams, 2000b</td>
<td>56449</td>
<td>ac</td>
<td>Nematode Caenorhabditis elegans</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>MOR</td>
<td>LOAEC</td>
<td>661</td>
<td>12</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Donkin and Dusenbery, 1994</td>
<td>7877</td>
<td>a</td>
<td>Nematode Caenorhabditis elegans</td>
<td>6.2</td>
<td>1.7</td>
<td>1</td>
<td>MOR</td>
<td>LC50</td>
<td>183</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Donkin and Dusenbery, 1994</td>
<td>7877</td>
<td>c</td>
<td>Nematode Caenorhabditis elegans</td>
<td>6.1</td>
<td>3.4</td>
<td>1</td>
<td>MOR</td>
<td>LC50</td>
<td>392</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Donkin and Dusenbery, 1994</td>
<td>7877</td>
<td>d</td>
<td>Nematode Caenorhabditis elegans</td>
<td>6.2</td>
<td>2.2</td>
<td>1</td>
<td>MOR</td>
<td>LC50</td>
<td>549</td>
<td>15</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1995</td>
<td>6822</td>
<td></td>
<td>Earthworm Eisenia fetida</td>
<td>6.1</td>
<td>10.0</td>
<td>1</td>
<td>GRO</td>
<td>NOAEC</td>
<td>237</td>
<td>11</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996a</td>
<td>7870</td>
<td></td>
<td>Earthworm Eisenia fetida</td>
<td>6.0</td>
<td>10.0</td>
<td>1</td>
<td>REP</td>
<td>MATC</td>
<td>466</td>
<td>12</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Spurgeon and Hopkin, 1996b</td>
<td>4067</td>
<td>f</td>
<td>Earthworm Eisenia fetida</td>
<td>6.0</td>
<td>10.0</td>
<td>0</td>
<td>REP</td>
<td>NOAEC</td>
<td>553</td>
<td>16</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

EC_{10} = Effect concentration for 10% of test population
EC_{50} = Effect concentration for 50% of test population
ERE = Ecologically relevant endpoint
GRO = Growth
ILL = Incipient lethal level
LC_{50} = Concentration lethal to 50% of test population
LOAEC = Lowest observed adverse effect concentration
MATC = Maximum acceptable toxicant concentration
MOR = Mortality
N = No
NOAEC = No observed adverse effect concentration
OM = Organic matter content
POP = Population
REP = Reproduction
Y = Yes
5.0 ECO-SSL FOR AVIAN WILDLIFE

The derivation of the Eco-SSL for avian wildlife was completed as two parts. First, the toxicity reference value (TRV) was derived according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-5). Second, the Eco-SSL (soil concentration) was back-calculated for each of three surrogate species representing different trophic levels based on the wildlife exposure model and the TRV (U.S. EPA, 2003).

5.1 Avian TRV

The literature search completed according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-1) identified 10,410 papers with possible toxicity data for either avian or mammalian species. Of these studies, 10,259 were rejected for use as described in Section 7.5. Of the remaining studies, 53 contained data for avian test species. These papers were reviewed and the data were extracted and scored according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-3 and 4-4). The results of the data extraction and review are provided as Table 5.1. The complete results are included as Appendix 5-1.

Within the reviewed papers, there are 168 results for biochemical (BIO), behavior (BEH), physiology (PHY), pathology (PTH), reproduction (REP), growth (GRO), and survival (MOR) effects that meet the Data Evaluation Score of >65 for use to derive the TRV (U.S. EPA, 2003; Attachment 4-4). These data are plotted in Figure 5.1 and correspond directly with the data presented in Table 5.1. The no-observed adverse effect level (NOAEL) results for growth and reproduction are used to calculate a geometric mean. This result is examined in relationship to the lowest bounded lowest-observed adverse effect level (LOAEL) for reproduction, growth, and survival to derive the TRV according to procedures in the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-5).

A geometric mean of the NOAEL values for reproduction and growth was calculated at 66.1 mg zinc/kg bw/day. This value is lower than the lowest bounded LOAEL for reproduction, growth, or survival. Therefore, the TRV is equal to the geometric mean of NOAEL values within the reproduction and growth effect groups and is equal to 66.1 mg zinc/kg bw/day.
Table 5.1
Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

Page 1 of 3

<table>
<thead>
<tr>
<th>Ref No.</th>
<th>Test Organism</th>
<th>Route of Exposure</th>
<th>Life Stage</th>
<th>Effect Type</th>
<th>Effect Measure</th>
<th>NOEL Dose* (mg/kg bw/day)</th>
<th>LOEL Dose* (mg/kg bw/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>14</td>
<td>J</td>
<td>B</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>2</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>7</td>
<td>J</td>
<td>B</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>3</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>B</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>4</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>45</td>
<td>J</td>
<td>B</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>5</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>2</td>
<td>J</td>
<td>N</td>
<td>CHM</td>
<td>ASH</td>
<td>BO</td>
</tr>
<tr>
<td>6</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>14</td>
<td>J</td>
<td>B</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>7</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>14</td>
<td>J</td>
<td>B</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>8</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>5</td>
<td>J</td>
<td>N</td>
<td>CHM</td>
<td>HMLG</td>
<td>BL</td>
</tr>
<tr>
<td>9</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>4</td>
<td>J</td>
<td>B</td>
<td>ENZ</td>
<td>GENZ</td>
<td>PS</td>
</tr>
<tr>
<td>10</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>3</td>
<td>J</td>
<td>F</td>
<td>CHM</td>
<td>FDCV</td>
<td>WO</td>
</tr>
<tr>
<td>11</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>3</td>
<td>J</td>
<td>M</td>
<td>PHY</td>
<td>FDCV</td>
<td>WO</td>
</tr>
<tr>
<td>12</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>MCPR</td>
<td>LI</td>
</tr>
<tr>
<td>13</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>FDB</td>
<td>FCNS</td>
<td>WO</td>
</tr>
<tr>
<td>14</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>GBCM</td>
<td>SR</td>
</tr>
<tr>
<td>15</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>2</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>L</td>
</tr>
<tr>
<td>16</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>17</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>18</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>19</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>20</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>21</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>22</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>2</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>23</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>2</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>24</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>25</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>26</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>27</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>20</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>28</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>15</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>29</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>5</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>30</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>31</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>32</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>40</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>33</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>30</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>34</td>
<td>Gallus domesticus</td>
<td>M</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>35</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>36</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>37</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>38</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>39</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>40</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>41</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>42</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>10</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>43</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>44</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>45</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>46</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>47</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>48</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>49</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>50</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>140</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>51</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>52</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>53</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>54</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>55</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>56</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>57</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>58</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>59</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
<tr>
<td>60</td>
<td>Gallus domesticus</td>
<td>U</td>
<td>1</td>
<td>J</td>
<td>M</td>
<td>CHM</td>
<td>BUKM</td>
<td>SR</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc
June 2007
Table 5.1
Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)
Zinc

<table>
<thead>
<tr>
<th>Reproductive/</th>
<th>Reference</th>
<th>Test Organism</th>
<th>Route of Exposure</th>
<th>Duration Units</th>
<th>Age Units</th>
<th>Sex</th>
<th>Effect Type</th>
<th>Effect Measure</th>
<th>HTHC</th>
<th>NOAEL Dose* (mg/kg bw/day)</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduction (REP)</td>
<td>61 Stevenson et al, 1987</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>10 d</td>
<td>JV</td>
<td>F</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>13.8</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>62 Stevenson et al, 1987</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>14 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>14.4</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>63 Stahl et al, 1989</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>JV</td>
<td>B</td>
<td>ORW</td>
<td>SMIX</td>
<td>AZ</td>
<td>30.1</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>64 Lu and Combs, 1988</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>2 d</td>
<td>JV</td>
<td>B</td>
<td>ORW</td>
<td>SMIX</td>
<td>AZ</td>
<td>35.4</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>65 Dewar et al, 1983</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>4 w</td>
<td>JV</td>
<td>B</td>
<td>HIS</td>
<td>USTR</td>
<td>GZ</td>
<td>65.6</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>66 Jackson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>3 w</td>
<td>JV</td>
<td>F</td>
<td>ORW</td>
<td>ORWT</td>
<td>LI</td>
<td>88.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>67 Gasaway and Buss, 1972</td>
<td>Mallard duck (Anas platyrhynchos)</td>
<td>U</td>
<td>FD</td>
<td>10 d</td>
<td>JV</td>
<td>B</td>
<td>HIS</td>
<td>USTR</td>
<td>GZ</td>
<td>143.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>68 Dewar et al, 1983</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>4 w</td>
<td>JV</td>
<td>B</td>
<td>HIS</td>
<td>USTR</td>
<td>GZ</td>
<td>143.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>69 Dewar et al, 1983</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>4 d</td>
<td>JV</td>
<td>M</td>
<td>F</td>
<td>H</td>
<td>USTR</td>
<td>GZ</td>
<td>159.0</td>
</tr>
<tr>
<td></td>
<td>70 Dean et al, 1991</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>4 w</td>
<td>JV</td>
<td>M</td>
<td>H</td>
<td>HIS</td>
<td>TY</td>
<td>199.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>71 Jackson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>5</td>
<td>FD</td>
<td>3 w</td>
<td>JV</td>
<td>M</td>
<td>H</td>
<td>NR</td>
<td>GST</td>
<td>367.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>72 Van Vleet et al, 1981</td>
<td>Duck (Anas platyrhynchos)</td>
<td>U</td>
<td>FD</td>
<td>15 d</td>
<td>JV</td>
<td>M</td>
<td>H</td>
<td>NICRO</td>
<td>PS</td>
<td>401.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>73 Van Vleet et al, 1981</td>
<td>Duck (Anas platyrhynchos)</td>
<td>U</td>
<td>FD</td>
<td>15 d</td>
<td>JV</td>
<td>M</td>
<td>H</td>
<td>NICRO</td>
<td>PS</td>
<td>803.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>74 Berry and Brake, 1990</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>49 d</td>
<td>JV</td>
<td>B</td>
<td>ORW</td>
<td>SMIX</td>
<td>DT</td>
<td>988.0</td>
<td>73</td>
</tr>
<tr>
<td>Growth (GRO)</td>
<td>75 Kaya et al, 2001</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>12 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>13.8</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>76 Schisler and Kienholz, 1967</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>14 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>14.4</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>77 Jensen and Maurice, 1980</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>6 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>24.7</td>
<td>78.8</td>
</tr>
<tr>
<td></td>
<td>78 Jackson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>140 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>55.0</td>
<td>105.0</td>
</tr>
<tr>
<td></td>
<td>79 Gibson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>10 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>57.3</td>
<td>66.5</td>
</tr>
<tr>
<td></td>
<td>80 Stevenson et al, 1987</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>140 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>63.9</td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td>81 Gibson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>30 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>64.1</td>
<td>123.0</td>
</tr>
<tr>
<td></td>
<td>82 Stevenson et al, 1987</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>140 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>67.8</td>
<td>84.8</td>
</tr>
<tr>
<td></td>
<td>83 Stahl et al, 1990</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>12 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>106.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>84 Gasaway and Buss, 1972</td>
<td>Mallard duck (Anas platyrhynchos)</td>
<td>U</td>
<td>FD</td>
<td>60 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>TEWT</td>
<td>TE</td>
<td>31.2</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>85 Jackson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>1 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>88.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>86 Jensen and Maurice, 1980</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>6 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>101.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>87 Stepinska et al, 1987</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>5 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>205.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>88 Jackson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>1 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>367.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>89 Berry and Brake, 1985</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>4 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>803.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>90 Berry and Brake, 1990</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>49 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>988.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>86 Jensen and Maurice, 1980</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>6 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>88.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>87 Stepinska et al, 1987</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>5 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>205.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>88 Jackson et al, 1986</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>1 w</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>367.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>89 Berry and Brake, 1985</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>4 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>803.0</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>90 Berry and Brake, 1990</td>
<td>Chicken (Gallus domesticus)</td>
<td>U</td>
<td>FD</td>
<td>49 d</td>
<td>JV</td>
<td>M</td>
<td>REP</td>
<td>PROG</td>
<td>WO</td>
<td>988.0</td>
<td>73</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc

June 2007
Table 5.1
Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)
Zinc

| Effect Type | Effect Measure | Sex | Reproductive Organ Histology | Sex Units | Age | Age Units | Life Stage | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Exposure | Method of Analysis | Route of Exposure | Method of Analysis |Route of Evaluation: 2007 |
Wildlife TRV Derivation Process

1) There are at least three results available for two test species within the growth, reproduction, and mortality effect groups. There are enough data to derive a TRV.

2) There are at least three NOAEL results available within the growth and reproduction effect groups for calculation of a geometric mean.

3) The geometric mean is equal to 66.1 mg zinc/kg bw/d. This value is lower than the lowest bounded LOAEL for results within the reproduction, growth, and survival (MOR) effect groups.

3) The avian wildlife TRV for zinc is equal to 66.1 mg zinc/kg bw/day which is the geometric mean of NOAEL values for effects on reproduction and growth.
5.2 Estimation of Dose and Calculation of the Eco-SSL

Three separate Eco-SSL values were calculated for avian wildlife, one for each of three surrogate receptor species representing different trophic levels. The avian Eco-SSLs were calculated according to the Eco-SSL guidance (U.S. EPA, 2003) and are summarized in Table 5.2.

<table>
<thead>
<tr>
<th>Surrogate Receptor Group</th>
<th>TRV for Zinc (mg dw/kg bw/d)</th>
<th>Food Ingestion Rate (FIR)</th>
<th>Soil Ingestion as Proportion of Diet (Ps)</th>
<th>Concentration of Zinc in Biota Type (i) (B_i) (mg/kg dw)</th>
<th>Eco-SSL (mg/kg dw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avian herbivore (dove)</td>
<td>66.1</td>
<td>0.190</td>
<td>0.139</td>
<td>ln(B_i) = 0.554 * ln(Soil_i) + 1.575 where i = plants</td>
<td>950</td>
</tr>
<tr>
<td>Avian ground insectivore (woodcock)</td>
<td>66.1</td>
<td>0.214</td>
<td>0.164</td>
<td>ln(B_i) = 0.328 * ln(Soil_i) + 4.449 where i = earthworms</td>
<td>46</td>
</tr>
<tr>
<td>Avian carnivore (hawk)</td>
<td>66.1</td>
<td>0.0353</td>
<td>0.057</td>
<td>ln(B_i) = 0.0706 * ln(Soil_i) + 4.3632 where i = mammals</td>
<td>30,000</td>
</tr>
</tbody>
</table>

1 The process for derivation of wildlife TRVs is described in Attachment 4-5 of U.S. EPA (2003).
2 Parameters (FIR, P_i, B_i values, regressions) are provided in U.S. EPA (2003) Attachment 4-1 (revised February 2005).
3 B_i = Concentration in biota type (i) which represents 100% of the diet for the respective receptor.
4 HQ = [FIR * (Soil_i * Ps + B_i)] / TRV solved for HQ=1 where Soil_i = Eco-SSL (Equation 4-2; U.S. EPA, 2003).

6.0 ECO-SSL FOR MAMMALIAN WILDLIFE

The derivation of the Eco-SSL for mammalian wildlife was completed as two parts. First, the TRV was derived according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-5). Second, the Eco-SSL (soil concentration) was back-calculated for each of three surrogate receptor species based on the wildlife exposure model and the TRV (U.S. EPA, 2003).

6.1 Mammalian TRV

The literature search was completed according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-2) and identified 10,410 papers with possible toxicity data for zinc for either avian or mammalian species. Of these studies, 10,259 were rejected for use as described in Section 7.5. Of the remaining papers, 99 contained data for mammalian test species. These papers were reviewed and the data were extracted and scored according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-3 and 4-4). The results of the data extraction and review are summarized in Table 6.1. The complete results are provided as Appendix 6-1.
Table 6.1: Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV) - Zinc

Biochemical (BIO)

<table>
<thead>
<tr>
<th>Result #</th>
<th>Reference</th>
<th>Test Organism</th>
<th>Ref No.</th>
<th>Method of Analysis</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Duration Units</th>
<th>Age</th>
<th>Age Units</th>
<th>Species</th>
<th>Sex</th>
<th>Lifestage</th>
<th>Effect Type</th>
<th>Effect Measure</th>
<th>NOAEL Dose* (mg/kg bw/day)</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brandt, 1983</td>
<td>Mink (Mustela vison)</td>
<td>2033</td>
<td>M</td>
<td>FD</td>
<td>4</td>
<td>mo</td>
<td>90</td>
<td>d</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>MCHC</td>
<td>PL</td>
<td>10.4</td>
<td>20.1</td>
<td>81</td>
</tr>
<tr>
<td>2</td>
<td>Van der Schec et al, 1980</td>
<td>Sheep (Ovis aries)</td>
<td>21171</td>
<td>M</td>
<td>FD</td>
<td>98</td>
<td>d</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMC</td>
<td>TL</td>
<td>12</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hill and Miller, 1983</td>
<td>Pig (Sus scrofa)</td>
<td>45278</td>
<td>U</td>
<td>FD</td>
<td>4</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>GE</td>
<td>F</td>
<td>ENZ</td>
<td>ALPH</td>
<td>SR</td>
<td>25.0</td>
<td>250</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>Reeves and Newman, 1997</td>
<td>Rat (Rattus norvegicus)</td>
<td>21067</td>
<td>U</td>
<td>FD</td>
<td>7</td>
<td>w</td>
<td>21</td>
<td>d</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMC</td>
<td>TL</td>
<td>30.4</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Gaynor et al, 1988</td>
<td>Cow (Bos taurus)</td>
<td>47892</td>
<td>M</td>
<td>FD</td>
<td>4</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>LC</td>
<td>F</td>
<td>CHM</td>
<td>PRTL</td>
<td>MK</td>
<td>30.6</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Mengo et al, 1991</td>
<td>Rat (Rattus norvegicus)</td>
<td>21240</td>
<td>U</td>
<td>FD</td>
<td>3</td>
<td>mo</td>
<td>1</td>
<td>mo</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>CHOL</td>
<td>BL</td>
<td>32.1</td>
<td>96.4</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>Gaynor et al, 1988</td>
<td>Cow (Bos taurus)</td>
<td>47892</td>
<td>U</td>
<td>FD</td>
<td>5</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>LC</td>
<td>F</td>
<td>CHM</td>
<td>PRTL</td>
<td>MK</td>
<td>32.3</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Brzoska et al, 2001</td>
<td>Rat (Rattus norvegicus)</td>
<td>36302</td>
<td>U</td>
<td>DR</td>
<td>12</td>
<td>w</td>
<td>2</td>
<td>mo</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>CALC</td>
<td>TB</td>
<td>40.0</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Ott et al., 1966</td>
<td>Cow (Bos taurus)</td>
<td>14536</td>
<td>U</td>
<td>FD</td>
<td>12</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>B</td>
<td>CHM</td>
<td>PCLV</td>
<td>BL</td>
<td>42.6</td>
<td>57.7</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>Brink et al, 1959</td>
<td>Pig (Sus scrofa)</td>
<td>14525</td>
<td>M</td>
<td>FD</td>
<td>4</td>
<td>d</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMG</td>
<td>BL</td>
<td>43.5</td>
<td>87.1</td>
<td>77</td>
</tr>
<tr>
<td>11</td>
<td>Ott et al., 1966</td>
<td>Sheep (Ovis aries)</td>
<td>14537</td>
<td>U</td>
<td>FD</td>
<td>7</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>PCLV</td>
<td>BL</td>
<td>51.2</td>
<td>68.3</td>
<td>72</td>
</tr>
<tr>
<td>12</td>
<td>Ott et al., 1966</td>
<td>Sheep (Ovis aries)</td>
<td>14537</td>
<td>U</td>
<td>FD</td>
<td>7</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMG</td>
<td>BL</td>
<td>53.2</td>
<td>106</td>
<td>75</td>
</tr>
<tr>
<td>13</td>
<td>Bentley and Grubb, 1981</td>
<td>Rabbit (Oryctolagus cuniculus)</td>
<td>40436</td>
<td>U</td>
<td>FD</td>
<td>22</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>B</td>
<td>CHM</td>
<td>HMG</td>
<td>BL</td>
<td>56.5</td>
<td>282</td>
<td>74</td>
</tr>
<tr>
<td>14</td>
<td>Maita et al, 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>43680</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>w</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMG</td>
<td>BL</td>
<td>234</td>
<td>2514</td>
<td>73</td>
</tr>
<tr>
<td>15</td>
<td>Maita et al, 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>43680</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>w</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMG</td>
<td>WO</td>
<td>243</td>
<td>2486</td>
<td>73</td>
</tr>
<tr>
<td>16</td>
<td>Whanger and Weswig, 1970</td>
<td>Rat (Rattus norvegicus)</td>
<td>22300</td>
<td>U</td>
<td>FD</td>
<td>10</td>
<td>w</td>
<td>21</td>
<td>d</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>GBCM</td>
<td>BL</td>
<td>356</td>
<td>715</td>
<td>75</td>
</tr>
<tr>
<td>17</td>
<td>Maita et al, 1981</td>
<td>Mouse (Mus musculus)</td>
<td>43680</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>w</td>
<td>JV</td>
<td>M</td>
<td>CHM</td>
<td>HMG</td>
<td>BL</td>
<td>458</td>
<td>4927</td>
<td>73</td>
</tr>
<tr>
<td>18</td>
<td>Maita et al, 1981</td>
<td>Mouse (Mus musculus)</td>
<td>43680</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>w</td>
<td>JV</td>
<td>F</td>
<td>CHM</td>
<td>HMG</td>
<td>BL</td>
<td>479</td>
<td>4878</td>
<td>73</td>
</tr>
</tbody>
</table>

Physiology (PHY)

<table>
<thead>
<tr>
<th>Result #</th>
<th>Reference</th>
<th>Test Organism</th>
<th>Ref No.</th>
<th>Method of Analysis</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Duration Units</th>
<th>Age</th>
<th>Age Units</th>
<th>Species</th>
<th>Sex</th>
<th>Lifestage</th>
<th>Effect Type</th>
<th>Effect Measure</th>
<th>NOAEL Dose* (mg/kg bw/day)</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>Ott et al., 1966</td>
<td>Sheep (Ovis aries)</td>
<td>14535</td>
<td>U</td>
<td>FD</td>
<td>6</td>
<td>w</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>NR</td>
<td>PHY</td>
<td>FDVC</td>
<td>WO</td>
<td>19.9</td>
<td>39.7</td>
<td>75</td>
</tr>
</tbody>
</table>

* NOAEL: No Observed Adverse Effect Level

Biochemical (BIO)

No of Conc/ Doses

Route of Exposure

Exposure Duration

Duration Units

Age

Age Units

Species

Sex

Lifestage

Effect Type

Effect Measure

NOAEL Dose* (mg/kg bw/day)

LOAEL Dose* (mg/kg bw/day)

Total

Behavior (BEH)

Physiology (PHY)
Table 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Page 2 of 4

<table>
<thead>
<tr>
<th>Result</th>
<th>Reference</th>
<th>Test Organism</th>
<th>Ref. No.</th>
<th>Method of Analyses</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Age Units</th>
<th>Age Lifestages</th>
<th>Lifestages</th>
<th>Effect Measure</th>
<th>Response Site</th>
<th>NOAEL Dose* (mg/kg bw/day)</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>Gaynor et al, 1988</td>
<td>Cattle (Bos taurus)</td>
<td>47892</td>
<td>2</td>
<td>M</td>
<td>FD</td>
<td>4</td>
<td>w</td>
<td>NR</td>
<td>LC</td>
<td>F</td>
<td>PHY</td>
<td>FDCV</td>
<td>WO</td>
</tr>
<tr>
<td>61</td>
<td>Gaynor et al, 1988</td>
<td>Cattle (Bos taurus)</td>
<td>47892</td>
<td>2</td>
<td>M</td>
<td>FD</td>
<td>5</td>
<td>w</td>
<td>NR</td>
<td>LC</td>
<td>F</td>
<td>PHY</td>
<td>FDCV</td>
<td>WO</td>
</tr>
<tr>
<td>62</td>
<td>Brink et al, 1959</td>
<td>Pig (Sus scrofa)</td>
<td>14525</td>
<td>6</td>
<td>U</td>
<td>FD</td>
<td>42</td>
<td>d</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>NR</td>
<td>PHY</td>
<td>FDCV</td>
</tr>
<tr>
<td>63</td>
<td>Schell and Kornegay, 1996</td>
<td>Pig (Sus scrofa)</td>
<td>42234</td>
<td>4</td>
<td>M</td>
<td>FD</td>
<td>2</td>
<td>23</td>
<td>d</td>
<td>JV</td>
<td>F</td>
<td>PHY</td>
<td>FDCV</td>
<td>WO</td>
</tr>
<tr>
<td>64</td>
<td>Maita et al, 1981</td>
<td>Mouse (Mus musculus)</td>
<td>43680</td>
<td>4</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>PHY</td>
<td>FDCV</td>
</tr>
<tr>
<td>65</td>
<td>Maita et al, 1981</td>
<td>Mouse (Mus musculus)</td>
<td>43680</td>
<td>4</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>NR</td>
<td>JV</td>
<td>F</td>
<td>PHY</td>
<td>FDCV</td>
</tr>
<tr>
<td>66</td>
<td>Urie and Hayakawa, 1990</td>
<td>Rat (Rattus norvegicus)</td>
<td>40997</td>
<td>2</td>
<td>U</td>
<td>FD</td>
<td>42</td>
<td>d</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>PHY</td>
<td>FDCV</td>
</tr>
<tr>
<td>67</td>
<td>Maita et al, 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>43680</td>
<td>4</td>
<td>U</td>
<td>FD</td>
<td>13</td>
<td>w</td>
<td>5</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>PHY</td>
<td>FDCV</td>
</tr>
<tr>
<td>68</td>
<td>Mutafogu-Yamolevua, et al, 1993</td>
<td>Rat (Rattus norvegicus)</td>
<td>39780</td>
<td>2</td>
<td>U</td>
<td>DR</td>
<td>30</td>
<td>d</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>M</td>
<td>PHY</td>
<td>GPHI</td>
</tr>
<tr>
<td>69</td>
<td>Cox and Hale, 1962</td>
<td>Pig (Sus scrofa)</td>
<td>14526</td>
<td>3</td>
<td>U</td>
<td>FD</td>
<td>69</td>
<td>d</td>
<td>NR</td>
<td>NR</td>
<td>JV</td>
<td>NR</td>
<td>PHY</td>
<td>FDCV</td>
</tr>
</tbody>
</table>

Pathology (PTH)

<table>
<thead>
<tr>
<th># of Conc/ Doses</th>
<th>Method of Analyses</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Lifestage</th>
<th>Effect Measure</th>
<th>Response Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reproduction (REP)

<table>
<thead>
<tr>
<th># of Conc/ Doses</th>
<th>Method of Analyses</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Lifestage</th>
<th>Effect Measure</th>
<th>Response Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reproduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Growth (GRO)

<table>
<thead>
<tr>
<th># of Conc/ Doses</th>
<th>Method of Analyses</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Lifestage</th>
<th>Effect Measure</th>
<th>Response Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc

June 2007
<table>
<thead>
<tr>
<th>Result #</th>
<th>Reference</th>
<th>Test Organism</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Altia et al., 1987</td>
<td>Water buffalo (Bubalus bubalis)</td>
<td>43.3</td>
</tr>
<tr>
<td>120</td>
<td>Huetta et al, 2002</td>
<td>Cattle (Bos taurus)</td>
<td>4.78</td>
</tr>
<tr>
<td>121</td>
<td>Huetta et al, 2002</td>
<td>Cattle (Bos taurus)</td>
<td>4.78</td>
</tr>
<tr>
<td>122</td>
<td>Alouli et al, 1985</td>
<td>Rat (Rattus norvegicus)</td>
<td>9.64</td>
</tr>
<tr>
<td>123</td>
<td>Hill et al., 1983</td>
<td>Pig (Sus scrofa)</td>
<td>10.3</td>
</tr>
<tr>
<td>124</td>
<td>Weigandt and Kirchgeessner, 1977</td>
<td>Rat (Rattus norvegicus)</td>
<td>11.7</td>
</tr>
<tr>
<td>125</td>
<td>Eisenmann et al., 1979</td>
<td>Pig (Sus scrofa)</td>
<td>13.5</td>
</tr>
<tr>
<td>126</td>
<td>Cerklewski, 1979</td>
<td>Rat (Rattus norvegicus)</td>
<td>14.4</td>
</tr>
<tr>
<td>127</td>
<td>Elliott and Walker, 1968</td>
<td>Pig (Sus scrofa)</td>
<td>14.9</td>
</tr>
<tr>
<td>128</td>
<td>Cerklewski and Forbes, 1979</td>
<td>Rat (Rattus norvegicus)</td>
<td>15.7</td>
</tr>
<tr>
<td>129</td>
<td>Wapnin and Lee, 1993</td>
<td>Rat (Rattus norvegicus)</td>
<td>15.7</td>
</tr>
<tr>
<td>130</td>
<td>Agarwal et al, 1986</td>
<td>Rat (Rattus norvegicus)</td>
<td>18.0</td>
</tr>
<tr>
<td>131</td>
<td>Brandt, 1983</td>
<td>Mink (Mustela vison)</td>
<td>20.2</td>
</tr>
<tr>
<td>132</td>
<td>Shankar et al, 1986</td>
<td>Rat (Rattus norvegicus)</td>
<td>28.9</td>
</tr>
<tr>
<td>133</td>
<td>Food and Drug Res. Lab, 1973</td>
<td>Mouse (Mus musculus)</td>
<td>30.0</td>
</tr>
<tr>
<td>134</td>
<td>Reeves and Newman, 1997</td>
<td>Rat (Rattus norvegicus)</td>
<td>30.4</td>
</tr>
<tr>
<td>135</td>
<td>Gaynor et al, 1988</td>
<td>Rabbit (Oryctolagus cuniculus)</td>
<td>30.6</td>
</tr>
<tr>
<td>136</td>
<td>Gaynor et al, 1988</td>
<td>Cattle (Bos taurus)</td>
<td>33.2</td>
</tr>
<tr>
<td>137</td>
<td>Khera and Shah, 1971</td>
<td>Rat (Rattus norvegicus)</td>
<td>34.6</td>
</tr>
<tr>
<td>138</td>
<td>Evenson et al, 1993</td>
<td>Rat (Rattus norvegicus)</td>
<td>42.1</td>
</tr>
<tr>
<td>139</td>
<td>Food and Drug Res. Lab, 1973</td>
<td>Pig (Sus scrofa)</td>
<td>42.5</td>
</tr>
<tr>
<td>140</td>
<td>Brink et al, 1959</td>
<td>Pig (Sus scrofa)</td>
<td>43.5</td>
</tr>
<tr>
<td>141</td>
<td>Miller et al., 1989</td>
<td>Mouse (Mus musculus)</td>
<td>43.7</td>
</tr>
<tr>
<td>142</td>
<td>Reeves et al, 1994</td>
<td>Rat (Rattus norvegicus)</td>
<td>56.7</td>
</tr>
<tr>
<td>143</td>
<td>Food and Drug Res. Lab, 1974</td>
<td>Rabbit (Oryctolagus cuniculus)</td>
<td>60.0</td>
</tr>
<tr>
<td>144</td>
<td>Food and Drug Res. Lab, 1973</td>
<td>Hamster (Mesocricetus auratus)</td>
<td>88.0</td>
</tr>
<tr>
<td>145</td>
<td>Bui, et al, 1998</td>
<td>Rat (Rattus norvegicus)</td>
<td>97.5</td>
</tr>
<tr>
<td>146</td>
<td>Van Vleet et al., 1993</td>
<td>Pig (Sus scrofa)</td>
<td>99.1</td>
</tr>
<tr>
<td>147</td>
<td>Schell and Kornegay, 1996</td>
<td>Pig (Sus scrofa)</td>
<td>103.0</td>
</tr>
<tr>
<td>148</td>
<td>Schell and Kornegay, 1996</td>
<td>Pig (Sus scrofa)</td>
<td>106.0</td>
</tr>
<tr>
<td>149</td>
<td>Anderson et al., 1993</td>
<td>Mouse (Mus musculus)</td>
<td>110.0</td>
</tr>
<tr>
<td>150</td>
<td>Maita et al., 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>234</td>
</tr>
<tr>
<td>151</td>
<td>Bentley and Grubb, 1991</td>
<td>Rabbit (Oryctolagus cuniculus)</td>
<td>282</td>
</tr>
<tr>
<td>152</td>
<td>Jewellin et al, 1985</td>
<td>Golden hamster (Mesocricetus auratus)</td>
<td>295</td>
</tr>
<tr>
<td>153</td>
<td>Maita et al., 1981</td>
<td>Mouse (Mus musculus)</td>
<td>458</td>
</tr>
<tr>
<td>154</td>
<td>Ketcheson et al, 1969</td>
<td>Rat (Rattus norvegicus)</td>
<td>470</td>
</tr>
<tr>
<td>155</td>
<td>Maita et al., 1981</td>
<td>Mouse (Mus musculus)</td>
<td>479</td>
</tr>
<tr>
<td>156</td>
<td>O'Neil-Cutting et al, 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>597</td>
</tr>
<tr>
<td>157</td>
<td>Zhang et al, 1995</td>
<td>Mouse (Mus musculus)</td>
<td>622</td>
</tr>
<tr>
<td>158</td>
<td>Zhang et al, 1995</td>
<td>Mouse (Mus musculus)</td>
<td>845</td>
</tr>
<tr>
<td>159</td>
<td>Zhang et al, 1995</td>
<td>Mouse (Mus musculus)</td>
<td>846</td>
</tr>
<tr>
<td>160</td>
<td>Pettersen, et al, 2002</td>
<td>Mouse (Mus musculus)</td>
<td>1419</td>
</tr>
<tr>
<td>161</td>
<td>Urabe and Hayakawa, 1990</td>
<td>Rat (Rattus norvegicus)</td>
<td>1684</td>
</tr>
<tr>
<td>162</td>
<td>Maita et al., 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>2486</td>
</tr>
<tr>
<td>163</td>
<td>Nakamura et al., 1983</td>
<td>Rat (Rattus norvegicus)</td>
<td>8.71</td>
</tr>
<tr>
<td>164</td>
<td>Rosa et al, 1986</td>
<td>Sheep (Ovis aries)</td>
<td>8.71</td>
</tr>
<tr>
<td>165</td>
<td>Subramanian et al, 2000</td>
<td>Rat (Rattus norvegicus)</td>
<td>16.1</td>
</tr>
<tr>
<td>166</td>
<td>Davies, et al, 1977</td>
<td>Sheep (Ovis aries)</td>
<td>28.2</td>
</tr>
<tr>
<td>167</td>
<td>Barone et al, 1998</td>
<td>Rat (Rattus norvegicus)</td>
<td>81.1</td>
</tr>
<tr>
<td>168</td>
<td>Hsu et al, 1975</td>
<td>Pig (Sus scrofa)</td>
<td>89.1</td>
</tr>
<tr>
<td>169</td>
<td>Schlicker and Cox, 1968</td>
<td>Rat (Rattus norvegicus)</td>
<td>424</td>
</tr>
<tr>
<td>170</td>
<td>Settlemire and Matrone, 1967</td>
<td>Rat (Rattus norvegicus)</td>
<td>667</td>
</tr>
<tr>
<td>171</td>
<td>Ogiso, et al, 1974</td>
<td>Rat (Rattus norvegicus)</td>
<td>956</td>
</tr>
<tr>
<td>172</td>
<td>Scott and Magee, 1979</td>
<td>Rat (Rattus norvegicus)</td>
<td>968</td>
</tr>
</tbody>
</table>

Survival (MOR)

<table>
<thead>
<tr>
<th>Result #</th>
<th>Reference</th>
<th>Test Organism</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>Seidenberg et al, 1986</td>
<td>Mouse (Mus musculus)</td>
<td>8.89</td>
</tr>
<tr>
<td>174</td>
<td>Van der Schee et al, 1980</td>
<td>Sheep (Ovis aries)</td>
<td>12.0</td>
</tr>
<tr>
<td>175</td>
<td>Food and Drug Res. Lab, 1973</td>
<td>Mouse (Mus musculus)</td>
<td>12.0</td>
</tr>
<tr>
<td>176</td>
<td>Food and Drug Res. Lab, 1973</td>
<td>Rat (Rattus norvegicus)</td>
<td>42.5</td>
</tr>
<tr>
<td>177</td>
<td>Brink et al, 1959</td>
<td>Pig (Sus scrofa)</td>
<td>43.5</td>
</tr>
<tr>
<td>178</td>
<td>Food and Drug Res. Lab, 1974</td>
<td>Rabbit (Oryctolagus cuniculus)</td>
<td>60.0</td>
</tr>
<tr>
<td>179</td>
<td>Ott et al, 1966</td>
<td>Sheep (Ovis aries)</td>
<td>82.9</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc

June 2007
Table 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

<table>
<thead>
<tr>
<th>Result #</th>
<th>Reference</th>
<th>Test Organism</th>
<th>Ref No.</th>
<th># of Conc/ Doses</th>
<th>Method of Analyses</th>
<th>Route of Exposure</th>
<th>Route of Exposure Duration</th>
<th>Exposure Duration</th>
<th>Duration Units</th>
<th>Age</th>
<th>Age Units</th>
<th>Lifestage</th>
<th>Sex</th>
<th>Effect Type</th>
<th>Effect Measure</th>
<th>Response Site</th>
<th>NOAEL Dose* (mg/kg bw/day)</th>
<th>LOAEL Dose* (mg/kg bw/day)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>Willoughby et al, 1972</td>
<td>Horse (Equus caballus)</td>
<td>14385</td>
<td>2 M FD 9 w 3-4 w</td>
<td>JV F MOR</td>
<td>MORT</td>
<td>WO</td>
<td>83.7</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Food and Drug Res. Lab, 1973</td>
<td>Hamster (Mesocricetus auratus)</td>
<td>42289</td>
<td>3 U GV 5 d NR NR</td>
<td>GE F</td>
<td>MOR</td>
<td>SURV</td>
<td>WO</td>
<td>88.0</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>182</td>
<td>Aulerich et al, 1991</td>
<td>Mink (Mustela vison)</td>
<td>46274</td>
<td>4 M FD 144 d >1 yr AD</td>
<td>M</td>
<td>MOR</td>
<td>WO</td>
<td>165</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>183</td>
<td>Aulerich et al, 1991</td>
<td>Mink (Mustela vison)</td>
<td>46274</td>
<td>4 M FD 144 d 10-12 w</td>
<td>JV M</td>
<td>MOR</td>
<td>WO</td>
<td>297</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>184</td>
<td>Aulerich et al, 1991</td>
<td>Mink (Mustela vison)</td>
<td>46274</td>
<td>4 M FD 144 d 10-12 w</td>
<td>JV F</td>
<td>MOR</td>
<td>WO</td>
<td>324</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>185</td>
<td>Aulerich et al, 1991</td>
<td>Mink (Mustela vison)</td>
<td>46274</td>
<td>4 M FD 114 d 10-12 w</td>
<td>JV AD</td>
<td>F</td>
<td>MOR</td>
<td>WO</td>
<td>327</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>186</td>
<td>Aulerich et al, 1991</td>
<td>Mouse (Mus musculus)</td>
<td>43680</td>
<td>4 U FD 13 w 5 w</td>
<td>JV M</td>
<td>MOR</td>
<td>WO</td>
<td>458</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>187</td>
<td>Maita et al, 1981</td>
<td>Mouse (Mus musculus)</td>
<td>43680</td>
<td>4 U FD 13 w 5 w</td>
<td>JV M</td>
<td>MOR</td>
<td>WO</td>
<td>4878</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>188</td>
<td>Maita et al, 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>43680</td>
<td>4 U FD 13 w 5 w</td>
<td>JV M</td>
<td>MOR</td>
<td>WO</td>
<td>4927</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>189</td>
<td>Maita et al, 1981</td>
<td>Rat (Rattus norvegicus)</td>
<td>43680</td>
<td>4 U FD 13 w 5 w</td>
<td>JV M</td>
<td>MOR</td>
<td>WO</td>
<td>2486</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>Maita et al, 1981</td>
<td>Pig (Sus scrofa)</td>
<td>149</td>
<td>2 U FD 10 w NR</td>
<td>NR JV</td>
<td>M</td>
<td>MOR</td>
<td>WO</td>
<td>99.1</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AD = adult; AHDX = aniline hydroxylase; ALPH = alkaline phosphatase; B = both; BDWT = body weight changes; BEH = behavior; BI = bile; BIO = biochemical; BL = blood; BR = brain; bw = body weight; CALC = calcium; CCOX = cytochrome C-oxidase; CHM = chemical changes; CHOL = cholesterol; d = day; DIFD = digestibility of food; DR = Drinking water; DT = digestive tract; ENZ = enzyme level changes; F = female; FCNS = food consumption; FD = food; FDB = feeding behavior; FDV = food conversion efficiency; FDNG = feeding behavior; FM = femur; FO = foot; GBCM = general biochemical changes; GE = gestation; GGRO = general growth changes; GLPX = glutathione peroxidase; GLSN = gross lesions; GLUC = glucose; GLYC = glycogen; GPHY = general physiology changes; GRO = growth; GREP = general reproduction; GRS = gross body weight changes; GT = gastrointestinal tract; GV = gavage; HA = hair; HE = heart; HEMT = hematocrit; HIS = histological changes; HM = humerus; HMCT = hematocrit; HMG = hemoglobin; HRM = hormone changes; IN = intestinal tract; ITX = intoxication; JV = juvenile; kg = kilograms; KI = kidney; LC = lactation; LD = lipid; LI = liver; LOAEL = lowest observed adverse effect level; mg = milligrams; mo = months; M = male; M = measured; MCHC = mean corpuscular hemoglobin; MCPP = microsomal proteins; MK = milk, lactating females; MOR = effects on mortality and survival; MORT = mortality; MPH = morphology; MT = multiple; MU = muscle; NACO = sodium; NOAEL = No Observed Adverse Effect Level; NCRO = necrosis; NR = Not reported; NMVM = number of movements; ODVP = offspring development; OR = other oral; ORW = organ weight changes; ORWT = organ weight changes; OV = ovary; P450 = cytochrome P450; PCLV = packed cell volume; PCLV = packed cell volume; PLY = physiology; PL = plasma; PRFM = pregnant females in a population; PROG = progeny numbers/counts; PRTL = protein, total; PRWT = progeny weight; PS = pancreas; PTH = pathology; RBCE = red blood cell count; REP = reproduction; RHIS = reproductive organ histology; RSEM = resorbed embryos; SH = stomach; SK = skin; SM = sexually mature; SMIX = weight relative to body weight; SP = spleen; SPCL = sperm cell counts; SR = serum; SURV = survival; TB = tibia; TE = testes; TEWT = testes weight; TS = thymus; TWBC = white blood cell count, total; U = unmeasured; UR = urine; USTR = ultrastructural changes; UD = Vas deferens; VMA = vitamin A; w = weeks; WCON = water consumption; WO = whole organism.

*NOAEL and LOAEL values that are equal and from the same reference represent different experimental designs. These are designated with different Phase numbers in Appendix 6.1.
Within the reviewed papers there are 190 results for biochemical (BIO), behavior (BEH), physiology (PHY), pathology (PTH), reproduction (REP), growth (GRO), and survival (MOR) endpoints with a total Data Evaluation Score >65 that were used to derive the TRV (U.S. EPA 2003; Attachment 4-4). These data are plotted in Figure 6.1 and correspond directly with the data presented in Table 6.1. The NOAEL results for growth and reproduction are used to calculate a geometric mean NOAEL. This geometric mean is examined in relationship to the lowest bounded LOAEL for reproduction, growth, and survival to derive the TRV according to the Eco-SSL guidance (U.S. EPA 2003; Attachment 4-5).

A geometric mean of the NOAEL values for reproduction and growth was calculated at 75.4 mg zinc/kg bw/day. This value is lower than the lowest bounded LOAEL for reproduction, growth, or mortality results. Therefore, the TRV is equal to the geometric mean of the NOAEL values for reproduction and growth and is equal to 75.4 mg zinc/kg bw/day.

6.2 Estimation of Dose and Calculation of the Eco-SSL

Three separate Eco-SSL values were calculated for mammalian wildlife, one for each of three surrogate receptor groups representing different trophic levels. The mammalian Eco-SSLs derived for Zinc were calculated according to the Eco-SSL guidance (U.S. EPA, 2003; Attachment 4-5) and are summarized in Table 6.2.

<table>
<thead>
<tr>
<th>Surrogate Receptor Group</th>
<th>TRV for Zinc (mg dw/kg bw/d)</th>
<th>Food Ingestion Rate (FIR) (kg dw/kg bw/d)</th>
<th>Soil Ingestion as Proportion of Diet (P_s)</th>
<th>Concentration of Zinc in Biota Type (i) (mg/kg dw)</th>
<th>Eco-SSL (mg/kg dw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammalian herbivore (vole)</td>
<td>75.4</td>
<td>0.0875</td>
<td>0.032</td>
<td>ln(B_i) = 0.554 * ln(Soil_i) + 1.575 where i = plants</td>
<td>6,800</td>
</tr>
<tr>
<td>Mammalian ground insectivore (shrew)</td>
<td>75.4</td>
<td>0.209</td>
<td>0.030</td>
<td>ln(B_i) = 0.328 * ln(Soil_i) + 4.449 where i = earthworms</td>
<td>79</td>
</tr>
<tr>
<td>Mammalian carnivore (weasel)</td>
<td>75.4</td>
<td>0.130</td>
<td>0.043</td>
<td>ln(B_i) = 0.0706 * ln(Soil_i) + 4.3632 where i = mammals</td>
<td>10,000</td>
</tr>
</tbody>
</table>

1 The process for derivation of wildlife TRVs is described in Attachment 4-5 of U.S. EPA (2003).
2 Parameters (FIR, P_s, B_i values, regressions) are provided in U.S. EPA (2003) Attachment 4-1 (revised February 2005).
3 B_i = Concentration in biota type (i) which represents 100% of the diet for the respective receptor.
4 HQ = [FIR * (Soil_i * P_s + B_i)] / TRV solved for HQ=1 where Soil_i = Eco-SSL (Equation 4-2; U.S. EPA, 2003).
Figure 6.1 Mammalian TRV Derivation for Zinc

Wildlife TRV Derivation Process

1) There are at least three results available for two test species within the growth, reproduction, and mortality effect groups. There are enough data to derive a TRV.

2) There are three NOAEL results available within the growth and reproduction effect groups for calculation of a geometric mean.

3) The geometric mean is equal to 75.4 mg zinc/kg bw/d and is lower than the lowest bounded LOAEL for results within the reproduction, growth, and survival (MOR) effect groups.

4) The mammalian wildlife TRV for zinc is equal to 75.4 mg zinc/kg bw/day which is the geometric mean of NOAEL results within the reproduction and growth effect groups.
7.0 REFERENCES

7.1 General Zinc References

Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological Profile for Zinc, Atlanta, GA.

7.2 References for Plants and Soil Invertebrates

Sandifer, R. D. and Hopkin, S. P. 1996. Effects Of Ph On The Toxicity Of Cadmium, Copper, Lead And Zinc To Folsomia Candida Willem, 1902 (Collembola) In A Standard Laboratory Test System. Chemosphere 33[12], 2475 2486

Spurgeon, D. J. and Hopkin, S. P. 1995. Extrapolation of the Laboratory Based OECD Earthworm Toxicity Test to Metal Contaminated Field Sites. Ecotoxicology 4[3], 190 205

7.3 References Rejected for Use in Deriving Plant and Soil Invertebrate Eco-SSLs
These references were reviewed and rejected for use in derivation of the Eco-SSL. The definition of the codes describing the basis for rejection is provided at the end of the reference sections.

Media Ajay and Rathore, V. S. 1995. Effect of Zn2+ stress in rice (Oryza sativa cv. Manhar) on growth and photosynthetic processes. Photosynthetica 31[4], 571 584

OM, pH Al Hiyaly, S. A., McNeilly, T., and Bradshaw, A. D. 1988. The Effects of Zinc Contamination from Electricity Pylons Evolution in a Replicated Situation. New Phytol. 110[7], 571 580

Forms of Zinc and Its Uptake by Corn Plants in Soil Treated with a Steel Making Residue. Rev. Bras. Cienc. Solo 18[2], 313 320

FL Ashtab, I. V. 1994. Interaction of Zinc with Other Elements as an Index of Its Ecological Activity. Agrokhimiya 11, 114 128 (RUS)

Eco-SSL for Zinc

26 June 2007
of Sewage Sludge on Zinc Content in Soil and Plants. Rostl. Vyroba 44[10], 457 462 (CZE)

Species

FL

OM, pH

OM, pH

Media

Media

Mix

No Tox

Mix

No Dur

ERE
Beyer, W. N., Chaney, R. L., and Mulhern, B. M. 1982. Heavy Metal Concentrations in Earthworms from Soil Amended with Sewage Sludge. J. Environ. Qual. 11[3], 381 385

No Dur

No ERE

ERE

OM, pH

OM, pH Borkert, C. M. and Cox, F. R. 1999. Effects of Acidity at High Soil Zinc, Copper and Manganese

OM, pH Brown, G. 1995. The Effects of Lead and Zinc on the Distribution of Plant Species at Former Mining Areas of Western Europe. Flora (Jena) 190[3], 243 249

No Dose Cataldo, D. A. and Wildung, R. E. 1978. Soil and Plant Factors Influencing the Accumulation of Heavy Metals by Plants. Environ. Health Perspect. 27, 149 159
FL
Eco-SSL for Zinc
June 2007

<table>
<thead>
<tr>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERE</td>
<td>Chlopecka, A. 1993. Forms of Trace Metals from Inorganic Sources in Soils and Amounts Found in Spring Barley. Water Air Soil Pollut. 69[1 2], 127 134</td>
</tr>
<tr>
<td>Media</td>
<td>Chongpraditnun, Praphasri, Mori, Satoshi, and Chino, Mitsuo. 1992. Excess copper induces a cytosolic copper zinc superoxide dismutase in soybean root. Plant Cell Physiol. 33[3], 239 244</td>
</tr>
</tbody>
</table>

Cunningham, J. D., Keeney, D. R., and Ryan, J. A. 1975. Phytotoxicity and Uptake of Metals Added to Soils as Inorganic Salts or in Sewage Sludge. J. Environ. Qual. 4[4], 460 462

Cunningham, J. D., Ryan, J. A., and Keeney, D. R. 1975. Phytotoxicity in and Metal Uptake from Soil Treated with Metal Amended Sewage Sludge. J. Environ. Qual. 4[4], 455 459

Eco-SSL for Zinc 34 June 2007
<table>
<thead>
<tr>
<th>Literature</th>
<th>Reference</th>
</tr>
</thead>
</table>
Concentration on Zinc on Growth and Uptake. New Phytol. 106, 517-524

Media Ebbs, S. D. and Kochian, L. V. 1997. Toxicity of Zinc and Copper to Brassica Species: Implications for Phytoremediation. J.Environ.Qual. 26[3], 776 781

| Not Avail | Freedman, J. 1977. Environmental Zinc Contamination and Plant Toxicity. Interface 6[3], 26 27 |
| OM, pH | Gall, O. E. 1936. Zinc Sulphate Studies in the Soil. Citrus Ind. 17[1], 20 21 |
OM, pH

Media

FL

FL

No Dur

Species

Mix

Mix

Mix

Species

Nut def

OM , pH

Giordana, P. M. 1975. Effects of Municipal Wastes on Crop Yields and Uptake of Heavy Metals. J. Environ. Qual. 4, 394 399

Mix

Rev

Media

| FL | Gorlach, Eugeniusz and Gambus, Florian. 1988. Copper and zinc effect on potassium, sodium, magnesium, and calcium uptake by Italian ryegrass (Lolium multiflorum Lam.). Rocz. Glebozn. 39[3], 251 255 |
| OM | Grant, C. A. and Bailey, L. D. 1997. Effects of Phosphorus and Zinc Fertiliser Management on... |
Cadmium Accumulation in Flaxseed. J. Sci. Food Agric. 73[3], 307-314

Media Gregory, R. P. G. and Bradshaw, A. D. 1965. Heavy Metal Tolerance in Populations of Agrostis tenuis Sibth. and Other Grasses. New Phytol. 64, 131-143

Han, S. H., Hyun, J. O., Lee, K. J., and Cho, D. H. 1998. Accumulation of Heavy Metals (Cd, Cu, Zn, and Pb) in Five Tree Species in Relation to Contamination of Soil Near Two Closed Zinc Mining Sites. J. Kor. For. Soc. 87[3], 466 474 (KOR) (ENG ABS)

Hartenstein, R., Neuhauser, E. F., and Narahara, A. 1981. Effects of Heavy Metal and Other Elemental Additives to Activated Sludge on Growth of Eisenia foetida. J. Environ. Qual. 10[3], 372 376

Media

No Dose

Media

Mix

OM, pH

ERE

Mix

Mix

Mix

OM, pH

Species

Mix

Mix

Mix

No Dur

Hopkin, S. P. and Martin, M. H. 1982. The Distribution of Zinc, Cadmium, Lead and Copper Within the Woodlouse Oniscus asellus (Crustacea, Isopoda). Oecologia (Berlin) 54, 227

No Dur

Hopkin, S. P. and Martin, M. H. 1982. The Distribution of Zinc, Cadmium, Lead and Copper Within the Hepatopancreas of a Woodlouse. Tissue & Cell 14[4], 703 715
No Dur

Media

Hopkin, S. P. and Hames, C. A. C. 1994. Zinc, Among a 'Cocktail' of Metal Pollutants, is Responsible for the Absence of the Terrestrial Isopod Porcellio scaber from the Vicinity of a Primary Smelting Works. Ecotoxicology 3[1], 68 78

Media

OM, pH

Mix

Media

Media

Media

OM, pH

Indulkar, B. S. and Malewar, G. U. 1991. Response of Rice (Oryza sativa) to Different Zinc Sources and Their Residual Effect on Succeeding Chickpea (Cicer arietinum). Indian J. Agron. 36[SUPPL], 5 9

OM, pH

Media

Species

Media

No Dose

OM, pH

Rev

Rev

Media

No Control

Media

No Data

Species

ERE

ERE

No Dose

Media

OM, pH

No Dur

Media

Media

Media

Kalachikov, V. A. 1991. Role of Zinc in Decreasing the Nitrophenol Toxicity of Soils 53257. Pochvovedenie [1], 94 104

| Media | Lambein, F., Haque, R., Khan, J. K., Kebede, N., and Kuo, Y. H. 1994. From Soil to Brain: Zinc Deficiency Increases the Neurotoxicity of Lathyrus sativus and may Affect the Susceptibility for the Motoneurone Disease Neurolathyrism. Toxicon 32[4], 461 466 |
| ERE | Leendertse, Peter C., Scholten, Martin C. T., and Van, Der Wal Jan Tjalling. 1996. Fate and effects |
of nutrients and heavy metals in experimental salt marsh ecosystems 53893. Environ.Pollut. 94[1], 19 29

FL Liu, Qing, Xu, Songlin, and Zhang, Bangcheng. 1991. Effects of zinc on the yield and quality of tobacco. Turang (Nanjing) 23[1], 35 36,49

FL Liu, Wenzhang and Sun, Dianlan. 1990. Effect of Benzyladenine on Zinc Toxicity in Plants. Hebei Shifan Daxue Xuebao, Ziran Kexueban [1], 52 56

FL Liu, Wenzhang and Sun, Dianlan. 1992. Effect of Zinc on the Growth of Cucumbers and Its Physiology. Hebei Shifan Daxue Xuebao, Ziran Kexueban 1, 81 84

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Authors</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>No Dur</td>
<td>Marino, F., Ligero, A., and Diaz, C.</td>
</tr>
<tr>
<td>Media</td>
<td>Mathys, W.</td>
</tr>
<tr>
<td>OM, pH</td>
<td>Mathys, W.</td>
</tr>
<tr>
<td>No Control</td>
<td>McGrath, S. P., Shen, Z. G., and Zhao, F. J.</td>
</tr>
<tr>
<td>Mix</td>
<td>McKenna, I. M., Chaney, R. L., and Williams, F. M.</td>
</tr>
</tbody>
</table>
Spinach. Environ. Pollut. 79[2], 113 120

No Conc McLaughlin, M. J., Maier, N. A., Freeman, K., Tiller, K. G., Williams, C. M. J., and Smart, M. K. 1995. Effect of Potassic and Phosphatic Fertilizer Type, Fertilizer Cd Concentration and Zinc Rate on Cadmium Uptake by Potatoes. Fert. Res. 40[1], 63 70

Mix Merrington, G., Winder, L., and Green, I. 1997. The Uptake of Cadmium and Zinc by the Bird Cherry Oat Aphid Rhopalosiphum padi (Homoptera: Aphididae) Feeding on Wheat Grown on Sewage Sludge Amended Agricultural Soil. Environ. Pollut. 96[1], 111 114

OM, pH Mikula, W. and Indeka, L. 1997. Heavy Metals in Allotment Gardens Close to an Oil Refinery in Plock. Water Air Soil Pollut. 96[1/4], 61 71

No Tox Milbocker, D. C. 1974. Zinc Toxicity to Plants Grown in Media Containing Poly Rubber. Hortscience 9[6], 545 546

No Dose Miles, L. J. and Parker, G. R. 1979. Heavy Metal Interaction for Andropogon scoparius and Rudbeckia hirta Grown on Soil from Urban and Rural Sites with Heavy Metals Additions. J. Environ. Qual. 8[4], 443 449

Mix Morgan, J. E. and Morgan, A. J. 1993. Seasonal Changes In The Tissue Metal (Cadmium, Zinc, And Lead) Concentrations In Two Ecophysiological Dissimilar Earthworm Species: Pollution Monitoring Implications 54833. Environ. Pollut. 82[1], 1 7

Nutrient Solution Technique. I. Zinc Ion Requirements. Plant Physiol. 101, 619 625

Mix

pH

OM, pH

Media

Media

Media

Media

ERE

ERE

ERE

OM, pH

No Control

OM, pH

Mix

Media

Media
<table>
<thead>
<tr>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
</table>

Rateaver, B. 1990. The Zinc Link: Seaweed for Tree Nutrition. California Grower 14[10], 31, 33

<table>
<thead>
<tr>
<th>Source</th>
<th>Title</th>
<th>Year</th>
<th>Journal</th>
</tr>
</thead>
</table>
No Control

OM, pH

Mix

Score

OM, pH

Rev

Mix

OM, pH

Media

Media

No Dur

No Dur

FL

Mix

FL

No Conc

ERE Sharma, C. M. and Bhardwaj, S. K. 1998. Effect of Phosphorus and Zinc Fertilization on Yield and Nutrient Uptake in Wheat (Triticum aestivum) and Their Residual Effect on Soybean (Glycine max). Indian J.Agron. 43[3], 426 430

Media Shen, Zhenguo, Zhang, Fenqin, and Zhang, Fusuo. 1998. Toxicity of copper and zinc in seedlings of mung bean and inducing accumulation of polyamine. J.Plant Nutr. 21[6], 1153 1162

Mix

In Vit

Species
Simkiss, K. and Watkins, B. 1991. Differences in Zinc Uptake Between Snails (Helix aspera (Muller)) From Metal and Bacteria Polluted Sites. Functional Ecol 5, 787 794

Media

Mix

ERE

Score

No Effct

No Effct

Nut def

No Conc

No Conc

No Control

No Dose

OM, pH

OM, pH

OM, pH
Lead, Cadmium, Mercury, Selenium, Arsenic, Chromium and Vanadium in Barley. Soil Sci. 121[1], 38 43

Media Smith, P. F. and Specht, A. W. 1953. Mineral Composition of Valencia Orange Seedlings Grown in

Media Steinberg, R. A. 1936. Effects of Barium Salts upon Aspergillus niger and Their Bearing upon the Sulphur and Zinc Metabolism of the Fungus in an Optimum Solution. Bot.Gaz. 97, 666 671

FL Stepanok, V. V. and Golenetsk ii, S. P. 1990. Effect of zinc compounds on crop yield and on zinc accumulation by plants. Agrokhimiya [3], 85 91

Mix Strojan, C. L. 1978. The Impact of Zinc Smelter Emissions on Forest Litter Arthropods. Oikos 31[1], 41 46

Mix

OM, pH
Sudia, T. W. and Green, D. G. 1972. The Translocation of Zn65 and Cs134 Between Seed Generations in Soybean (Glycine max (L.) Merr.). Plant Soil 37, 695-697

Media

No Conc

No Dur

Mix

ERE

OM, pH
Takkar, P. N. and Mann, M. S. 1978. Toxic Levels of Soil and Plant Zinc for Maize and Wheat. Plant Soil 49, 667-669

Species

FL

FL

Media

OM, pH

OM, pH

No Tox
Thompson, J. P. 1996. Correction of Dual Phosphorus and Zinc Deficiencies of Linseed (Linum usitatissimum L.) with Cultures of Vesicular Arbuscular Mycorrhizal Fungi. Soil Biol.Biochem. 28[7], 941-951

No COC Tsakelidou, K., Karagiannidis, N., and Bladenopoulou, S. 1999. Effects of calcium carbonate and organic matter on soil aluminum, manganese, iron, zinc and copper and their concentration in corn plants in greek acid soils. Agrochimica 43[2], 89 100

Media Tso, T. C., Sorokin, T. P., and Engelhaupt, M. E. 1973. Effects of Some Rare Elements on Nicotine Content of the Tobacco Plant. Plant Physiol. 51, 805 806

| OM, pH | Vangronsveld, J., Van, Assche F., and Clijsters, H. 1995. Reclamation of a Bare Industrial Area Contaminated by Non ferrous Metals: In Situ Metal Immobilization and Revegetation. Environ.Pollut. 87[1], 51 59 |
| Media | Veer, B. 1989. Effects of Nickel and Zinc on Seedling Growth and Hydrolytic Enzymes in Phaseolus aureus cv. R 851. Geobios (Jodhpur) 16[6], 245 248 |

Eco-SSL for Zinc 69
June 2007
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Journal/Volume, Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vlamis, J., Williams, D. E., Corey, J. E., Page, A. L., and Ganje, T. J.</td>
<td>Zinc and Cadmium Uptake by Barley in Field Plots Fertilized Seven Years with Urban and Suburban Sludge.</td>
<td>Soil Sci. 139[1], 81 87</td>
</tr>
<tr>
<td>Von Rosen, G.</td>
<td>Mutations Induced by the Action of Metal Ions in Pisum. II. Further Investigations on the Mutagenic Action of Metal Ions and Comparison with the Activity of Ionizing Radiation.</td>
<td>Hereditas 51, 89 134</td>
</tr>
<tr>
<td>Walker, W. M., Miller, J. E., and Hassett, J. J.</td>
<td>Effect of Lead and Cadmium upon the Boron, Copper, Manganese, and Zinc Concentration of Young Corn Plants.</td>
<td>Comm.Soil Sci.Plant Anal. 8[1], 57 66</td>
</tr>
<tr>
<td>Wallace, A.</td>
<td>Additive, Protective and Synergistic Effects of Plants with Excess Trace Elements.</td>
<td>Soil Sci. 133[5], 319 323</td>
</tr>
<tr>
<td>Wallace, A. and Berry, W. L.</td>
<td>Dose Response Curves for Zinc, Cadmium, and Nickel in Combinations of One, Two, or Three.</td>
<td>Soil Sci. 147[6], 401 410</td>
</tr>
<tr>
<td>Wallace, Arthur and Abou Zamzam, A. M.</td>
<td>Calcium Zinc Interactions and Growth of Bush Beans in Solution Culture.</td>
<td>Soil Sci. 147[6], 442 443</td>
</tr>
<tr>
<td>Walley, K. A., Khan, M. S. I., and Bradshaw, A. D.</td>
<td>The Potential for Evolution of Heavy Metal Tolerance in Plants. I. Copper and Zinc Tolerance in Agrostis tenuis.</td>
<td>Heredity 32[3], 309 319</td>
</tr>
<tr>
<td>Wang, Y. P. and Chao, C. C.</td>
<td>Effects of Vesicular Arbuscular Mycorrhizae and Heavy Metals</td>
<td></td>
</tr>
</tbody>
</table>
on the Growth of Soybean and Phosphate and Heavy Metal Uptake by Soybean in Major Soil Groups of Taiwan. J.Agric.Assoc.China New Ser. [157], 6 20 (CHI) (ENG ABS)

No Dur Watmough, S. A. and Dickinson, N. M. 1995. Dispersal and Mobility of Heavy Metals in Relation to Tree Survival in an Aerially Contaminated Woodland Soil. Environ.Pollut. 90[2], 135 142

OM, pH White, M. C., Chaney, R. L., and Decker, A. M. 1979. Differential Cultivar Tolerance in Soybean to Phytotoxic Levels of Soil Zn. II. Range of Zn Additions and the Uptake and Translocation of Zn, Mn, Fe and P. Agronomy'71, 126 131

<table>
<thead>
<tr>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td>Wu, Zhenqiu and Wu, Yuexuan. 1990. Effects of Copper and Zinc on Growth and Superoxide Dismutase Activity of Rice Seedlings. Zhiwu Shengli Xuebao 16[2], 139-146</td>
</tr>
<tr>
<td>FL</td>
<td>Xi, Yuying, Guo, Dongsheng, Cheng, Jie, and Song, Yuexian. 1994. Effect of Calcium and Zinc on the Contents of Cadmium and Lead in Corn Seedling. Shanxi Daxue Xuebao, Ziran Kexueban 17[1], 101-103</td>
</tr>
</tbody>
</table>

7.4 References Used in Deriving Wildlife TRVs

Attia, A. N., Awadalla, S. A., Esmail, E. Y., and Hady, M. M. 1987. role of some microelements in nutrition of...
water buffalo and its relation to production. *Assiut Veterinary Medical Journal* 18(35): 91-100. Ref No. 36002.

Brandt, A. 1983. effect of dietary copper and zinc on the haemotology of male pastel mink kits: a pilot investigation [iron, Fe, blood plasma analysis, 300 ppm copper per kg wet feed highly toxic to mink]. *Scientifur.* 7(2): 61-65. Ref No. 2033.

Eco-SSL for Zinc 76 June 2007

Leeson, S. and Summers, J. D. 1982. effect of high dietary levels of supplemental zinc manganese copper or iron on broiler performance to 3 weeks of age and accumulation of these minerals in tissue and excreta. *Nutr Rep Int.* 25(3): 591-599. Ref No. 2196.

Miller, WJ, Blackmon, DM, Gentry, RP, and Pate, FM. 1970. effects of high but nontoxic levels of zinc in practical diets on 65zn and zinc metabolism in holstein calves. *J. Nutr.* 100: 893. Ref No. 14533.

Roberson, RH and Schaible, PJ. 1960. the tolerance of growing chicks for high levels of different forms of zinc. Poult. Sci. 39: 893. Ref No. 14538.

Van Der Schee W, Garretsen, J. W., and Van Der Berg R. 1980. effect of zinc and molybdenum supplementation of
the feed concentrate on the storage of copper in the liver of lambs. *Veterinary Quarterly*. 2 (2). 1980. 82-89. Ref No. 21171.

7.5 References Rejected for Use in Derivation of Wildlife TRV

These references were reviewed and rejected for use in derivation of the Eco-SSL. The definition of the codes describing the basis for rejection is provided at the end of the reference sections.

<table>
<thead>
<tr>
<th>Diss</th>
<th>1044657 ORDER NO: AADDX-84482</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mix</td>
<td>28 days subacute oral toxicity study in rats (gavage). EPA/OTS: Doc #88-900000191</td>
</tr>
<tr>
<td>Abstract</td>
<td>1971 Abstracts of Technical Reports Supported by the Office of Naval Research 1970. ABS-2;</td>
</tr>
</tbody>
</table>
Eco-SSL for Zinc

age, nutrition, and bone metabolism: analyses of effects using a short-term in vivo bone model. 0969983 ORDER NO: AAD87-25572

alteration in cadmium transport as a mechanism of resistance to reproductive toxicity in murine strain a/j (zinc, testicular toxicity). 01669567 ORDER NO: AAD99-06384

alterations in functionality of lymphocyte populations induced by zinc deficiency. 811552 ORDER NO: AAD83-08922

altered zinc metabolism and its sequelae during dietary zinc deficiency and stress. 01423394 ORDER NO: AADAA-I9521360

amino acid metal complexes using hydrolyzed protein as the amino acid source and methods re same. U.S. 11 pp.

analgesia, tolerance and dependence with heroin - , laam - and hydromorphone zinc tannate preparations. 748941 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INTL.

the antagonistic effect of cadmium upon zinc metabolism in mice as assessed by immunocompetence. 849558 ORDER NO: AAD84-16074

antioxidants and age-related maculopathy (vision, carotenoid). 01587062 ORDER NO: AAD97-23742

application of phytase in feed having low content of phytate. PCT Int. Appl. 24 pp..

aqueous feed additive comprising lactic acid, organic acid and chelated trace elements. PCT Int. Appl. 15 pp.

aspects of the regulation and function of metallothionein in the mouse (copper, zinc regulation, development). 836343 ORDER NO: AAD84-04942

assessment of artificial plasma volume expansion in malnourished rats: effects on the conceptus (fetal growth). 01204155 ORDER NO: AAD92-02782

assessment of zinc nutriture in rats and humans. 774005 ORDER NO: AAD82-06013

bioavailabilities of copper in copper proteinate, copper lysine and cupric sulfate, and copper tolerances of holstein and jersey cattle. 01423392 ORDER NO: AADAA-I9521355

bioavailability of zinc to rats from soy flour and chicken based diets. 824684 ORDER NO: AAD83-24066. The Bioavailability of Intrinsic and Extrinsic ('65)Zn to Rats From

biological properties of the l. pneumophila exoprotease fraction. 0984122 ORDER NO: AAD88-03953
Diss brain oxidative stress following zinc deficiency and hyperoxia exposure. 01598116 ORDER NO: AADNN-20509

Diss buffer participation in enzyme regulation: the catalytic activity of carbonic anhydrase and its modified analogues. 1016811 ORDER NO: AAD88-10566

Diss the characteristics of reptilian keratins: an analysis of the molecular events associated with the evolution of the vertebrate epidermis. 690971 ORDER NO: AAD80-17033

Diss characterization and metabolism of alpha-2u-globulin -- a male sex-dependent protein of the rat. 838449 ORDER NO: AAD84-00485

Diss characterization, fate and environmental risk assessment of microbial, elemental and toxic components of fractionated broiler litter during storage and reutilization. 01295605 ORDER NO: AAD93-16361

Diss characterization of avian immune response genes expressed during development and cellular activation. 01673822 ORDER NO: AAD99-09754

Diss characterization of dgataa/pannier and analysis of the regulation of the dgataa/pannier late embryonic expression pattern in the amnioserosa and dorsal ectoderm (drosophila). 01510450 ORDER NO: AAD96-32812

Diss characterization of dna-binding proteins which regulate expression of the chicken apo very low-density lipoprotein ii gene. 01394008 ORDER NO: AADNN-90263

Diss characterization of the adherens junction protein zyxin: its role in cell-substratum adhesion. 01280659 ORDER NO: AAD93-08491

Diss characterization of the biological activities of porcine interleukin-6 (antibody production). 01451573 ORDER NO: AADAA-I9541358

Diss characterization of transcription repression by the yin-yang 1 protein (yy1) by mutagenesis and identification and characterization of a potential yy1-interacting cellular factor. 01565879 ORDER NO: AAD97-21538

Diss chronic lead intoxication in the rhesus monkey. 793908 ORDER NO: AAD82-20890

Diss cloning and characterisation of a novel zinc finger protein that interacts with p75ntr (nerve growth factor, brain derived neurotrophic factor, trka). 01689892 ORDER NO: AAD99-17329

Diss cloning and characterization of the mouse ret finger protein (rfp), a b box zinc finger protein. 01500570 ORDER NO: AAD96-26086

Diss cobalt ion absorption kinetics and interactions with zinc and iron in the rat. 01431653 ORDER NO: AADAA-I9529542

Diss comparative study of vertebrate collagenases from mammalian and amphibian sources. 910784 ORDER NO: AAD86-03803

Diss copper absorption from the small intestine of the chicken (gallus domesticus) (metallothionein, estrogen). 845064 ORDER NO: AAD84-12711

Diss copper and lead bioavailability from vegetarian and omnivore diets. 876996 ORDER NO: AAD85-04816

Diss copper deficiency in the rat--sex differences and the influence of dietary factors. 01095906 ORDER NO: AADDX-88033

Diss crystal structure of a zinc finger/dna complex: a framework for understanding how zinc fingers recognize dna. 01183741 ORDER NO: AAD91-32704

Diss cytokine binding and scavenging functions of alpha-2-macroglobulin. 01386392 ORDER NO: AADMM-88805

Diss development, characterization and initial analyses of cysteine-rich intestinal protein transgenic mice (thymic, lymphocytes). 01598405 ORDER NO: AAD98-00090

Diss development of a cloning system for gene expression in pasteurella multocida. 01295811 ORDER NO: AAD93-16820

Org Met development of a toxicant delivery system utilizing rodent grooming behavior (pest control). 01205488 ORDER NO: AAD92-07313

Diss development of gaba(b) binding site distribution and pharmacology in rat brain. 01371030 ORDER NO: AAD94-23334

Diss developmental regulation of metals by metallothionein: genetically altered mice as a model. 01652668 ORDER NO: AADMQ-28603

Diss the distribution and binding of zinc in the rat hippocampus. 835563 ORDER NO: AAD84-03127

Diss divergent effects of zinc, protein and energy deficiencies on skeletal muscle mass, muscle fiber diameter and serum insulin-like growth factor-1 concentration in growing rats. 01675181 ORDER NO: AADMQ-32222

Diss ecophysiology of the common cockle (cerastoderma edule l.) in southampton water, with particular reference to pollution (england). 1092481 ORDER NO: AADDX-87466

Diss the effect of a zinc deficiency and alcohol intake during gestation in the rat. 0976109 ORDER
effect of cellular zinc concentration on glucocorticoid induced gene expression (steroid hormones). 01503749 ORDER NO: AAD96-29153

effect of chronic alcoholism on the metabolism of the trace elements zinc, copper and iron in developing rats original title: efectos del alcoholismo cronico sobre el metabolismo de los oligoelementos zinc, cobre y hierro en ratas en crecimiento. 1042300 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT’L.

the effect of chronic maternal ethanol consumption on maternal and fetal nutritional status and on protein synthesis in the fetus (alcohol syndrome). 839365 ORDER NO: AAD84-06966

the effect of dietary zinc deficiency of polyamines, polyphosphates and membrane skeleton proteins in the rat erythrocyte. 01225235 ORDER NO: AADNN-67919

the effect of e. coli endotoxin in the metabolic responses of wistar rats (escherichia coli). 1018130 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT’L.

the effect of low dietary zinc on outcome of primary and challenge nematode infections in mice (heligmosomoides polygyrus). 01248318 ORDER NO: AADMM-66413

the effect of ovariectomy and dietary factors on bone metabolism and calcium homeostasis in rats. 952520 ORDER NO: AAD87-09460

the effect of peripheral deafferentation on specific axonal systems and glial elements in the main olfactory bulb of the rat. 01466062 ORDER NO: AADAA-IMM01871

effect of selected dietary fibers on zinc availability in the rat. 865473 ORDER NO: AAD84-26960

effect of supplemental molybdenum on estrus activity, reproduction, molybdenum / copper enzyme activity and tissue minerals in the sd rat. 1039997 ORDER NO: AAD89-00934

the effect of the anticarcinogenic drug 6-mercaptopurine on mineral metabolism. 0983591 ORDER NO: AAD87-29922

effect of tylosin on the growth of early weaned pigs.

effect of zinc deficiency on cadmium-induced immunopathology. 01271084 ORDER NO: AADMM-68281

the effect of zinc deficiency on platelet aggregation and platelet arachidonate metabolism. 794736 ORDER NO: AAD82-26178

the effect of zinc deficiency on the growth promoting actions of growth hormone and insulin-like growth factor-i. 01464918 ORDER NO: AADAA-IMM00009

the effect of zinc nutriture on prostaglandin synthesis and fatty acid composition in rat testes. 842169 ORDER NO: AAD84-09575

effect of zinc on immune function in young swine and on models of susceptibility to serpulina hydysenteriae infection. 01395106 ORDER NO: AAD95-03560

effect of zinc on protein-energy malnutrition. 807129 ORDER NO: AAD83-07732
the effects of a marginal deficiency of zinc in utero on growth and immune development in the mouse: a possible model for normal term low birth-weight infants. 01126264 ORDER NO: AAD13-40379

effects of a running stress on vitamin a status in the rat (retinol-binding protein, liver, zinc, electron microscopy). 889513 ORDER NO: AAD85-13334

effects of alteration of the dietary amino acid balance on brain neurotransmitter concentrations and patterns of growth and food intake in the chick. 1059965 ORDER NO: AADD--85037

effects of amphetamine on isolation-induced aggression original title: efectos de la anfetamina sobre la agresion inducida por aislamiento. 01154243 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INTL.

effects of developmental zinc deprivation on bone noncollagenous proteins and bone alkaline phosphatase activity in rat pups. 1025324 ORDER NO: AAD88-11897

effects of di-(2 ethylhexyl)phthalate and mono-ethylhexyl phthalate on male rodent gonad. 841324 ORDER NO: AAD84-07834

effects of dietary copper, iron, and zinc on the toxicity of lead in male rats. 549786 ORDER NO: AAD76-02555

effects of dietary fat levels and fat sources on growth and trace mineral deposition in young male rats. 1022036 ORDER NO: AAD88-16364

effects of dietary zinc deficiency and malnutrition on the t-lymphocyte zinc-finger protein p56(lck) in mice. 01616250 ORDER NO: AADMQ-23380

effects of dietary zinc manipulation on insulin action in type 2 diabetes mellitus: a study in the db/db mouse. 01675208 ORDER NO: AADMQ-32249

effects of heavy metal pollution on woodland leaf litter faunal communities. 1021498 ORDER NO: AADDX-82816

effects of iron and zinc supplements on bioavailability of iron, copper, and zinc in young rats fed high fiber diets. 816480 ORDER NO: AAD83-15632

effects of low-level lead exposure on the development of the preweanling rat. 935989 ORDER NO: AAD86-23785

effects of maternal dietary zinc deficiency on the growth and immunocompetence of suckling a/j mice. 721745 ORDER NO: AAD13-19128

effects of olfactory impairment on maternal behavior of female golden hamsters.
the effects of postnatal zinc deficiency on spatial learning in rats. 01126547 ORDER NO: AAD13-40717

the effects of prenatal and postnatal zinc deficiency on development of long-term memory in the rat. 693987 ORDER NO: AAD80-20378

effects of prenatal nutrition on learning and motivation in rats].

effects of subacute magnesium deficiency and soy protein isolate on growth and reproduction in rats. 806683 ORDER NO: AAD83-06789

effects of the antituberculous drug ethambutol on zinc balance, distribution, and turnover: short-term studies modeling chronic toxicity. 0958957 ORDER NO: AAD87-08971

effects of varying dietary zinc intake of mouse pups during recovery from early undernutrition . 942079 ORDER NO: AAD87-01702

effects of zinc and copper supplementation on blood lipids and trace minerals deposition of young male rats fed either coconut oil or corn oil. 816484 ORDER NO: AAD83-15653

effects of zinc and copper supplementation on growth, lipid profiles, and trace mineral status in young male rats (sprague dawley rats, liver status). 905248 ORDER NO: AAD85-29421

effects of zinc and vitamin b-6 supplementation on growth and mineral deposition of young rats fed various levels of protein. 851859 ORDER NO: AAD84-17904

effects of zinc deficiency on bone metabolism in the rat. 699595 ORDER NO: AAD80-25491

effects of zinc depletion and repletion during lactation on rat dams and their offspring. 914874 ORDER NO: AAD86-08485

effects of zinc on cellular immunity, melanoma growth and metastasis in mice. 797024 ORDER NO: AAD82-27880

effects of zinc on skeletal alkaline phosphatase activity and skeletal tissues. 01520491 ORDER NO: AAD96-39093

effects of zinc phosphide treatments on hawaiian sugarcane rat populations (norway, polynesian). 829022 ORDER NO: AAD83-27878

effects of zinc status on hepatic poly(adenosine-ribose) polymerase function in response to dna damage. 01624917 ORDER NO: AADM2-24472

enhancement of site specific anaerobic reductive dechlorination of polychlorinated biphenyls (biodegradation). 01673607 ORDER NO: AAD99-09398

1973. environmental and livestock production (continued); internationalagriculture; meat science and muscle biology; non-ruminant nutrition;physiology. Journal of Animal Science 37: 227-
an epidemiologic study of cellulitis in broiler chickens in southern ontario (escherichia coli). 01499713 ORDER NO: AADNN-08581

the epidemiology of toxascariasis and baylisascariasis in wild carnivores in captivity. UMI Dissertation

erythroid development and gata-1. 01420833 ORDER NO: AADAA-IC423078

etiology and physiology of chemical-induced tibial dyschondroplasia in broiler chickens. 01124219 ORDER NO: AAD90-27533

experimental copper deficiency in the golden hamster and in healthy adult. 800202 ORDER NO: AAD83-01960

experimental copper deficiency in the golden hamster and in healthy adult men. 800202 ORDER NO: AAD83-01960

an experimental study of alcoholism in rats: modification in the metabolism of zinc and its relation with the morphological lesions in liver and testes original title: estudio experimental del alcoholismo en ratas: alteraciones del metabolismo del zinc y su relacion con las lesiones en el higado y los testiculos. 1042323 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

expression of mammalian metallothionein genes in escherichia coli and in saccharomyces cerevisiae (metal-resistance). 0962006 ORDER NO: AAD87-18017

factors affecting zinc retention in the rat. 0972319 ORDER NO: AAD87-27419

fluoride, dentin apposition and dental caries in the rat (streptococcus sobrinus). 01496496 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

gastrointestinal response to copper excess: studies on copper (and zinc). 01256055 ORDER NO: AADDX-97342

genomic organization and expression of murine zinc finger genes. 01424221 ORDER NO: AADAA-I9523248

a guinea pig model for low-level lead toxicity during gestation (glutamine synthetase). 01184354 ORDER NO: AAD91-34030

habitat affinity, populations, and control of black-tailed prairie dogs on the charles m. russell national wildlife refuge (montana). 812685 ORDER NO: AAD83-13100

half site, spacing and orientation: the dna binding specificity of nuclear receptors with zinc-fingers (retinoid). 01474818 ORDER NO: AADAA-I9611474

hyaline cartilage and secondary bone matrix changes at zinc deficiency original title: modificaciones producidas por la deficiencia de zinc en los componentes de la matriz del cartilago
Diss hyperzincuria. 01424898 ORDER NO: AADAA-I9524703

Diss identification and characterization of krk-1, a novel kidney specific krab-domain containing zinc finger protein (transcription factor). 01598926 ORDER NO: AAD98-00873

Diss an impairment in metabolic availability of vitamin a is associated with the onset of diabetes in bb rats. 01708359 ORDER NO: AADMQ-40081

Diss inadequacy of phospholipid in the enterocyte: a primary biochemical defect responsible for impaired vitamin a transport in zinc deficiency. 01414075 ORDER NO: AADAA-I9517446

Diss influence of chemical and environmental stresses on metal-binding proteins: species-dependent effects. 1035265 ORDER NO: AAD88-20526

Diss the influence of dietary trace metals upon the enzymatic, neurochemical, and neuropathological expression of aluminum neurotoxicity. 750288 ORDER NO: AAD81-15393

Diss the influence of dietary zinc and genetic factors on drug-induced malformations in rats and mice. 771822 ORDER NO: AAD82-05005

Diss the influence of environmental, nutritional, and management factors on feathering and incidence of dermatitis of broiler chickens. 699794 ORDER NO: AAD80-26067

Diss influence of faba bean diets with different levels of zinc on nutritional status and immune response in mice original title: influencia de la ingesion de dietas de vicia faba l. con diferentes niveles de zinc sobre el estado nutritivo y la respuesta inmune de raton. 01140851 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INTL.

CP influence of inhibitors of protein synthesis on zinc metabolism.| au-n.j. 08903, usa. Proceedings of the Society for Experimental Biology and Medicine|

Diss influence of zinc on the teratogenic and mutagenic potential of ethanol in mice. 693320 ORDER NO: AAD80-18989

Diss influences of nutrition on immunity and resistance to murine viral hepatitis. 847132 ORDER NO: AAD84-14279

Diss inhibited feathering, k(i) a sex-linked dominant gene in the turkey (meleagris gallopavo), genetics and nutrition. 01492594 ORDER NO: AADAA-I9623309

No COC initial submission: reproductive and developmental toxicity screen of zinc o,o' di-2-ethylhexyl dithiophosphate in rats with cover letter dated 042094. EPA/OTS; Doc #88-940000235

Diss insulin as a regulator of protein-induced hypercalciumria. 1045886 ORDER NO: AAD89-05372

Diss insulin-induced muscle membrane changes in a rat model for hypokalemic periodic paralysis (inward rectifying, potassium channel, disease). 902588 ORDER NO: AAD85-29889

Not Avail intake of zinc sulphate in drinking water by grazing beef cattle.|
the interaction of dietary protein and zinc deficiencies with heligmosomoides polygyrus infection in mice. 01464914 ORDER NO: AADAA-IMM00005

interaction of phytic acid and zinc affecting copper bioavailability in rats. 917260 ORDER NO: AAD86-07921

interactions among silicon, copper, zinc, iron and ascorbic acid in the rat. 01482245 ORDER NO: AADAA-I9613050

interactions among zinc, copper, iron, manganese, and ascorbic acid in the Japanese quail (dietary supplements, toxicity, perosis, trace elements, anemia). 887582 ORDER NO: AAD85-14498

interactions of cadmium and zinc during pregnancy. 1046169 ORDER NO: AAD89-06090

interactions of cadmium, copper and zinc in animals chronically to low levels of dietary cadmium. 228157 ORDER NO: AAD60-03727

interrelationship of high zinc and high calcium in the maternal diet on the mineral composition of brain and liver in the newborn, weanling and maternal rat. 392237 ORDER NO: AAD71-06354

an investigation of growth, copper metabolism, and iron metabolism of rats fed high levels of zinc. 228157 ORDER NO: AAD60-03727

investigations of zinc in taste perception, adolescent growth and zinc/fat interrelationships. 785785 ORDER NO: AAD82-17516

isolation and characterization of cDNAs from mammary mRNAs differently expressed in lethal milk mutation mice (zinc deficiency). 01619733 ORDER NO: AAD98-15272

kainic acid-induced hyperalgesia as a model for the study of chronic pain (fibromyalgia syndrome). 01619561 ORDER NO: AAD98-15030

kinetic studies on thermolysin. 771755 ORDER NO: AAD82-04866

a kinetic study of zinc metabolism throughout the life cycle of the mouse. 0978962 ORDER NO: AAD87-29965

lead poisoning in swans cygnus olor. 01268158 ORDER NO: AADDX-93538

lipid metabolism: interaction effects of dietary pectin, phytate, and calcium with zinc and copper (HDL-cholesterol). 823743 ORDER NO: AAD83-21087

mcm2 and mcm3, two homologous proteins with a cell cycle-dependent nuclear localization, are important for ARS function in yeast. 01200167 ORDER NO: AAD92-04082

mechanisms of the zinc protective effects against carbon-tetrachloride hepatotoxicity. 771333 ORDER NO: AAD82-03738

mechanistic and structural studies of mouse adenosine deaminase (charge stabilization, enzyme
<table>
<thead>
<tr>
<th>Document Type</th>
<th>Title</th>
<th>Publication Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diss</td>
<td>the metabolism of metallothionein in perinatal rat liver.</td>
<td>1070528 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INTL.</td>
</tr>
<tr>
<td>Diss</td>
<td>metallothionein, zinc, and androgen interactions in the rat prostate gland.</td>
<td>0976025 ORDER NO: AAD87-29437</td>
</tr>
<tr>
<td>Diss</td>
<td>mineral bioutilization as affected by sugars.</td>
<td>939551 ORDER NO: AAD86-29533</td>
</tr>
<tr>
<td>Not Avail</td>
<td>mineral metabolism in relation to resistance of the body (ca, na and status in horses, calves and piglets).</td>
<td></td>
</tr>
<tr>
<td>Diss</td>
<td>mineral metabolism of rats and humans fed inorganic tin (zinc).</td>
<td>838455 ORDER NO: AAD84-00491</td>
</tr>
<tr>
<td>Diss</td>
<td>moessbauer diffraction studies of anisotropic crystals.</td>
<td>1001580 ORDER NO: AAD81-23712</td>
</tr>
<tr>
<td>Diss</td>
<td>molecular and genetic studies of ciliary neurotrophic factor (cntf, pzf).</td>
<td>01610526 ORDER NO: AAD98-09802</td>
</tr>
<tr>
<td>Diss</td>
<td>molecular studies of the phenylalanine-inhibited isozyme of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from escherichia coli (dahps(phe)).</td>
<td></td>
</tr>
<tr>
<td>Diss</td>
<td>molybdenum requirement of rats (trace elements).</td>
<td>01160188 ORDER NO: AAD91-15361</td>
</tr>
<tr>
<td>Diss</td>
<td>murine immune responses to herpes simplex virus-1 in relation to nutrition.</td>
<td>01146869 ORDER NO: AAD91-06593</td>
</tr>
<tr>
<td>Diss</td>
<td>murine model.</td>
<td>865959 ORDER NO: AAD84-28042</td>
</tr>
<tr>
<td>Diss</td>
<td>mutations within the ery1 transcriptional unit are associated with juvenile lethality, neuromuscular tremors and germ cell defects in jdf2 mutant mice and pigmentation abnormalities in p(x) and p(m) alleles.</td>
<td>01695772 ORDER NO: AAD99-23343</td>
</tr>
<tr>
<td>Diss</td>
<td>neuronal plasticity in the hippocampal formation after selective hippocampal cell destruction (sympathetic ingrowth).</td>
<td>839838 ORDER NO: AAD84-07825</td>
</tr>
<tr>
<td>Diss</td>
<td>nmr structural studies of the lim domain only proteins: cysteine rich protein and cysteine rich intestinal protein.</td>
<td>01454820 ORDER NO: AADAA-19544012</td>
</tr>
</tbody>
</table>
nutrient availability modulating physiology and pathogenicity of legionella pneumophila (iron limitation, zinc metalloprotease, ph dependence). 01626190 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

nutrient interactions of lead and distribution, mobilization and adverse effects of prolonged maternal lead stores. 1040850 ORDER NO: AAD89-03553

do the occurrence and toxicology of heavy metals in chesapeake bay waterfowl (duck, clangula, melanitta, hyemalis, deglandi, anas, platyrhynchos, rubripes, strepera, maryland, virginia). 856378 ORDER NO: AAD83-12307

do of young male rats fed adequate and excess protein. 01090702 ORDER NO: AAD90-05827

do olfactory and photoperiodic mediation of reproduction in the rat (rattus norvegicus). 846785 ORDER NO: AAD84-13535

on the morphology of grain boundary segregation: effect of grain boundary structure in aluminum-zinc alloys.

oral dimercaptosuccinic acid and ongoing exposure to lead (chelation)+. 01391103 ORDER NO: AAD95-02198

do the parameters that influence reproductive success in congeneric strains of house mice. 1045268 ORDER NO: AAD89-00907

do the pathogenesis of chemically induced pancreatic injury pancreatic injury. 01292096 ORDER NO: AAD93-14086

do performance of broilers and layers fed crab meal and other substances for improving utilization of diets containing whey or cellulose. 929314 ORDER NO: AAD86-19225

perinatal and postweaning effects of the interaction between maternal ethanol ingestion and low dietary zinc in the rat (caries). 844602 ORDER NO: AAD84-11475

physiological effects of chitosan and chitorich(tm) on rats fed at two levels of lipid and fiber. 01617028 ORDER NO: AAD13-87791

phytate, phytase, germination and zinc bioavailability from peas (processing, electron microscopy). 904918 ORDER NO: AAD85-27116

post-translational modifications and expression stability of gpi-anchored and secreted forms of a recombinant metalloproteinase (glycosylphosphatidylinositol). 01631287 ORDER NO: AADNQ-25122
Diss poultry offal as a source of energy and protein in growing-finishing swine diets (lactobacillus acidophilus, silage, viscera, zinc-65). 911526 ORDER NO: AAD86-06096

Unrel preparation of a fruit nutrient "zengguosu" which can increase fruit production. Faming Zhuanli Shenqing Gongkai Shuomingshu : 4 pp.

Diss prevention of cadmium induced immunopathology by zinc in mice. 1057441 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

Diss prevention of silica urolithiasis (urolithiasis, sheep). 01223456 ORDER NO: AAD92-18298

Diss proton transfer in catalysis by the carbonic anhydrases. 01690720 ORDER NO: AAD99-19557

Diss purification and characterization of pit viper venom components (e toxin, hemorrhagin, crotamine, neurotoxin, rattlesnake). 926840 ORDER NO: AAD86-18067

Diss purification and properties of rat intestinal peptidyl dipeptidase a. 01159591 ORDER NO: AADDX-92140

HHE purification, inhibition and mechanistic studies of clostridium histolyticum and human neutrophil collagenases. 929270 ORDER NO: AAD86-19145

Diss rapid effects of dietary zinc on the epithelium of the small intestine in zinc deficient rats. 01557715 ORDER NO: AADMM-14384

Diss the rapid effects of dietary zinc on the structure and function of the lower gastrointestinal tract of the rat. 01512429 ORDER NO: AADMM-09652

Diss reactive synaptogenesis in the dentate gyrus following entorhinal cortex/fimbria fornix transections in adult rats (entorhinal cortex, fimbria fornix). 01408267 ORDER NO: AADAA-I0575709

Diss regulation of hepatic glutaminase. 1064628 ORDER NO: AAD89-15087

Diss relationship between the concentration of intracellular divalent cations and excitotoxicity (calcium, magnesium, zinc, glutamate). 01704096 ORDER NO: AAD99-28074

Diss relative bioavailability of different organic and inorganic zinc and copper sources in ruminants and rats (lysine, methionine). 01469980 ORDER NO: AADAA-I9606713

Diss reversible chelation of bouton zinc: effects on hippocampal function measured behaviorally.
Diss the role of mouse adenosine deaminase in purine metabolism: physiological and mechanistic aspects. 01409906 ORDER NO: AADAA-I9514209

Diss the role of the main and vomeronasal olfactory systems in the mediation of individual recognition in spiny mice. 922167 ORDER NO: AAD86-16364

Diss role of the vomeronasal organ in murine priming and signalling chemocommunication systems. 738309 ORDER NO: AAD81-03936

Diss scientific basis for the use of cyanobacteria in bioremediation (synechococcus, heavy metals). 01463365 ORDER NO: AADAA-I9606027

Diss the search for a model to define the physiological interaction of zinc and epidermal growth factor in the rat esophagus. 01557776 ORDER NO: AADMM-14458

Unrel SEM and Microprobe Analysis of Bone Response to Zinc-Amalgam Implants. <NOTE> Rept. for Sep 75-Aug 77| AU- Liggett, W. R. ; Brady, J. M. ; Customers); (703)605-6000 (Other Countries); Fax at (703)321-8547; and Email at Orders@Ntis.Fedworld.Gov. NTIS Is Located at 5285 Port Royal Road, Springfield, VA, 22161, USA.

Diss the sensory regulation of maternal aggression in lactating norway rats (rattus norvegicus). 01408840 ORDER NO: AADAA-I9511978

Diss sequential changes in the buccal mucosa of zinc-deficient rats (mucosa).

Diss skeletal development and performance of broilers. 1080439 ORDER NO: AAD89-24144

Diss smooth muscle cells. 01456214 ORDER NO: AADAA-I9601699

Diss isolation and partial characterization of fetal hepatic metallothionein and its role during cadmium exposure in late pregnancy. 754864 ORDER NO: AAD81-18418

Diss some effects of excess dietary zinc on iron-porphyrin compounds in the rat. 099850 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

Diss specificity of transcriptional control in drosophila development (homeodomain). 01212813 ORDER NO: AAD92-10011

Diss the structural and functional studies of the major nucleocapsid protein of rous sarcoma virus. 1039675 ORDER NO: AAD97-20763

Diss structural determinants of catalysis and steroid binding in 3-alpha-hydroxysteroid dehydrogenase. 01572088 ORDER NO: AAD97-27294

Diss structure and function of the chicken gata-1 transcription factor (zinc fingers, dna binding protein). 01470606 ORDER NO: AADAA-I9607650

Diss studies of age-related testicular and reproductive endocrine toxicity of di-n-butyl phthalate in rats (testicular atrophy). 01164692 ORDER NO: AAD91-19934
Diss studies of select trace element nutrition upon cardiac electrical, morphometrical and ultrastructural aspects of the rat and pig. 01377915 ORDER NO: AAD94-27827

Diss studies of specific ions on chromatin and dna structures (cations). 01351262 ORDER NO: AAD94-11479

Diss studies of the effects of a range of dietary intakes of corn and olive oils and butter upon metabolic responses to endotoxin, in the wistar rat. 01496091 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

Diss studies of the mechanisms of zinc uptake and homeostasis in rat intestine. 804855 ORDER NO: AAD83-05763

Diss studies on intestinal copper and zinc absorption in the rat (perfusion system, basolateral membrane, metallothionein). 882096 ORDER NO: AAD85-10822

Diss studies on the action of pectin and guar gum in growth depression of chicks. 766383 ORDER NO: AAD81-29959

Abstract studies on the importance of zinc for fetal development in swine. (2p.): 32A.

Diss studies on the regulation of the bel-6 proto-oncogene during embryonal development and lymphoid functions. 01678187 ORDER NO: AAD99-10687

Nut def 1984. Studies Show Zinc Deficiency Retards Brain Development In Rats. <NOTE> NTIS Tech Note

Diss study of cis-acting elements and trans-acting factors involved in the differential expression of chicken u4 snrna genes (proximal palindrome binding factor). 01482688 ORDER NO: AADAA-19613833

Diss a study of the human x-linked inhibitory apoptosis protein xiap and its murine homologue miap-3. 01672988 ORDER NO: AADNO-32444

Diss a study of zinc concentration in hair as an indication of zinc imbalances. 755383 ORDER NO: AAD81-19631

Diss sugar alcohols and mineral metabolism: an experimental study of the effect of dietary sugar alcohols on the mineral, electrolyte and acid-base balance of the rat (polyol, xylitol, sorbitol). 1032557 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

Diss synthesis, antineoplastic activity and mode of action of novel styryl ketones. 801525 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

Diss taste dysfunction in zinc-depleted rats. 0956399 ORDER NO: AAD87-12455

Diss teratogenic effect of calcium edetate (ca-edta) in rats and the protective effect of zinc. 768251 ORDER NO: AAD81-29606

Diss test sequencing as an effective approach to isolate cdnas coding for proteins putatively involved in myocardial development. 01505742 ORDER NO: AADMM-07551

Nut therapeutic diet for dogs with lymphoma. PCT Int. Appl. 25 pp..

Diss therapeutic management of avian lead intoxication (columba livia). 01400165 ORDER NO:
tithiobiuret toxicity in the rat (delayed onset muscle weakness, antagonion, chelating agents, refractoriness, neurotoxicity). 904749 ORDER NO: AAD85-22544

toxic interactions among lead, zinc and cadmium with varying levels of dietary calcium and vitamin d in rats. 530477 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INTL.

toxicity of cadmium in pregnant rats fed a zinc-deficient diet. 512425 ORDER NO: AAD74-26758

toxicity of cadmium to the developing lung. 775918 ORDER NO: AAD82-01418

trace element profile of b-16 murine melanoma by particle-induced x-ray emission analysis. 752168 ORDER NO: AAD81-15696

transcriptional repression and activation mediated by a new hela nuclear phosphoprotein p21/sii (oncogene). 01487561 ORDER NO: AADAA-I9618604

tsca section 8(e) report- zinc dialkyldithiophosphates with attachment. EPA/OTS; Doc #88-8100379

ultrastructural and functional effects of lead poisoning on adult canine myocardium: assessment of thiamin treatment (papillary muscle, zinc protoporphyrin, thiamin pyrophosphate, alad). 905404 ORDER NO: AAD86-00036

an ultrastructural study of enamloid matrix formation and mineralization in a teleost, cichlasoma cyanoguttatum, using selected experimental systems (odontogenesis, development, ameloblast). 836225 ORDER NO: AAD84-04689

ultrastructure of keratinizing mucosa of rats fed a zinc-low diet. 334730 ORDER NO: AAD68-16717

uptake of stable isotopes as a method of labeling hair (copper, iron, zinc). 950219 ORDER NO: AAD87-08664

use of a texaphyrin in photodynamic therapy of melanoma and other pigment-related lesions. PCT Int. Appl. 56 pp.

1982. Use of Isotopes to Detect Moderate Mineral Imbalances in Farm Animals. Results of a CO-Ordinated Research Programme on the Use of Isotope Techniques for Detection of Moderate Mineral Imbalances in Farm Animals Organized by the Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development and Presented
vascular, nutritional and systemic aspects of zinc physiology: interactions with prostaglandins, essential fatty acids and the pineal. 692894 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

veterinary treatment of animals having demodectic mange. U.S. 3 pp..

vitamin A metabolism during the repletion of zinc deficient rats. au-

zinc - an essential element for hair growth. au-

Trace Element Metabolism in Man and Animals - 3.

zinc and prostaglandin interrelationship in metabolism. 758093 ORDER NO: AAD81-22541

zinc bioavailability from legumes in non-human primates (macaca fascicularis). 882142 ORDER NO: AAD85-10881

zinc complex of polyether antibiotic and its use. Ger. Offen. 83 pp..

zinc deficiency changes oral fine structure and permeability to carbon-14 molecules of rabbit periodontium. 759745 ORDER NO: AAD81-21687

zinc deficiency: effect on insulin metabolism and hepatic insulin binding in pregnant rats and fetuses| original title: deficiencia nutrional de zinc. efecto sobre la insulina y su interacción con el receptor hepático en ratas gestantes y en sus fetos. 01140996 ORDER NO: NOT AVAILABLE FROM UNIVERSITY MICROFILMS INT'L.

zinc deficiency in the pregnant rat affects maternal and fetal metabolism of polyunsaturated fatty acids. 01408183 ORDER NO: AADAA-INN92825

zinc in soybeans. chemical nature and bioavailability. 0996067 ORDER NO: AAD88-14495

FL zinc kinetics and metabolism in rats fed diets with or without phytic acid. *Document Title* Trace Element Metabolism in Man and Animals - 3.

FL zinc metabolism in pigs. xiii. effect of biotin on the development of zinc deficiency. *Document Title* Arzberetning 1977. Institut Foranimals; Sus Scrofa; Ungulates

Diss zinc-methionine and avian cellular immunity (turkey). 01418639 ORDER NO: AADAA-19518343

HHE [zinc oxide-eugenol as dental material (1)]. <original> zinkoxid-eugenol als zahnarztlicher werkstoff (teil 1) au- than other dental materials. as they alleviate pain and are bacteriostatic and antiseptic, they are well tolerated by patients. the cements are good insulators and possess better sealing properties than zinc phosphate cements. because of their poor mechanic properties, the conventional zinc oxide-eugenol cements are mainly used as temporary fixing contents and filling materials, for gingival dressings and together with filling materials as impression materials. recently, reinforced zinc oxide-eugenol cements and cements containing ethoxy benzoic acid (eba) have been developed. these new cements have considerably better mechanic properties and are therefore used for cement bases, indirect capping, long-term temporary fillings and in selected cases as definite fixing cements.

No COC Abbott, W. W. and Couch, J. R. the effects of zinc bacitracin upon broiler performance under normal conditions and during severe outbreaks of avian encephalo myelitis. *POULTRY SCI.* 49 (5). 1970 1362-1363

Abdel Samee, A. M. Suez Canal University El Arish Egypte Environmental Agricultural Sciences College Animal Production Department. 1995. Using some antibiotics and probiotics for alleviating heat stress on growing and doe rabbits in egypt [avoparcin, flavomycin, zinc-bacitracin; bospro (bs), lacto-sacc (ls)]. *World Rabbit Sciences. V. 3(3) P. 107-111*

Abdulrahim, S. M(A), Haddadin, M. S. Y(A), Hashlamoun, E. A. R(A), and Robinson, R. K. 1996. The influence of lactobacillus acidophilus and bacitracin on layer performance of chickens

No COC

Nut def

FL

BioX

Drug

FL

Diss

Abou-EL-Fetouh, M. S. 1985. pathological experimental studies on rodenticides (zinc phosphide and endrin) toxicosis in albino rate and rabbits [egypt]. 119 P.

Not Avail

In Vit

In Vit

No Dose

Fate

In Vit

HHE

Aceves Lopez, Ana Bertha, Buntinx Dios, Silvia Elena, Aguirre Garcia, Maria Antonieta, Paniagua Vazquez, Jose Luis, and Rosiles Martinez, Rene. 1998. [Effect of breed and type of lambing on the concentration of copper and zinc in blood, milk and wool of penned sheep under restricted feeding]. <original> efecto de la raza y el tipo de parto en la concentracion de cobre y zinc en sangre, leche y lana de ovejas en confinamineto bajo restriccio alimenticia. *Veterinaria Mexico.* V. 29(4) P. 313-321.

FL AGRANOVSKAYA, B. A. effect of prophylactic micro element vitamin food supplements on the reproductive function of white rats treated with carbon di sulfide. *TR LENINGR SANIT-GIG MED INST; 103. 1973 118-120*

FL AGRANOVSKAYA, B. A. effect of prophylactic trace element-vitamin feedings on the generative function of white rats exposed to carbon disulfide. *TR LENINGRAD SANIT-GIG MED INST 103:118-120,1973*

Unrel

No Oral

No Oral

CP

Nut def

Drug

Nut def

FL

FL

CP

FL

Nut

Abstract

Aiken, S. P., Horn, N. M., and Saunders, N. R. 1989. effect of histidine on zinc distribution in

FL

FL

Phys

Nut def

Nut def

Alt

Mix

No COC

No COC

Bact

No Oral

No COC

No Oral

Nut def

Nut def
Al-Atteyah, K. A. and Al-Othman, A. A. King Saud Univ. Riyadh Saudi Arabia Faculty of Agriculture. 1995. influence of dietary zinc on lipoprotein cholesterol and organ lipids and trace
elements in rats. *Annals of Agricultural Science. V. 40(1) P. 269-278*

Bact

Abstract

Unrel

No COC

Abstract

Al-Mukhtar, F. J. M. Bristol Polytechnic UK. 1988. Studies on dietary zinc and copper concentration and their homeostatic balance in mammalian blood and liver. *Index to Theses Accepted for Higher Degrees in the Universities of Great Britain and Ireland. V. 36(2) P. 798*

No Dose

Nut def

Mix

Al-Zuhair, H., El-Fattah, A. A. A., and El-Sayed, M. I. Pharmacology Department Faculty of Pharmacy King Saud University PO Box 22452 Riyadh 11495 Saudi Arabia. 1998. The effect of meclofenoxate with ginkgo biloba extract or zinc on lipid peroxide, some free radical scavengers and the cardiovascular system of aged rats. *Pharmacological Research. V. 38(1) P. 65-72*

Acu

No Oral

Nut def

No Oral

Diss Albuquerque, R. de. 1988. effect of sodium chloride, zinc oxide and potassium iodide, compared with feed restriction, on induced moulting in laying hens and their productivity. *Departamento De Cricao De Ruminantes e Alimentacao Animal, Faculdade De Medicina Veterinaria e Zootecnia, Universidade De Sao Paulo, Sao Paulo, Brazil.* 86 pp.

or aurin tricarboxylic acid]. <original> mise en evidence de l'action anti-inflammatoire de l'aluminon ou acide aurine tricarboxylique. *Comptes Rendus Des Seances De La Societe De Biologie Et De Ses Filiales*

Nut

Acu

No Control

HHE

Drug

CP

Prim

CP

Dead

No Dose

Mix

Alt

No Dose

Nut def AMEMIYA, K., KEEN, C. L., and HURLEY, L. S. protective effect of zn against 6-mercaptopurine teratogenesis. FED PROC FED AM SOC EXP BIOL 44:514.1985

Nut Amer, A. A. Azhar Univ. Cairo Egypt Faculty of Agriculture, Abdel-Hakim, N. F., Attia, F. M., and El-Gallad, T. T. 1985. studies on dietary manganese requirements of growing chicks egypt. Al-Azhar Journal of Agricultural Research. V. 4 P. 201-214

Fate Andermann, G. and Dietz, M. the bio availability and pharmaco kinetics of 3 zinc salts zinc pantothenate zinc sulfate and zinc orotate. European Journal of Drug Metabolism and Pharmacokinetics. 7 (3). 1982. 233-240.

ANDREWS, G. K. environmental toxicology using transgenic mouse models. *Crisp Data Base National Institutes Of Health*

No COC Angerhofer, R. A., Michie, M. W., Barlow, M. P., and Beall, P. A. phase 4, toxicological study no. 75-51-0497-91, assessment of the developmental toxicity of zinc naphthenate in rats, june
Diss Angono, R. S. 1988. response of old layer ducks to forced molting treatments and the relationship of their reproductive activity to a radial immuno diffusion test. 159 Leaves

FL Anke, M., Riedel, E., Brueckner, E., and Dittrich, G. the supply of wild ruminants with major elements and trace elements 3. the zinc content of winter grazing and the zinc status of red deer fallow deer roes and mouflons. ARCH TIERERNAEHR. Archiv Fuer Tierernahrung. 30 (5). 1980. 479-490.

FL Anon. 1999. abstracts of papers dealing with rabbits presented during the 2. symposium on housing and diseases of rabbits, furbearing animals and pet animals. celle (germany), 19-20 may 1999. <original> [resumes des papiers traitant du lapin presentes au 2. symposium sur l'elevage et les maladies des lapins, des animaux a fourrure et des animaux de compagnie. celle (allemande), 19-20 mai 1999]. World Rabbit Science. V. 7(3) P. 115-124

Nut def Anon. 1984. studies show zinc deficiency retards brain development in rats. Govt Reports Announcements & Index (GRA&I)

Org Met ANON. 20460. zinc phosphide. in: epa chemical profiles.

Abstract Ansari, M. S., Miller, W. J., Stake, P. E., Gentry, R. P., and Neathery, M. W. zinc metabolism and homeostasis failure in certain tissues of calves as influenced by duration of high zinc diet. FED PROC. Federation Proceedings. 32 (3 Part 1). 1973 906

FL Anshan, S. 1990. effects of zinc and calcium levels in hen diets on fertility and hatchability of the egg and their newborn chicks. Scientia Agricultura Sinica 23(6): 82-86.

Mix

No Oral

Nut def

Bio Acc

Mineral

Mineral

No Dose

Nut def

Org Met

No COC

No COC

Nut def

Mineral

Nut def

Abstract

Nut def APGAR, J. use of edta to produce zinc deficiency in the pregnant rat. *J NUTR 107.539-545,1977*

No Oral Apgar, J. zinc requirement for normal parturition in rats.

Carcin Arachi, Hideaki. relation between zinc and malignant tumor. iii. zinc contents in organs of

No Oral

FL

No Oral

In Vit

Unrel

Nut def

Nut def

Arce, D. S. and Keen, C. L. effects of maternal zinc and iron deficiency on the development of the cytochrome p-450 enzyme system in rats. *FASEBJ 1989 Feb;3(4):A1076*

Nut def

Abstract

Nut def

In Vit

No Dose

Not Avail

Bact

Model

No Oral

No COC

Rev

Rev

Plant

No COC

CP

Nut def

No Dose

No Oral

Abstract

No Dose

Abstract

CP

ARTILLO, R., MURILLO, M. L., TAVARES, E., and CARRERAS, O. 1998. comparative effects of zinc intestinal absorption through different intestinal segments in offspring rats effects
of ethanol.

SCIENTIFIC MEETING OF THE PHYSIOLOGICAL SOCIETY

CP
Aruga Jun, Minowa Osamu, Kuno Junko, Yaginuma Hiroyuki, Nagai Takeharu, Noda Tetsuo, and Mikoshiba Katsuhiko. 1997. mouse zic1 has an essential role in cerebellar development.

Gene
Aruga Jun, Nagai Takeharu, Nakata Katsunori, and Mikoshiba Katsuhiko. 1997. expression of zic1, zic2 and zic3, the vertebrate homologues of drosophila odd-paired during the body pattern formation process.
Developmental Neuroscience 19(1): 121.

No COC
Aruga Jun(A), Minowa Osamu, Yaginuma Hiroyuki, Kuno Junko, Nagai Takeharu, Noda Tetsuo, and Mikoshiba Katsuhiko. 1998. mouse zic1 is involved in cerebellar development.
Journal of Neuroscience 18(1): 284-293.

Nut def
Aruna Chhabra and Arora, S. P. 1987. effect of dietary zinc on the conversion of beta-carotene to vitamin a in crossbred calves.

Nut
Aruna Chhabra, Arora, S. P., and Jai Kishan. 1987. effect of different levels of zinc on the digestibility of organic nutrients and zinc balances.

Abstract
Poultry Science. 56 (5). 1977 1695

FL
Asai, Y., Mizuno, Y., Yamamoto, O., and Fujikawa, H. 1993. requirements of copper and zinc for foals in connection with the incidence of epiphysitis.
Animal Science and Technology 64(12): 1193-1200.

Nut
Asai Yo(A), Katsuki Ryoji, Matsui Akira, and Nanbo Yasuo. 1995. effects of rations and age on mineral concentrations of thoroughbred mare's colostrum.

In Vit
Asatryan, R. M., Badalyan, R. B., and Simonyan, A. A. anion-sensitive atpase in the subcellular fractions of hen brain in ontogenesis.

No Dose
Asberg, H. and Soderberg, U. importance of zinc for central nervous system functions.

Abstract
Asberg, H. and Soederberg, U. thyroxine-like effects of zinc on brain and behavior with firm dependence on several hormones.
BRAIN RES. Brain Research. 85 (1). 1975 197-198

Rev
Aschner, M. 1998. metallothionein (mt) isoforms in the central nervous system (cns): regional and cell-specific distribution and potential functions as an antioxidant.
Neurotoxicology 19(4-5): 653-60.

BioX

Nut
Ashida Kin-Ya, Matsu Tohrut(A), Itoh Jiro, Yano Hideo, and Nakajima Takashi. 2000. zinc distribution in the small-intestinal digesta of pigs fed skim milk powder or defatted soybean flour.
Biological Trace Element Research 74(1): 31-40.

Nut def
Ashraf, Mary Hale and Fosmire, Gary J. effects of marginal zinc deficiency on subclinical lead

CP ASTELL, R., BAEK, J. H., and CERKLEWSKI, F. L. 1986. influence of maternal ethanol ingestion and low dietary copper on rat liver copper-zinc superoxide dismutase activity. *FIFTH JOINT MEETING OF THE AMERICAN INSTITUTE OF NUTRITION*

CP Atallah, A. A., Hewedi, F. M., and Afify, A. S. Department of Animal Production Faculty of Agriculture Cairo University Giza Egypt. 1989. response of fayoumi chicken to force molting by high dietary zinc [animals, fish, and poultry production]. proceedings of the third egyptian british conference on animals, fish, and poultry production, 7-10 october 1989, alexandria, egypt. *P. 993-1002*

Org Met ATERADO, E. D. and ABAD, R. G. rat damage assessment and control studies in coconut ii. comparative effects of brodifacoum wax blocks and two bait formulations of zinc phosphide

Abstract

Rev

Nut def

Unrel

CP

No COC

Nut def

No Oral

No Tox

FL

FL

In Vit

CP

CP

No Oral
Aune, T., Ramstad, H., Heidenreich, B., Landsverk, T., Waaler, T., Egaas, E., and Julshamn, K.
1998. zinc accumulation in oysters giving mouse deaths in paralytic shellfish poisoning bioassay.
Vol. 17, No. 4 Journal Of Shellfish Research

No COC
regulator yyl. the bipartite transactivation domain is independent of interaction with the tata box-
binding protein, transcription factor iib, tfii55, or camp-responsive element-binding protein

FL

No Tox
Aver, D. E., Ng, J. C., Steele, D. P., and Seawright, A. A. Queensland Univ. St Lucia Australia
Dept. of Veterinary Pathology. 1988. monthly variation in the plasma copper and zinc
concentration of pregnant and non-pregnant mares [horses]. *Australian Veterinary Journal.* V.
65(2) P. 61-62

Nut def
Avery, R. A. and Bettger, W. J. 1991. effect of dietary zn deficiency on 2,3-diphosphoglycerate
and adenosine triphosphate concentrations in the rat erythrocyte. *The Journal Of Nutritional

Nut def
Avery, Ross A. and Bettger, William J. effect of dietary zinc deficiency and the associated drop
987-94.

Nut def
Avery, Ross A. and Bettger, William J. effect of dietary zinc deficiency on 2,3-

Nut def
Avery, Ross A. and Bettger, William J. zinc deficiency alters the protein composition of the
membrane skeleton but not the extractability or oligomeric form of spectrin in rat erythrocyte

Nut def
Avery, Ross Andrew. 1991. the effect of dietary zinc deficiency on polyamines,
polyphosphates and membrane skeleton proteins in the rat erythrocyte. *Avail.: NLC Order

No COC
855-60.

Phys
<NOTE> Progress Rept. DOE/ER/60713-T3

Nut def
acids of the linoleic series in the rat]. <original> efecto de la carencia de zinc sobre la biosintesis
in vivo de los acidos grasos de la serie linoleica en la rata. *Acta Physiologica Et Pharmacologica

Nut def
Ayala, S. and Brenner, R. R. effect of zinc deficiency on the in-vivo synthesis of fatty acids of

Nut def
Ayala, S. and Brenner, R. R. 1983. essential fatty acid status in zinc deficiency. effect on lipid
and fatty acid composition, desaturation activity and structure of microsomal membranes of rat

No Oral

Nut

Nut

Nut

Mix

Mix

Mix

Carcin

Unrel

Nut def

No COC

Plant

Aquatic

Abstract

No COC
Bailey, K. J. and Stephens, D. B. 1985. effects of vibration and noise on plasma acth and zinc

FL BAKOS, A. and TOCKA, I. the effect of grains poisoned with "nera" on coturnix c. japonica
under laboratory conditions.). *POL’NOHOSPODARSTVO; 15 (11). 1969 987-991*

FL Ballarini, G. Parma Univ. Italy Istituto di Clinica Medica Veterinaria. 1990. [nutrition and immunity]. <original> nutrizione e immunita. *Obiettivi e Documenti Veterinari. V. 11(2) P. 31-42

Eco-SSL for Zinc 133 June 2007

Abstract Baraldi, M., Caselgrandi, E., and Santi, M. reduction of withdrawal symptoms in morphine-

No COC

Mineral

Unrel

No Oral

CP

Nut def

Nut def

Nut def

Nut def

FL

In Vit

Phys

Gene

CP Barneveld, A. A. van PUMTA, Van den Hamer, C. J. A., and Houtman, J. P. W. drinking water hardness, trace elements and cardiovascular diseases: influence of ca (calcium) and mg (magnesium) on metabolism of cd (cadmium), co (cobalt), cu (copper), zn (zinc), and se (selenium) in mice. *Trace Substances In Environmental Health : ; Proceedings Of University Of Missouri's ... Annual Conference*. 1982. 1982. (16) p. 196-204.

In Vit Bartels, P. C., Helleman, P. W., and Soons, J. B. J. 1989. interference of plasma fluorophores on
the red blood-cell zinc protoporphyrin - hemoglobin ratio as determined on a hematofluorimeter.
Annals Of Clinical Biochemistry 1989, V26, Jul, P368-373

IMM

Bartlett, J. R(A) and Smith, M. O(A). 1999. effect of dietary zinc on immune response of heat-

Food

Bartness Timothy J(A) and Clein Marion R. 1994. effects of food deprivation and restriction, and
metabolic blockers on food hoarding in siberian hamsters. *American Journal of Physiology*
266(4 PART 2): R1111-R1117.

Unrel

Bartoli, G. M., Palozza, P., and Piccioni, E. enhanced sensitivity to oxidative stress in copper zinc
sod depleted rat erythrocytes. *BIOCHIM BIOPHYS ACTA. Biochimica Et Biophysica Acta.*

No Data

Barton, T. L. 1996. relevance of water quality to broiler and turkey performance. *Poultry
Science* 75(7): 854-6.

No COC

Bartov, I. 1994. effect of growth promoters on monensin toxicity in broiler chicks. *British

No COC

Bartov, I. Department of Poultry Science Agricultural Research Organization The Volcani Center
P. O. B. 6 Bet Dagan 50250 Israel. 1992. effects of energy concentration and duration of feeding
on the response of broiler chicks to growth promoters. *British Poultry Science. V. 33(5) P.*
1057-1068

FL

Basile, G. and Lucisano, A. 1982. distribution of cadmium, zinc and copper in tissues of chickens

No Oral

Basinger, M. A. and Jones, M. M. chelate antidotal efficacy in acute zinc intoxication. *Research

Org Met

BASKARAN, J., KANAKASABAI, R., and NEELANARAYANAN, P. evaluation of two
rodenticides in the paddy fields during samba and thaladi seasons. *INDIAN JOURNAL OF
EXPERIMENTAL BIOLOGY; 33 (2). 1995. 113-121.

No COC

Baskaran, J. Kanakasabai R. and Neelanarayanan P. 1995. evaluation of two rodenticides in the

FL

Basova, N. A., Berzin', N. I., and Markov, I. u. G. 1999. [the role of zinc in the iliac absorption of
various l-tryptophane forms in chickens]. "rol' tsinka v protsesse vsasyvanii
razlichnykh form l-triptofana v podvzdoshnoi kishke tsypliat. *Rossiiskii Fiziologicheskii Zhurnal
imeni I.M. Sechenova* 85(2)

Phys

Bassan, M., Zamostiano, R., Davidson, A., Pinhasov, A., Giladi, E., Perl, O., Bassan, H., Blat, C.,
Gibney, G., Glazner, G., Brenneman, D. E., and Gozes, I. 1999. complete sequence of a novel
protein containing a femtomolar-activity-dependent neuroprotective peptide. *Journal of
Neurochemistry* 72(3): 1283-93.

Dead

Basse, A. 1975. post-mortem findings in calves with the lethal trait a46, in black pied danish
cattle of friesian descent. 147-149.

No COC

Bastian, H. P., Gebhardt, M., and Vahlensieck, W. potential for nucleation as a first step in stone

Mix

Bastien, R. W., Bradley, J. W., Pennington, B. L., and Ferguson, T. M. 1979. effect of dietary

Fate Bebe, F. N. and Panemangalore, M. 1996. modulation of tissue trace metal concentrations in weanling rats fed different levels of zinc and exposed to oral lead and cadmium. *Nutrition Research.* 16(8): 1369-1380.

CP BEBE, F. N. and PANEMANGALORE, M. 1995. zinc deficiency and oral lead and cadmium exposure in weanling rats effects on tissue trace metals and metabolites of heme synthesis. *87TH ANNUAL MEETING OF THE AMERICAN SOCIETY OF ANIMAL SCIENCE*

Diss Becker, C. 1998. growth of hoof horn, as influenced by various dietary additives and substances applied to the hoof. 96 pp.

Org Met Becker, K. and Schultzze, G. (report of a trip to denmark for the study of resistance of rats to anticoagulants). *Prakt. Schaedlingsbekampfer; 23(7): 101-4 1971; (REF:10)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Publication</th>
<th>Year</th>
</tr>
</thead>
</table>
Nut def Behrens, G. 1992. [on the effect of dietary zinc deficiency on the lipid composition of the erythrocyte membrane in rat and swine]. <original> zum einfluss eines alimentaeren zinkmangels auf die lipizusammensetzung der erythrozytenmembran bei der ratte und beim schwein. 105 P.

FL Benedetto Castellote, Jose Luis, Castillo Rodriguez, Cristina, Hernandez Bermudez, Joaquin, Gutierrez Panizo, Candido, and Garcia Partida, Paulino. 1997. [productive period and twin pregnancy modify iron, copper and zinc serum levels in gallega ovine breed]. <original>el periodo reproductivo y la gestacion gemelar modifican las concentraciones sericas de hierro, cobre y cinc en la oveja de raza gallega. *Veterinaria Mexico. V. 28(1) P. 35-40

Plant BENGTSON, C., FOLKESON, L., and GORANSSON, A. growth reduction and branching frequency in hylocomium splendens near a foundry emitting copper and zinc. *LINDBERGIA* 8

FL Benitez G, M. P., Paramo Ramirez, Rosa Maria, and Esquivel Lacroix, Carlos F. 1996. chemical vasectomy in dogs using a zinc-arginine compound (neutersol). <original> vasectomia quimica en perros utilizando un compuesto de zinc-arginina (neutersol). *P. 345*

Org Met Berchev, K. and Minchev, T. 1967. on histologic changes of polysaccharides, deoxyribonucleic
acid, ribonucleic acid, and some enzymes in the liver of white rats acted on with zinc phosphide. *Nauchni Trudove Na Visshiia Meditsinski Institut, Sofia* 46(5): 71-6.

FL Berende, P. L. M., Terluin, R. W., and Wal, P. van der. 312. high doses of nitrate in rations for milk-fed calves. 1. effect on zootechnical characteristics, methemoglobin formation and nitrate and nitrite in some organs. *Zeitschrift Fur Tierphysiologie, Ttierernahrung Und Futtermittelkunde*

Abstract Berg, G. J. and Ollerich, D. A. lamellar structures in purkinje cell dendrites of rat cerebellum. *ANAT REC. Anatomical Record.* 190 (2). 1978 337

Fate

Nut def

Nut def

Nut def

Bio Acc

Nut def

Nut def

Nut def

Chem Meth

Nut def

Nut def

Nut def

Bio Acc

Nut def

CP Berry, W. D. and Brake, J. effect of 3 induced molting regimes on uterine dry matter and lipid in single comb white leghorn hens. 5TH ANNUAL MEETING OF THE SOUTHERN POULTRY SCIENCE SOCIETY, ATLANTA, GA., USA, JAN. 17-18, 1984. POULT SCI. 63 (Suppl. 1). 1984. 4.

CP Berry, W. D., Gildersleeve, R. P., and Brake, J. hens induced to molt by fasting or high dietary zinc exhibit hematological and splenic changes. 73RD ANNUAL MEETING OF THE POULTRY SCIENCE ASSOCIATION, INC. POULT SCI. 63 (Suppl. 1). 1984. 64.

Bertol, T. M. and Brito, B. G. de. 1998. effect of high levels of supplemental zinc on piglets performance and mortality. Pesquisa Agropecuaria Brasileira. V. 33(9) P. 1493-1501

Bertuzzi, S., Manfreda, G., and Franchini, A. Bologna Univ. Italy Istituto di Zootecnica. 1998. influence of dietary inorganic zinc and vitamin e on broiler immune response. Selezione Veterinaria. (No.8-9) P. 627-636

Drug

FL

FL

Nut def

Nut def

BioX

Phys

FL

Bio Acc

FL

FL

FL

FL

FL

FL

OAC

Nut def Bettger, William J. and Taylor, Carla G. effects of copper and zinc status of rats on the concentration of copper and zinc in the erythrocyte membrane.

No COC Betz, J. 1993. detoxification of ochratoxin a: effects of dietary alkali sources calcium hydroxide and monomethylamine on blood and urine variables and residues in pigs.
248 pp.

Poultry Science 76(SUPPL. 1): 61.

Environmental Toxicology and Chemistry. 17(11): 2298-2301.

ENVIRON POLLUT SER A ECOL BIOL. 38(1): p63-86.

FL Beynen, A. C. high zinc intake reduces biliary copper excretion in rats.

Molecular and Cellular Neuroscience 11(5-6): 274-288.

Mix Bezlepkin, Vladimir G., Sirotai, Nikolai P., and Gaziev, Azhub I. the prolongation of survival in mice by dietary antioxidants depends on their age by the start of feeding this diet.

Org Met Bhardwaj, D. and Khan, J. A. responses of roof rat, rattus rattus l., to non-oily and oily foods after poisoning in oily foods.

FL BHARDWAJ, D., SIDDQUI, J. A., and KHAN, J. A. mitigating poison and bait shyness developed by wild rats rattus-rattus 2. use of boiled foods and oily cereal mixtures.

Org Met Bhat, S. K. and Mathew, D. N. comparative toxicity of 2 acute rodenticides to the western ghats squirrel funambulus-tristriatus.
INT PEST CONTROL. International Pest Control. 23 (5). 1981. 132.

Nut

Mineral

Bact

Bio Acc

No Oral

FL

Drug

Unrel

HHE

CP

FL

Nut def

Nut

No Oral

Abstract

Herp Birge, W. J. and Just, J. J. 1975. Sensitivity of Vertebrate Embryos to Heavy Metals As a Criterion of Water Quality. Phase II. Bioassay Procedures Using Developmental Stages As Test Organisms. <NOTE> Research Rept. RR-84; W75-06352; OWRT-B-039-KY(1)
Birke, H., Kolb, E., Salomon, F. V., Buechner, A., Nestler, K., Siebert, P., and Vallentin, G. Helsinki Univ. Finland Faculty of Veterinary Medicine. 1996. biochemical analysis of pig fetuses. 2. the tissue content of total p, iron, copper and zinc. <original> untersuchungen an schweinefeten. 2. mitteilung: der gehalt an gesamt-p, an fe, an cu und an zn in den geweben. Tierarztliche Umschau. V. 51(9) P. 582-591

Bityutskij, V. S. and Gerasimenko, V. G. 1993. [structural and functional state of organs, systems and organism resistance of chicken broilers when adding zinc and zeolite into diets]. <original> strukturno-funktsional'noe sostoyanie organov,sistem i rezistentnost' organizma tsypliat-brojlerov pri dobavke v ratson tsinka i tseolita. [functional morphology, embryo and newborn animal diseases]. <original> funkcional'naya morfologiya, boleznii plodov i novorozhdennykh zhivotnykh. P. 15-18

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Blesbois, E. Institut National de la Recherche Agronomique Monnaie France Centre de Tours Station de Recherches Avicoles.</td>
<td>1990. the function of seminal plasma in the storage of fowl spermatozoa at 4 degrees. <original> role du plasma seminal dans la conservation en vitro du sperme de coq [a 4 degres]. control of fertility in domestic birds. tours (france), july 2-4 1990. <original> controle de la fertilite chez les oiseaux domestiques. tours (france), 2-4 juillet 1990. P. 121-134. No. 54</td>
</tr>
</tbody>
</table>

FL Bolduan, G. 1998. [feeding of weaner piglets without growth promoters?]. *LAF-Informationen. V. 6(1) P. 73-80*

Mix Bonner, Frank W., King, Laurence J., and Parke, Dennis V. the influence of high dietary zinc on

Phys

Nut def

FL

FL

FL

Plant

No COC

Yeast

Nut

Drug

BioX

Diss

Abstract
Boonchanawiwat, S., Tongtavee, K., Somsook, S., Honknark, S., Artchawakom, T., and Suasarad, K. Shell Co. of Thailand Bangkok Thailand. 1987. efficacy and environmental impact in thailand of floucomafen, a new rodenticide for rat control in rice fields. 1 P.

comparative analysis with hemograms and reserves. *Archives of Physiology and Biochemistry* 104(4): D113.

Mix

No COC

FL

No COC

BioX

CP

FL

Fate

Mix

Surv

FL

Bouska, J., Kukla, J. Stanice Veterinarni Pece Hustopece Czechoslovakia, and Lazar, V. 1988. dynamics of changes in selected biochemical parameters of the blood plasma of geese depending on their age, sex and egg laying. <original> dynamika zmen vybranych biochemickych ukazatel v krevni plasmy hus v zavislosti na veku, pohlavi a snasce. *Biologizace a Chemizace Zivocisne Vyroby - Veterinaria. V. 24(6) P. 517-528*

FL

Unrel Bramson, P. E. and Corley, J. P. 1972.*Environmental Status of the Hanford Reservation for 1971*

No Dose Brandt, A. Statens Husdyrbrugsforsoeg Hilleroed Denmark. 1983. effect of dietary copper and zinc on the haematology of male pastel mink kits: a pilot investigation [iron, fe, blood plasma analysis, 300 ppm copper per kg wet feed highly toxic to mink]. *Scientifur. V.* 7(2) P. 61-65
Food

HHE

CP

No COC

Org Met

Drug

FL
Bravo Ojeda, Marco Antonio. 1995. [influence of cooper and zinc in diets for growing goats]. <original> influencia del cobre y cinc en dietas para cabras en crecimiento. 68 P.

Nut def

Meth

Acu

Alt
Breeding, S. W., Berry, W. D., and Brake, J. maintenance of duodenum weight during a molt induced by dietary zinc in a low-calcium diet *Poultry Science.* 71 (8). 1992. 1408-1411.

Nut def

CP

Nut def

Unrel

HHE
Breitschwerdt, E. B., Armstrong, P. J., Robinette, C. L., Dillman, R. C., Karl, M. L., and Lowry,

FL

Abstract

Nut def

In Vit

Nut def

Mix

Nut def

No Oral

No COC

CP

BioX

Nut def

CP

No Oral

Nut

Briceno-Valero, J. and Gronsky, R. 1982. *Pre-Precipitation Phenomena at Grain Boundaries. LBL-13820; CONF-810860-9*

FL Bronsch, K., Schneider, D., and Rigal-Antonelli, F. 211. olaquindox, a new growth promoter in animal nutrition. 1.in rearing piglets. *Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde*

| CP | BROWN, G., HUNT, V., WAN, J., and GRIMBLE, R. F. 1986. the differing responses of zinc and protein metabolism to escherichia-coli endotoxin in rats fed on diets containing maize coconut and fish oils. *FOUR HUNDRED AND THIRTIETH MEETING OF THE NUTRITION SOCIETY* |
| Nut def | Browning, J. D. and O'Dell, B. L. 1995. zinc deficiency decreases the concentration of n-methyl-d-aspartate receptors in guinea pig cortical synaptic membranes. *Journal of Nutrition* 125(8): |

Org Met BRUMMETT, E. S. and MAYS, C. W. teratological studies of zn-dtpa in mice. *HEALTH PHYS* 33:624-626,1977

No Oral

Bio Acc
Buegelsack G(A), Kolb, E., Salomon F-V, and Nestler, K. 1993. the content of fe, cu and zn in female pigs in 11 age-groups beginning with the birth to a body mass of 200 to 265 kg. DTW (Deutsche Tieraerztliche Wochenschrift) 100(9): 350-354.

Abstract

Nut def

Nut def

Nut def

Nut def

Unrel

Abstract
Bui, L., Taubeneck, M., Faber, W., and Keen, C. multiple dosing of 2-ethylhexanoic acid alters maternal zinc (zn) metabolism and is teratogenic in the rat. FASEB J 1997 Feb;11(3):A194

CP

CP

Abstract

Bact

Org Met

CP
Bunce, G. E., Dylewski, D., and Lytton, F. D. C. 1985. diminished uterine gap junction

Abstract

CP

CP

CP

Nut def

Org Met

Diss

Bundscherer, B. 1984.*Cadmium Retention in Liver and Kidneys of Growing Chicks As Influenced by Zinc Intake and Different Binding-Forms of Cadmium. <NOTE> Diss. (Dr.Med.Vet.). GSF-B-1689*

FL

FL

Abstract

Nut def

CP

IMM

Bunk, M. J., Galvin, J. E., Yung, Y. P., Dnistrian, A. M., and Blaner, W. S. 1987. relationship of...

Abstract

In Vit

Alt

No COC

No COC

In Vit

No Dose

FL

No COC

No COC

Abstract

No Tox

Alt

CP Burke, J. P., Stock, D., and Fenton, M. R. the development of peripheral neuropathy in rats on a

Alt Cai, Donglian, Wang, Dekai, Li, Rongjie, and Xu, Qinghua. effects of zinc on burn healing and
correlation between serum zinc and serum protein and alkaline phosphatase in burned rabbits.

Mix

Nut def

FL

CP

FL

CP

Phys

No Dose

Alt

No Dose

FL

Eco-SSL for Zinc 181 June 2007

No Control | Caldwell, D. F. and Oberleas, D. effects of protein and zinc nutrition on behavior in the rat. *PAN AMER HEALTH ORGAN SCI PUBL.* 185. 1969 2-8

FL | Calizaya Cuadros, C. A. 1992. [effect of the growth promoter rotation in swine feeding in the initiation and growth phases]. <original> efecto de la rotacion de promotores de crecimiento en la alimentacion de cerdos en las fases de inicio y crecimiento. 92 P.

Abstract Canolty, N. L. and Johnson, M. A. effects of increasing dietary lithium carbonate on weight and mineral contents of tissues from weanling rats. 71st Annual Meeting Of The Federation Of

In Vit Canton, T., Pratt, J., Stutzmann, J. M., Imperato, A., and Boireau, A. 1998. glutamate uptake is decreased tardively in the spinal cord of falc mice. *Vol. 9, No. 5, Pp. 775-778, Neuroreport*

Nut def Cao, G. 1991. effects of zinc deficiency and supplements on lipid peroxidation and superoxide dismutase in mice. *Chung-Hua i Hsueh Ts'ao Chih* 71(11): 623-6, 44.

Nut def Capel, I. D., Dorrell, H. M., Oakley, J., and Williams, D. C. the influence of zinc on the anti-lewis

Carcin

FL

Caperna, T. J., Campbell, R. G., and Steele, N. C. 1992. [interrelationship between exogenous porcine growth hormone administration and feeding intake, affecting tissular levels of iron, copper, zinc and bony calcium of growing swine]. *<original> interrelaciones entre la administracion de hormona de crecimiento porcina exgena y la ingesta alimenticia, afectando a niveles tisulares de hierro, cobre, zinc y calcio oseo en cerdos en crecimiento. *Anaporc.* (No.117) P. 24-35

No COC

CP

Aquatic

Nut

FL

FL

Bio Acc

Herp

CP

Abstract

Carlisle, E. M., Curran, M. J., and Duong, T. effect of the thyroid on dietary silicon and aluminum on zinc content in brain. *73RD ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, NEW ORLEANS, LOUISIANA, USA,*
Bact

Abstract

Nut def

Nut def

Unrel

Mineral

CP

Abstract

CP

Abstract

No COC

No COC

No Oral

Gene

Carmona, R., Gonzalez-Iriarte, M., Macias, D., Perez-Pomares, J. M., Garcia-Garrido, L., and

CP

Carmona Santana, Ricardo, Ortiz de la Rosa, Benjamin, Escobedo Mex, Jose Guadalupe, and Anon. 1998. <original> determinacion de cu y zn en cuatro localidades ganaderas del municipio de conkal, yucatan. [9. national congress of research and agricultural technological development. proceedings]. <original> 9. congreso nacional de investigacion y desarrollo tecnologico agropecuario. resumenes. 291 P. P. 231

Abstract

Nut def

Nut def

CP

Bio Acc

Phys

No COC

Unrel

FL

Nut def

Bact

CP

No COC

Carter, J. W. and Koo, S. I. 1984. effects of dietary aroclor 1254 (pcbs) on serum levels of lipoproteincholesterol and tissue distribution of zinc, copper and calcium infischer rats. *Nutrition*

Nut def Chang, I. H., Harrill, I., and Gifford, E. D. 1969. influence of zinc and vitamin d on bone

No Oral

Alt

OAC

FL

Diss

Nut def

Nut def

Diss

Nut def

Nut def

Nut def

No Oral

Alt

Nut def

CP

FL Chemineau, P., Levy, F., and Cognie, Y. 1984. the buck effect - physiological mechanisms. <document title>reproduction des ruminants en zone tropicale. reunioninternationale, pointe-a-

FL Chen Yanzhen(August 1st Land Reclamation Uni., Mishan Heilongjiang China College of Animal

Editor(s): Bazanova, N. U. Publisher: "Nauka" Kaz. SSR, Alma-Ata, USSR..

Editor(s): Bazanova, N. U. Publisher: "Nauka" Kaz. SSR, Alma-Ata, USSR..

FL CHO, T. H. and CHA, Y. H. basic studies on the effects of rodenticides. RES REP OFF RURAL DEV (VET) (SUYON); 14 1971 (REDC 1972) 75-89

Nut Choi, Mi-Kyeong and Sung, Chung-Ja. ca, mg and zn utilization in rats with different ages. Han'Guk Sikp'Um Yongyang Kwahak Hoechi (1998) 27(5): 928-934.

<table>
<thead>
<tr>
<th>Source</th>
<th>Authors</th>
<th>Title and Details</th>
</tr>
</thead>
</table>

In Vit Coakley, M. E. and Brown, N. A. 1986. valproic acid teratogenicity in whole embryo culture is not prevented by zinc supplementation. *Biochemical Pharmacology* 35(6): 1052-1055.

CP Cohen Paul(A), Prat Annik(A), Foulon Thierry(A), Chesneau Valerie(A), Pierotti Adrian(A),

Nut

Mineral

Nut def

Prim

No Oral

No COC

Abstract

Nut def

No Oral

Mix

Phys

CP

FL

HHE
No COC Collings, G. F., Erickson, J. P., Yokoyama, M. T., and Miller, E. R. effect of wheat middlings on fiber digestibility, serum cholesterol/glucose and fecal bile acids in pigs.

FL Conseil, A. H. 1992. [mineral feeding of dairy cow. survey results (france)]. <original> alimentation minerale de la vache laitiere. resultat d'une enquete dans quatre cooperatives [france]. 117 P.

Nut Cooper, D. A., Berry, D. A., Jones, M. B., Kiorpes, A. L., and Peters, J. C. 1997. olestra's effect on the status of vitamins a, d and e in the pig can be offset by increasing dietary levels of these vitamins. Journal of Nutrition 127(8 SUP): 1589S-1608S.

Coyle, Peter, Philcox, Jeffrey C., and Rofe, Allan M. metallothionein-null mice absorb less zn from an egg-white diet, but a similar amount from solutions, although with altered intertissue zn distribution. *J. Nutr. (1999)* 129(2): 372-379

egg production of laying hens]. <original> impiego di ossido di zinco [nell'alimentazione] per indurre una pausa temporanea nella fecondazione delle ovaiole. Zootecnica. V. 22(7) P. 29

No Oral

Bio Acc

Nut def

FL

FL

Nut

Gene

Nut def

Nut def

Nut def

Nut def

FL

No COC

CP

POULT SCI. 64 (Suppl. 1). 1985. 13-14.

Nut def Danek Janusz(A) and Wisniewski Eugeniusz. 1992. the changes in the quality of the semen in cases of zinc deficiency. Medycyna Weterynaryjna 48(12): 566-568.

Daston, G. P. and Baines, D. developmental toxicity of a metallothionein inducer is preventable by maternal zinc infusion. Toxicologist 1997 Mar;36(1 Pt 2):103

Bio Acc DAUWE, T., BERVOETS, L., BLUST, R., PINXTEN, R., and EENS, M. are eggshells and egg contents of great and blue tits suitable as indicators of heavy metal pollution? BELGIAN JOURNAL OF ZOOLOGY; 129 (2). 1999. 439-447.

Nut def Davies, N. T. and Flett, A. A. the similarity between alkaline phosphatase (ec 3.1.3.1) and phytase (ec 3.1.3.8) activities in rat intestine and their importance in phytate-induced zinc deficiency. *Br. J. Nutr.* (1978) 39(2): 307-16.

CP

FL

CP

Nut def

Food

CP

CP

DE FOREST PA and CHOPIN, S. F. 1997. the effect of cadmium and zinc on the developing chick embryo. *ANNUAL MEETING OF THE PROFESSIONAL RESEARCH SCIENTISTS ON EXPERIMENTAL BIOLOGY 97*

Phys

CP

Phys

No COC

Anat

Unrel

DE MELLO W, HOLLAND, R., and DE SOUZA V. pulp capping with calcium hydroxide or
zinc oxide and eugenol: comparative histological study in dogs.

REV FAC ODONTOL ARACATUBA 1 (1) 1972 (RECD 1973) 33-43

Gene

Nut

CP

Abstract

Bact

FL

IMM

Phys

In Vit

CP Decloitre, F. and Hamon, G. Effect of two pesticides, lindane and zineb, on aflatoxin B1 mutagenesis mediated by rat- and mouse-liver microsomes. Mutat. Res. 64(2): 130-131 1979

FL Delcueillière, F. and Pigny, J. P. 1992. what is your diagnosis? a 1.5 year old siberian husky dog with an icterus and behaviour disorders. <original> quel est votre diagnostic? un chien siberian husky de un an et demi presente un ictere accompagne de troubles comportementaux. *Point Vetrinaire. V.* 23(142) P. 103-104

Bio Acc Dencker, L. and Tjalve, H. an auto radiographic study on the fate of zinc-65 in zinc-rich tissues in

FL Deng Hua (Sichuan Agricultural Univ., Yaan China Dept. of Veterinary Medicine. 1994. experimental pathology of selenium deficiency and effect of high zinc on the se-deficiency in goslings. *Acta Veterinaria Et Zootecnica Sinica. V.* 25(5) P. 442-448

Aquatic DICKMAN, M. an isolated population of fourhorn sculpins (myoxocephalus quadricornis, family cottiidae) in a hypersaline high arctic canadian lake. *HYDROBIOLOGIA; 312 (1). 1995. 27-35.

FL Ding, Hong, Peng, Renxiu, Cheng, Lu, Kong, Rui, Wang, Ruokun, and Chen, Jianhua. effects of

Drug Domingo, Jose L., Gomez, Mercedes, and Jones, Mark M. concurrent administration of d-penicillamine and zinc has no advantages over the use of either single agent on copper excretion in the rat. *Toxicology (1998)* 126(3): 195-201.

Donoghue, D. J. and Odom, T. W. Hyperthermia in the laying hen effects of aminophylline parathyroid hormone and dietary zinc on bone physiology and shell quality. *75TH ANNUAL MEETING OF THE POULTRY SCIENCE ASSOCIATION, INC. POULT SCI.* 65 (Suppl. 1). 1986. 36.

Nut def

Bio Acc

Nut def

Rev

Biom

Mineral

No COC

Phys

Nut def

No COC

Org Met

Rev

Rev

Rev

In Vit

CP

No Oral

Unrel

Proceedings of the Nutrition Society of Australia 4: 139.

Nut def

Nut def

Nut def

Teratology 33: B6.

Nut def

Dreosti, I. E., Manuel, S. J., Buckley, R. A., Fraser, F. J., and Record, I. R. 1980. the effect of late prenatal and/or early postnatal zinc deficiency on the development and some biochemical aspects of the cerebellum and hippocampus in rats.

Nut def

Nut def

Dreosti, I. E. and Record, I. R. lysosomal stability, superoxide dismutase and zinc deficiency in regenerating rat liver.

Nut def

Dreosti, I. E. and Record, I. R. lysosomal stability super oxide dis mutase ec-1.15.1.1 and zinc deficiency in regenerating rat liver.

Nut def

Dreosti, I. E. and Record, I. R. superoxide dismutase (ec 1.15.1.1), zinc status and ethanol consumption in maternal and fetal rat livers.

Nut def

Dreosti, I. E. and Record, I. R. superoxide dismutase (ec 1.15.1.1), zinc status and ethanol consumption in maternal and foetal rat livers (effect of dietary zinc deficiency).

Abstract

PACIFIC SCIENCE ASSOCIATION 15TH CONGRESS

Nut def

Biological Trace Element Research. 2 (1): 21-29.

Nut def

BIOL TRACE ELEMENT RES 2:21-29,1980

Nut def

Biological Trace Element Research 7(2): 103-122.

CP

Dreosti, Ivor E. zinc and brain development.

CP Droke, E. A., Spears, J. W., and Armstrong, J. D. dietary zinc affects concentrations of insulin insulin-like growth factor-i and growth hormone in lambs. *75TH ANNUAL MEETING OF THE*

Surv Dundjerski, Z. outbreak of arvicola-terrestris in rice fields in yugoslavia. *BULL OEPP (ORGAN*

Meth

Abstract

CP

Nut def

Abstract

Nut def

Nut def

Nut def

Diss

Alt

FL

FL

Drug

Dwivedi, Rama S. Northwestern University Medical School Chicago IL. lead exposure alters the drug metabolic activity and the homeostasis of. *Environ Pollut.* V94, N1, P61(6)

FL

CP

Bio Acc

Bio Acc

CP

Unrel

FL Ebert, K. Institut fuer Biotechnologie Potsdam Germany, Roschke, M., and Henniger, E. 1991. amount of excrements and nutrients occurring in dairy cattle and pig houses - essential parameters for the ecologically tolerable agricultural use. <original> exkrement- und naehrstoffanfall in milchvieh- und schweineanlagen - wesentliche parameter fuer die umweltgerechte landwirtschaftliche verwertung. environ mental aspects of animal production. <original> umweltaspekte der tierproduktion. P. 57-68. No. 33

Nut def Eder, K. and Kirchgessner, M. the effect of zinc deficiency on erythrocyte membrane lipids of force-fed rats receiving a diet containing coconut oil or fish oil. *J. Trace Elem. Electrolytes*

Nut def Eder, Klaus and Kirchgessner, Manfred. dietary fat influences the effect of zinc deficiency on...

Nut def Eder, Klaus and Kirchgessner, Manfred. levels of polyunsaturated fatty acids in tissues from zinc-deficient rats fed a linseed oil diet. *Lipids (1994)* 29(12): 839-44.

Nut def Edwards, Hardy M. III and Baker, David H. bioavailability of zinc in several sources of zinc

CP

Unrel

Bio Acc

Air P

Alt

Diss

FL

Air P
Ehrlich, R. CS IIT Research Inst. Chicago IL.Interactions of Various Pollutants on Causation of Pulmonary Disease

Rev

FL

Alt

CP

Fate

CP Eklund, Anders and Aagren, Gunnar. 1979. effect of dietary rapeseed protein concentrate on tissue levels of zinc, tocopherol and lipids. *Proc. Int. Rapeseed Conf. 5th*: Meeting Date 1978, Volume 2, 144-6 Publisher: Dr. Goesta Andersson, Svaloev, Swed..

Nut El-Husseiny, O. Cairo Univ. Egypt Faculty of Agriculture, Eissa, A. I., and Hashish, S. 1982. calcium and zinc requirements and their interaction [effect of their levels in the diet on the changes that might occur in serum and liver cholesterol and alkaline phosphatase activity in rats]. Annals of Agricultural Science, Moshtohor. V. 17 P. 139-150

Eco-SSL for Zinc 254 June 2007

Emery, Michelle P., Browning, Jimmy D., and O'Dell, Boyd L. Impaired hemostasis and platelet function in rats fed low zinc diets based on egg white protein. *J. Nutr.* 120(9): 1062-

Diss Ercanli, Fatma Guelsel. 1979. Effects of zinc deficiency on zinc contents, histology and dna....

Essig, T. H. and Hall, R. B. 1966.*Environmental Status of the Hanford Project. 1965 Annual Summary*

CP Evans, G. W., Grace, C. I., and Hahn, C. 1973. Homeostatic regulation of zinc absorption in the rat. *Proceedings Of The Society For Experimental Biology And Medicine; 143*

Nut def Evans, G. W. and Johnson, E. C. Zinc absorption in rats fed a low-protein diet and a low-protein diet supplemented with tryptophan or picolinic acid (protein deficiency). *The Journal Of...*

No Dose Evans, N. A. effect of copper and zinc upon the survival and infectivity of echinoparyphium-recurvatum cercariae. Parasitology. 85 (2). 1982. 295-304.

Unrel Eversole, L. R., Rizoiu, I., and Kimmel, A. I. 1997. pulpal response to cavity preparation by an

CP

Nut

Anat

Alt

Unrel

Drug

Prim

Unrel

Anat

Phys

Abstract

No Oral

Unrel

Nut def

Alt
Failla, M. L. AJPHA and Kiser, R. A. 1983. hepatic and renal metabolism of copper and zinc in

Drug

Mix

Mix

No COC

Nut def

No COC

HHE

Unrel

Mix

No COC

Nut

No Oral

Nut def

No Oral

Bio Acc

HHE

Falutz, J., Tsoukas, C., and Gold, P. 1988. zinc as a cofactor in human immunodeficiency virus-
induced immunosuppression.

No COC

FL

No COC

Unrel

Mix

Unrel

Farag, M. S. T. 1990. the effect of the antibiotic zinc bacitrocin on the metabolism of rabbits. 111 P.

Nut def

Nut def

Nut def

Nut def

Phys

HHE

Mineral

FL

Bact

Fatimah, C. T. N. I. 1994. the effects of adminstering lactobacillus acidophilus or streptococcus
faecium to calves in an attempt to prevent or minimise neonatal calf diarrhoea. Jurnal Veterinar Malaysia 6(1): 9-16.

Nut def Fenwick, Paul K., Aggett, Peter J., MacDonald, Donald, Huber, Cynthia, and Wakelin, Derek.

FL Fernandez N, Cecilia Soledad. 1997. [bone metabolic diseases in purebred race horses, less than 12 months old. incidence, etiology, pathology, diagnostic. latest 10 years advance]. *<original>* enfermedades metabolicas del hueso (mbd) en el equino fina sangre de carrera, arabe y cuarto de milla menor de 12 meses de edad. incidencia, etiologia, patologia y diagnostico. avances en los ultimos 10 anos. 193 P.

In Vit Fernandez-Pol, J. A. iron possible cause of the g-1 arrest induced in normal rat kidney cells by
picolinic-acid. *Biochemical and Biophysical Research Communications.* 78 (1). 1977 136-143.

Filteau, S. M. and Woodward, Bill. the effect of severe protein deficiency on serum zinc concentration of mice fed a requirement level or a very high level of dietary zinc.

Filteau, S. M. and Woodward, Bill. relationship between serum zinc level and immunocompetence in protein-deficient and well-nourished weanling mice.

Fimia, G. M., De Cesare, D., and Sassone-Corsi, P. 1999. cbp-independent activation of cRE and cRE by the lim-only protein act.

Finot, Paul Andre and Furniss, Diane E. metabolic transit and toxicity of maillard reaction products.

FLEET, J. C. and MCCORMICK, C. C. the effect of development and supplemental zinc on hepatic chick embryo metallothionein. FED PROC FED AM SOC EXP BIOL 46:595,1987

Flinchum, J. D., Nockels, C. F., and Moreng, R. E. aged hens fed zinc methionine had chicks with improved performance. 78TH ANNUAL MEETING OF THE POULTRY SCIENCE ASSOCIATION, INC. POULT SCI. 68 (Suppl. 1). 1989. 55.

No COC Floersheim, George L. protection against acute ethanol toxicity in mice by zinc aspartate, glycols, levulose and pyritinol. *Agents Actions (1985)* 16(6): 580-4.

Phys Flowers, S. W., Jamal, I. A., Bogden, J., Thanki, K., and Ballester, H. 1990. hypertension

IMM

No Oral

CP

Nut

No Oral

Drug

Nut def

Nut def

Nut def

No COC

OAC

Nut def

Carcin

Nut def

Nut def

Nut def
Fong, L. Y. Y., Ng, W. L., and Newberne, P. M. n-nitrosodimethylamine-induced forestomach

Herp Fort, Douglas J. Oklahoma State Univ Stillwater, James, Brenda L., and Bantle, John A. Evaluation of the developmental toxicity of five compounds with the. *J Appl Toxicol. V9, N6, P377(12)*

Fosmire, G. J. and Sandstead, H. H. consequences of marginal zinc deficiency during gestation in the rat. *FED PROC FED AM SOC EXP BIOL 37:890,1978*

Fox, M. R. Spivey, Jacobs, R. M., Jones, A. O. Lee, and Fry, Bert E. Jr. 1979. effects of

Abstract Fraker, P. J. and Luecke, R. W. the effects of dietary zinc on thymus derived cell helper function...
of the a-j mouse. *Federation Proceedings.* 36 (3). 1977 1176

Bio Acc Franson, J. Christian, Koehl, Philip S., Derksen, Dirk V., Rothe, Thomas C., Bunck, Christine M.,

Drug

Drug

FL

Food

Nut def

Unrel

CP

CP

No Oral

No COC

Unrel

In Vit

Org Met

Rev

Abstract
ANNUAL MEETING OF THE SOCIETY FOR NEUROSCIENCE

CP

Nut def

No Oral

No Oral

No Oral

No Oral

Abstract

No COC

Unrel

Meth
Friedberg, F. 1978.Radioimmunoassay of Metallothionein. EPA/600/1-78/010

BioX

Nut def
FRIEDMAN, M. advances in experimental medicine and biology, vol. 48. protein-metal interactions. ADV EXP MED BIOL; 1974 (RECD 1975) 692

Alt

No COC

FL

No COC

Fujibayashi, Y., Saji, H., Yomoda, I., Suzuki, K. H., Torizuka, K., and Yokoyama, A. 1986. a new approach toward a pancreas-seeking zinc radiopharmaceutical. i. accumulation of 65zn-amino...

Nut def Fukino, Hideki, Hirai, Masami, Ideura, Kazuhiko, Saki, Kazuo, and Yamane, Yasuhiro. Effect of

Prim

No COC

Nut

In Vit

Alt

CP

Nut def

Phys

Gene

Gene

No COC

No COC

No COC

GARBAN, Z., EREMIA, I., NEMES, R., PRECOB, V., and STEFAN, C. Homeostasis changes induced by the action of ethanol on the maternal-fetal complex in rats. 3. the effects of ethanol supplemented by a zn-salt. *REV ROUM MORPHOL EMBRYOL PHYSIOL: MORPHOL EMBRYOL* 32:165-174,1986

Garcia, Penarrubia M P, Cremades, Campos A, Sanchez, Vera J L, and Campos, Aranda M.
influence of the administration of d-penicillamine and copper plus deferrioxamine on experimental infection with salmonella-typhimurium. Infectologika. 7 (2). 1986. 46-51.

Aquatic
Gatlin, D. M. Iii and Wilson, R. P. dietary zinc requirement of fingerling channel catfish

Drug
Gatzke, H. D. and Wildmeister, W. auto radiographic investigations on protein metabolism and
histochemical studies on zinc content in the brain in diabetes mellitus 1. streptozotocin induced

FL
Gatzke, H. D. and Wildmeister, W. 1979. [autoradiographic studies on protein metabolism and
histochemical demonstration of the brain zinc content in diabetes mellitus. 1. comparison in
experimental streptozotocin-induced diabetes]. *Original* autoradiographische untersuchungen
zum proteinstoffwechsel und histochemische nachweise zum zinkgehalt des gehirns bei diabetes
mellitus. 1. mitteilung: verhaltnisse beim experimentellen durch streptozotocin induzierten

Nut def
Gaudette, Douglas C., Driscoll, Eric R., and Bettger, William J. dietary zinc deficiency alters the
content and fatty acid composition of phosphatidylinositol bis-phosphate (pip2) in the rat

Nut
Gaudio, E., Pannarale, L., Franchitto, A., and Riggio, O. zinc supplementation in experimental
liver cirrhosis: a morphological, structural and ultrastructural study. *Int. J. Exp. Pathol. (1993)*

Nut
Gaziev, A. I., Podlutsky, A. J. a., Panfilov, B. M., and Bradbury, R. 1995. dietary supplements of
antioxidants reduce hprt mutant frequency in splenocytes of aging mice. *Mutation Research*
338(1-6): 77-86.

Nut def
Gbodi, T. A. and Ndife, L. 1982. some observations on chemotherapy of bovine dermatophilosis.

FL
Gebert, S., Bee, G., Pfirter, H. P., and Wenk, C. 1999. phytase and vitamin e in the feed of
growing pigs, 1: influence on growth, mineral digestibility and fatty acids in digesta. *Original*
zulage von phytase und vitamin e zum schweinemastfutter, 1: einfluss auf wachstum,
mineralstoffverwertung und fettsauren im chymus. *Journal of Animal Physiology and Animal
Nutrition. V. 81(1) P.* 9-19

Bact
Gebert, Stefan A, Bee, Giuseppe, Pfirter, Hans Peter, and Wenk, Caspar. 1999. growth
performance and nutrient utilisation as influenced in pigs by microbial phytase and vitamin e
supplementation to a diet of high oxidative capacity. *Annales De Zootechnie (Paris)* 48(2):
105-115.

No COC
GEBHARDT, D. O. and VAN LOGTEN MJ. the chick embryo test as used in the study of the
toxicity of certain dithiocarbamates. *TOXICOL APPL PHARMACOL 13:316-324,1968*

Nut def

Unrel
enrichment of soils and pasture herbage in the oldmining areas of derbyshire, uk. *Agriculture,
Ecosystems & Environment* 68(3): 217-231.

FL
Gegenava, L. G., Svanidze, I. K., Mosulishvili, I. M., and Rechulishvili, A. N. kinetics of changes
in zinc and copper concentrations in the rat hippocampus during ontogenesis. *Izv. Akad. Nauk

FL
Gegenava, L. G., Svanidze, I. K., Mosulishvili, L. M., and Rechulishvili, A. N. alteration

Gene

Nut def

Alt

In Vit

No Dose

CP

FL

CP

Nut def

Acu

HHE

Mineral

FL

elements in broilers in relation to the trace element content of the diet. *Sel'Skokhozyaistvennaya Biologiya* 16(3): 446-449.

Prim Gershwin, M. E. zinc deprivation and teratogenesis. *Crisp Data Base National Institutes of Health*

FL GEVONDYAN, A. R. study of the combined action of zinc copper and lead in intragastric administration. *GIG SANIT; 0 (10). 1990. 90.*

No COC Gilani, S. H., Dalamangas, L., and Gilani, A. the protective effects of methionine and zinc on alcohol induced embryopathy in the chick. *Teratology 1991 May;43(5):417-8*

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Ginzburg, M. B. 1969. [zinc levels in the rat testis after general lethal and chronic x-ray irradiation]. <original> soderzhanie tsinka v semennikakh krys pri obshchem letal'nom i</td>
</tr>
</tbody>
</table>

CP

GIOVENGO, S. L. and LARSON, A. A. 1997. role of zinc translocation in the development of kainic acid-induced persistent thermal hyperalgesia in the mouse. 27TH ANNUAL MEETING OF THE SOCIETY FOR NEUROSCIENCE

Herp

Mix

Abstract

FL

Bio Acc

Girard Christiane L(A), Robert Suzanne(A), Matte, J. Jacques(A), Farmer Chantal(A), and Martineau Guy-Pierre. 1996. serum concentrations of micronutrients, packed cell volume, and blood hemoglobin during the first two gestations and lactations of sows. Canadian Journal of Veterinary Research 60(3): 179-185.

Nut

Biom

Mix

Nut def

Nut def

Nut def

Giugliano, R. and Millward, D. J. 1984. growth and zinc homeostasis in the severely zn-deficient

Abstract Gleason, D. P. and Greene, L. W. 1996. growth and tissue zinc concentrations of rats fed zinc chloride or zinc methionine with increasing levels of copper. *Journal of Animal Science* 74(SUPPL. 1): 186.

Goel Rajiv(A), Puza Scott, Chowdhury Aditi, Mishra Om P, and Delivoria-Papadopoulos Maria. 1996. modification of the zn++ binding site of the nmda receptor during hypoxia in fetal guinea pig brains at term. *Pediatric Research* 39(4 PART 2): 73A.

Goetz, G. and FRIEDBERG, K. D. 1985. cadmium and zinc contents of various rat organs following the uptake of cadmium chloride with the drinking water. *JOINT MEETING OF THE BELGIAN*

Patologii 54(5): 24-8.

No Control

Aquatic

Phys

Unrel

Nut def

Abstract

HHE

HHE

Alt

CP

FL

Prim

Nut def

CP

Abstract

Prim GOLUB, M. S., HURLEY, L. S., and GERSHWIN, M. E. gestational zinc deficiency--reply.

Prim Golub, Mari S., Gershwin, M. Eric, Hurley, Lucille S., Baly, Deborah L., and Hendrickx, Andrew

No Oral

In Vit

FL

Diss
Gonzalez M, Fernando. 1982. [addition of ca, p, fe, cu, zn and mg to the solid diet of pre-ruminant calves]. <original> adicion de ca, p, fe, cu, zn y mg en la dieta solida de terneros pre-rumiantes. 167 P.

Bio Acc

FL

Nut def

Surv

Unrel

Nut def

CP

Nut def

No Dose

Nut def

Alt

Drug
Bact
Goransson, L., Lange, S., and Lonnroth, I. Swedish Pig Centre PL2080 26890 Svalov Sweden.
1995. post weaning diarrhoea: focus on diet. Pig News and Information. 16(3): 89N-91N.

Unrel
Gorbea, C. M., Marchand, P., Jiang, W., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., and Bond,

CP
a Synchrotron Radiation Microprobe to Trace Element Analysis. BNL-39905; CONF-8705124-2

Diss
Gordon, Barry Lynn. 1976. the effects of zinc sulfate on olfactory discrimination and general
health in male hooded rats. Avail.: Xerox Univ. Microfilms. Ann Arbor, Mich., Order No. 77-

Abstract
Gordon, D. T. influence of chitin and chitosan on element utilization . 183RD ACS
(AMERICAN CHEMICAL SOCIETY) NATIONAL MEETING, LAS VEGAS, NEV., USA, MARCH

Abstract
Gordon, D. T. interaction of iron and zinc on the bio availability of each element in the rat.
67TH ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR
EXPERIMENTAL BIOLOGY, CHICAGO, ILL., USA, APRIL 10-15, 1983. FED PROC. 42 (5).

Fate
Gordon, D. T., Zinn, K., Stoops, D., Trokev, D., Guzy, R., Peluso, M., Ratliff, V., <Editors>
Anke, M., Meissner, D., and Mills, C. F. 1993. the effect of increasing dietary fe on the retention
of 59fe, 65zn and67cu in the growing rat. 625-629.

No COC
ceramic bone substitute for local delivery of testosterone. Biomedical Sciences Instrumentation
33: 131-6.

CP
Gordon, E. F. behavioral correlates of experimental zinc deficiency. The Neurobiology Of Zinc :
Proceedings, Symposium, Society For Neuroscience, Boston, Massachusetts, November 4-6, 1983

Nut def
Gordon, E. F., Bond, J. T., Gordon, R. C., and Denny, M. R. 1982. zinc deficiency and behavior:

Nut def
Gordon, E. F., Denny, M. R., and Bond, J. T. 1980. behavioral and physiological effects of

Abstract
Gordon, E. F. and Wu, Y. U. pre natal ethanol exposure zinc iron magnesium and copper
concentrations in amniotic fluid and post natal growth catch-up. 68TH ANNUAL MEETING OF
THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, ST. LOUIS,

Abstract
Gordon, E. F., Zemel, M. B., and Olson, K. L. effects of pre natal ethanol exposure on iron zinc
copper and magnesium metabolism in rats. 67TH ANNUAL MEETING OF THE FEDERATION
OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, CHICAGO, ILL., USA, APRIL

Nut def
Gordon, Elizabeth F., Bond, Jenny T., Gordon, Ralph C., and Denny, M. Ray. zinc deficiency and

Abstract GRAHAM, T. W., CLEGG, M. S., LONNERDAL, B., THURMOND, M. C., and KEEN, C. L. 1986. isolation and characterization of metallothioneins in calves ingesting zinc toxic diets. *70TH ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY*

| No Oral | Grawe Kierstin Petersson(A) and Oskarsson Agneta. 2000. cadmium in milk and mammary gland in rats and mice. *Archives of Toxicology 73(10-11): 519-527.*
Nut def

Nut def

Nut def

CP

Unrel

No Oral

Prim

No Dose

Surv

Rev

Mineral

Food

Food

Drug

No COC
<table>
<thead>
<tr>
<th>Source</th>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal/Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Grela, E. R., Czech, A., Winiarska, A., and Fiolka, M.</td>
<td>Effects of dietary supplementation of grass pea (lathyrus sativus l.) seeds on performance and some blood parameters in guinea pigs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Eco-SSL for Zinc 314 June 2007

FL Greve, T. and Brummerstedt, E. 1986. egg transplantation from two heifers with lethal trait a 46 during oral supplementation with zinc oxide. *<original> aegtransplantation fra kvier med letalfaktor a 46 under peroral tilfoersel af zinkoxid. Aarsberetning. Kongelige Veterinaer- Og Landbohoje skole. Institut for Sterilitetsforskning. (No.29) P. 51-58*

Alt Grider, A. 1986. the effects of metallothionein on zinc metabolism in lethal-milk mutant mice. 150pp.

No COC Griffin, R. M. 1979. the response of cage-reared broiler cockerels to dietary supplements of nitrovin, zinc bacitracin or penicillin used singly or in paired combinations. *British Poultry Science* 20(3): 281-287.

FL Hackenhaar, L. 1995. the response of weanling pigs to increasing iron levels, inorganic or chelated, of high copper and zinc starter diets. <original> niveis de ferro, inorganico ou quelatado, em racoes iniciais de suinos com altos niveis de cobre e de zinco. 85 P.

Halas, E. S. and Sandstead, H. H. Prenatal zinc deficiency: effects on avoidance conditioning. *FED PROC FED AM SOC EXP BIOL 33:464,1974

Hallmans, G., J. N. wound healing with adhesive zinc tape. an animal experimental study.

Hamdaoui, M., Hedhili, A., Doghri, T., and Tritar, B. effect of tea decoction given to rats ad

No COC

No COC

FL

FL

Abstract

Abstract

Nut def

Nut def

Abstract

Nut def

No Oral

Abstract

Abstract
Hampton, D. L., Miller, W. J., Neathery, M. W., Blackmon, D. M., Kincaid, R. L., Gentry, R. P.,

Nut def

No Oral

Hampton, D. L., Miller, W. J., Neathery, M. W., Kincaid, R. L., and R. P. intestinal sites of zinc absorption as determined by direct 65zn of intact rats. *Nutrition Reports International| PY- 1976| VO- 14| IS- 6| PG- Which Contained Zn 2 Mg/Kg Without or With Added Zn 40 or 600 Mg/Kg As ZnO. After 2 Weeks the Intestine Was Exposed by a Midline Abdominal Incision and Each Rat Was Given by Injection 65Zn 28 Mu Ci Directly into the Lumen of the Intestinal Tract at Different Sites Posterior to the Pyloric Valve. The Rats Were Killed 24 h Later and 65Zn Was Estimated in Blood, Liver, Kidneys, Heart, Spleen, Bone and Muscle. Tissue 65Zn Retention Values Were Plotted Against Site of Injection, Expressed As Percentage of Intestinal Length From Proximal to Distal End. Zn Absorption, Per Unit of Intestinal Length, Was Similar Throughout the Small Intestine With Some Indication of More Absorption Near the Distal End, Especially in Rats on the Low-Zn Diet.

FL

FL

Han Jingkang, Li Dongjiao, and Liu Zhonglu (Veterinary Coll. of PLA, Changchun China. 1991. effects of high dietary calcium on deposition of zn 65 in bodies of layer chickens. *Journal of Jilin Animal Husbandry and Veterinary Medicine. V. 13(4) P. 1-3

Mineral

Han Jingkang, Li Dongjiao, and Zhu Lianqin (Veterinary Coll. of PLA, Changchun China Inst. of Military Veterinary Medicine. 1990. effect of dietary calcium on the serum hormone in hens. *Bulletin of Veterinary College of PLA. V. 10(4) P. 375-377

FL

Han Jingkang and Li Dongjiao (Veterinary Coll. of PLA, Changchun China Inst. of Military Veterinary Medicine. 1990. influence of high level of dietary calcium upon absorption of zinc in layer chickens. *Bulletin of Veterinary College of PLA. V. 10(2) P. 178-180

No Dose

CP

No Dose

BioX

Nut

Hanai, Miho and Esashi, Takatoshi. 1999. effects of dietary mineral levels and their

Eco-SSL for Zinc 326 June 2007

Efll

Nut

Nut def

Abstract

Nut def

Nut def

Nut def

No Oral

No Dose

HANNAH, R. S. and MOORE, K. L. effects of fasting and insulin on skeletal development in rats. *TERATOLOGY 4:135-140,1971*

Drug

Unrel

Rev

Phys

Org Met

FL

Hap, I. and Simecek, K. 1994. relationship between zn intake, zn absorption and zn content

Organometallics

Physiology

Unrelated

Nutrition Deficiency

No Oral

No COC

Unrelated

No COC

Abstract

Eco-SSL for Zinc

Abstract

CP

Unrel

No COC

FL

FL

FL

CP

Abstract

No COC

CP
HARRIS, L. and BOURNE, L. 1994. zinc distribution in the pregnant rat following acute doses of ethanol. *EXPERIMENTAL BIOLOGY 94*

Alt

Diss

No Oral

Fate

FL
Hartel, J. and Kirchgessner, M. 1977. demonstration of zinc metalloenzyme syntheses in deprived animals zinc supplements by measurement of 65zn incorporation in individual organs.

Eco-SSL for Zinc 329 June 2007

Hartmann, S. 1994. (effect of copper, iron, zinc and selenium deficiency on fatty acid composition of different tissues in pigs). *<original> zum einfluss einer kupfer-eisen-, zink- und selen-depletion auf die fettsaurezusammensetzung verschiedener gewebe beim schwein. 232 P.*

Hasegawa, H. and Tomita, H. 1986. assessment of taste disorders in rats by simultaneous study

Prim

Prim

Prim

Prim

Prim

Prim

Alt

No Oral

No Oral

CP

Gene

FL

FL
He Ting (Guangdong Academy of Agricultural Science, Guangzhou China Inst. of Animal Science. 1995. a study on zn requirement for broiler. *Acta Zoonutrienta Sinica. V.* 7(1) P. 2-9

Nut def
He, Zhen, Matsumoto, Masayasu, Cui, Li, Li, Ji-Yao, Ueda, Hirokazu, Oiki, Eiji, Takagi, Yoji, Okada, Akira, and Yanagihara, Takehiko. zinc-deficiency increases infarct size following

Drug

Nut def

FL

FL

Nut

Abstract

Abstract

Abstract

Abstract

Nut

Hegazy, S. M. and Adachi, Y. 2000. comparison of the effects of dietary selenium, zinc, and selenium and zinc supplementation on growth and immune response between chick groups that were inoculated with salmonella and aflatoxin or salmonella. *Poultry Science* 79(3): 331-5.

CP

CP

Abstract

FL Heindl, U. 1993. [investigations on varying zinc supply and the application of recombinant bovine growth hormone on selected performance and blood parameters in calves]. *Institute of Nutrition Physiology and Animal Nutrition, University of Munich* 150 P.

FL Heindl, U. Technische Univ. Muenchen Freising Germany Inst. fuer Ernaehrungspalysiology, Kirchgessner, M., and Schams, D. 1993. the effect of zinc deficiency and application of recombinant bovine growth hormone on plasma growth hormone and insulin like growth factor-1 of calves. *Institute of Nutrition Physiology and Animal Nutrition, University of Munich* 149-158

No Oral Held, Douglas D. and Hoekstra, William G. the effects of zinc deficiency on turnover of

CP HENDRICKS-MUNOZ, K. D., CLERCH, L., and MASSARO, D. 1989-1990. effects of endotoxin and hyperoxia on rat type ii pneumocyte copper zinc superoxide dismutase. *JOINT
MEETING OF THE AMERICAN PEDIATRIC SOCIETY AND THE SOCIETY FOR PEDIATRIC RESEARCH

No COC Herberg, J. A., Beck, S., and Trowsdale, J. 1998. tapasin, daxx, rgl2, hke2 and four new genes (bing 1, 3 to 5) form a dense cluster at the centromeric end of the mhc. *Journal of Molecular

Hester, A. S. international minerals and chemical plans to commercialize recombinant swine growth hormone. *Genetic Technology News. 6 (8). 1986. 1."

Hickory, Wayne, Nanda, Ravindra, and Catalanotto, Frank A. fetal skeletal malformations

Eco-SSL for Zinc 339 June 2007

Alt Higashi, Y., Moribe, H., Takagi, T., Sekido, Ryohei, Kawakami, K., Kikutani, H., and Kondoh, H. 19970400. impairment of t cell development in delta ef1 mutant mice. *Vol. 185, No. 8, Pp. 1467-1479* *J. Exp. Med.*

In Vit Higuchi, K. 1969. An Improved Chemically Defined Culture Medium for Strain L Mouse Cells Based on Growth Responses to Graded Levels of Nutrients. *SMUFDT-TECHNICAL MANUSCRIPT-563*

In Vit Higuchi, K. 1969. An Improved Chemically Defined Culture Medium for Strain L Mouse Cells Based on Growth Responses to Graded Levels of Nutrients Including Iron and Zinc Ions: 8p.

Acu Hilderman, E. and Taylor, P. A. 1974. acute pulmonary emphysema in cattle exposed to zinc

CP HILL, C. H. 1985. interactions of copper and mercury with vanadate in the chick. *69TH ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY*

Abstract Hill, G. M., Carter, S. D., Ewan, R. C., Mahan, D. C., Miller, P. S., Shurson, G. C., and Veum, T.
Eco-SSL for Zinc

Abstract

Nut def

CP

Drug

Abstract

No Oral

Rev

Rev

HILL, R. 135(1) 1-16. a review of the 'toxic' effects of rapeseed meals with observations on meal from improved varieties. *BR. VET. J.* 1979

BioAcc

Bio Acc

Fate

Mix

FL HINOIDE, M. histopathological studies of periodontal tissue reactions after furcation perforations treated with various inorganic biomaterials in dogs teeth. SHIKWA GAKUHO; 85 (5). 1985. 571-611.

Diss Hipp, W. 1989. cadmium retention in the liver and the kidneys of rats as influenced by different levels of zinc in the diet. <original> der einfluss der zinkversorgung auf die cadmiumretention in leber und niere der ratte in einem langzeitversuch. 100 P.

CP HOADLEY, J. E., TAO, S. H., and FOX, M. RS. 1989. dietary cadmium and zinc effects on peripheral neuromuscular development in japanese quail. 73RD ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY

FL Hock, E., Halle, I., Matthes, S., and Jeroch, H. 1997. investigations on the composition of the ileal and caecal microflora of broiler chicks in consideration to dietary enzyme preparation and zinc bacitracin in wheat-based diets. <original> untersuchungen ueber die zusammensetzung der ilealen und caecalnen mikroflora von braiern unter beruecksichtigung der supplementierung eines
enzympraeparates und zink-bacitracin zu weizenreichen futtermischungen.

Agribiological Research. V. 50(1) P. 85-95

FL
Hodate, K. National Inst. of Animal Industry Kukizaki Ibaraki Japan, Hamada, T., and Maeda, S. 1995. the effects of adding linseed oil, copper and vitamin e to diets on copper, vitamin e and lipid peroxidation in the tissues of growing pigs. *Animal Science and Technology. V. 66(2) P. 142-148*

Phys

Unrel
Hodgson, S. Cominco Alaska AK. development work continues for open-pit mining at red dog. *Mining Eng. V40, N12, P1101(4)*

FL

FL

CP

Abstract

Nut def

Unrel

Unrel

No Oral

No Oral
Hogan, G. Richard, Cole, Barry S., and Lovelace, James M. sex and age mortality responses in

Nut

BioX

Abstract

HOKE, G. D. and LLEWELLYN, G. C. afla toxicosis and dietary zinc interactions in hamsters. *ASB (ASSOC SOUTHEAST BIOL) BULL; 25 (2). 1978 88*

No Oral

Nut

Surv

Unrel

Fate

No COC

No COC

FL

FL

Unrel

Unrel

Unrel

HOLLAND, R., SOUZA, V., NERY, M. J., and BARNARE, P. FE. behavior of rat subcutaneous connective tissue to implants of polyethylene tubes partially or totally filled with various root canal filling materials. *REV BRAS ODONTOL;* 28 (171). 1971 197-201

Holm, A. 1990. e. coli associated diarrhoea in weaner pigs: zinc oxide added to thefeed as a preventive measure. 154.

Holm, L. SLU Uppsala Sweden Inst. foer Djurfysiologi. 1999. a comparative study of avian oviducal sperm storage with special reference to factors which regulate sperm motility. *36 P. No. 141*

Drug Holper, J. C. 1966.*Research and Development of Rhinovirus, RS and Mycoplasma Pneumoniae Vaccines.* <NOTE> Semi-Annual Contract Progress Rept., 1 Sep 65, 1 Mar 66

Prim Horsted, P., Hansen, J. C., and Langeland, K. 1982. studies on n2 cement in man and monkey--
cement lead content, lead blood level, and histologic findings. *Journal of Endodontics* 8(8): 341-50.

Org Met Hoskam, E. G and Lieshout van, C. G. incidental mortality of wild birds resulting from abusive applications of pesticides. *TNO-Nieuws; 27(10): 589-593; 1972 ; (REF:5)

Rev Houston Doreen M(A) and Myers Sherry L. 1993. a review of heinz-body anemia in the dog induced by toxins. *Veterinary and Human Toxicology* 35(2): 158-161.

In Vit Hruba, A., Paluska, E., and Chudomel, V. influence of the incubation of cells with zinc and lithium ions of graft-vs.-host reactivity of cells and on their ability to form hemopoietic colonies.

HHE Hsu, J. M. Zinc as related to cystine metabolism. *PRASAD, ANANDA S. (ED.). TRACE ELEMENTS IN HUMAN HEALTH AND DISEASE, VOL. 1. ZINC AND COPPER.*

Huang, Li-Ling and Wang, Guoo-Shyng. effects of dietary fibers and artificial synthetic...

Abstract

In Vit

Gene

Unrel

Alt

Model

Nut def

In Vit

Fate

Unrel

Nut def

Nut def

HHE

Nut def

Nut def

No Dose Hui, Clifford A. University of California Davis and Beyer, W. Nelson USGS Laurel MD. sediment ingestion of two sympatric shorebird species. *Sci Total Environ.* V224, N1-3, P227(7)

Nut def Humphrey, P. A., Lee, C. M., and Ashraf, M. 1994. changes in immunoglobulin levels in zinc-

Abstract

Nut def

No COC

Alt

CP

No COC

HHE

CP

In Vit

In Vit

CP

Fate

Abstract

Hunt, J. R. and Larson, B. J. the effect of egg white protein on zinc retention in rats. 72ND

CP

Nut def

Bio Acc

Nut

Diss

HHE

Rev

Nut def
HURLEY, L. S. zinc in prenatal and neonatal nutrition. PROC FL SYMP MICRONUTR HUM NUTR 1981 47-54,1981

CP

Nut def

Nut def

Prim

CP

Abstract

Hussein, A. S. 1987. The Influence of High Levels of Dietary Aluminum on Calcium and Phosphorus Metabolism and Performance of Chickens and Japanese Quail

Hussein, A. S. Department of Animal Production Faculty of Agricultural Sciences United Arab Emirates University P. O. Box 17555 Al-Ain United Arab Emirates. 1996. induced moulting procedures in laying fowl. World's Poultry Science Journal. V. 52(2) P. 175-187

Mix Huxley, H. G. and Leaver, A. G. effect of different levels of dietary zinc and calcium upon the zinc concentration of the rat femur and incisor. *Arch. Oral Biol.* (1966) 11(12): 1377-44.

Diss Ibunghazala, T. 1984. [effects of fatty acid and interactions between zinc and dietary fat on lipid and mineral metabolism of rat]. <original> effets des acides gras alimentaires et interactions entre le zinc et les lipides alimentaires sur le metabolisme lipidique et mineral chez le rat. 97 P.

Diss Ibrahim, M. R. M. 1986. effect of dietary protein, zinc and calcium levels and their interactions on growing rabbit performance [egypt]. 153 P.

Gene Inukai, T., Inaba, T., Ikushima, S., and Look, A. Th. 1998. the ad1 and ad2 transactivation domains of e2a are essential for the antiapoptotic activity of the chimeric oncoprotein e2a-hlf. Vol. 18, No. 10, Pp. 6035-6043 Molecular And Cellular Biology

<table>
<thead>
<tr>
<th>authors</th>
<th>title</th>
<th>journal</th>
<th>year</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>ISHBASHI TAKEHIKO, EYADAN JUANITO A, NARITA MAKIKO, and MORITOMO YASUO.</td>
<td>morphology and distribution of langerhans cells in the epithelium of the digestive and reproductive tracts of cattle.</td>
<td>Proceedings of School of Agriculture Kyushu Tokai University 12(0):</td>
<td>63-71.</td>
</tr>
<tr>
<td>Diss</td>
<td>ISKANDER, H. B.</td>
<td>studies on some physio-chemical factors affecting the conception rate in cattle [egypt].</td>
<td>82 P.</td>
<td></td>
</tr>
<tr>
<td>CP</td>
<td>ISRAEL DAVID I(A) and KAUFMAN RANDAL J.</td>
<td>dexamethasone negatively regulates the activity of a chimeric dihydrofolate reductase/glucocorticoid receptor protein.</td>
<td>Proceedings of the National Academy of Sciences of the United States of America 90(9):</td>
<td>4290-4294.</td>
</tr>
</tbody>
</table>

FL Istomina, N. A. Effect of copper compounds on calf growth and assimilation of diet nutrients. DOKL VSES ORDENA LENINA ORDENA TRUD KRASTNOGO ZNAMIENI AKAD S-KH NAUK IM VI LENINA. Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni Akademii Sel'Skokhozyaistvennykh Nauk Imeni VI Lenina. 0 (2). 1980. 43-45.

FL Ivandija, L. 1997. Fattening performance of broilers in relation to the source and quantity of

Jackson, W. B., Spear, P. J., and Wright, C. G. resistance of norway rats to anticoagulant rodenticides confirmed in the united states. *Pest Control; 39(9): 13-4 1971; (REF:2)*

Abstract

No Dose

Abstract

Abstract

Bio Acc

Mix

Nut def

Nut def

Nut def

Phys

CP

Phys

Nut def

Nut def

Nut def
Drug

Abstract

FL

No Oral

Unrel

In Vit

FL

Nut def

Rev

Mix

Mix

HHE

No Control

Nut def

Nut def
James, S. J., Swendseid, M., and Makinodan, T. macrophage-mediated depression of t-cell

Nut def Jankowski, M. A., Uriu-Hare, J. Y., Rucker, R. B., and Keen, C. L. embryonic cell death patterns are different in embryos from zinc (zn) deficient dams compared to embryos from copper (cu) deficient, and diabetic dams. *Teratology 1994 May;49(5):408*

HHE

Mineral

FL

Rev

Abstract

No COC

Mix

Mix

Rev

Phys

No COC

Nut def

Unrel

Mix

Abstract
Jensen, K. E. 1965.* A Program for Research and Development of Respiratory Disease Vaccines.* <NOTE> Semi-Annual Progress Rept. for 1 Mar-15 Sep 65
Abstract

CP

No Oral

No COC

FL

No COC

Bact

Bact

Nut def

Nut def

Unrel

Drug

Phys

Nut def

No COC

FL Jilg, T. 1992. feeding value and acceptance of regrowths in extensively used stands in baden-wurttemberg for growing cattle. 443-446.

Nut def Johanning, G. L., Browning, J. D., Bobilya, D. J., Veum, T. L., and O'Dell, B. L. 1990. effect of

Nut def Johnson, Dorthea A. and Alvares, Olav F. zinc deficiency-induced changes in rat parotid

Plant JOHNSON, M. S., MCNEILLY, T., and PUTWAIN, P. D. revegetation of metalliferous mine spoil contaminated by lead and zinc. *ENVIRON POLLUT; 12 (4). 1977 261-278*

Mix Johnson, W. Thomas and Canfield, Wesley K. the effects of endogenous picolinic acid on zinc

Alt

Nut def

Drug

Phys

Phys

No Oral

No COC

Bio Acc

CP
JONES, J. D. rapeseed protein concentrates-toxicology and nutrition. *PROC INT RAPESEED CONF 5TH 2:128-132,1979*

Abstract

Unrel

Mix

Mix

CP
JONGBLOED, A. W. and LENIS, N. P. 1969-1993. excretion of nitrogen and some minerals by livestock. *VERSTEGEN*

FL

Unrel Jubb, T. F. Melbourne Univ. Maffra Australia Rural Veterinary Unit, Malmo, J. Maffra Veterinary Centre Maffra Australia, Morton, J. M. Victorian Dept. of Agriculture and Rural Affairs Warrnambool Australia, Button, C., and Jerrett, I. V. Victorian Dept. of Agriculture and Rural Affairs Bairnsdale Australia Regional Veterinary Lab. 1990. inherited epidermal dysplasia in holstein-friesian calves [baldy calf syndrome; case study]. *Australian Veterinary Journal. V. 67(1) P. 16-18*

CP Jurata, L. W., Kenny, D. A., and Gill, G. N. 1996. nuclear lim interactor, a rhombotin and lim homeodomain interacting protein, is expressed early in neuronal development. *Proceedings of*

Mix Kaeaentee, E., Kurkela, P. Food and Public Health Laboratory Kauhajoki Finland, and Jaakkola, K. Kristiina Medical Centre Kristiniankaupunki Finland. 1982. effects of dietary organic selenium content on fowls, chicks and eggs [iron, zinc, copper, sulphur, fe, zn, cu, s]. Journal of the Scientific Agricultural Society of Finland. V. 54(2) P. 113-118

In Vit KAJI, T., KAWATANI, R., TAKATA, M., HOSHINO, T., MIYAHARA, T., KOZUKA, H., and KOIZUMI, F. the effects of cadmium copper or zinc on formation of embryonic chick bone in tissue culture. TOXICOLOGY, 50 (3). 1988. 303-316.

In Vit KAJI, T., TAKATA, M., HOSHINO, T., MIYAHARA, T., KOZUKA, H., KURASHIGE, Y., and KOIZUMI, F. role of zinc in protection against cadmium-induced toxicity in formation of embryonic chick bone in tissue culture. TOXICOL LETT (AMST); 44 (1-2). 1988. 219-227.

Prim KAMBADUR, R., PALIWAL, V. K., and NATH, R. 1952. reactivation of apoenzymes by renal isometallothioneins from rhesus monkey under nutritional stress. KAGI

Vestnik Sel'Skokhozyaistvennoi Nauki Kazakhstana (7): 43-45.

Kashiwabara, N. EISOA, Maruyama, H., Yamashita, Y., and Kondo, S. Effects of zinc deficiency on growth, hematological values, and tissue zinc content in rats. *Eiyo To*

Nut def

FL

Diss

Nut def

FL

FL

FL

Mix

FL

Alt

Nut def

Nut def

Nut def

Drug
Drugs

No COC

CP

Nut

HHE

Surv

FL

Mix
Kaushish, S. K. and Sahni, K. L. Effect of feeding animal protein (egg + milk) and trace elements, and provision of cooler climate on libido, semen quality and certain physiological reactions of Russian merino rams during summer season.

HHE

Nut def
Kavlock, R. J. Experimental studies on chemical inducing eye abnormalities. Teratology 1996 May;53(5):15A

FL

Unrel

In Vit

Gene

Abstract
Kawamoto, J., Castonguay, T. W., Keen, C. L., Stern, J. S., and Hurley, L. S. Age and sex alter the

No Tox Kawanishi, Hideki, Nishiki, Masayuki, Ezaki, Haruo, and Tsuchiya, Taro. 1982. changes in the concentration of trace metal in experimental fulminant hepatic failure with special reference to changes in the zinc content in liver. *Kanzo 23(9): 998-1005.*

Keen, C. L., Mutch, P. B., Lonnerdal, B., Amemiy, K., and Hurley, L. S. effect
of zinc supplementation on magnesium deficiency in pregnant rats. *TERATOLOGY 23:44A-45A, 1981*

CP

Nut def

Drug

Nut def

No COC

No Dose

Nut def

No Tox

OAC

No Tox

Nut def

Mix

Nut def

Nut def

Kempson, S. A. and Laing, J. A. ed. The role of nutrition in the growth and structure of the hoof horn. Prevention, management and repair of trauma in transport animals. *P. 51-59*

Kenney, M. A., Hill, L., McCoy, H., and Williams, L. Effect of dietary zinc on bone in calcium-

Unrel KEPPEN, L., PYSHER, T., and RENNERT, O. teratogenic effects of alcohol are potentiated by zinc deficiency. CLIN RES 31:893A,1983

FL Kerimova, M. G. importance of a balanced content of copper and zinc in food rations for some characteristics of the nitrogen metabolism in the animal organism. Vop. Pitan. (1972) 30(4): 29-34

FL Kerimova, M. G. 1972. [the importance of copper and zinc balance in food rations for various indices of nitrogen metabolism in the animal body]. <original> znachenie sbalansirovannosti v pishevykh rationsakh medi i tsinka dlia nekotorykh pokazatelei azotistogo obmena zhivotnogo organizma. Voprosy Pitanii 31(4): 29-34.

Eco-SSL for Zinc 394 June 2007

Khalifa, T. A. A. 1997. effect of vitamin e and zinc supplementation on sexual behaviour and some semen characteristics of buffalo-bulls. *245 P.*

Khan, A. A. 1987. problem of field-rats in standing paddy in pakistan and its economic impact on yield losses. *1 P.*

159-161.

No Control Kidd, M. T., Qureshi, M. A., Ferket, P. R., and Thomas, L. N. 1994. blood clearance of escherichia coli and evaluation of mononuclear-phagocytic system as influenced by supplemental dietary zinc methionine in young turkeys. Poultry Science. 73(9): 1381-1389.

KILBURN, K. H. zinc and copper modify congenital defects due to a bis dichloroacetyl diamine (win 18,446). *FED PROC FED AM SOC EXP BIOL* 42:623, 1983.

IMM

No COC

FL

FL

FL

Abstract

Nut def

Nut def

Unrel

Nut def

Unrel

Org Met

CP
Nut

Nut def

Nut

Nut def

Nut def

Drug

Nut def

Gene

Org Met

Unrel

No COC

Abstract

KIMURA, M., ORIKASA, S., and SAJIKI, J. 1927. calcium factor associated with injury of rat testis induced by cadmium. 3RD INTERNATIONAL CONGRESS OF ANDROLOGY

No COC

FL

No Oral

Kimura, Y., Kamide, M., Miyazaki, T., and Umeda, R. 1987. olfactory behavior of mice in
response to cycloheximide an agricultural fungicide and rodent repellent.

Practica Otologica Kyoto. 80(30): 469-475.

No Oral

Kimura, Y., Miwa, T., Furukawa, M., and Umeda, R. effects of topical application of steroids on olfactory disturbance in mice.

No COC

Kinal, S., Luczak, W., and Pres, J. 1994. chemical evaluation of various dolomites and limestone and their effect on utilization of Ca, P, Mg, Zn, Cu and organic components in feeding growing sheep.

Roczniki Naukowe Zootechniki 21(1/2): 181-194.

FL

Roczniki Naukowe Zootechniki. Monografie i Rozprawy. (No. 24) P. 103-115

FL

Kinal, S., Paleczek, B., Korniewicz, A., and Pres, J. 1997. estimation of different zinc levels in diets for ewes with regard to total calcium and phosphorus requirements as specified by polish, inra and dfg standards.

Roczniki Naukowe Zootechniki 24(4): 187-202.

Mineral

Journal of Animal and Feed Sciences 4(3): 183-194.

Mineral

Roczniki Naukowe Zootechniki 23(4): 157-167.

Nut

Zeszyty Problemowe Postepow Nauk Rolniczych 434(II): 723-727.

Mineral

Archivum Veterinarium Polonicum 36(1-4): 89-99.

Mineral

Kinal Stefania(A), Pres Jerzy, Korniewicz Adolf, Chrzaszcz Ewa, and Kistowski Tadeusz. 1996. effect of different Mg and Zn level on assimilation of organic components and minerals in dry cows.

Archivum Veterinarium Polonicum 36(1-4): 101-113.

Drug

Acta Diabetologica. 36(3): 113-117.

Diss

DISS. ABST. INT. PT. B - SCI. & ENG VOL. 46, NO. 11: 135 pp.

Mix

Kincaid, R. L. 1986. biological availability of zinc from inorganic sources with excess dietary calcium.

J. Dairy Sci. (1979) 62(7): 1081-5.

Bio Acc

Kincaid, R. L. factors associated with the variation of copper and zinc in plasma of lactating cows.

Nutrition Reports International. 23 (3). 1981. 493-498.

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Hartel, J. 138. intermediary availability of zinc from 15 different zinc compounds. *Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde*

Kirchgessner, M. and Roth, F. X. olaquindox, a new growth promoter in animal nutrition. 3.in veal fattening. Zietschrift Fur Tierphysiologie Tiernahrung Und Futtermittelkunde| PY- Was Given at From 5 to 50 Mg/Kg Milk Replacer. Up to 10 Mg Had Little Effect. With 25 Mg or More Gain Was Increased by 8% and Efficiency by 6%. Olaquindox Was Better Than Zinc Bacitracin at 80 Mg/Kg. Carcasses Were Not Affected. Olaquindox Was Equally Effective at All Ages. (From Summary).

Kirchgessner, M., Roth, F. X., and Roth, H. P. 1987. effects of a grain-rich diet without added trace elements and vitamin in various performance values in fattening pigs. Journal of

FL Kirchgessner, M., Roth, H-P., and Schwarz, W. A. 175. effect of zinc deficiency on the serum insulin level in dairy cows.zinc metabolism in the animal body. Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde

FL Kirchgessner, M., Roth-Maier, D. A., Reithmayer, F., and Spoerl, R. the influence of suboptimal maternal zinc supply during pregnancy on the zinc status of newborn piglets. Z TIERPHYSIOL TIERERNAEHR FUTTERMITTELKD. Zeitschrift Fuer Tierphysiologie Tierernaehrung Und
influence of zinc deficiency on lactating cows on the fsh and lh content of the serum. Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde.

No COC Kiss, Z. 1994. the zinc chelator 1,10-phenanthroline enhances the stimulatory effects of protein
kinase c activators and staurosporine, but not sphingosine and h2o2, on phospholipase d activity in

Org Met Kita, Kazumi, Hohmura, Isao, and Okumura, Junichi. influence of dietary zinc methionine
supplementation on eggshell quality in laying hens under hot climate environment. Nippon

No COC KITAGAWA, H., SAITO, H., UENO, K., NAMINOHIRA, S., IGARASHI, T., SATOH, T., and
SAKAI, T. acetylsalicylic acid induced fetaltoxicity and drug metabolism. J PHARMACOBIO-

No COC Kitai, K. and Arkakawa, A. effect of antibiotics and caprylohydroxamic-acid on ammonia gas

FL Kiyozumi Morio(A), Sakaguchi Yoko(A), Shiozuka Emiko(A), Matsuda Yoshiko(A), Yamamoto
Etsuko, and Kojiima Shoji. 1993. a rapid determination of metallothionein in animal tissues by

protect against cadmium toxicity. Annual Review of Pharmacology and Toxicology 39: 267-
94.

Unrel Klaassen, Curtis D. and Lehman-McKeeman, Lois D. regulation of the isoforms of

Drug Klaassen, Curtis D. and Liu, Jie. metallothionein transgenic and knock-out mouse models in

growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. Journal
of Nutrition 117(9): 1629-37.

CP Klasing, K. C., Maynard, P. M., and Laurin, D. E. hypersensitivity to dietary soy protein. 77TH
ANNUAL MEETING OF THE POULTRY SCIENCE ASSOCIATION, INC. POULT SCI. 67
(Suppl. 1). 1988. 104.

CP KLASING, K. C., RICHARDS, M. P., DARCEY, S. E., and LAURIN, D. E. presence of acute
phase changes in zinc iron and copper metabolism in turkey embryos. PROC SOC EXP BIOL

IMM Klasing, Kirk C. and Barnes, David M. decreased amino acid requirements of growing chicks due

Diss Klauder, David S. IV. 1975. the effects of dietary copper, iron, and zinc on the toxicity of lead
in male rats. Avail.: Xerox Univ. Microfilms. Ann Arbor, Mich., Order No. 76-2355 From:

Mix Kleczkowski, M. 1989. effect of molybdenum on copper contents in cattle at various levels
ofdietary zinc and sulphur. 354-361.

FL Kleczkowski, M. 1989. effect of molybdenum, zinc and sulphur on liveweight gain of bulls
on diets with different copper content. Medycyna Weterynaryjna 45(5): 270-274.

CP Kleczkowski, M., Barej, W., Klucinski, W., Sikora, J., Dembele, K., and <Editors> Trenti, F.
1994. effect of different concentrations of copper, molybdenum, zinc and sulphur diet, on content

Abstract Klevay, L. M., Evans, G. W., and Sandstead, H. H. zinc copper hyper cholesterolemia the effect

Prim

Nut def

CP

Nut def

CP

Nut def

No COC

Nut def

No COC

CP

No COC

HHE

HHE

HHE

CP	Koh, E. T. 1990. comparison of copper status in rats when dietary fructose is replaced by either cornstarch or glucose. Proceedings of the Society for Experimental Biology and Medicine; 194
No COC	Koh, Jin Bog, Jeung, Bok Mi, Kim, Jae Young, Choi, Do Jeom, and Yang, Cha Bum. effects of drinking water supplemented with copper on tissue concentrations of copper, iron and zinc in rats. Han'Guk Yongyang Siklyong Hakhoechi (1987) 16(2): 63-8.
No COC	Kohout, M., Braun, T., and Novakova, A. 1966. changes in the fatty acid composition of adipose tissue in hyperphagic rats with a hypothalamic lesion and in rats after insulin administration.

FL Kolb, E., Engmann, S., Klemm, R., and Nestler, K. 1995. content of trace elements and minerals (na, k, ca, mg, inorganic-p) andfe, cu and zn in ten different tissues of geese. Tierarztliche Umschau 50(1): 52-54, 57-60.

FL Kolb, E., Rehbein, S., Ribbeck, R., Alawad, A., Leo, M., and Siebert, P. 1993. the behaviour of haematological values (haemoglobin, haematocrit,leukocyte count) and of clinico-chemical values in the plasma (glucose,total protein, alpha-amino-n, urea, pepsinogen, ascobic acid, fe, cuand zn) as well as that of ascobic acid in the liver, spleen and adrenal glands in healthy lambs and in lambs infected with haemonchuscontortus and trichostrongylus colubriformis. Berliner Und Munchener Tierarztliche Wochenschrift 106(12): 411-418.

structuring in a zinc finger protein: nmr analysis of a point mutant of the carboxy-terminal lim domain of quail cysteine- and glycine-rich protein crp2.

Vol. 120, No. 28, Pp. 7127-7128
Journal Of The American Chemical Society

Konrat, Robert, Weiskirchen, Ralf, Krautler, Bernhard, and Bister, Klaus. solution structure of the carboxyl-terminal lim domain from quail cysteine-rich protein crp2.

Biochemistry 37(20): 7127-34.

Kontsevenko, V. V. 1987. experimental parakeratosis in young pigs.

Veterinariya, Moscow (6): 50-52.

Kontsevenko, V. V. and Kogan, E. S. 1985. resistance to infection in piglets on inadequate mineral nutrition.

Veterinariya, Moscow, USSR (5): 59-60.

Kontsevenko, V. V. Agricultural Academy Belgorod Russia, Marusich, A. G., and Sirt'ko, V. A. eds. 1998. [actual problems of mineral nutrition of pigs in conditions of industrial technology]. <original>aktual'nye problemy mineral'nogo pitania svinej v usloviyakh promyshlennoj tehnologii. [current problems of intensive development of animal husbandry]. <original>aktual'nye problemy intensivnogo razvitiya zhivotnovodstva. 248 P. P. 41-44

Koo, S. I., Dodds, S. J., and Mercer, L. P. 1986. optimization of the dietary level of histidine in relation to the serum concentrations of zinc and copper in the weanling rat.

Koo, S. I. and Williams, D. A. 1981. relationship between the nutritional status of zinc and cholesterol concentration of serum lipoproteins in adult male rats (copper nutrure).

Koo, Sung I., Dodds, S. J., and Mercer, L. P. 1986. optimization of the dietary level of histidine in relation to the serum concentrations of zinc and copper in the weanling rat.

Koo, Sung I., Fullmer, Curtis S., and Wasserman, Robert H. effect of cholecalciferol and 1,25-dihydroxycholecalciferol on the intestinal absorption of zinc in the chick.

Kornegay, E. T., Hedges, J. D., and Martens, D. C. soil corn plant and grain mineral levels following 3 years of applying feces from pigs fed high and low dietary copper levels. *VA J SCI. Virginia Journal of Science.* 26 (2). 1975 43

Korniewicz, A., Kirschke, A., Klawe, W., and Harenza, T. 1982. effect of biostimulants on

KOTAKE, K. effects of polyoxin-zinc salt on the following generations in rats. NICHIDAI IGAKU ZASSHI 38:847-857, 1979

Kovar, J., Brzobohaty, B., and Studnickova, M. polarographic study of zinc binding to glutamate dehydrogenase ec-1.4.1.2. Bioelectrochemistry and Bioenergetics. 9 (3). 1982. 345-356.

Koyuncuoglu, H., Hatipoglu, I., and Sarica, O. 1994. morphine physical dependence

FL

No Oral

FL

Mix

CP

Nut def

In Vit

Nut def

In Vit

Nut def

Nut def

Nut def

Nut

In Vit
Kramer, K., Markwitan, A., and Pallauf, J. 1993. studies on the metabolism of metallothionein and alkaline phosphatase of adult rat primary hepatocyte cultures: role of fetal calf serum and

FL Kristiansen, P. H. and Pedersen, I. H. 1972. (zinc metabolism in pigs. ii. changes in blood zinc

Abstract

Abstract

No COC

Nut def

Nut def

In Vit

In Vit

No COC

FL

In Vit

FL

HHE

FL

FL

Nut

Pharmacometrics. 42 (1). 1991. 61-68.

Abstract KUWAYAMA, H., EASTWOOD, G., TANAKA, N., TASHIRO, Y., and MATUO, Y. 1988. effect of z-103 n-13 aminopropionyl-l-histidine zinc against ethanol injury and on epithelial proliferation in rat stomach. 89TH ANNUAL MEETING OF THE AMERICAN GASTROENTEROLOGICAL ASSOCIATION

| Chem Meth | Ladanyi, Erna. polarographic determination of copper, zinc, and lead in water. *Igiena (1968)* 17(12): |
| HHE | Ladefoged, K. and Jarnum, S. 1983. zinc-deficiency syndrome during parenteral-nutrition in... |

FL Laitnerova, N. <translated> effect of different zinc levels in the diet upon its concentration in rat organs. vliv ruzne hladiny zinku v krmne davce na koncentraci zinku v organech krys. Sbornik. ; Rada A. ; Spisy Fakulty Agronomicke.Brno. ; Vysoka Skola Zemedelska. 1979. v. 26 (4) p. 161-

Gene

No COC

Prim

No COC

In Vit

No Oral

No COC

No COC

No Oral

Anat

Drug

Phys

Nut

Food

Unrel

FL Lantzsch, H. J. and Scheuermann, S. E. 1984. effect of body zinc content on the reaction of various parameters of zinc metabolism. 2. apparent absorption, urinary excretion and body

No COC LARSSON, K. S., ARNANDER, C., CEKANOVA, E., and KJELLBERG, M. studies of teratogenic effects of the dithiocarbamates maneb,mancozeb and propineb. *TERATOLOGY*
FL Larue, C. 1975. [comparison of the effects of anosmia induced by either peripheral lesion or bulbectomy upon the feeding pattern of the rat (author's transl)]. <original> comparaison des effets de l'anosmie peripherique et de la bulbectomie sur la sequence alimentaire du rat. *Journal De Physiologie* 70(3): 299-306.

COC

CP

No Oral

Surv

Unrel

Bio Acc

FL

Nut def

Unrel

Alt

Nut def

Nut def

Nut def

Fate

CP

Abstract

Nut def

Nut def

FL

No COC

No Oral

FL

FL

Phys

FL

FL

In Vit
Lazo John S(A), Kondo Yuukihiro, Deliaziutta Dana, Michalska Anna E, Choo, K. H. Andy, and Pitt Bruce R. 1995. Enhanced sensitivity to oxidative stress in cultured embryonic cells from transgenic mice deficient in metallothionein i and ii genes. *Journal of Biological Chemistry*

Lease, J. G. effect of dietary histidine on tibia alkaline phosphatase and leg deformities of chicks given a low zinc sesame-d meal diet. FED PROC. Federation Proceedings. 30 (2). 1971 643

Lease, J. G. 1968. effect of graded levels of cadmium on tissue uptake of 65zn by the chick over time. Journal of Nutrition 96(3): 294-302.

Lease, J. G. 1968. effect of graded levels of cadmium on tissue uptake of 65zn by the chick over time. Journal of Nutrition 96(3): 294-302.

Leazer, T. M., Keen, C. L., Daston, G. P., and Rogers, J. M. pretreatment with zn or low doses of lipopolysaccharide (lps) protects against lps developmental toxicity. Toxicologist 1995
No Oral Leazer, T. M., Keen, C. L., Daston, G. P., and Rogers, J. M. zn pretreatment, but not co-
administration, protects against the developmental toxicity of lps in the mouse. Teratology 1994
May;49(5):369-70

No Oral Leber, A. P. and Miya, T. S. 1976. a mechanism for cadmium- and zinc-induced tolerance to
cadmium toxicity: involvement of metallothionein. Toxicology and Applied Pharmacology
37(3): 403-14.

No COC Lebzien, P., Rohr, K., and Engling, F. P. 1993. effects of protected and unprotected methionine
on the digestive processes and on the methionine content of blood plasma in dairy cows.

FL Lechowski Roman and Lenarcik Maciej. 1994. feeding and skin diseases in dogs and cats: a

FL Ledec, Miroslav, Koci, Stefan, and Skrobanek, Peter. extension of the productive life of laying
hens with the administration of chemical agents. Agrochemia (1979) 19(12): 380-3.

Abstract Lee, A. O., Jacobs, R. M., Fox, M. R. S., Fry, B. E. Jr, and Huisingh, D. the biological availability
of zinc-65 from soybeans in japanese quail. Federation Proceedings. 34 (3). 1975 907

Unrel Lee, C. H., Chang, L., and Wei, L. N. 1996. molecular cloning and characterization of a mouse
Reprod. Dev.

growth factor-binding proteins (igfbps) within the pig uterine lumen associated with peri-

Nut def Lee, Clarence M., Humphrey, Patricia A., and Aboko-Cole, Georgiana F. interaction of nutrition
and infection: effect of zinc deficiency on immunoglobulin levels in trypanosoma musculi

Nut def Lee, Clarence M., Humphrey, Patricia A., and Aboko-Cole, Georgiana F. interaction of nutrition
and infection: effect of zinc deficiency on resistance to trypanosoma musculi. Int. J. Biochem.

Surv Lee, D. P., Honda, K., Tatsukawa, R., and Won, P. O. 1989. distribution and residue level of

protection of the liver from copper toxicity by zinc-induced metallothionein in a rat model.

the response of newly weaned pigs to zinc oxide or apramycin sulfate. Journal of Animal
Science 74(SUPPL. 1): 57.

68TH ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR

Lee, Kyeung Soon, Cho, Soo Yeul, and Seo, Jung Sook. effects of dietary levels of vitamin a

Unrel

OAC

Mix

Drug

Drug

Nut def

Unrel

No Oral

No COC

Gene

Abstract

No COC

Gene

CP

Surv

Prim

Leek, J. C., Keen, C. L., Vogler, J. B., Golub, M. S., Hurley, L. S., Hendrickx, A. G., and

Abstract Lei, K. Y. dietary copper deficiency effects on cholesterol metabolism in the rat. *FED PROC. Federation Proceedings.* 36 (3). 1977 1151

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Abstract/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrel</td>
<td>Leo, Maria Anna, Kim, Cho II, and Lieber, Charles S.</td>
<td>increased vitamin a in esophagus and other...</td>
</tr>
</tbody>
</table>

Mix

Unrel

Unrel

FL

CP

Mineral

FL

Nut def

Drug

Nut def

Nut def

Nut def

Nut def

Mix

FL Li, Dengsong, Qiao, Shengmin, Yang, Xiao, and Hou, Xun. the evaluation of nutritional value of food fortified with lysine, iron, calcium, and zinc. *Yingyang Xuebao (1987)* 9(2): 143-9.

Nut def Li, Jisheng, Xu, Pengxiao, Ren, Huiman, Hu, Haitao, and Ling, Fengdong. changes of the somatostatin and arginine vasopressin contents of the rat hippocampus in zinc deficiency.

FL

FL

Nut def

FL

Phys

FL

FL

Unrel

Nut def

FL

Surv

FL
Li Wenli, Lu Zhinian (Nanjing Agricultural Univ. (China). Dept. of Animal Science), and Jin Suhua. 1990. effects of zinc and iodine supplementation on semen quality in dairy bulls. Journal of Nanjing Agricultural University. V. 13(4) P. 76-81

CP

Unrel

Li, Zhengyin, Zhao, Faji, Guo, Junsheng, and Li, Min. effect of zinc on contents of Zn, Cu and Fe in plasma, liver and adrenals of heat-exposed rats. *Yingyang Xuebao (1999)* 21(3): 269-273.

Abstract LIMANOWSKA, H. 1984. microscopic evaluation of biological properties of root-filling materials based on zinc oxide. 10TH BILATERAL FRIENDSHIP AND ANNIVERSARY SYMPOSIUM ON PROGRESS IN MEDICINE

FL Lin Chungyi, Tseng HorngChih, Chen TianFwu, Pan ChingMoo, Hsieh ChiaHuey, and Wang

Nut def Lindsay, D. R. The usefulness to the animal producer of research findings in nutrition on reproduction. *Proceedings of the Australian Society of Animal Production.* 11. 1976 217-224

Liu Donghua(A), Jiang Wusheng(A), and Li Deshen. 1993. effects of aluminium ion on root growth, cell division, and nucleoli of garlic (allium sativum l.). *Environmental Pollution* 82(3): 295-299.

FL Lizohub, M. L. Crimean State Agricultural Univ. Simferopol Ukraine. 1997. [activating immunofunctions of gamma-globulines of the blood serum of neonatal calves with the addition of copper and zinc in the ration of pregnant cows]. <original> aktivatsiya immunnukh funktsiyi gamma-globulinov syvorotki krovi novorozhdennykh tyelyat pri dobavlyeniyi v ratsion styel'nykh korov myedi i tsynka. 146 P.

Loganathan, P., Mackay, A. D., Lee, J., and Hedley, M. J. 1995. cadmium distribution in hill
pastures as influenced by 20 years of phosphate fertilizer application and sheep grazing.

Bio Acc

Abstract

Login, I. S. and Macleod, R. M. a direct inhibitory effect of zinc on pituitary prolactin secretion.

Mineral

No COC

Bact

No Oral

Nut def

Nut def

Nut def

Nut

HHE

Drug

FL

No Dur

CP

CP Lu, J. and Combs, G. F. Jr. effects of excess dietary zinc on starch digestibility and amylase activity of chicks. 75TH ANNUAL MEETING OF THE POULTRY SCIENCE ASSOCIATION, INC. POULT SCI. 65 (Suppl. 1). 1986. 83.

Luecke, R. W. and Fraker, P. J. the effect of dietary restriction and zinc intake on the antibodymediated response of a/j mice. *Federation Proceedings* [SN- 0014-9446] [PY- 1978] [VO-37] [IS- 3] [PG- (VV120); Animal Nutrition (Physiology) (LL510)]

Luecke, R. W. and Fraker, P. J. the effect of varying dietary zinc levels on growth and immunity in strains of mice. *Federation Proceedings* [SN- 0014-9446] [PY- 1979] [VO- 38] [IS- 3, I] [PG- (HH600); Human Physiology & Biochemistry (VV050)]

Luo Xugang, Su Qi, and Huang Junchun (Chinese Academy of Agricultural Sciences, Beijing China Inst. of Animal Sciences. 1991. the effects of manganese (mn) deficiency or excess in a practical diet on contents of other minerals and trace elements in tissues of broiler chicks. *Animal Husbandry and Veterinary Medicine. V. 23(4) P. 146-147*

Fate

FL

Abstract

Diss

Prim

Nut def

Prim

Nut def

Nut def

Nut

Nut

Abstract

FL
Macarulla, M. T., Martinez, J. A. Pais Vasco Univ. Vitoria Espana Facultad de Farmacia, Marcos, R., and Larralde, J. 1991. influence of faba bean (vicia faba l.) intake on the lymphoblastic proliferation and the complement system. <original>influencia de la ingesión de habas (vicia faba l.) sobre la proliferacion linfoblastica y el sistema del complemento. Anales De Bromatologia. V. 43(4) P. 383-393

HHE

No COC

metabolism of laying hens. <original> einfluss von zinkbacitracin auf leistung und energietransfer bei legehennen. growth promoters in the animal production. possibilities and limits. <original> leistungsfoerderer in der tierproduktion. moeglichkeiten und grenzen. P. 597-608. No. 20

Abstract Magee, A. C. influence of dietary zinc on rats fed various protein levels and sources abstract growth hemo globin liver copper iron casein milk powder soy bean-d. Federation Proceedings. 28 (2). 1969 762

Eco-SSL for Zinc 467 June 2007

olfactory receptor cilia during development. *Neuroscience* 7(12): 3091-103.

No Oral

No Oral

No COC

Nut def

Nut
Mak, K. M. and Jersild, R. A. an electron microscopic study of zinc iodide osmium staining of the golgi apparatus of rat intestinal epithelial cells. *Proceedings of the Indiana Academy Science. 78. 1968 162*

FL

FL

Nut

FL
Makartsev, N. G., Khadanovich, I. V., Vtorykh, E. A., Kravaine, R. S., and Klabukova, L. N. 1982. effect of premixes with various levels of iron and zinc on retention of nitrogen and minerals and bodyweight gain by young pigs. <document title>=biokhimiya pitaniya i kormlenie molodynakasel'skokhozaiystvennykh zhivotnykh pri rannem ot'eme. 70-79.

CP

FL

Not Avail

Nut

FL

Sludge Maly, Mark S. Miami Univ OH. survivorship of meadow voles, microtus pennsylvanicus, from sewage. *Bull Environ Contam Toxicol.* V32, N6, P724(8)

FL Mamani, N. J. P. 1996. effects of high dietary levels of copper and zinc on performance of weanling pigs. *<original> efeitos da suplementacao de altos niveis dieteticos de cobre e zinco no desempenho de leitoes.* 62 P.

FL Marois, M., Rateau, J. G., Marois, G., and Elie, C. 1982. study of the development of preputial glands and of seminal-vesicles in the prepubescent mouse in the function of age and weight of the animals and in the function of the weight of the testicles - comparative-study of the stimulation of preputial glands and of seminal-vesicles of the mouse under the action of diverse androgenous steroids - study of the antagonistic action exerted by a detergent, a superinone and by zinc salts on the stimulation of the preputial glands of the mouse provoked by diverse androgenous steroida. Semaine Des Hopitaux 58: 1398.

298-329.

Unrel Martins, J. 1968. behavior of the alveolar tissues of the rat in the presence of various root canal

Abstract Maruyama, K. and Sunde, M. L. 1977. comparative lysine requirement of anconas at various dietary levels of arginine selected for needing high dietary zinc. Poultry Science. 56 (5) 1734

responses by grazing ewes to zinc supplementation [sheep]. [seminar paper]. proceedings of a seminar on reproduction in farm animals. P. 127-132

Mix Mathe, G., Blazsek, I., Canon, C., Gil-Delgado, M., and Misset, J. L. 1986. from experimental to clinical attempts in immunoreconstitution with bestatin and zinc. Comparative Immunology, Microbiology and Infectious Diseases 9(2-3)

QAC Matsubara, Junko Univ of Tokyo Japan, Shida, Toshitomo, Ishioka, Kuniaiki, Egawa, Sunao, Inada, Tetsuo, and Machida, Kazuhiyo. protective effect of zinc against lethality in irradiated mice. *Environ Res. V41, N2, P558(10)*

FL Matsui, T., Susaki, H., Tamura, A., Yano, H., Nakajima, T., Matsuda, M., and Yano, F. 1998. the

Fate MATSUSAKA, N. uptake of 65zn in the mouse fetus as a function of gestational age. RADIAT RES 69:83-89,1977

Abstract MATSUSAKA, N., BERG, D., and KOLLMER, W. E. 1984. relationship between whole-body retention of zinc-65 and dietary zinc levels in rats. 27TH ANNUAL MEETING OF THE JAPAN RADIATION RESEARCH SOCIETY

FL MATSUSAKA, N., NAKAMURA, I., and ICHIKAWA, R. zinc-65 uptake in the rat fetus and the organ distribution of zinc-65 in pregnant female and in male rats. IGAKU TO SEIBUTSUGAKU (MED BIOL) 87:227-230,1973

No Dose

No Oral

Nut def

No Oral

In Vit

CP

FL

Matthes, S. ed. 1997. 10. symposium on housing and diseases of rabbits, furbearing animals and pet animals (celle (germany), 14-15 may 1997). <original> [10. symposium sur le logement et les maladies des lapins, animaux a fourrure et animaux de compagnie (celle (allemande), 14-15 mai 1997)]. *World Rabbit Science. V. 5(4) P. 129-133*

No COC

Alt

FL

CP

No COC

Nut

Mavaeva, E. N. and Rish, M. A. antagonism of zinc and copper as one of the factors contributing to the development of anemia. *Tr. Samarkand. Gos. Univ. (1972)*: No. 193, 75-84.

Mc Cuaig L W and Motzok, I. effects of dietary calcium on intestinal alkaline phosphatase and
intestinal and plasma calcium zinc and phosphate levels. *Federation Proceedings*. 31 (2). 1972 721

Nut def

Nut def

Drug

Bio Acc

Abstract

Diss

Bio Acc

Unrel

Rev

Nut def

Nut def

Abstract

Nut def

Nut def

Nut def

Mccormick, C. C. 1984. the tissue-specific accumulation of hepatic zinc metallothionein following parenteral iron loading. *Proceedings of the Society for Experimental Biology and Medicine; 176*

McCuaig, L. W. and Motzok, I. interactions of calcium, phosphorus, zinc, and alkaline phosphatase in the chick. iii. effects of dietary phosphate, sodium chloride, and theophylline.
Eco-SSL for Zinc

Unrel McEwan, N. A. Department of Veterinary Medicine University of Glasgow Veterinary Glasgow United Kingdom. 1990. lethal acrodermatitis of bull terriers. <subtitle> [correspondence]. Veterinary Record. V. 127(4) P. 95

Mix McKenna, I. M., Chaney, R. L., Tao, S. H., Leach, R. M. Jr., and Williams, F. M. 1992. interactions of plant zinc and plant species on the bioavailability of plant cadmium to japanese

Abstract

CP

Nut def

CP

Nut def

Nut def

HHE

BioX

In Vit

In Vit

Nut def

Nut def

Nut def

No Oral

Drug

Nut def

Nut def

Bact

CP

Nut def

Nut def

HHE

HHE

HHE

HHE

Mineral

Mineral

Species

Abstract

Medina, C. A., Scherle, P. A., King, L. E., and Fraker, P. J. alterations of b cell development in...

No COC Mehta, S. W. and Eikum, R. effects of estrogen on serum and tissue levels of copper and zinc. Advances In Experimental Medicine And Biology. 1989. v. 258 p. 155-162.

FL MEL'NIKOVA, V. V. and SAL'NIKOVA, L. S. evaluation of the mutagenic effect of zinc chloride. GIG TR PROF ZABOL; 0 (3). 1989. 58.

Phys Meli, C., Sisti, R., Cicaelese, R., Rossiello, E., Subissi, A., and Mariani, M. F. lack of foetotoxicity and teratogenicity following administration of idrapril calcium, a novel angiotensin-converting enzyme inhibitor, to the rat and the rabbit. Teratology 1996 May;53(5):33A

In Vit Menard, Michael P. and Cousins, Robert J. zinc transport by brush border membrane vesicles

Eco-SSL for Zinc 492 June 2007

Acu

Unrel

CP

OAC
Menczel, J., Lender, M., and Spencer, H. 1981. effect of starvation on super(65)zn tissue distribution and excretion by rats. IN "TRACE SUBSTANCES IN ENVIRON. HEALTH-XV": pp. 113-120.

CP

Alt

In Vit

Nut def

FL

Nut def

Nut def

Nut def

Nut def

CP

Mix MERRINGTON, G., WINDER, L., and GREEN, I. the uptake of cadmium and zinc by the bird-cherry oat aphid rholaplosiphum padi (homoptera: aphididae) feeding on wheat grown on sewage sludge amended agricultural soil. ENVIRONMENTAL POLLUTION; 96 (1). 1997. 111-114.

CP Michel, A. D. and Humphrey, P. P. A. 1994. the effect of metal cations on (3h)alpha,beta-methylene atp binding to rat vas deferens membranes. *British Journal of Pharmacology* 112(PROC. SUPPL. MAY): 136P.

In Vit Michel, A. D(A) and Humphrey, P. P. A. 1994. effects of metal cations on (3h)alpha,beta-methylene atp binding in rat vas deferens. *Naunyn-Schmiedeberg's Archives of Pharmacology* 350(2): 113-122.

Abstract
Miller, W. J., Martin, Y. G., Blackmon, D. M. influence of varying protein and energy intake on wound healing hair growth and serum zinc enz serum alkaline phosphatase packed cell volume and hemo globin in the bovine abstract. Federation Proceedings. 28 (2). 1969 491

Drug

CP

Abstract

Nut def

Nut def

CP

Abstract

In Vit

Gene

Nut def

No COC
Milthorpe, B. K., Nichol, L. W., and Jeffrey, P. D. sedimentation analysis of the polymerization behavior of zinc insulin at physiological ph. Proceedings of the Australian Biochemical Society. 10. 1977 10

Surv

Nut def Mintzer, Carole L., Carломagno, Mirta A., and McMurray, David N. effect of dietary protein

No Oral

In Vit

Nut def

No COC

Phys

Ecol

Abstract

MITCHELL, C. L., BARNES, M. I., and GRIMES, L. 1988. diethylthiocarbamate and dithizone augment the toxicity of kainic acid. *18TH ANNUAL MEETING OF THE SOCIETY FOR NEUROSCIENCE*

No COC

No COC

No Oral

FL

Drug

No Oral

No COC

No COC

Nut def

IMM

CP

IMM

Alt

Nut

Nut

FL

Nut

Nut def

In Vit

In Vit

Unrel
Mogha, I. V., Hoque, M., and Kumar, Ram. experimental studies on the role of zinc sulfate on

Diss Mohammad Azzar Ali. 1992. production performance and physiological response of old layer quails (coturnix coturnix japonica temminck and schlegel) given forced molting treatments. 80 Leaves

Not Avail Mohammed, K. A. Minia Univ. Egypt Faculty of Agriculture. 1992. forced molting induced by fasting or high zinc supplemented diet and its effect on the subsequent performance of rir [rhode island red] hens. *Minia Journal of Agricultural Research and Development. V. 14(3) P. 963-978

CP Momcilovic, B. 1997. dose-rate idiorrhythm is a powerful tool for the detection of subtle mineral interactions. a case for the expression of recommended dietary allowances (rdas) and safety limits (rfds) in the range format. *Trace Elem. Man Anim.--9 Proc. Int. Symp., 9th : Meeting*
Date 1996, 403-405. Editor(s): Fischer, Peter W. F. Publisher: National Research Council of Canada, Ottawa, Ont.

CP

Nut

CP

CP

Nut def

Nut def

Abstract

Nut def

QAC

Mix

Nut

Nut def

Bio Acc

Nut def

CP

Nut def
Momcilovic, Berislav. coupling of zinc dose to frequency in a regularly recurrent pattern shows a

Diss Monkiewicz, J. 1988. analysis of the influence of the legnica-glogow copper district on the organism and production of cows. <original> analiza skutków oddziaływania legnicko-glogowskiego okręgu miedziowego na organizm i użytowosc krow. 74 p. No. 73

Abstract Moore, R. J., Lindemann, M. D., and Kornegay, E. T. effect of dietary oat hulls or wheat bran on

Abstract Morgan, P. N., Cardinet, G. C. Jr, Keen, C. L., and Lonnerdal, B. effects of dietary zinc intake...

CP Morgan, P. N., Keen, C. L., Cardinet, G. H. III, and Lonnerdal, B. effects of varying dietary zinc in mice during recovery from undernutrition. *Trace Elements In Man And Animals 6 / Edited By Lucille S. Hurley, ... [Et Al.]*. p. 611-612.

Not Avail Morgenstern, H. and Machtay, I. 1983. serum zinc and copper levels in rheumatoid-arthritis.

Morlacchini, M. Centro Ricerche per la Zootecnia e l'Ambiente CERZOO San Bonico Piacenza Italy, Amerio, M., and Piva, G. F. Universita Cattolica del Sacro Cuore Piacenza Italy Istituto di Scienze della Nutrizione. Feeding as a way to reduce the polluting action of swine excreta. *<original> l'alimentazione quale mezzo per ridurre l'azione inquinante delle deiezioni suine.* *Informatore Agrario.* V. 48(Suppl.18) P. 7-10

Moutafchiev Dimiter A and Sirakov Ljuben M(A). 1998. influence of ascorbic acid, sodium citrate, and sodium bicarbonate on the uptake of 59Fe-transferrin, 54Mn-transferrin, and 65Zn-
transferrin from lactating mouse mammary gland cells. *Biological Trace Element Research* 63(1): 31-36.

Eco-SSL for Zinc

513

June 2007

Abstract

Munoz, C., Vormann, J., and Dieter, H. H. 1911. Characterization and development of metallothionein in fetal limb buds brain and liver from the mouse. *29th Spring Meeting of the Deutsche Gesellschaft fuer Pharmakologie und Toxikologie (German Society for Pharmacology and Toxicology)*

Diss

No COC

Drug

Phys

Unrel

Phys

Nut def

FL

Phys

CP

MURILLO FUENTES ML, ARTILLO, R., CARRERAS, O., and MURILLO, M. L. 1998. Effect of chronic ethanol ingestion on zinc duodenal absorption and zinc serum levels during pregnancy of lactation in rats. *Scientific Meeting of the Physiological Society*

No COC

Nut def

Abstract

Murray, E., Singer, L., Ophaug, R. H., and Wong, K. M. Effect of zinc deficiency on cyclic amp levels in the rat. *57th General Session of the International Association for*

CP Mylroie, A. A. effect of ingested lead on tissue levels of copper, iron, zinc and manganese in rats.
Abstract
Naber, E. C. and Smathers, S. E. patterns of toxicity and teratogenicity in the chick embryo resulting from the administration of certain nutrients and food additives. Poultry Science. 54 (5): 1975 1800

Nut def

Fate

Nut def

Sludge

Nut

Nut def

Nut def

Drug

No COC

Nut def

No Oral

CP

In Vit

NAKAMOTO, T., YAZDANI, M., and GRANT, S. 1988. effects of different levels of maternal caffeine intake during pregnancy on mandibular growth of fetal rats. 66TH GENERAL SESSION OF THE INTERNATIONAL ASSOCIATION FOR DENTAL RESEARCH

Nakamura Manabu T, Phinney Stephen D(A), Tang Anna B, Oberbauer Anita M, German, J. Bruce, and Murray James D. 1996. increased hepatic delta-6-desaturase activity with growth hormone expression in the mg101 transgenic mouse. *Lipids* 31(2): 139-143.

ethylphenyldithiocarbamate.

21ST ANNUAL MEETING OF THE JAPANESE SOCIETY OF TOXICOLOGICAL SCIENCES

FL

Org Met

Org Met

Phys

Plant

No COC

No Oral

Nut def

HHE

Nut def

Drug

Mineral

Prim

Nut def
NATH, R., PALIWAL, V. K., PRASAD, R., and KAMBADUR, R. 1952. role of metallothionein in metal detoxification and metal tolerance in protein calorie malnutrition and calcium deficient monkeys of macaca-mulatta. KAGI

Carcin

Unrel

Nut def

No COC

Drug

No COC

No Oral

In Vit

Nut def

Nut def

Bio Acc

Mineral

Mineral

Gene

Gene

Unrel

Meth

HHE

FL

Nut

Nut

BioX

Anat

Anat

Drug

FL
Nikonorow, M. and Rozycka, D. studies on toxicity of phenymercuric acetate (pma) in chickens. iii. studies on the levels of copper, zinc and cadmium in the liver and kidney of chickens exposed to repeated doses of pma. Roczn. Panstw. Zakl. Hig. 27(5): 569-575; 1976.9 References.

Unrel

IMM

Nut def Norii, Takafumi and Suzuki, Hiroo. effect of dietary protein levels on tissue zinc content and serum alkaline phosphatase activity in zinc-deficient rats. *Nippon Eiyo Shokuryo Gakkaishi*
Nut

Nut def

Drug

QAC

Nut def

Nut

No Tox

CP

FL

CP
NOSEWORTHY, M. D., TABATABAIE, T., FLOYD, R. A., and BRAY, T. M. 1995. detection of brain and lung oxidative stress in zinc and protein deficient rats following hyperoxia exposure. *EXPERIMENTAL BIOLOGY 95*

No COC

Unrel

FL

No Oral

Unrel

Unrel

Drug

Nut def

No Oral

Carcin

CP

CP

FL

Surv

Surv

No Oral

Nut def

Rev

Mineral

Nut def
O'Dell, B. L. 1993. roles of zinc and copper in the nervous system. *Progress in Clinical and*
Eco-SSL for Zinc 531 June 2007

Nut def O'Dell, Boyd L., Reeves, P. G., and Morgan, R. F. interrelations of tissue copper and zinc concentrations in rats nutritionally deficient in one or the other of these elements. *Trace Subst. Environ. Health (1976) : 10, 411-21.*

Nut def O'Leary, Mary J., McClain, C. J., and Hegarty, P. V. J. effect of zinc deficiency on the weight,

No Oral

Nut def

Abstract

Meth

Abstract

Prim

Prim

Phys

CP

CP

Abstract

Nut def

Nut def

No Oral

In Vit Ochi, T. 1988. effects of glutathione depletion and induction of metallothioneins on the cytotoxicity of an organic hydroperoxide in cultured mammalian cells. *Toxicology* 50(3): 257-

No COC Ogata, Hiromitsu and Izumo, Yoshiro. effects of sublethal dose of gamma rays on the accumulation of zinc in mice fed the higher concentration diets. Radioisotopes (1990) 39(3):

Ohta, Hisayoshi and Cherian, M. George University of Western Ontario ON Canada. The influence of nutritional deficiencies on gastrointestinal uptake of. *Toxicol. V97, N1-3, P71(10)*

Ohta, Hisayoshi, Soewarno, Tasbeh, and Yoshikawa, Hiroshi. Effect of chromium(iii) or chromium(vi) injection on metal distributions in rat livers. *Gifu Daigaku Igakubu Kiyo (1980)*

OISHI, S. 1986. age dependent testicular atrophy induced by di-2-ethylhexylphthalate morphology cell specific enzyme activities and zinc concentration. *FOURTH INTERNATIONAL CONGRESS OF TOXICOLOGY*

Oishi, S. 1986. testicular atrophy induced by di(2-ethylhexyl)phthalate: changes in histology, cell specific enzyme activities and zinc concentrations in rat testis. *Archives of Toxicology* 59(4): 290-5.

Okada, F., Yamaguchi, K., Ichihara, A., and Nakamura, T. 1989. one of two subunits of masking

Eco-SSL for Zinc 537 June 2007

Oliver, J. W., Sachan, D. S., Applehans, F. M., and Su, P. K. Thyroid zinc interactions in conversion deiodination of thyroxine to tri iodo thyronine in rat liver. *68TH ANNUAL*

Oner, G., Bhaumick, B., and Bala, R. M. the effect of zinc on serum somatomedin levels. ANNUAL MEETING OF THE CANADIAN SOCIETY FOR CLINICAL INVESTIGATION, QUEBEC CITY, CANADA, SEPT. 12-14, 1982. CLIN INVEST MED. 5 (2-3). 1982. 15b.

Oner, G., Bor, N. M., Onuk, E., and Oner, Z. N. the role of zinc ion in the development of

Org Met Orecchio, F., Togna, G., Di Battista, L., Villa, P., and Ficarra, M. G. biological effects of dithiocarbamates: zinc ethylenebis dithiocarbamate and parathion and paraoxon acute toxicity in
mice. *Ig. Mod. 72(3): 305-310 1979 (11 References)

Mix

Meth

Phys

Abstract

CP

Rev
Oyler, J. A. and <Editors> Bell, J. M. 1990. remediation of metals-contaminated site near a smelter using sludge/fly ash amendments. 75-82.

Sludge

In Vit

Nut def

FL

No COC

Phys

Nut def

In Vit

FL Pakhomov, Yu. N. Effect of insufficient supply of trace elements (zinc and iron) to the body on its immunobiological reactivity. *Gig. Sanit.* (1969) 34(12): 33-5.

Abstract

809-814.

FL

No Oral

Unrel

Mix

CP

Abstract
Panemangalore, M. and Brady, F. O. the influence of zinc status on the synthesis and induction of metallo thionein in isolated perfused rat liver. *Federation Proceedings* 38 (3 Part 1). 1979 605

No Oral

No Dose

Nut

Nut def
Panemangalore, Myna and Brady, Frank O. the influence of zinc status on the levels of metallothionein in isolated perfused rat liver. *J. Nutr. (1979)* 109(11): 1825-35.

Nut def

Nut

FL

FL

In Vit

FL Paragon, B. M. Ecole Nationale Veterinaire d'Alfort Maisons Alfort France Departement Elevage et Pathologie des Equides et Carnivores. 1997. feeding and pathology of the suckling puppy [protein/energy ratio]. <original> alimentation et pathologie du chiot sous la mere [ratio proteo-calorique]; alimentacion y patologia del cachorro con la madre. Recueil De Medecine Veterinaire. V. 173(1-3) P. 7-17

CP Pares A(A), Deulofeu, R., Gimenez, A., Alie, S., Camps, J., Caballeria, J., Ballesta, A. M., and Rodes, J. 1995. the effects of zinc on liver fibrosis are independent on the changes induced on vitamin a metabolism. Journal of Hепatology 23(SUPPL. 1): 141.

metabolic interactions of trace elements. the effect of some inorganic and organic compounds of selenium on the metabolism of cadmium and mercury in the rat. Physiol. Bohemoslov.; 18(2): 95-103

Bio Acc

Rev

Nut def

Nut def

FL
Park, J. H. and Kim, C. S. Korea Advanced Institute of Science and Technology Seoul Korea R. 1984. effects of over-dosed lead and its interaction with iron, copper, zinc or protein supplement in chicks. Korean Journal of Veterinary Research. V. 24(1) P. 24-30

FL

Nut def

In Vit
Parker Alex, Gockerman Amy, Busby Walker H, and Clemmons David R(A). 1995. properties of an insulin-like growth factor-binding protein-4 protease that is secreted by smooth muscle cells.
Endocrinology 136(6): 2470-2476.

Fate Parker, H. M. 1952. Radiological Sciences Department (Hanford Works): Quarterly Progress Report, Research and Development Activities for October-December 1951. HW-23332

Rev Parslow, J. L. F. and Jefferies, D. J. gannets and toxic chemicals. BR BIRDS. British Birds. 70 (9). 1977 366-372

Paterson, Phyllis Grace. 1987. the effect of dietary zinc deficiency on the structure and

Unrel

Rev

Nut def

In Vit

In Vit

Abstract

FL

Prim

Prim

FL

Unrel

FL

Unrel

FL

No COC

Nut def

Phys

Gene

Bact

Nut def

Nut

HHE

No Dose

Gene

Unrel

Gene

Nut

Bio Acc

No COC

Eco-SSL for Zinc 556 June 2007

Pelissier, M. A., Faudemay, F., Dooh-Priso, E., Atteba, S., and Albrecht, R. 1981. *DIMINUTION D'ACTIVITE DES OXYGENASES MICROsomales DU FOIE CHEZ LE RAT NOURRI AVEC UN REGIME ADDITIONNE DE ZINEBE.*

Pentieva, K. and Donchev, N. 1991. *EFFECT OF ELEVATED DOSES OF COPPER AND ZINC ON THE PATHOMORPHOLOGICAL CHANGES IN ABDOMINAL AORTA DURING CHRONIC EXPERIMENTAL CARBON SULFIDE INTOXICATION. I. HISTOLOGICAL STUDIES.*

Anat Perie, G. and Coujard, R. a special aspect of myelinization evidence by means of the osmium tetr
oxide iodine zinc complex rat sciatic nerve regeneration histology. C R ASS ANAT. 136. 1967
770-772

CP PERSAUD, T. VN and SEYOUM, G. 1997. ethanol embryopathy influence of zinc and methionine. ANNUAL MEETING OF THE PROFESSIONAL RESEARCH SCIENTISTS ON EXPERIMENTAL BIOLOGY 97

Phys Pesheva, P., Probstmeier, R., Spiess, E., and Schachner, M. divalent cations modulate the inhibitory substrate properties of murine glia-derived j1-160 and j1-180 extracellular matrix

No Oral PHAM-HUU-CHANH, PHUONG, V. V., KAN, P., and PATTE, J. (study of zinc toxicity on breathing and general metabolism and on systemic hemodynamics of anesthetized dog.). *THERAPIE;* 26 (5). 1971 1049-1058

FL Pham-Huu-Chanh, Vo-Van-Phuong, Kan, P., and Patte, J. 1971. [study of the toxic

Eco-SSL for Zinc

June 2007

383-90.

Abstract

Bio Acc

Aquatic

Gene

Abstract

Bio Acc

FL

Unrel

Unrel

Unrel

Unrel
Prim

Nut def

Nut def

FL

FL

No COC

CP

PLANAS-BOHNE, F. and LOHBREIER, J. toxicological studies on dtpa. DIAGN TREAT INC RADIONUCLIDES PROC INT SEMIN 1975 505-515,1976

Nut def

No Dose

CP

FL

Drug

CP

Unrel

No COC

No COC

Alt Pollard, H., Guilhem, D., Moreau, J., Suzuki, F., and Onteniente, B. 1994. decreased

FL

No Dose

Gene

Nut

Phys

Nut def

Unrel

Nut

CP

Nut

Nut def

Nut

No COC

Nut

Nut def

Powanda, Michael C., Cockerell, Gary L., Moe, James B., Abeles, Fred B., Pekarek, Robert S., and Canonico, Peter G. induced metabolic sequelae of tularemia in the rat. correlation with

Prim

CP

OAC

Nut

Unrel

No Oral

Mineral

Carcin

FL

Nut

Nut

Nut def

No COC

FL

No Oral

Nut def

FL Qi Zhouyue (Shaanxi Inst. of Animal Science and Veterinary Medicine, Xianyang China. 1994. the effects of higher levels of cu and zn in diet on growth and meat quality of pigs. *Acta Zoonutrimenta Sinica. V. 6(1)* P. 22-26

Nut def Quarterman, J. and Humphries, W. R. 1983. the production of zinc deficiency in the guinea

CP

No Dose

Unrel

Mix

Nut

Nut

FL

Nut

HHE

No Dose

Nut def

Nut def

Unrel

Alt

Abstract RADER, J. I., HIGHT, S. C., ALVAREZ, G. H., and CAPAR, S. G. 1989. dietary tin at low levels decreases tissue copper and zinc in weanling rats. *73RD ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY*

RAINBOW, P. S. copper, cadmium and zinc concentrations in oceanic amphipod and euphausiid crustaceans, as a source of heavy metals to pelagic seabirds. *MAR BIOL (BERL); 103 (4). 1989.* 513-518.

Nut def

Not Avail

Bio Acc

FL

Abstract

FL

CP

No Oral

Phys

Abstract
RANA, S. VS. 1980. enzymes in the liver of rats exposed to few trace elements. 2ND INTERNATIONAL CONGRESS ON TOXICOLOGY

Unrel

Unrel

Carcin

CP
Nut

Abstract

Nut

IMM

CP

Nut

Nut def

Nut def

No COC

Diss

No Oral

No COC

No COC

Bio Acc

Carcin

Nut def

Food

Rao, P. Udayasekhara. evaluation of protein quality of brown and white ragi (eleusine coracana)

Carcin RATH, F. W. and FELICETTI, D. histochemical demonstration of a zinc activated tartrate registrant acid phosphatase in experimentally induced glial microtumors of the rat brain. ACTA HISTOCHEM; 53 (2). 1975 291-301

No Oral Rath, F. W., Koertge, R., Haase, P., and Bismarck, M. 1990. effect of oral zinc treatment on metastases formation after intravenous administration of cells of benzpyrene-induced rat

Plant Raveendran, E. Environ Protection Committee Bahrain, Grieve, Ian C., and Madany, Ismail M. effects of organic amendments and irrigation waters on the physical and. *Environ Monitor Assess.* V30, N2, P177(20)

Nut def Record, I. R. and Dreosti, I. E. changes in foetal liver and brain thymidine kinase activity due to maternal zinc deficiency.

CP REDDY, C. S. 1986. antitodal use of zinc and sodium sulfate against chronic cadmium toxicity in calves and mice. *FOURTH INTERNATIONAL CONGRESS OF TOXICOLOGY*

Unrel Redman, R. S., Hsiao, L. L., Menutt, R. L., Larson, R. H., and Smith, J. C. 1986. moderate zinc-

Reeves, P. G. 1996. the effects of excess dietary zinc (zn) on copper (cu) metabolism in rats are age- and diet-dependent. *FASEB Journal* 10(3): A531.

Reeves, P. G. and O'Dell, B. L. 1986. effects of dietary zinc deprivation on the activity of

Food Reeves, Philip G., Johnson, Phyllis E., and Rossow, Kerry L. absorption and organ content of cadmium from the kernels of confectionery sunflowers (helianthus annuus) fed to male rats. *J.

FL Regiusne Mocsenyi, A. Allattenyesztesi es Takarmanyozasi Kutatoskozprot Herceghalom Hungary Takarmanyozasi Kutatointezet . 1990. the zn, mn, cu, mo, ni and cd state of supply in cattle, sheep and horses. 1. the zn supply. <original> a szarvasmarha, juh es lo zn-, mn-, cu-, mo-, ni-es cd-ellatottsaga. 1. a cinkellatottsgag. *Allattenyesztes Es Takarmanyozas. V. 39(3) P. 255-270*

FL Rehner, G., Heil, M., Auge, M., Harzer, G., and Daniel, H. effect of proteins on availability of zinc. I. gastrointestinal transit time of casein and whey protein and zinc absorption in weaned...
FL

FL

Nut def

FL

FL

Unrel

Unrel

HHE

No COC
Reid, R. L., Daniel, K., and Bubar, J. D. 1974. mineral relationships in sheep and goats maintained on orchardgrassfertilized with different levels of nitrogen, or nitrogen withmicro-elements, over a five-year period. 565-575.

Surv

Plant

Rev

FL

Nut def

Alt Reinstein, Nancy H., Lonnerdal, Bo, Keen, Carl L., Schneeman, Barbara O., and Hurley, Lucille S. the effect of varying dietary zinc levels on the concentration and localization of zinc in rat
<table>
<thead>
<tr>
<th>Source</th>
<th>Authors</th>
<th>Title</th>
<th>Journal</th>
<th>Volume/Issue</th>
<th>Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Reis, B. L. and Evans, G. W.</td>
<td>resistance to neonatal zinc deficiency in an undesignated strain of mice.</td>
<td>Proceedings of the North Dakota Academy of Science.</td>
<td>29 (1)</td>
<td>1975</td>
<td>23</td>
</tr>
<tr>
<td>Abstract</td>
<td>Reis, B. L., Keen, C. L., Lonnerdal, B., and Hurley, L. S.</td>
<td>whole body turnover and tissue distribution of zinc-65 in mice as a function of physiologic state.</td>
<td>68TH ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY, ST. LOUIS, MO., USA, APR. 1-6, 1984 FED PROC.</td>
<td>43 (3)</td>
<td>1984</td>
<td>Abstract 2349</td>
</tr>
<tr>
<td>FL</td>
<td>Rejto, G.</td>
<td>1971. supplements of minerals in feeds for pigs at weaning to prevent colienterotoxaemia.</td>
<td>Magyar Allatorvosok Lapja</td>
<td>26(8)</td>
<td>445-446</td>
<td></td>
</tr>
<tr>
<td>Nut</td>
<td>Ren, Dianxu, Yin, Shian, Xu, Qingmei, Hu, Shanming, Zhao, Xianfeng, and Meng, Jing.</td>
<td>effect of different levels of ca, fe, and zn in diet on the nutritional status and reproduction of female</td>
<td>J. Nutr.</td>
<td>117(6)</td>
<td>1987</td>
<td>1060-6</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc 592 June 2007

Surv RENZONI, A., FOCARDI, S., FOSSI, C., LEONZIO, C., and MAYOL, J. comparison between concentrations of mercury and other contaminants in eggs and tissues of cory's shearwater calonectris-diomedea collected on atlantic and mediterranean islands. *ENVIRON POLLUT SER A ECOL BIOL; 40 (1). 1986. 17-36.

In Vit Rest, J. R. Dep. Animal Pathology Univ. Cambridge CB3 0ES UK. 1976. the histological effects of copper and zinc on chick embryo skeletal tissues in organ culture. *British Journal of Nutrition. V. 36(2) P. 243-254*

Abstract Reynolds, P. J. effect of dietary zinc on high copper intake in sheep. *Journal of Animal Science. 43 (1). 1976 331*

Alt Rezende, A. A., Petenuschi, S. O., Urbinati, E. C., and Leone, F. A. kinetic properties of osseous

Plant

Phys

No COC

Fate

Unrel

Rev

No Tox

Abstract

No Oral

Abstract

Phys

Abstract

No Control

Mix

Richards, M. P. USDA ARS Livestock and Poultry Services Institute Nonruminant Nutrition Laboratory Building 200 Room 201 Beltsville Agricultural Research Center-East Beltsville MD 20705 USA. 1989. influence of egg production on zinc, copper and iron metabolism in the turkey hen (meleagris gallopavo). *Comparative Biochemistry and Physiology. A, Comparative Physiology.* V. 93(4) P. 811-817

In Vit

<table>
<thead>
<tr>
<th>Type</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio Acc</td>
<td>Rickard, W. H. and Sweany, H. A.</td>
<td>Radionuclides in Canada Goose Eggs.</td>
<td>CONF-750985-I</td>
</tr>
<tr>
<td>In Vit</td>
<td>Rickmann M(A) and Wolff, J. R.</td>
<td>s100 protein expression in subpopulations of neurons of rat brain.</td>
<td>Neuroscience 67(4): 977-991.</td>
</tr>
</tbody>
</table>

bioavailability of growing rats fed diets high in zinc with increasing amounts of phytic acid.

CP
Ripley, P. H. and Brown, D. J. 1979. the effect of an antibacterial growth promoter on the levels of alkaline phosphatase (ec 3.1.3.1) in the intestinal mucosa of chicks. *Proceedings of the Nutrition Society* 38(1): 10A.

Unrel

No COC

No Tox

Nut

Abstract

Nut

Abstract

Abstract

Phys

Nut def

HHE

CP

Surv

Dead

Aquatic

Eco-SSL for Zinc 599 June 2007

209-221.

Anat
Rong, X. and Tian, L.
morphology and sprouting of motor nerve terminals in cat differences
to between fast and slow muscles.

IMM
Ronnlund, R. D. and Suskind, R. M.
1983. iron, zinc, and other trace-elements effect on the
immune-response.
Journal Of Pediatric Gastroenterology And Nutrition 1983, V2, S1, Ps172-S180

Nut def
Root, Allen W., Duckett, Gregory, Sweetland, Margaret, and Reiter, Edward O.
1979. effects of zinc deficiency upon pituitary function in sexually mature and immature male rats.

Abstract
Root, J. L., Duckett, G. E., Livingston, K., Hsu, H., Root, A. W., and Sweetland, M.
effect of zinc deficiency on secretion of growth hormone in the male rat.

In Vit
Root, J. L., Duckett, G. E., Sweetland, M., Livingston, K., Hsu, H., and Root, A. W.
1980. effect of zinc-deficiency upon secretion of growth-hormone (gh) in the male-rat.
Clinical Research 28: A867.

Gene
Ros Maria A, Sefton Mark, and Nieto, M. Angela(A).
1997. slug, a zinc finger gene previously implicated in the early patterning of the mesoderm and the neural crest, is also involved in chick limb development.
Development (Cambridge) 124(9): 1821-1829.

Nut def
Rosa, G. de, Keen, C. L., Leach, R. M., and Hurley, L. S.
1980. regulation of superoxide
dismutase activity by dietary manganese.

Phys
Rosati, Anna Maria and Traversa, Ugo.
mechanisms of inhibitory effects of zinc and cadmium ions on agonist binding to adenosine a1 receptors in rat brain.

No Oral
Rosenberg, Daniel W. and Kappas, Attallah.
1989. trace metal interactions in vivo: inorganic
cobalt enhances urinary copper excretion without producing an associated zincuresis in rats.

No Oral
Rosenblatt, D. E. and Aronson, Arthur L.
calcium ethylenediaminetaetraacetate (caedta) toxicity: time- and dose-response studies on intestinal dna synthesis in the rat.

No Tox
Rosenfeld, Jeffrey, Zimmerman, Andrew W., and Friedrich, Victor L. Jr.
1983. altered brain copper and zinc content in quaking mice.

Carcin
1999. agonists and inverse agonists for the herpesvirus 8-encoded constitutively active seven-transmembrane oncogene product, orf-74.

HHE
Rosoff, B.
studies of zinc in normal and neoplastic prostatic tissues (rats, humans).

Carcin
Rosoff, B. and Diamond, E. J.
1982. effect of perphenazine on growth and zinc-65 uptake of the rat prostatic adenocarcinoma, r 3327.
Prostate 3(6): 615-22.

Rossowska, M. J. and Nakamoto, T. 1990. Effect of caffeine on zinc absorption and zn

FL Roth, H. P. and Kirchgesner, M. 1974. [activity of pancreatic carboxypeptidase a and b during zinc depletion and repletion. 10. metabolism of zinc in the animal organism]. <original> zur aktivitat der pankreas-carboxypeptidase a und b bei zink-depletion und -repletion. 10 zum stoffwechsel des zinkes im tierischen organismus. *Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde;*

Nut def Roth H-P and Kirchgesner, M. angiotensin-converting enzyme activity in rats with

FL Roth, H. P. and Kirchgessner, M. 277. contents of zinc and chromium in serum, pancreas and liver of zinc-deficient rats after stimulation with glucose. *Zeitschrift Fuer Tierphysiologie, Tierernahrung Und Futtermittelkunde*

FL Roth, H. P. and Kirchgessner, M. 1983. effect of different concentrations of different zinc complexes(picolinate, citrate, 8-hydroxyquinolate) compared with sulphate on indices of zinc status in rats. *Zeitschrift Fur Ernahrungswissenschaft* 22(1): 34-44.

FL Roth, H. P. and Kirchgessner, M. 1985. [effect of the zn supply on alkaline ribonuclease activity...

FL Roth, H. P. ZERNA and Kirchgessner, M. 1983. <translated> effect of different concentrations of various zn (zinc) complexes (picolinate, citrate, 8-hydroxyquinolate) in comparison with sulfate on parameters of zn supply status in rats (nutritional requirements of laboratory animals). der einfluss unterschiedlicher konzentrationen an verschiedenen zinkkomplexen (picolinat, citrat, 8-hydroxychinolat) im vergleich zu sulfat auf parameter des zn-versorgungsstatus von ratten. Zeitschrift Fur Ernahrungswissenschaft = ; Journal Of Nutritional Sciences. 22 (1): 34-44.

Nut Rotter, B., Guenter, W., and Boycott, B. R. 1987. effect of dietary animal fat on the incidence of

Unrel Rowe, A. H. R. and Binnie, W. H. histological study of the peri apical tissues of incompletely

CP

No Oral

Org Met

Diss
ROWE, M. C. prenatal zinc deficiency and stress in the rat. *Diss Abstr Int B 39:3036, 1979*

No COC

CP

In Vit

Gene

Aquatic

Nut def
Roy, S. K. and Tomkins, A. M. 1989. the impact of experimental zinc deficiency on growth, morbidity and ultrastructural development of intestinal tissue. *Bangladesh Journal of Nutrition. V. 2(2) P. 1-7*

BioX

Alt

Abstract

Drug

No Dose

In Vit
Rubin, Harry. inhibition of dna synthesis in animal cells by ethylene diamine tetraacetate, and its

Drug

No Dose

Fate

Fate

Fate

Gene

In Vit

FL

In Vit

Unrel

No Oral

FL

In Vit

Drug

Abstract RUSSELL, J. B. and SCHWARTZ, R. 1987. effect of tricarballylic acid a non-metabolizable metabolite of trans aconitic acid on magnesium calcium and zinc excretion. *71ST ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY*

In Vit

No Oral

No Oral

No COC

No Oral

FL

FL

FL

FL

FL

FL

FL

Nut

Rybczynska, J. Szkoła Główna Gospodarstwa Wiejskiego Akademia Rolnicza Warszawa Poland Katedra Biochem. Zwierz. 1984. influence of sodium sulphate as feed additive on serum levels of selenium, copper and zinc in young beef cattle. <original> wplyw stosowania siarczanu sodowego jako dodatku do paszy na zawartosc selenu, miedzi i cynku w surowicy mlodego bydla rzeznego. Nowosci Weterynarii. V. 14(2) P. 178-185

Ryde Ulf. 1996. the coordination chemistry of the structural zinc ion in alcohol dehydrogenase studied by ab initio quantum chemical calculations. European Biophysics Journal 24(4): 213-221.

Saito, Mamoru and Matsumoto, Tatsuro. zinc metabolism in chicks. i. effect of dietary calcium on the metabolism of intramuscularly injected zinc-65. *Nippon Chikusan Gakkai-Ho*

action of zinc sulfate in experimental lithiasis in the rat. [original] etude sur l'action anti-
lithogene de sulfate de zinc vis-à-vis de la lithiase experimentale chez le rat. *Annales D’Urologie*

No Oral

No Oral

In Vit

Alt

Chem Meth

Bio Acc

FL

FL

Nut

Nut def

CP

FL

Mix

Mix

Sanada, H., Miyazaki, M., and Takahashi, T. 1980. Regulation of tryptophan-niacin metabolism...

No Org

Drug
Sanchez, C. F., Cruz, L. L., and Savage, D. D.

BioX
Sanchez, E. F., Costa, M. I., Chavez-Olortegui, C., Assakura, M. T., Mandelbaum, F. R., and Diniz, C. R.

Unrel

Lead Shot

No Oral
Sandrock, B. C., Kern, S. R., and Bryan, S. E.

Bio Acc
Sandrock, Balzer C., Kern, Sidney R., and Bryan, Sara E.

CP
Sandstead, H. H.

Nut def
Sandstead, H. H.

Drug
Sandstead, H. H.

CP
Sandstead, H. H., Al-Ubaidi, Y. Y., Halas, E., and Fosmire, G.

CP
Sandstead, H. H. and Brady, R. N.

CP
Sandstead, H. H., Fosmire, G., Halas, E., Strobel, D., and Duerr, J.

Eco-SSL for Zinc 620 June 2007
Eco-SSL for Zinc

Sandstead, Harold H. and Shepard, G. H. 1968. the effect of zinc deficiency on the tensile strength of healing surgical incisions in the integument of the rat. Proceedings of the Society for Experimental Biology and Medicine; 128

Sandstead, Harold H. and Rinaldi, Robert A. impairment of deoxyribonucleic acid synthesis by

FL Sanduliak, L. I. and Myslitskii, V. F. 1974. [effect of the destruction and stimulation of the ventromedial and arcuate nuclei of the hypothalamus on the histophysiology of the pancreatic islet apparatus]. *Archiv Anatomii, Gistologii i Embriologii* 67(9): 76-8.

FL Sano, H., Hirakawa, I., Sueyoshi, A., Fujita, T., and Shiga, A. 1998. effect of dietary zinc supplementation on blood glucose metabolism, insulin responsiveness to glucose and tissue responsiveness to insulin in sheep. *Die einfluss einer zink-supplementation auf den glucosestoffwechsel im blut, den insulinrespons fuer glucose und den geweberespons fuer insulin*
Phys

Nut def

Diss
Santana Covarrubias, D. A. 1979. [effect of supplementation with methionine and zinc in diet of with high content of cassava flour in feeding poultry, hogs and rabbits]. <original> efecto de la suplementacion de metionina y zinc en dietas con alto contenido de harina de yuca en la alimentacion de aves, cerdos y conejos. 77 P.

Unrel

FL
Santoprete, G. Pisa Univ. Italy Cattedra di Merceologia and Fini, M. A. Bologna Univ. Italy Istituto di Zoocolture. 1984. variation of the zinc content in the eggs of laying hens subjected to induced moult. <original> variazioni del contenuto di zinco nelle uova di galline sottoposte a muta forzata. *Rivista Di Avicoltura.* V. 53(3) P. 45-47

No COC

FL

Nut def

Nut def

FL

Surv

FL

FL

CODEN: BRREAP; ISSN: 0006-8993.

Saylor, W. W., Morrow, F. D., and Leach, R. M. Jr. copper binding and zinc binding proteins in sheep liver effects of dietary levels of the metals. Federation Proceedings. 38 (3 Part 1). 1979 614

Abstract Scheideler, S. E(A), Ceylan, N., Novak C(A), Puthpongsiriporn U(A), and Sefton, T. 1999. supplemental manganese (mn) and zinc (zn) from inorganic and organic measurements. Poultry Science 78(SUPPL. 1): 70-71.

<table>
<thead>
<tr>
<th>Date</th>
<th>Page</th>
<th>Name</th>
<th>Title</th>
<th>Journal/Volume/Pages</th>
</tr>
</thead>
</table>

FL Schneider, D., Bronsch, K., and Richter, L. olaquindox a new growth promoting feed additive

Eco-SSL for Zinc June 2007 632
part 2 the effect on the performance of growing swine. Zeitschrift Fuer Tierphysiologie Tierernaehrung Und Futtermittelkunde. 36 (5). 1976 241-249.

FL Schneider, D., Bronsch, K., and Richter, L. 241. olaquindox, a new growth stimulant in animal nutrition. 2. effectiveness in fattening pigs. Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde

FL Schoene, F., Luedke, H., Gruhn, K., and Hennig, A. the influence of iodine copper and zinc
supplements to rations with a high quota of rape seed meal on growth and the function of the thyroid gland of fattening pigs. 2. the influence of iodine supplement on the digestibility of nutrients as well as on protein and energy retention. Archiv Fuer Tierernahrung. 36 (4-5). 1986. 361-369.

FL Schoene, F., Luedke, H., Jahreis, G., Seffner, W., and Hennig, A. the influence of iodine copper and zinc supplements to rations with a high quota of rape seed meal on growth and the function of the thyroid gland of fattening pigs. 3. the influence on the weight of and the histomorphometric findings in the thyroid gland as well as triiodothyroxine and thyroxine concentration in the serum. Archiv Fuer Tierernahrung. 36 (4-5). 1986. 371-380.

Org Met Schoof, H. F. 1942. zinc phosphide as a rodenticide. Pest Control; 38(5): 38

Nut def Schrager, Thomas F., Busby, William F. Jr., Goldman, Mark E., and Newberne, Paul M. enhancement of methylbenzylnitrosamine-induced esophageal carcinogenesis in zinc-deficient rats: effects on incorporation of [3H]thymidine into DNA of esophageal epithelium and liver. *Carcinogenesis (London)* 1986 7(7): 1121-6

No COC Schroeder, H. A. 1970. *Metallic Micronutrients and Intermediary Metabolism*. <NOTE> Progress Rept. No. 3 (Final)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FL</td>
<td>Schwarz, F. J. and Kirchgessner, M.</td>
<td>335. changes in the absorption and excretion of copper and zinc with aninadequate supply of copper.</td>
<td>Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde</td>
</tr>
<tr>
<td>FL</td>
<td>Schwarz, F. J. and Kirchgessner, M.</td>
<td>1968. metabolic dependence of intestinal uptake and transfer of differentzinc compounds after deficient and adequate zinc intake.</td>
<td>Zeitschrift Fur Tierphysiologie Tierernahrung Und Futtermittelkunde</td>
</tr>
</tbody>
</table>

No COC Schwarzler, C. 1980. investigations on the development of trichosomoides crassicauda and also on the detection of the infection in bd-rats. 49 pp.

Drug Scozzafava Andrea(A), Cavazza Christine(A), Supuran Claudiu T(A), Saramet Ioana, Briganti Fabrizio(A), and Banciu Mircea D. 1998. complexes with biologically active ligands: part 11. synthesis and carbonic anhydrase inhibitory activity of metal complexes of 4,5-disubstituted-3-mercaptop-1,2,4-triazole derivatives. Metal-Based Drugs 5(1): 11-18.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unrel</td>
<td>Selwyn Michael, Ng, J. Lay Tin, and Choo Hui Lim. 1993. the ph-dependent anion-conducting channel of the mitochondrial inner membrane is potently inhibited by zinc ions. FEBS (Federation of European Biochemical Societies) Letters 331(1-2): 129-133.</td>
</tr>
</tbody>
</table>

CP Setia, M. S., Bremner, I., <Editors> Anke, M., Meissner, D., and Mills, C. F. 1993. effects of high and low dietary zinc at different protein concentrations on metallothionein-i in rats. <document title>trace elements in man and animals - tema 8:proceedings of the eighth international symposium on trace elements in man and animals. 1022-1023.

Mix Shah, B. G. and Belonje, B. 1984. bioavailability of zinc in beef with and without plant protein

FL Shal'nova, N. D. 1973. [experimental data on the hygienic evaluation of the pesticide tzikos]. <original> eksperimental'nye materialy k gigienicheskoi otsenke pestitsida tsikosa. *Gigiena i

Shan, A. 1992. effects of dietary zinc and calcium levels on mineral contents in the body of neonatal chick and the shell residue. *Acta Zoonutrimenta Sinica. V. 4(1) P. 57*

Shawki, G. and El-Sadawy, H. A. Zagazig Univ. Egypt Faculty of Veterinary Medicine. 1993. serum zinc profile during late pregnancy and parturition in buffaloes. *Zagazig Veterinary Journal. V. 21(5) P. 885-892*

FL: Shevchenko V L and Dubyansky M A. 1986. on the cases of birds being poisoned by grain baits including zinc phosphide. *EOLOGIYA* 124(MOSCOW): 85-86.

Nut def Shi HaiNing, Koski, K. G., Stevenson, M. M., and Scott, M. E. Institute of Parasitology Macdonald Campus of McGill University 21 111 Lakeshore Road Ste-Anne de Bellevue Quebec H9X 3V9 Canada. 1997. zinc deficiency and energy restriction modify immune responses in mice during both primary and challenge infection with heligmosomoides polygyrus (nematoda). *Parasite Immunology. V. 19(8) P. 363-373*

FL Shi, Ming, Xiao, Jinteng, Hong, Yan, Li, Shutian, Guo, Zhicheng, and Jing, Hongjiang. effect of excessive zinc on growth, development and behavior in weanling rats. *Yingyang Xuebao (1997)* 19(3): 278-282.

HHE SHIBATA, H. and IIDA, H. behavior of zinc, cadmium and mercury in mice studied by whole body autoradiography. *ENVIRON POLLUT HUMAN HEALTH PROC INT SYMP INDUST TOXICOL 1975 698-708,1977*

No COC Shimada, T., Watanabe, T., and Endo, A. comparative study of the effects of mercuric compounds on the reproduction of female hamsters. Teratology. 18 (1). 1978 146-147

FL SHIMIZU, K., SHIRAMA, K., TAKEO, Y., and MAEKAWA, K. changes in intratesticular uptake of cadmium caused by zinc. ZOOL MAG (TOKYO); 84 (3). 1975 (RECD 1976) 222-227

Food Shinoda, S., Kawaguchi, K., Ishii, T., and Yoshida, T. 1994. effects of acid treatment and extraction of wheat bran in highbran diet on mineral availability in rats. Nippon Eiyo

and liver of the macular mouse as an animal model of menkes' kinky hair disease. *Physiological Chemistry and Physics and Medical NMR* 19(4): 227-33.

Unrel

No Dose

No Oral

Alt

Org Met

Drug

Mix

Bact

Not Avail

Unrel

No COC

FL

Bio Acc

Nut def

Rev

No COC Shumake, S. A Hakim A. A. and Gaddis S. E. 2002. carbon disulfide effects on pre-baited vs. non-pre-baited rats exposed to low dosage zinc phosphide rodenticide bait. *Crop Prot. 21(7): 545-550.*

Toxicology and Environmental Health 44(3): 351-67.

No COC

FL

FL

FL

FL

FL

FL

No Oral

Unrel

In Vit

In Vit

No Oral

Nut def

SkwarLo-Sonta, K. 1996. functional connections between the pineal gland and immune system.

Drug Smith, B. L., Embling, P. P., Towers, N. R., Wright, D. E., and Payne, E. the protective effect of zinc sulphate in experimental sporidesmin poisoning of sheep. New Zealand Veterinary Journal SN-0048-0169 | PY-1977 | VO-25 | IS-Bodyweight, Sheep Were Given by Mouth 0.125, 0.5 or 2.0 g Zn Daily As Sulphate. Compared With Sheep Given Sporidesmin Without the Zn, Weight Gain Was Greater, Liver Damage and Photosensitisation, and Serum Aspartate Aminotransferase and Total Bilirubin Were Less. Degree of Protection Increased, at a Diminishing Rate, With Amount of Zn. The Protective Dose Was Greater Than Requirement for Growth and Maintenance. The Margin Between the Protective Dose and a Poisonous Amount Was Narrow, and Zn for Protection Against Facial Eczema Cannot Be Recommended.

Drug SMITH, B. L., TOWERS, N. R., MUNDAY, R., MORRIS, C. A., and COLLIN, R. G. 19663. control of the mycotoxic hepatogenous photosensitization, facial eczema, in new zealand. GARLAND

Drug

Abstract

CP

Nut def

Abstract

Nut def

Nut def

Abstract

Nut def

Abstract

CP

Nut def

Nut def

Nut def

Nut def

CP

Nut def

No Oral

No Oral

Abstract

Abstract

Mix

Nut def

Nut def

Abstract

In Vit

Nut def

CP

No COC

No COC
Smith, M. O. and Teeter, R. G. evaluation of halofuginone hydrobromide, bacitracin-zinc and roxarsone in diets of broiler chickens. *Miscellaneous Publication - Agricultural Experiment*
No COC

CP

Unrel

Carcin

Nut def

Phys

Drug

Nut

Nut

No Dose

Unrel

Drug

BioX

BioX

Unrel

CP

CP

Mix

Abstract

No Oral

Abstract

BioX

BioX

Abstract

CP

Phys

Drug

FL

Meth

Sohnle, P. G. and Hahn, B. L. 1993. inhibition of pseudohyphal growth as a neutrophil-mediated host defense mechanism against experimental deep candida albicans infections in mice [see comments]. *Journal of Laboratory and Clinical Medicine* 121(2): 235-43.

CP Sosenko Ilene R S(A), Chen Youwei, Ramadurai Sujatha, and Nielsen Heber. 1994. differential
control by t-3 of surfactant, apoprotein mrna, and antioxidant enzyme (aoe) mrna levels in fetal rat lung. Pediatric Research 35(4 PART 2): 354A.

CP Southon, S., Williams, C. M., and Fairweather-Tait, S. J. maternal glucose homeostasis in rats given marginal zn diets. Trace Elements In Man And Animals 6 / Edited By Lucille S. Hurley, ... [Et Al.]. p. 601-603.

Nut def Southon, Susan, Fairweather-Tait, Susan J., and Williams, Christine M. fetal growth, glucose

Spencer, F. 1981. *Effects of Post-Implantation Exposure to Selected Pesticides on Reproductivity in Rats. <NOTE> Final Rept. EPA-600/1-81-048*

Environmental Health Perspectives. v. 54 : p. 57-65.

Mix Spivey, Fox M. R. FDA, Jacobs, R. M., Jones, A. O. Lee, and Fry, Bert E. effects of nutritional factors on metabolism of dietary cadmium at.
Environ Health Perspec. V28, P107(8)

Not Avail Spivey, M. R. and Harrison, Bertha Neal. zinc deficiency and plasma proteins. (1966) 187-201

Nut def Spry, C. J. F. and Piper, K. G. increased retention of orally administered zinc and raised blood cell zinc concentrations in iron-deficient rats .

Canadian Journal Of Fisheries And Aquatic Sciences 45(1): 32-41.

Nut def Spurlock, M. E., Browning, J. D., and O'Dell, B. L. 1992. low zinc status in guinea pigs and chicks has no effect on reassemblyrate of brain microtubules.
Journal of Nutritional Biochemistry 3(11): 594-598.

Unrel Squibb, R. L. 1982.Biochemical Changes in Tissues During Infectious Illness: Bioenergetics of Infection and Exercise. <NOTE> Annual Progress Rept. No. 16 (Final), 1 Jan 65-30 Jun 80, 1 Jul 80-31 Mar 82

No COC Sreenivasaiah, P. V., Kumar, K. S. P., and Ramappa, B. S. University of Agricultural Sciences Bangalore India. 1986. effect of incorporation of zinc bacitracin in broiler rations.
Indian Journal of Animal Sciences. V. 56(4) P. 449-452

St. George T D(A), Murphy, G. M., Burren, B., and Uren, M. F. 1995. studies on the pathogenesis of bovine ephemeral fever iv: a comparison with the inflammatory events in milk fever of cattle. *Veterinary Microbiology 46(1-3): 131-142.

St Louis Vincent L(A), Breebaart Loes, Barlow Jon C, and Klaverkamp Jack F. 1993. metal

No Oral

Drug

Bio Acc

IMM

Nut

Diss

Nut def

Abstract

Nut def

Fate

CP

Unrel

Abstract

Nut def

Stangl, G. I. and Kirchgessner, M. effect of different degrees of moderate iron deficiency on the

Abstract

FL

Abstract

Nut def

Phys

No Oral

Nut def

Abstract

Nut def

CP

Unrel

In Vit

Gene

Phys

Unrel

In Vit

IMM

Drug

Carcin

Bact

Diss
Steinruck, U. 1989. [investigations on the selective feed intake by chicken fed diets deficient in nutrients and active substances]. <original> untersuchungen zur selektiven futteraufnahme von hühnern bei naehr- und wirkstoffmangel. 182 P.

Mineral

Nut def

FL
Steinruck, U. Technische Univ. Muengen Freising Germany Inst. fuer Ernaehrungphysiologie. 1990. [is there a specific palatability of nutrients and active substances in poultry?]. <original> existiert ein spezifischer appetit fuer naehr- und wirkstoffe beim gefluegel? *Deutsche Geflugelwirtschaft Und Schweineproduktion. V.* 42(19) P. 539-544

FL

FL

FL
Stelzner, D. J. 1971. the relationship between synaptic vesicles, golgi apparatus, and smooth endoplasmic reticulum: a developmental study using the zinc iodide-osmium technique. *Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie* 120(3)

FL

Nut def Sterman, M. Barry, Shouse, Margaret N., Fairchild, M. D., and Belsito, Orazio. kindled seizure induction alters and is altered by zinc absorption. *Brain Res. (1986)* 383(1-2): 382-6 CODEN: BRREAP; ISSN: 0006-8993.

Fungus Steyn, D. G. 1976. fungus-infected and fermented feeds dangerous to stock. Farming South Africa

No COC SUH, S. M. and FIREK, A. F. magnesium and zinc content and growth in offspring of alcoholic rats. PEDIATR RES 14:588,1980

Alt Suh, S. M. and Firek, A. F. 1980. magnesium (mg) and zinc (zn) content and growth in offspring

Eco-SSL for Zinc 681 June 2007

CP

Nut def

Diss
Sujin Jaroonsak. 1981. improvement of plant protein broiler rations by supplementing with methionine, zinc bacitracin and terramycin considering cost and production performance of broilers as criteria. *<original> kan prapprung ahan kaikrathong thi chai protein chak phut soem duai methionine zinc bacitracin lae terramycin doi phitcharana thung ton-thun lae samatthaphap kan phalit kaikrathong pen gen. 132 Leaves*

FL

Nut def
Suk, Young Gun. effect of dietary zinc on tissue trace elements in the rat. *Han'Guk Yongyanghak Hoeji (1972)* 5(2): 91-103.

Nut def

FL

Unrel

Nut def

Abstract

Nut def

Nut def

Nut def

In Vit

CP Sundaresan, P. R., Kaup, S. M., Wiesenfeld, P. W., and Rader, J. I. interactions among dietary vitamin a zinc and copper in female sprague-dawley rats i. effects of vitamin a. 1992 MEETING
Drug

Nut def

An Prod

In Vit

Unrel

Nut def

No Dose

FL

FL
Surdzhiiska, S., Lalov, N., and Marinov, B. results from the use of some antibiotics as feed supplements for broiler chickens. *Zhivotnov'Dni Nauki. 15 (1). 1978 64-70*

FL

Nut

Acu

CP

Bio Acc

FL Suzuki, Kazuharu, Kanke, Yusuke, and Goto, Shiro. effect of iron-deficiency on iron, copper and

CP SUZUKI, S., OGAWA, Y., KMATA, E., KANAKO, T., and KUROKAWA, Y. 1990. study on essential metal concentration in the organs of rats. *SEVENTEENTH ANNUAL MEETING OF THE JAPANESE SOCIETY OF TOXICOLOGICAL SCIENCES*

FL Svezhentsov, A. I. 1986. synergyism between microbial carotene and trace elements in pig feeding. *Svinarstvo, Kiev, Ukraininan SSR (42)*: 50-55.

FL Svezhentsov, A. I., Nesterenko, V. V., and Belousov, A. A. 1989. ensiled high-lysine maize in diets for young pigs. *Zootekhniya (2)*: 47-50.

| Rev | Syracuse Research Corporation. |
| Alt | SZALAY, J. and GAAL, M. clinical and morphological studies in streptozotocin diabetic pregnant rats. *ACTA MED ACAD SCI HUNG* 32:35-41,1975 |
pochodzących od niosek naturalnie zakazonych adenowirusami. Medycyna Weterynaryjna. V. 45(9-10) P. 535-537

Species

FL

Nut def

Nut def

Nut def

FL

Plant
Szponar, Lucjan, Mieleszko, Teresa, Siuta, Jan, and Rzeszowska, Grazyna. 1983. nutritional value of potatoes contaminated by lead, cadmium and zinc. Arch. Ochr. Środowiska (3-4): 179-86.

FL

Fate

Unrel

BioAcc

Org Met

No COC Takahashi, O. and Hiraga, K. effects of dietary butylated hydroxytoluene on functional and biochemical properties of platelets and plasma preceding the occurrence of hemorrhage in rats. *Food and Chemical Toxicology* 22 (2). 1984. 97-104.

Nut def

CP

Phys

No Oral

FL

Nut def

No Oral

Mix

Drug

Rev

Nut

Nut

In Vit

CP

HHE TANAKA, H. and ARIMA, M. animal experiments as the models for human brain dysfunction: biochemical and pharmacokinetetic studies. TERATOLOGY 32(3):18B,1985

Mix TANAKA, H., INOMATA, K., and ARIMA, M. zinc supplementation in ethanol-treated pregnant rats increases the metabolic activity in the fetal hippocampus. NO TO HATTATSU(BRAIN DEV) 5:549-554,1983

Nut def Taneja, S. K., Kang, H., and Chopra, P. effect of testosterone propionate on cytochemical profile

Nut def

Mineral

Nut def

Nut def

In Vit

CP

Abstract

FL

In Vit

Phys
preliminary clinical application]. *Hua Hsi i K'o Ta Hsueh Hsueh Pao* 21(3): 341-3.

CP

CP

CP

CP

Nut def

Nut def

Mix

Org Met

Tarasenko, N. Y., Vorobeva, R. S., Spiridinova, V. S., and Shabalina, L. P. 1974. experimental investigation of toxicity of cadmium and zinc caprylates. *Journal of Hygiene, Epidemiology, Microbiology, and Immunology* 18(2)

Prim

Drug

FL

Mineral

Abstract
Taubeneck, M. W., Uriu-Hare, J. Y., Commisso, J. F., Borschers, A. T., Bui, L. M., Faber, W., and Keen, C. L. maternal exposure to 2-ethylhexanoic acid (ehxa), 2-ethylhexanol (ehxo), and valproic acid (vpa) results in alterations in maternal and embryonic zinc status. *Teratology* 1996 Feb;53(2):88

Mix

FL

Nut

No Dose

Nut def

CP

CP

Nut

Nut def

Nut def

Drug

Nut def

Gene

Drug

CP

CP

Drug

No Oral

CP

Unrel

Nut def

CP

FL

TERAKI, Y. and MAEMURA, S. correlation of metal intake and maternal blood metal concentration in pregnant and non-pregnant rats. *CONGEN ANOM(SENTEN IJO) 26:249,1986*

Abstract

TERAKI, Y. and MAEMURA, S. 1985. effects of aspirin on plasma proteins and inorganic metals in rats. *TWENTY-FIFTH ANNUAL MEETING OF THE JAPANESE TERATOLOGY SOCIETY*

Abstract

Abstract

Teraki, Y., Tanaka, A., Chiba, T., and Nagumo, K. zinc iron and copper metabolism in pregnant rats on zinc deficient diet. *89TH ANNUAL MEETING OF THE JAPANESE ASSOCIATION OF*

Mineral

Nut def

FL

Phys

In Vit

Nut def

Abstract

Nut def

FL

FL

FL

CP

BioX

Phys

Thomas, D. J. and Caffrey, T. 1990. DNA fragmentation in mouse thymus after lipopolysaccharide treatment. 74th Annual Meeting of the Federation of American Societies for Experimental Biology

|----------|---|
No Dose

CP

Biom

In Vit

Org Met
Tietjen, H. P. zinc phosphide: its development as a control agent for black-tailed prairie dogs. *U S FISH WILDL SERV SPEC SCI REP-WILDL; (195). 1976 1-14

No COC

No Oral

Nut def

No Oral

Aquatic
Tishinova, V. study about the toxic action of zinc on one summer old carp: i. lethal concentrations. *GOD SOFII UNIV BIOL FAK; 67 (1). 1972-1973 (1975) (RECD 1976) 107-110*

Unrel

In Vit

In Vit
Tobey, Robert A., Enger, M. Duane, Griffith, Jeffrey K., and Hildebrand, C. Edgar. zinc-induced

No Oral

Unrel

Drug

FL

Tocchini, M. Pisa Univ. Italy Dipartimento di Produzioni Animali, Cappello, G., Degl'Innocenti, D., and Fronte, B. 1996. effects of protected zn-bacitracin on broilers performances. *Annali Della Facolta'Di Medicina Veterinaria Di Pisa. V. 49 P. 103-112*

Bact

No Oral

No Oral

Diss

Abstract

Diss

Gene

No Oral

FL

FL

Abstract

Tongtavee, K. efficacy tests of different rodenticides on some species of rats in thailand. 9TH VERTEBRATE PEST CONFERENCE, FRESNO, CALIF., USA, MAR. 4-6, 1980. PROC VERTEBR PEST CONF. 0 (9). 1980. 143-145.

Nut def

Nut def

Nut def

Nut def

Nut def

Unrel

No COC

Mineral

Alt

No Oral

FL

No COC

FL

Toroptsev, I. V. and Eshchenko, V. A. 1971. [some regularities in the distribution of zinc, insulin and acid phosphatase in the islands of langerhans of rabbits during the development of diabetes produced by selective injury of b cells]. <original> nekotorye zakonomernosti razpredeleniia tsinka, insulinia i kisloih fosfatazy v ostrovakh langerganski krolikov v dinamike razvitiia diabeta,

FL Tortuero, F. and Brenes, A. Consejo Superior de Investigaciones Cientificas Madrid Spain Instituto de Alimentacion y Productividad Animal. 1977. [study of different zinc levels on diet for the ossification process of chickens]. *Avances En Alimentacion y Mejora Animal. V. 18(3) P. 139-143*

Nut def Towers, Neale R. effect of zinc on the toxicity of the mycotoxin sporidesmin to the rat. *Life Sci.*
<table>
<thead>
<tr>
<th>Preceding</th>
<th>Title</th>
<th>Authors</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP</td>
<td>Tran Cuong(A), Butler, R. N(A), and Howarth, G. S.</td>
<td>zinc in combination with a growth factor extract derived from bovine whey promotes recovery from methotrexate-induced small bowel damage in rats.</td>
<td>Gastroenterology 116(4 PART 2): A940.</td>
</tr>
</tbody>
</table>

No COC Treacher, R. J., Stark, A. J., and Collis, K. A. the health and performance of cows fed large amounts of urea.

Drug Treuthardt, Jouko. 1992. hematolgy, antioxidative trace elements, the related enzyme activities and vitamin e in growing mink on normal and anemiogenic fish feeding. 144 P. V. 52 No. 4

Unrel Trope, M., Lost, C., Schmitz, H. J., and Friedman, S. 1996. healing of apical periodontitis in dogs after apicoectomy and retrofilling with various filling materials. *Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and*

CP Tsai, C. M. E. and Evans, J. L. influence of dietary ascorbic-acid and copper on tissue trace elements cholesterol and hemo globin. *Proceedings of University of Missouri's Annual Conference on Trace Substances in Environmental Health. 9. 1975 (Recd 1976)* 441-449

No Dose Tseng, Hay-Tay. zinc phosphide, a new rat control agent recommended by tsc [taiwan sugar corporation]. Taiwan Sugar (1972) 19(5): 172.

Unrel TU, A. T. hemorrhagic and necrotic toxins in snake venoms. Crisp Data Base National Institutes Of Health

Drug Tuer, Xunjiang, Zheng, Yupei, Zhu, Ming, Yang, Xiaoyi, and Wu, Jianmin. delayed type

CP

Alt

Gene

In Vit

Mix

No Oral

Nut

Drug

Alt

Phys

Drug

Unrel

Drug

Alt
Turnbull, A. J., Blakeborough, P., and Thompson, R. P. H. Gastrointestinal Laboratory Rayne Institute St Thomas' Hospital London SE1 7EH United Kingdom. 1990. the effects of dietary ligands on zinc uptake at the porcine intestinal brush-border membrane. *British Journal of Nutrition*. V. 64(3) P. 733-741

Uresk, D. USFA Forest Service Rapid City SD. relation of black-tailed prairie dogs and control programs to. FWS Biol Report 13. P8(1)

Urga, Kelbessa, Narasimha, H. V., Sasikala, B. V., and Vishwanatha, S. bioavailability of iron

FL Uyanik, F., Liman, B. C., and Liman, N. 1999. the effects of danofloxacin on some biochemical parameters and liver inbroilers. Turk Veterinerlik Ve Hayvancilik Dergisi 23(Supplement 4):
Eco-SSL for Zinc

FL Vajda, V. Univérsita Veterinarskeho Lekarstva Kosice Slovak Republic. 1998. phase nutrition of calves with acidified milk drink. 1. feed consumption, growth intensity and metabolic parameters of the blood serum according to growth phases. Slovak Veterinary Journal. V. 23(1) P. 36-41.

Fate Van, Barneveld A A and Van Den Hamer C J A. influence of isotope administration mode and of food consumption on absorption and retention of zinc-65 in mice. Nutrition Reports

alterations in the submandibular glands and testicles in rats induced by soy and zinc deficient diet. <original> alteracoes histologicas de glandulas submandibulares e testiculos induzidas por dietas a base de soja e dieta zinco deficiente em ratos. Archivos Latinoamericanos De Nutricion 45(3): 193-7.

physicochemical characterization of soyatoxin, a novel toxic protein isolated from soybeans (glycine max). Archives of Biochemistry and Biophysics 312(2): 357-366.

Abstract

Mineral

Mineral

Nut

Drug

Phys

Vassilev, Peter P., Venkova, Kalina, Pencheva, Nevena, Radomirov, Radomir, and Staneva-Stoytcheva, Dushka. changes in the contractile responses to carbachol and in the inhibitory effects of verapamil and nitrendipine on isolated smooth muscle preparations from rats subchronically exposed to pb2+ and zn2+. Pharmacol. Toxicol. (Copenhagen) (1994) 75(3-4): 129-35

Org Met

Org Met

FL

Vazquez M, H., Hernandez Hernandez, Horacio, Pointron M, P., Terrazas G, A., Rodriguez R, A. D., Serafin L, N., and Frias C, M. C. E-mail hdzhdz@calli. cnb. unam. mx. 1998. [anosmia in parturient ewes, has no effect on milk production and growth rates of the lambs]. <original> la supresion del olfato maternal en ovejas parturientas, no influye sobre la produccion lactea y el crecimiento de sus crias. P. 79

Unrel

Unrel

FL

No Oral

Diss Verheyen, G., Siau, O., Herremans, M., and Decuyper, E. 1990. [economical longevity of layer chickens]. *<original>* economische levensduur van leghennen. 90 P.

FL Verheyen, G. Leuven Univ. Herlelee Belgium Faculty of Agricultural Sciences. Lab. for Physiology of Domestic Animals and Decuyper, E. 1991. egg quality parameters in a second and third laying year as function of the molting age, strain and molting method. *Archiv Fuer Geflucegelkunde. V.* 55(6) P. 275-282

FL Viejo, R. E. Universidad Nacional de la Plata Buenos Aires Argentina Fac. de Ciencias Veterinarias. 1991. [copper toxicosis in sheep]. <original> intoxicacion por cobre en el ovino. *Archivos De Medicina Veterinaria. V.* 23(2) P. 109-121

No COC Vihan, V. S. and Rai, P. Chandra Shekhar Azad Univ. of Agriculture and Technology Mathura
Campus India Dept. of Medicine. 1985. experimental pregnancy toxaemia in sheep and goats. *Indian Veterinary Journal. V. 62(11) P. 958-963*

Drug

No COC

Nut

No Dose

No Oral

Nut def

Nut def

HHE

FL

Nut def

No COC

Phys

No COC
Abstract

Unrel

FL

In Vit

FL

No COC

CP

FL

FL

No COC

Nut

Mix

Nut def

No COC

Nut def

Eco-SSL for Zinc

Eco-SSL for Zinc 731 June 2007

Nut def WAKU, K., KUDO, N., and NAKAGAWA, Y. 1987. the effect of zinc deficiency and cadmium administration on fatty acid metabolism in rat liver. JOINT JAPAN-USA CONGRESS OF PHARMACEUTICAL SCIENCES

Drug

Drug

Drug

Drug

Nut def

Abstract
Walker, R. I., Snyder, S. L., Moniot, J. V., and Sobocinski, P. Z. evidence for participation of platelets and granulocytes in the endo toxin syndrome. *ABSTR ANNU MEET AM SOC MICROBIOL. Abstracts of the Annual Meeting of the American Society for Microbiology. 76. 1976 B61*

No Oral

No Oral

No Oral

No Oral

Abstract

Nut def

Nut

Rev

Nut def
Wallwork, J. C. 1987. appraisal of the methodology and applications for measurement of the zinc
content of blood components as indicators of zinc status. Biological Trace Element Research 12: 335-350.

FL Wang An, Shan Anshan, and Xu Zhenying (Northeast Agricultural Univ., Harbin China Research Section of Animal Nutrition. 1989. effects of calcium and zinc level of ration on growth, biochemical indexes of blood and zinc content of body in leghorn-type chickens. JOURNAL OF NORTHEAST AGRICULTURAL COLLEGE. V. 20(2) P. 146-153

FL Wang An (Northeast Agricultural Coll., Harbin China. 1994. studies on the bioavailability of various zinc sources in broilers. ACTA ZOONUTRIMENTA SINICA. V. 6(1) P. 44-51

An Prod
Wang Jianwen (Laiyang Agricultural Coll., Liaoning China Dept. of Animal Husbandry and Veterinary Medicine, Wang Zhe, and Li Yuyi. 1990. effects of rations with higher level of calcium on growth, hematological parameters and immunity of layer chickens. *Bulletin of Veterinary College of PLA. V. 10(3) P. 280-284*

Org Met

Nut def

Nut def

HHE

FL

Phys

In Vit

Mineral

FL

Mix

Unrel

FL

Nut def

FL

In Vit Wasserman, R. H. 1979.*Molecular Mechanisms of the Epithelial Transport of Toxic Metal Ions*,

Abstract WATANABE, T., SHIMADA, T., and ENDO, A. susceptibility of zinc deficient mice to mitomycin c and x-ray. TERATOLOGY 20:169,1979

CP Watkins, K., Southern, L., Craig, W., and Engstrom, M. efficacy of chelated copper and zinc...

Eco-SSL for Zinc

741

June 2007

FL Weigand, E. and Kirchgessner, M. 1944. use of the isotope dilution method for the estimation of zinc absorption in experimental animals at different ages and with different supplies. Zeitschrift Fur Tierphysiologie, Tierernahrung Und Futtermittelkunde

| **FL** | Weiss, I. | 1965. [investigations on the problem of the central nervous regulation of the function of alpha cells in the pancreas of the albino rat. i. behavior of zinc contained in the alpha cells of the rat following adrenalectomy and loading with insulin]. *Endokrinologie* 47(3): 183-92. |
| **FL** | Welker, D. and Neupert, G. | 1974. [comparative biological test of polyacrylate and phosphate

Mix WEN, JIANGUO, LI, YULU, and LU, DISHENG. 300. changes of ldh-x activity of seminiferous tubules of mouse testis in acute cadmium poisoning and the protective effect of zinc. HUNAN YIKE DAXUE XUEBAO; 21 (4). 1996. 295-297

Eco-SSL for Zinc

745

June 2007

Fate

Nut def

Nut def

No Oral

Nut def

Surv

Bio Acc

Bio Acc
Wenzel, Christine Institut fur Meereskunde Kiel Germany, Adelung, Dieter, and Theede, Hans. distribution and age-related changes of trace elements in kittiwake. *Sci Total Environ. V193, N1, P13(14)*

Nut def

Nut def

Nut def

FL

Anat

Drug

Mix
Eco-SSL for Zinc

Nut def

CP

Nut def

In Vit

Gene

In Vit

No Oral

Drug

Nut def

No Oral

Drug

Bio Acc

CP

Unrel
Whanger, P. D. and Deagen, J. T. 1991. influence of zinc on copper binding in tissue proteins of...

Nut def White, C. L. 1988. relationship between plasma zinc, angiotensin-converting enzyme, alkaline phosphatase and onset of symptoms of zinc deficiency in the rat. *Australian Journal of*
Biological Sciences 41(3): 343-56.

Mineral

No Oral

Nut def

Nut def

HHE

Dead

Alt

CP

Unrel

Drug

Abstract

No Dose

CP
Wied, D. de. 1966. inhibitory effect of acth and related peptides on extinction of conditioned avoidance behavior in rats. *Proceedings of the Society for Experimental Biology and Medicine; 122*

Phys

Surv

Wilhelmi, G. and Tanner, K. 1988. [effect of riboflavin (vitamin b2) on spontaneous gonarthrosis

Unrel Williams Tracy A, Barnes Kay, Kenny, A. John, Turner Anthony J, and Hooper Nigel M(A).

Nut def Wilson, I. Dodd, McClain, Craig J., and Erlandsen, Stanley L. ileal paneth cells and iga system in rats with severe zinc deficiency: an immunohistochemical and morphological study. *Histochem. J.* 12(4): 457-71

Windisch, W. and Kirchgessner, M. 1999. quantitative zn exchange of (65)zn labeled adult rats at zn deficiency induced dietary phytate additions. <original> quantitativer zinkumsatz (65)zn markierter adulter ratten wahrend eines durch phytatzulagen induzierten zinkmangels. <original> proceedings of the society of nutrition physiology berichte der gesellschaft fur ernahrungsphysiologie. Proceedings Of The Society Of Nutrition Physiology (Germany) p 114. No. 8

Windisch, W., Kirchgessner, M., <Editors> Anke, M., Meissner, D., and Mills, C. F. 1993. zinc
exchange in adult rats at different zinc supply. 351-355.

FL

Fate

Fate

Fate

Phys

Phys

Mix

CP

Mix

Mix

Unrel

No Oral

Sed

Unrel
Winick Jeffrey, Abel Ted, Leonard Mark W, Michelson Alan M, Chardon-Loriaux Isabelle,

Drug

Anat

In Vit

Phys

In Vit

FL

Nut def

IMM

CP

Drug

FL

FL

Unrel

Phys

Abstract Woodworth, J. C(A), Tokach, M. D(A), Nelssen, J. L(A), Goodband, R. D(A), and Sawyer, J.

Abstract

Abstract

Abstract

HHE
Worthington-Roberts, B. 1985. the role of nutrition in pregnancy course and outcome. *Journal of Environmental Pathology, Toxicology and Oncology* 5(6)

Carcin

No Oral

Nut def

Nut def

CP

Nut

No Oral

Unrel

Alt

No Oral

FL

Org Met Yamaguchi, M. and Gao YingHua (Laboratory of Endocrinology and Molecular Metabolism, Graduate School of Nutritional Sciences University of Shizuoka 52-1 Yada Shizuoka City 422 Japan. 1998. potent effect of zinc acexamate on bone components in the femoral-metaphyseal tissues of elderly female rats. *General Pharmacology. V.* 30(3) P. 423-427

Mix Yamaguchi, M. and Sakashita, T. 1986. enhancement of vitamin d3 effect on bone metabolism in

Acu

Drug

Acu

Acu

Acu

Mix

Org Met

No Dose

Mix

Acu

Acu

Acu

Acu

In Vit

Gene

Biom

CP Yamani, K. A. O. Zagazig Univ. Egypt Faculty of Agriculture, Rashwan, A. A., and Magdy, M. M. 1997. effects of copper, zinc and tafla dietary supplementation on broiler performance. the proceedings of the international conference on animal... and health. P. 457-463

No COC Yang Ben-Shan, Yamazaki Michikazu, Wan Qin, and Kato Norihsia(A). 1996. comparison of the response of serum ceruloplasmin and cholesterol, and of tissue ascorbic acid, metallothionein, and...
nonprotein sulphydryl in rats to the dietary levels of cystine and cysteine. *Bioscience Biotechnology and Biochemistry* 60(12): 1933-1936.

FL Yang, Yuexin, Liu, Jianyu, and Cui, Hongmei. effect of zinc on cadmium-induced fetal damage.

Acu Yang, Yuexin, Liu, Jianyu, and Cui, Hongmei. evaluation study of zinc absorption speed and

on the transmission of zinc from mother to fetus during pregnancy. Acta Nutrimenta Sinica
17(3): 293-297.

FL Yang Zijun, Cheng Xiangchao (Yuxi Agricultural Training School, Henan China, Wang Zhe, and
Li Yuyi. 1992. [acute toxicity effect of high zinc dietary to chickens]. Henan Agricultural
Sciences. (No. 5) P. 31-32

FL Yang Zijun, Wang Zhe, and Li Yuyi (Veterinary Coll. of PLA, Changchun China Teaching and
Research Section of Internal Medicine. 1992. effects of dietary calcium and zinc on
metallothioneine concentration in liver and kidneys of layer chickens. Bulletin of Veterinary
College of PLA. V. 12(3) P. 221-226

Nut Yano, H., Hirabayashi, M., and Matsui, T. removal of phytate from soybean improves zinc and

CP Yano, Y. 1976. Development of Positron Emitting Radionuclides for Imaging With Improved
Positron Detectors. CONF-761060-7; IAEA-SM-210/123

FL Yao Junhu, Cao Binyun, and Dou Cheng (Northwestern Agricultural Univ., Yangling Shaanxi
Acta Universitatis Agriculturae Boreali-Occidentalis. V. 24(4) P. 55-58

Unrel Yao, X., Perez-Alvarado, G. C., Louis, H. A., Pominis, P., Hatt, C., Summers, M. F., and Beckerle,
M. C. 1999. solution structure of the chicken cysteine-rich protein, crp1, a double-lim protein

Nut def Yarom, R., Maunder, C., Scripps, M., Hall, T. A., and Dubowitz, V. 1975. a simplified method
of specimen preparation for x-ray microanalysis of muscle and blood cells. Histochemistry

Abstract YASUDA, M., NAKAMURA, H., SHIBASAKI, F., HIRAOKA, Y., and OKUDA, H.
comparison of teratogenicity of cadmium and zinc in the mouse and the medaka fish.

Carcin Yasuda, Shinichi, Shimada, Koichiro, and Horie, Shohei. 1988 . antitumor effects of cis-
diamminedichloroplatinum(ii) against transplantable lung cancer cells of the rat. Dokkyo

system tissues and bones or rats maintained on minerally unbalanced diets. Kyoto Daigaku

Eco-SSL for Zinc

Nut def

Nut def

Unrel

Diss

Abstract
Yeoman, R. R. and Curry, J. J. mating behavior and copulation induced ovulation after ablation of specific olfactory structures in the cycling rat. Federation Proceedings. 35 (3). 1976 727

Nut

Phys

Unrel

FL

Nut def

HHE

CP

No COC

Unrel

FL

<table>
<thead>
<tr>
<th>Source</th>
<th>Reference</th>
<th>Notes</th>
</tr>
</thead>
</table>

Mix

Diss

Yu, Shiguang 1957. copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats / shiguang yu. 169 p.: ill. ; 24 cm.

Nut

Unrel

No Dose

No COC

FL

FL

CP

Nut def

Abstract

No Oral

No COC

Unrel

Drug

Nut

Acu

FL

Nut def

No COC

No Control

CP

In Vit

FL

Nut def

FL

Food

Surv

Org Met

Diss Zeid, A. M. M. 1993. effect of some acid mucopolyscharsides on the bio-availability of zinc in rabbits. 93 P.

In Vit Zemel, M. B. and Zemel, P. C. 1985. effects of food gums on zinc and iron solubility following invitro digestion. Journal Of Food Science 50(2): 547&.

FL Zglobica, A., Wezyk, S., Jamroz, D., and Kupiec, E. 1990. use of different feed antibiotics in

Unrel

Carcin

Drug

Drug

FL

FL

Unrel

FL

Gene

Nut

Diss

Zhang, Peng. prophylactic effect of dietary zinc in a laboratory mouse model of swine dysentery / by peng zhang. i, 65 leaves : ill. ; 28 cm.

FL

IMM

Mix

Drug

Zhang, Zhenwen, Sun, Zhong, Xu, Gesheng, Wang, Yongming, and Liu, Li. the influence of calcium on prevention and treatment of osteoporosis in ovariectomized rats. *Yingyang Xuebao*

CP

FL

Nut def

Unrel

Abstract
ZIDENBERG-CHERR, S., ROSENBAUM, J., and KEEN, C. L. 1987. reduced placental transfer of zinc during organogenesis a mechanism underlying fetal alcohol syndrome fas in rats. *71ST ANNUAL MEETING OF THE FEDERATION OF AMERICAN SOCIETIES FOR EXPERIMENTAL BIOLOGY*

No COC

FL

FL

Mineral

Phys

In Vit

CP

Nut

HHE

Zmudzki, J. 1986. [lead toxicity in calves [zinc protoporphyrin, aminolevulinic acid dehydratase activity, in vivo diagnosis and laboratory diagnosis]]. <original> toksykologia olowiu u cielat. 89 P.

This Page Intentionally Left Blank
<table>
<thead>
<tr>
<th>Rejection Criteria</th>
<th>Description</th>
<th>Receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT (Abstract)</td>
<td>Abstracts of journal publications or conference presentations.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>ACUTE STUDIES (Acu)</td>
<td>Single oral dose or exposure duration of three days or less.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>AIR POLLUTION (Air P)</td>
<td>Studies describing the results for air pollution studies.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>ALTERED RECEPTOR (Alt)</td>
<td>Studies that describe the effects of the contaminant on surgically-altered or chemically-modified receptors (e.g., right nephrectomy, left renal artery ligature, hormone implant, etc.).</td>
<td>Wildlife</td>
</tr>
<tr>
<td>AQUATIC STUDIES (Aquatic)</td>
<td>Studies that investigate toxicity in aquatic organisms.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>ANATOMICAL STUDIES (Anat)</td>
<td>Studies of anatomy. Instance where the contaminant is used in physical studies (e.g., silver nitrate staining for histology).</td>
<td>Wildlife</td>
</tr>
<tr>
<td>BACTERIA (Bact)</td>
<td>Studies on bacteria or susceptibility to bacterial infection.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>BIOACCUMULATION SURVEY (Bio Acc)</td>
<td>Studies reporting the measurement of the concentration of the contaminant in tissues.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>BIOLOGICAL PRODUCT (BioP)</td>
<td>Studies of biological toxicants, including venoms, fungal toxins, Bacillus thuringiensis, other plant, animal, or microbial extracts or toxins.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>BIOMARKER (Biom)</td>
<td>Studies reporting results for a biomarker having no reported association with an adverse effect and an exposure dose (or concentration).</td>
<td>Wildlife</td>
</tr>
<tr>
<td>CARCINOGENICITY STUDIES (Carcin)</td>
<td>Studies that report data only for carcinogenic endpoints such as tumor induction. Papers that report systemic toxicity data are retained for coding of appropriate endpoints.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>CHEMICAL METHODS (Chem Meth)</td>
<td>Studies reporting methods for determination of contaminants, purification of chemicals, etc. Studies describing the preparation and analysis of the contaminant in the tissues of the receptor.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>CONFERENCE PROCEEDINGS (CP)</td>
<td>Studies reported in conference and symposium proceedings.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>DEAD (Dead)</td>
<td>Studies reporting results for dead organisms. Studies reporting field mortalities with necropsy data where it is not possible to establish the dose to the organism.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>DISSERTATIONS (Diss)</td>
<td>Dissertations are excluded. However, dissertations are flagged for possible future use.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>DRUG (Drug)</td>
<td>Studies reporting results for testing of drug and therapeutic effects and side-effects. Therapeutic drugs include vitamins and minerals. Studies of some minerals may be included if there is potential for adverse effects.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>DUPLICATE DATA (Dup)</td>
<td>Studies reporting results that are duplicated in a separate publication. The publication with the earlier year is used.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>Rejection Criteria</td>
<td>Description</td>
<td>Receptor</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>ECOLOGICAL INTERACTIONS (Ecol)</td>
<td>Studies of ecological processes that do not investigate effects of contaminant exposure (e.g., studies of “silver” fox natural history; studies on ferrets identified in iron search).</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>EFFLUENT (Effl)</td>
<td>Studies reporting effects of effluent, sewage, or polluted runoff.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>ECOLOGICALLY RELEVANT ENDPOINT (ERE)</td>
<td>Studies reporting a result for endpoints considered as ecologically relevant but is not used for deriving Eco-SSLs (e.g., behavior, mortality).</td>
<td>Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>CONTAMINANT FATE/METABOLISM (Fate)</td>
<td>Studies reporting what happens to the contaminant, rather than what happens to the organism. Studies describing the intermediary metabolism of the contaminant (e.g., radioactive tracer studies) without description of adverse effects.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>FOREIGN LANGUAGE (FL)</td>
<td>Studies in languages other than English.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>FOOD STUDIES (Food)</td>
<td>Food science studies conducted to improve production of food for human consumption.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>FUNGUS (Fungus)</td>
<td>Studies on fungus.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>GENE (Gene)</td>
<td>Studies of genotoxicity (chromosomal aberrations and mutagenicity).</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>HUMAN HEALTH (HHE)</td>
<td>Studies with human subjects.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>IMMUNOLOGY (IMM)</td>
<td>Studies on the effects of contaminants on immunological endpoints.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>INVERTEBRATE (Invert)</td>
<td>Studies that investigate the effects of contaminants on terrestrial invertebrates are excluded.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>IN VITRO (In Vit)</td>
<td>In vitro studies, including exposure of cell cultures, excised tissues and/or excised organs.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>LEAD SHOT (Lead shot)</td>
<td>Studies administering lead shot as the exposure form. These studies are labeled separately for possible later retrieval and review.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>MEDIA (Media)</td>
<td>Authors must report that the study was conducted using natural or artificial soil. Studies conducted in pore water or any other aqueous phase (e.g., hydroponic solution), filter paper, petri dishes, manure, organic or histosoils (e.g., peat muck, humus), are not considered suitable for use in defining soil screening levels.</td>
<td>Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>METHODS (Meth)</td>
<td>Studies reporting methods or methods development without usable toxicity test results for specific endpoints.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>MINERAL REQUIREMENTS (Mineral)</td>
<td>Studies examining the minerals required for better production of animals for human consumption, unless there is potential for adverse effects.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>MIXTURE (Mix)</td>
<td>Studies that report data for combinations of single toxicants (e.g. cadmium and copper) are excluded. Exposure in a field setting from contaminated natural soils or waste application to soil may be coded as Field Survey.</td>
<td>Wildlife, Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>Rejection Criteria</td>
<td>Description</td>
<td>Receptor</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>MODELING (Model)</td>
<td>Studies reporting the use of existing data for modeling, i.e., no new organism toxicity data are reported. Studies which extrapolate effects based on known relationships between parameters and adverse effects.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO CONTAMINANT OF CONCERN (No COC)</td>
<td>Studies that do not examine the toxicity of Eco-SSL contaminants of concern.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO CONTROL (No Control)</td>
<td>Studies which lack a control or which have a control that is classified as invalid for derivation of TRVs.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO DATA (No Data)</td>
<td>Studies for which results are stated in text but no data is provided. Also refers to studies with insufficient data where results are reported for only one organism per exposure concentration or dose (wildlife).</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO DOSE or CONC (No Dose)</td>
<td>Studies with no usable dose or concentration reported, or an insufficient number of doses/concentrations are used based on Eco-SSL SOPs. These are usually identified after examination of full paper. This includes studies which examine effects after exposure to contaminant ceases. This also includes studies where offspring are exposed in utero and/or lactation by doses to parents and then after weaning to similar concentrations as their parents. Dose cannot be determined.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO DURATION (No Dur)</td>
<td>Studies with no exposure duration. These are usually identified after examination of full paper.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO EFFECT (No Efct)</td>
<td>Studies with no relevant effect evaluated in a biological test species or data not reported for effect discussed.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO ORAL (No Oral)</td>
<td>Studies using non-oral routes of contaminant administration including intraperitoneal injection, other injection, inhalation, and dermal exposures.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO ORGANISM (No Org) or NO SPECIES</td>
<td>Studies that do not examine or test a viable organism (also see in vitro rejection category).</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NOT AVAILABLE (Not Avail)</td>
<td>Papers that could not be located. Citation from electronic searches may be incorrect or the source is not readily available.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NOT PRIMARY (Not Prim)</td>
<td>Papers that are not the original compilation and/or publication of the experimental data.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO TOXICANT (No Tox)</td>
<td>No toxicant used. Publications often report responses to changes in water or soil chemistry variables, e.g., pH or temperature. Such publications are not included.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NO TOX DATA (No Tox Data)</td>
<td>Studies where toxicant used but no results reported that had a negative impact (plants and soil invertebrates).</td>
<td>Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NUTRIENT (Nutrient)</td>
<td>Nutrition studies reporting no concentration related negative impact.</td>
<td>Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NUTRIENT DEFICIENCY (Nut def)</td>
<td>Studies of the effects of nutrient deficiencies. Nutritional deficient diet is identified by the author. If reviewer is uncertain then the administrator should be consulted. Effects associated with added nutrients are coded.</td>
<td>Wilderness Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>NUTRITION (Nut)</td>
<td>Studies examining the best or minimum level of a chemical in the diet for improvement of health or maintenance of animals in captivity.</td>
<td>Wilderness Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>OTHER AMBIENT CONDITIONS (OAC)</td>
<td>Studies which examine other ambient conditions: pH, salinity, DO, UV, radiation, etc.</td>
<td>Wilderness Plants and Soil Invertebrates</td>
</tr>
</tbody>
</table>
Literature Rejection Categories

<table>
<thead>
<tr>
<th>Rejection Criteria</th>
<th>Description</th>
<th>Receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>OIL (Oil)</td>
<td>Studies which examine the effects of oil and petroleum products.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>OM, pH (OM, pH)</td>
<td>Organic matter content of the test soil must be reported by the authors, but may be presented in one of the following ways; total organic carbon (TOC), particulate organic carbon (POC), organic carbon (OC), coarse particulate organic matter (CPOM), particulate organic matter (POM), ash free dry weight of soil, ash free dry mass of soil, percent organic matter, percent peat, loss on ignition (LOI), organic matter content (OMC). With the exception of studies on non-ionizing substances, the study must report the pH of the soil, and the soil pH should be within the range of 4 and 8.5. Studies that do not report pH or report pH outside this range are rejected.</td>
<td>Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>ORGANIC METAL (Org Met)</td>
<td>Studies which examine the effects of organic metals. This includes tetraethyl lead, triethyl lead, chromium picolinate, phenylarsonic acid, roxarsone, 3-nitro-4-phenylarsonic acid, zinc phosphate, monomethylarsonic acid (MMA), dimethylyarsinic acid (DMA), trimethylarsine oxide (TMAO), or arsenobetaine (AsBe) and other organo metallic fungicides. Metal acetates and methionines are not rejected and are evaluated.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>LEAD BEHAVIOR OR HIGH DOSE MODELS (Pb Behav)</td>
<td>There are a high number of studies in the literature that expose rats or mice to high concentrations of lead in drinking water (0.1, 1 to 2% solutions) and then observe behavior in offspring, and/or pathology changes in the brain of the exposed dam and/or the progeny. Only a representative subset of these studies were coded. Behavior studies examining complex behavior (learned tasks) were also not coded.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>PHYSIOLOGY STUDIES (Phys)</td>
<td>Physiology studies where adverse effects are not associated with exposure to contaminants of concern.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>PLANT (Plant)</td>
<td>Studies of terrestrial plants are excluded.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>PRIMATE (Prim)</td>
<td>Primate studies are excluded.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>PUBL AS (Publ as)</td>
<td>The author states that the information in this report has been published in another source. Data are recorded from only one source. The secondary citation is noted as Publ As.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>QSAR (QSAR)</td>
<td>Derivation of Quantitative Structure-Activity Relationships (QSAR) is a form of modeling. QSAR publications are rejected if raw toxicity data are not reported or if the toxicity data are published elsewhere as original data.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>REGULATIONS (Reg)</td>
<td>Regulations and related publications that are not a primary source of data.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>REVIEW (Rev)</td>
<td>Studies in which the data reported in the article are not primary data from research conducted by the author. The publication is a compilation of data published elsewhere. These publications are reviewed manually to identify other relevant literature.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>Rejection Criteria</td>
<td>Description</td>
<td>Receptor</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>SEDIMENT CONC</td>
<td>Studies in which the only exposure concentration/dose reported is for the level of a toxicant in sediment.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Sed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCORE</td>
<td>Papers in which all studies had data evaluation scores at or lower then the acceptable cut-off (#10 of 18) for plants and soil invertebrates.</td>
<td>Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Score)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEDIMENT CONC</td>
<td>Studies in which the only exposure concentration/dose reported is for the level of a toxicant in sediment.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Sed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLUDGE</td>
<td>Studies on the effects of ingestion of soils amended with sewage sludge.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>SOIL CONC</td>
<td>Studies in which the only exposure concentration/dose reported is for the level of a toxicant in soil.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>(Soil)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIES</td>
<td>Studies in which the species of concern was not a terrestrial invertebrate or plant or mammal or bird.</td>
<td>Plants and Soil Invertebrates Wildlife</td>
</tr>
<tr>
<td>STRESSOR</td>
<td>Studies examining the interaction of a stressor (e.g., radiation, heat, etc.) and the contaminant, where the effect of the contaminant alone cannot be isolated.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(QAC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURVEY</td>
<td>Studies reporting the toxicity of a contaminant in the field over a period of time. Often neither a duration nor an exposure concentration is reported.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Surv)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REPTILE OR AMPHIBIAN</td>
<td>Studies on reptiles and amphibians. These papers flagged for possible later review.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Herp)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNRELATED</td>
<td>Studies that are unrelated to contaminant exposure and response and/or the receptor groups of interest.</td>
<td>Wildlife</td>
</tr>
<tr>
<td>(Unrel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER QUALITY STUDY</td>
<td>Studies of water quality.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Wqual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YEAST</td>
<td>Studies of yeast.</td>
<td>Wildlife Plants and Soil Invertebrates</td>
</tr>
<tr>
<td>(Yeast)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This Page Intentionally Left Blank
Appendix 5-1

Avian Toxicity Data Extracted and Reviewed for Wildlife Toxicity Reference Value (TRV) - Zinc

June 2007
This page intentionally left blank
Appendix 5.1 Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)
Zinc
Page 1 of 5
Appendix 5.1 Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

<table>
<thead>
<tr>
<th>Ref</th>
<th>NO.</th>
<th>Reference</th>
<th>Chemical Form</th>
<th>Phase</th>
<th>Method of Analyses</th>
<th>Route of Exposure</th>
<th>Exposure Duration</th>
<th>Age Units</th>
<th>Lifestage</th>
<th>Sex</th>
<th>Body Weight in kg</th>
<th>Ingestion Rate Reported?</th>
<th>NOAEL Dose (mg/kg/day)</th>
<th>LOAEL Dose (mg/kg/day)</th>
<th>Correlation to No-Effects Value or Other</th>
<th>Data Evaluation Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>5723</td>
<td>Parent, 1996</td>
<td>Zinc oxide</td>
<td>100</td>
<td>Gallus domesticus</td>
<td>5 - 10</td>
<td>30/50</td>
<td>NA</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>10</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc carbonate</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>56</td>
<td>5240</td>
<td>Bartov, 1996</td>
<td>Zinc oxide</td>
<td>100</td>
<td>Gallus domesticus</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
</tr>
<tr>
<td>57</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc carbonate</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>58</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc carbonate</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>59</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc oxide</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>60</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc carbonate</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>61</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc oxide</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>62</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc carbonate</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>63</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc oxide</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
<tr>
<td>64</td>
<td>3064</td>
<td>Koga et al.</td>
<td>Zinc carbonate</td>
<td>2 - 6</td>
<td>55/105/125/148</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>140</td>
<td>40</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>5</td>
</tr>
</tbody>
</table>

Eco-SSL, for Zinc

June 2007
Appendix 5.1 Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

Page 3 of 5

<table>
<thead>
<tr>
<th>Ref</th>
<th>Test Species</th>
<th>Conc/Dose Units</th>
<th>Age Units</th>
<th>Lifestage</th>
<th>Control Type</th>
<th>Endpoint Number</th>
<th>Effect Type</th>
<th>Study LOAEL</th>
<th>Total Ingestion Rate Reported?</th>
<th>Exposure Duration</th>
<th>Dose Route</th>
<th>Endpoint</th>
<th>Dose Range</th>
<th>NOAEL Dose (mg/kg/day)</th>
<th>Result Data Evaluation Score</th>
<th>Ref N.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>Gallus domesticus</td>
<td>0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>4 w</td>
<td>1 d</td>
<td>JV</td>
<td>M</td>
<td>C</td>
<td>1</td>
<td>GRO</td>
<td>GRO</td>
<td>BDWT</td>
<td>WO</td>
</tr>
<tr>
<td>108</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
<tr>
<td>109</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
<tr>
<td>110</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
<tr>
<td>111</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
<tr>
<td>112</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
<tr>
<td>113</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
<tr>
<td>114</td>
<td>Coturnix japonica</td>
<td>0.5-3 0/1000/1500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20 d</td>
<td>1 d</td>
<td>JV</td>
<td>B</td>
<td>C</td>
<td>2</td>
<td>MOR</td>
<td>MOR</td>
<td>MORT</td>
<td>WO</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc

June 2007
Appendix 5.1 Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Description</th>
<th>Species</th>
<th>Phase No.</th>
<th>Dose Route</th>
<th>Dose (mg/kg)</th>
<th>Dose Units</th>
<th>Duration Units</th>
<th>Age Units</th>
<th>Lifestage</th>
<th>Control Type</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>18947</td>
<td>Gallus domesticus</td>
<td>1</td>
<td>0/200 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>200</td>
<td>0.001042</td>
</tr>
<tr>
<td>191</td>
<td>18947</td>
<td>Gallus domesticus</td>
<td>2</td>
<td>0/500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>500</td>
<td>0.00067</td>
</tr>
<tr>
<td>192</td>
<td>18947</td>
<td>Gallus domesticus</td>
<td>2</td>
<td>0/500 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>500</td>
<td>0.00067</td>
</tr>
<tr>
<td>193</td>
<td>18947</td>
<td>Gallus domesticus</td>
<td>3</td>
<td>0/1000 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>1000</td>
<td>0.00022</td>
</tr>
<tr>
<td>194</td>
<td>18947</td>
<td>Gallus domesticus</td>
<td>4</td>
<td>0/20000 mg/kg diet</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>20000</td>
<td>0.07903</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc
June 2007
Appendix 5.1 Avian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

Page 5 of 5

| Ref | MW% | Test Species | Phase # | # of Conc/Doses | Conc/Doses Units | Wet Weight Reported? | Percent Moisture | Application Frequency | Method of Analyses | Route of Exposure | Exposure Duration | Duration Units | Age | Age Units | Lifestage | Sex | Control Type | Endpoint Number | General Effect Group | Effect Type | Effect Measure | Response Site | Study NOAEL | Study LOAEL | Body Weight Reported? | Body Weight in kg | Ingestion Rate Reported? | Ingestion Rate in kg/day or L/day | NOAEL Dose (mg/kg/day) | LOAEL Dose (mg/kg/day) | Data Source | Dose Route | Test Concentrations | Chemical form | Dose Quantification | Endpoint | Dose Range | Statistical Power | Exposure Duration | Test Conditions | Total |
|-----|------|--------------|---------|----------------|-----------------|--------------------|---------------------|---------------------|--------------------|-----------------|-----------------|-----------------|----------------|---------|------------|-----------|------|--------------|-----------------|----------------|----------------|----------------|-------------|-------------|----------------------|------------|---------------------|------------------|-----------------|------------------|------------------|---------------|----------------|-----------------|------------------|------------------|------------------|-------|
| 217 | 5903 | 6442 4 and Cofrde, 1988 | Zinc oxide | 100 | Chicken (Gallus domesticus) | 3 | 10 | 0/200/300/400/500/600/800/1000 mg/kg diet | N | N | ADL | U | FD | 14 d | 1 d | JV | NR | C | 1 | BIO | ENZ | GENZ | PS | 1000 | N | 0.328 | N | 0.02817 | 85.9 | 10 | 4 | 10 | 4 | 55514 | 1 | 0 | 1 | 0 | 4 | 6 | 4 |
| 218 | 5868 | 6442 Blalock and Hill, 1988 | Zinc oxide | 100 | Chicken (Gallus domesticus) | 1 | 3 | 0/1000/2000 mg/kg diet | N | N | ADL | U | FD | 12 d | 1 d | JV | F | C | 3 | BIO | CHM | HMGL | BL | 1000 | Y | 0.164 | N | 0.01794 | 109 | 10 | 10 | 10 | 10 | 55614 | 1 | 0 | 1 | 0 | 4 | 6 | 5 |
| 219 | 7245 | 6442 Sandoval et al, 1998 | Zinc acetate | 100 | Chicken (Gallus domesticus) | 2 | 2 | 0/1000 mg/kg diet | N | N | ADL | U | FD | 1 w | 1 d | JV | F | C | 1 | BIO | CHM | MCPR | LI | 1000 | N | 0.084 | N | 0.0116 | 138 | 10 | 10 | 10 | 10 | 55514 | 1 | 0 | 1 | 0 | 4 | 6 | 4 |
| 220 | 93 | 6442 Berg and Martinson, 1972 | Zinc Oxide | 100 | Chicken (Gallus domesticus) | 1 | 2 | 0/2000 mg/kg diet | N | N | ADL | U | FD | 2 w | 1 d | JV | NR | C | 2 | BIO | CHM | ASHC | BO | 2000 | Y | 0.109 | N | 0.01375 | 252 | 10 | 10 | 10 | 10 | 55614 | 1 | 0 | 1 | 0 | 4 | 6 | 5 |
| 221 | 5619 | 6442 Pimentel et al, 1992 | Zinc | 100 | Chicken (Gallus domesticus) | 1 | 2 | 0/2052.62 mg/kg diet | N | N | ADL | U | FD | 21 d | 1 d | JV | B | C | 1 | BIO | CHM | HMGL | BL | 2052.6 | N | 0.0397 | N | 0.00712 | 368 | 10 | 10 | 10 | 10 | 54514 | 1 | 0 | 1 | 0 | 4 | 6 | 3 |
| 222 | 1624 | 6442 Wight et al, 1986 | Zinc oxide | 100 | Chicken (Gallus domesticus) | 1 | 2 | 0/20000 mg/kg diet | N | N | ADL | U | FD | 5 d | NR | SM | F | C | 2 | BIO | CHM | GBCM | SG | 20000 | N | 1.3 | N | 0.0336 | 517 | 10 | 10 | 10 | 10 | 55614 | 1 | 0 | 1 | 0 | 4 | 6 | 5 |
| 223 | 6435 | 6442 Rama and Planas, 1981 | Zinc | 100 | Chicken (Gallus domesticus) | 1 | 2 | 0/5000 mg/kg diet | N | N | ADL | U | FD | 2 s | 1 d | JV | NR | C | 2 | BIO | CHM | HMGL | BL | 5000 | Y | 0.075 | N | 0.01078 | 719 | 10 | 10 | 10 | 10 | 54614 | 1 | 0 | 1 | 0 | 4 | 6 | 4 |
| 224 | 6144 | 6442 Berry and Brake, 1985 | Zinc oxide | 100 | Chicken (Gallus domesticus) | 1 | 2 | 0/20000 mg/kg diet | N | N | ADL | U | FD | 4 d | 60 w | AD | F | C | 1 | GRO | GRO | BDWT | WO | 20000 | N | 1.6 | N | 0.07903 | 988 | 10 | 10 | 10 | 10 | 55614 | 1 | 0 | 1 | 0 | 4 | 6 | 5 |
| 225 | 7089 | 6442 Berry and Brake, 1990 | Zinc oxide | 100 | Chicken (Gallus domesticus) | 1 | 2 | 0/2 % in diet | N | N | ADL | U | FD | 49 d | 66 w | LB | F | C | 3 | BIO | CHM | GBCM | SG | 2 | N | 1.6 | N | 0.07903 | 988 | 10 | 10 | 10 | 10 | 55614 | 1 | 0 | 1 | 0 | 4 | 6 | 4 |
| 226 | 8181 | 6442 Berry et al., 1987 | Zinc oxide | 100 | Chicken (Gallus domesticus) | 2 | 3 | 0/20000 mg/kg diet | N | N | ADL | U | FD | 4 d | 1 yr | AD | F | C | 1 | BIO | CHM | PCLV | BL | 20000 | N | 1.6 | N | 0.07903 | 988 | 10 | 10 | 10 | 10 | 55614 | 1 | 0 | 1 | 0 | 4 | 6 | 5 |

All abbreviations and definitions are used in coding studies are available from Attachment 4-3 of the Eco-SSL guidance (U.S. EPA 2003).

Duplicate values for NOAELs and LOAELs for the same reference represent results from different experimental designs and are identified by different Phase numbers.

Eco-SSL for Zinc

June 2007
Appendix 6-1

Mammalian Toxicity Data Extracted and Reviewed for Wildlife Toxicity Reference Value (TRV) - Zinc

June 2007
<table>
<thead>
<tr>
<th>Ref.</th>
<th>Species</th>
<th>Toxicity Route</th>
<th>Toxicity Value</th>
<th>Source</th>
<th>General Effect Group</th>
<th>Behavior</th>
<th>Body Weight Reported?</th>
<th>Dose</th>
<th>Male Body Weight (kg)</th>
<th>Female Body Weight (kg)</th>
<th>Test Conditions</th>
<th>Test Location</th>
<th>LOAEL Dose (mg/kg/day)</th>
<th>Dose Route</th>
<th>Test Concentrations</th>
<th>Ingestion Rate Reported?</th>
<th>Conversion to mg/kg bw/day</th>
<th>Result</th>
<th>Data Evaluation Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>18</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>22</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>26</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>30</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>34</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>38</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>42</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>46</td>
<td>1985</td>
<td>Mus musculus</td>
<td>Oral</td>
<td>500</td>
<td>Zinc chloride</td>
<td>AL</td>
<td>Yes</td>
<td>10</td>
<td>8.4</td>
<td>14.5</td>
<td>Male</td>
<td>30</td>
<td>1.22</td>
<td>Ingestion</td>
<td>0.01222222222222222</td>
<td>1.22</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc

Appendix 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Page 1 of 5

June 2007
Appendix 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

<table>
<thead>
<tr>
<th>Ref</th>
<th>N.</th>
<th>Species</th>
<th>Test Conc.</th>
<th>Application Frequency</th>
<th>Route of Exposure</th>
<th>Ingestion Rate Reported?</th>
<th>Body Weight in kg</th>
<th>Test Concentration</th>
<th>Effect Measure</th>
<th>Effect Type</th>
<th>Effect</th>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>4789</td>
<td>Ovis aries</td>
<td>0/0.5/1.0/1.5/2.0/2.5/3.0/3.5 g/kg diet</td>
<td>N na ADL U FD</td>
<td>6 w NR NR JV</td>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4525</td>
<td>Ovis aries</td>
<td>0/1264.0 mg/kg diet</td>
<td>N na ADL M FD</td>
<td>4 w NR mo LC F C COM PHY PHY FDCV WO 1264 Y 623.2 Y 15.1 30.6 10 10 10 10 7 4 4 1 10 4 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>4526</td>
<td>Ovis aries</td>
<td>0/1386.4 mg/kg diet</td>
<td>N na ADL M FD</td>
<td>5 w NR NR LC F C COM PHY PHY FDCV WO 1386.4 Y 626.2 Y 15 33.2 10 10 10 10 7 4 4 1 10 4 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>61</td>
<td>Sus scrofa</td>
<td>0/500/5000 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>12 mo 7-8 mo GE F C COM PTH ORW SMIX LI 500 5000 Y 167 Y 2.75 8.23 82.3 10 10 5 5 7 4 8 10 10 4 73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>4368</td>
<td>Ovis aries</td>
<td>0/23.2/234/2514 mg/kg bw/d</td>
<td>N na ADL U FD</td>
<td>13 w 5 w JV M C COM PHY PHY FDCV WO 2514 Y 0.371 Y 0.0213 2514 10 10 5 10 7 4 4 3 10 4 67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>1453</td>
<td>Sus scrofa</td>
<td>0/100 mg/kg bw/d</td>
<td>N na ADL U DR</td>
<td>30 d NR NR JV M C COM PHY PHY GPHY VD 100 Y 0.1 N 0.0124634 100 10 5 5 10 4 4 10 10 10 4 72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>39780</td>
<td>Ovis aries</td>
<td>0/23.2/234/2514 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>12 mo 7-8 mo GE F C COM PTH ORW ORWT LI 0.5 1 Y 48.3 Y 1.8 18.6 37.3 10 10 5 5 7 4 10 10 10 4 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>42234</td>
<td>Sus scrofa</td>
<td>0/218/624/830 mg/d</td>
<td>N na ADL M FD</td>
<td>2 w 23 d JV M C COM PHY PHY FDCV WO 830 Y 7.82 Y 0.34 106 10 10 10 10 7 4 4 1 10 4 70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>14527</td>
<td>Sus scrofa</td>
<td>0/500/5000 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>18 w NR NR JV M C COM PTH ORW ORWT LI 0.75 Y 0.438 N 0.034853 597 10 10 5 10 6 4 4 8 10 4 71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>45143</td>
<td>Sus scrofa</td>
<td>0/23.2/234/2514 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>12 mo 7-8 mo GE F C COM PTH ORW ORWT TB 8 Y 0.2 Y 0.0335 40 10 5 5 10 7 4 4 10 10 10 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>42289</td>
<td>Mus musculus</td>
<td>0/23.2/234/2514 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>18 w NR NR JV M C COM PTH ORW ORWT LI 30 N 0.253 Y 0.0142 1684 10 10 5 10 6 4 4 8 10 4 71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>21067</td>
<td>Mus musculus</td>
<td>0/500/5000 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>18 w NR NR JV M C COM PTH ORW ORWT LI 0.5 1 Y 48.3 Y 1.8 18.6 37.3 10 10 5 5 7 4 10 10 10 4 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>14527</td>
<td>Mus musculus</td>
<td>0/23.2/234/2514 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>18 w NR NR JV M C COM PTH ORW ORWT LI 0.5 1 Y 48.3 Y 1.8 18.6 37.3 10 10 5 5 7 4 10 10 10 4 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>43680</td>
<td>Mus musculus</td>
<td>0/23.2/234/2514 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>18 w NR NR JV M C COM PTH ORW ORWT LI 0.5 1 Y 48.3 Y 1.8 18.6 37.3 10 10 5 5 7 4 10 10 10 4 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>43680</td>
<td>Mus musculus</td>
<td>0/23.2/234/2514 mg/kg diet</td>
<td>N na ADL U FD</td>
<td>18 w NR NR JV M C COM PTH ORW ORWT LI 0.5 1 Y 48.3 Y 1.8 18.6 37.3 10 10 5 5 7 4 10 10 10 4 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc

June 2007
Appendix 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)
Zinc
Page 3 of 5

Eco-SSL for Zinc

BDWT
BDWT
BDWT
BDWT
GGRO
BDWT

WO 1129.3
WO 200
WO 200
WO 150
WO 500
WO 1701
WO 581
WO 120
WO 478
WO 200
WO 0.44
WO 200
WO 330
WO 400
WO
30
WO 350
WO 1264
WO 1386.4
WO
34
WO 500
WO 42.5
WO
0.1
WO 2000
WO
56
WO
60
WO
88
WO 0.0975
WO 3000
WO 762
WO 830
WO 110.2
WO 234
WO 5000
WO 3000
WO 458
WO
0.5
WO 479
WO 0.75
WO 6010
WO 6075
WO 6135
WO
10
WO
30
WO 2486
WO
WO
WO
WO
WO
WO

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y

261
379
379
0.126
134
0.145
91
0.3742
84
0.23
0.25
0.216
1.9
0.2779
0.0415
0.267
623.2
626.2
0.275
0.319
0.269
47.99915
565
0.1728
3.21
0.1131
0.2562
61.3
7.4
7.82
0.000042
0.43
3
0.134
0.0453
0.252
0.0446
0.438
0.0205
0.019
0.02
0.017
0.253
0.231
0.1838
74.4
0.198
34
0.3945
64.92

N
N
N
Y
Y
N
Y
Y
N
Y
N
N
N
Y
N
N
Y
Y
N
N
N
Y
Y
N
N
N
N
N
Y
Y
N
Y
N
N
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
Y

6.659402
9.048949
9.048949
0.0081
2.75
0.0140476
2.11
0.045
2.622493
0.018
0.0219818
0.019493
0.1164373
0.0201
0.0050233
0.0232033
15.1
15
0.0237732
0.0268579
0.023346
2.09
18
0.0162262
0.1791859
0.0114526
0.0224289
2.02418
0.26
0.34
0.0000191
0.0236
0.1694925
0.0131655
0.006
0.0237
0.00416
0.034853
0.0028133
0.002643
0.0027568
0.002412
0.0142
0.0149
0.008
1.2
0.01395
1.246902
0.0319821
1.446

5000

0.2

2514

4927
4878

20

200
1000
400
2065
1000
4000

4.33
4.78
4.78
9.64
10.3
11.7
13.5
14.4
14.9
15.7
15.7
18.0
20.2
28.9
30.0
30.4
30.6
33.2
34
42.1
42.5
43.5
63.7
56
60.0
88.0
97.5
99.1
103
106
110
234
282
295
458
470
479
597
825
845
846
1419
1684
2486

Total

GRO

Test Conditions

GRO

Exposure Duration

DOM
COM
COM
COM
COM
COM
LAB
LAB
COM
LAB
COM
LAB
NR
COM
DOM
COM
COM
COM
COM
COM
DOM
COM
COM
COM
DOM
DOM
COM
COM
COM
COM
LAB
COM
COM
LAB
COM
COM
COM
COM
COM
COM
COM
LAB
LAB
COM
LAB
DOM
LAB
COM
LAB
DOM

mo
mo
mo
NR
mo
NR
w
d
NR
NR
NR
w
d
d
NR
w
NR
NR
NR
w
NR
NR
NR
NR
NR
NR
NR
NR
d
d
w
w
NR
NR
w
NR
w
NR
w
w
w
w
NR
w
NR
NR
NR
w
NR
w

Statistical Power

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
V
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

7-9
18
18
NR
7-8
NR
6-8
105
NR
NR
NR
9-10
90
40
NR
3
NR
NR
NR
3
NR
NR
NR
NR
NR
NR
NR
NR
23
23
12
5
NR
NR
5
NR
5
NR
8
8
8
4
NR
5
NR
NR
NR
1
NR
4

Dose Range

JV M
JV F
JV F
JV M
GE F
JV M
JV B
LC F
JV B
JV M
JV M
SM M
JV M
JV F
GE F
JV M
LC F
LC F
GE F
JV F
GE F
JV NR
LC F
JV M
GE F
GE F
GE F
JV M
JV B
JV B
JV M
JV M
JV B
JV M
JV M
LC F
JV F
JV M
JV F
JV F
JV F
JV B
JV M
JV F
JV F
SM M
JV M
JV M
GE F
JV NR

d
d
d
w
mo
d
w
d
w
w
w
d
mo
d
d
w
w
w
d
w
d
d
w
w
d
d
d
w
w
d
w
w
w
w
w
d
w
w
d
d
d
w
d
w
w
d
w
d
d
w

Endpoint

90
50
50
5
8
12
16
37
4
7
3
14
4
120
10
7
4
5
4
8
10
42
14
2
12
5
7
10
2
23
13
13
22
18
13
14
13
18
10
10
10
3
42
13
11
56
6
26
10
13

0.0313209
0.0319821
0.0204523
0.0313209
0.0313209
0.0216198
0.0092483

12.2
81.1
232
326
326
353
424

10
10
10
10
10
10
10

10
10
10
10
10
10
10

5
5
5
5
5
5
5

10 5 10
4 6 10
5 10 10
10 5 10
4 5 10
5 6 10
5 6 10

4
4
4
4
4
4
4

10
10
10
10
10
10
10

10
10
10
10
10
10
10

4
4
7
4
4
4
4

78
73
81
78
72
74
74

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

10
10
10
10
10
10
10
10
10
10
10
10
10
10
8
10
10
10
10
10
8
10
10
10
8
8
8
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

5
5
5
5
5
5
10
5
5
5
5
5
10
5
10
5
10
10
5
5
10
5
5
5
10
10
10
5
10
10
5
5
5
5
5
5
5
5
10
10
10
5
5
5
5
5
5
10
5
5

5
10
10
5
5
10
5
10
10
10
10
5
10
5
10
10
10
10
5
10
10
10
10
4
10
10
4
10
5
10
10
10
10
10
10
5
10
10
5
10
5
10
10
10
5
10
5
10
4
5

4
4
4
4
8
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
10
4
4
4
4
4
4
4
4
4
6
4
4
6
4
6
4
4
4
4
10
4
4
4
4
4
4
4
4

1
1
1
6
10
1
1
10
1
1
1
10
10
10
1
10
1
1
1
1
1
10
1
10
1
1
1
6
1
1
10
10
1
1
10
10
10
10
1
1
1
10
10
1
10
10
10
10
10
10

10 10 69
10 4 68
10 4 68
10 4 69
10 4 77
10 4 68
10 4 69
10 4 78
10 4 68
10 4 69
10 4 68
10 4 72
10 4 82
10 4 73
10 4 75
10 7 79
10 4 74
10 4 74
10 4 67
10 4 68
10 4 75
10 4 84
10 4 69
10 4 75
10 4 75
10 4 75
10 4 69
10 4 73
10 4 69
10 4 74
10 4 81
10 4 80
10 4 68
10 4 67
10 4 80
10 4 73
10 4 80
10 4 77
10 4 68
10 4 73
10 4 68
10 4 83
10 4 78
10 4 69
10 4 73
3 4 71
10 4 73
10 4 81
10 4 71
10 4 73

103

87.1

2514

4927
4878

2838

8.71
16.1
28.2
75.7
81.1
89.1

Dose Quantification

FD
GV
FD
FD
FD
FD
FD
GV
FD
FD
FD
GV
GV
GV
FD

N
N
N
N
N
N
N

Chemical form

U
U
U
U
U
U
M
U
U
U
U
U
M
U
U
U
M
M
U
U
U
U
U
U
U
U
M
U
M
M
U
U
U
U
U
U
U
U
M
M
M
U
U
U
U
U
U
M
U
U

0.3846
0.3945
0.229
0.3846
0.3846
0.245
0.0872

Test Concentrations

ADL
NR
ADL
ADL
DLY
ADL
ADL
ADL
ADL
ADL
DLY
ADL
ADL
ADL
DLY
DLY
ADL
NR
ADL
3 per d
ADL
ADL

N
Y
N
N
N
Y
Y

Dose Route

na

150
1000
232
4000
0.4
0.4
0.4

Data Source

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

WO
WO
WO
WO
WO
WO
WO

Data Evaluation Score

LOAEL Dose (mg/kg/day)

0/460.28/527.70/1072.50/1129.26 mg/org/d
0/200
mg/kg diet
0/200
mg/kg diet
0/150
mg/kg diet
0/500/5000
mg/kg diet
0/444/789/1701
ug/org/d
0/581
mg/kg diet
0/120
mg/kg diet
0/478
mg/kg diet
0/200
mg/kg diet
0/0.44
g/kg diet
0/200
mg/kg diet
0/171/330
mg/kg diet
0/400
mg/kg diet
0/6.5/30.0
mg/kg bw/d
0/350
mg/kg diet
0/1264.0
mg/kg diet
0/1386.4
mg/kg diet
0/34
mg/kg bw/d
0/500
mg/kg diet
0/2.0/9.1/42.5
mg/kg bw/d
0/0.05/0.10/0.20/0.40/0.80
% in diet
0/1000/2000
mg/kg diet
0/56
mg/kg bw/d
0/0.6/2.8/13.0/60.0
mg/kg bw/d
0/4.1/19.0/88.0
mg/kg bw/d
0/0.09746
mg/g bw
0/3000
mg/kg diet
0/236/572/762
mg/d
0/218/624/830
mg/d
0/110.2
mg/kg bw/d
0/23.2/234/2514
mg/kg bw/d
0/1000/5000
ug/g
0/3000
mg/kg diet
0/42.7/458/4927
mg/kg bw/d
0/0.2/0.5
% in diet
0/46.4/479/4878
mg/kg bw/d
0/0.75
% in diet
0/6010
mg/kg diet
0/6075
mg/kg diet
0/6135
mg/kg diet
0/10/20
g/kg diet
0/30
mg/g diet
0/24.5/243/2486
mg/kg bw/d
0/200
ug/g
0/1000
mg/kg diet
0/400
mg/kg diet
0/2065
mg/kg diet
0/1000
mg/kg diet
0/4000
mg/kg diet

RSEM
PROG
PROG
GREP
PRWT
PRWT
PRWT

NOAEL Dose (mg/kg/day)

5
2
2
2
3
4
2
2
2
2
2
2
3
2
3
2
2
2
2
2
4
6
3
2
5
4
2
2
4
4
2
4
3
2
4
3
4
2
2
2
2
3
2
4
2
2
2
2
2
2

REP
REP
REP
REP
REP
REP
REP

Ingestion Rate in kg or L/day

1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
2
1
1
1
1
3
1
1
1
2
1
4
1
1
2
1
1
1
1
2
3
1
1
3
1
1
1
1
1
1

REP
REP
REP
REP
REP
REP
REP

Ingestion Rate Reported?

Water buffalo (Bubalus bubalis)
Cattle (Bos taurus)
Cattle (Bos taurus)
Rat (Rattus norvegicus)
Pig (Sus scrofa)
Rat (Rattus norvegicus)
Pig (Sus scrofa)
Rat (Rattus norvegicus)
Pig (Sus scrofa)
Rat (Rattus norvegicus)
Rat (Rattus norvegicus)
Rat (Rattus norvegicus)
Mink (Mustela vison)
Rat (Rattus norvegicus)
Mouse (Mus musculus)
Rat (Rattus norvegicus)
Cattle (Bos taurus)
Cattle (Bos taurus)
Rat (Rattus norvegicus)
Rat (Rattus norvegicus)
Rat (Rattus norvegicus)
Pig (Sus scrofa)
Cattle (Bos taurus)
Rat (Rattus norvegicus)
Rabbit (Oryctolagus cuniculus)
Hamster (Mesocricetus auratus)
Rat (Rattus norvegicus)
Pig (Sus scrofa)
Pig (Sus scrofa)
Pig (Sus scrofa)
Mouse (Mus musculus)
Rat (Rattus norvegicus)
Rabbit (Oryctolagus cuniculus)
Golden hamster (Mesocricetus auratus)
Mouse (Mus musculus)
Rat (Rattus norvegicus)
Mouse (Mus musculus)
Rat (Rattus norvegicus)
Mouse (Mus musculus)
Mouse (Mus musculus)
Mouse (Mus musculus)
Mouse (Mus musculus)
Rat (Rattus norvegicus)
Rat (Rattus norvegicus)
Rat (Rattus norvegicus)
Sheep (Ovis aries)
Rat (Rattus norvegicus)
Sheep (Ovis aries)
Rat (Rattus norvegicus)
Pig (Sus scrofa)

COM
LAB
COM
COM
DOM
COM
COM

Body Weight in kg

100
100
100
100
100
100
100
100
100
100
40.5
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

C
C
C
C
C
C
C

Body Weight Reported?

Zinc Oxide
Zinc sulfate
Zinc methionine
Zinc acetate
Zinc oxide
Zinc sulfate heptahydrate
Zinc oxide
Zinc carbonate
Zinc carbonate
Zinc carbonate
Zinc sulfate
Zinc oxide
Zinc sulfate
Zinc oxide
Zinc sulfate
Zinc carbonate
Zinc sulfate
Zinc chloride
Zinc acetate
Zinc chloride
Zinc sulfate
Zinc carbonate
Zinc sulfate
Zinc
Zinc sulfate
Zinc sulfate
Zinc
Zinc sulfate
Zinc oxide
Zinc sulfate
Zinc chloride
Zinc sulfate heptahydrate
Zinc carbonate
Zinc carbonate
Zinc sulfate heptahydrate
Zinc oxide
Zinc sulfate heptahydrate
Zinc carbonate
Zinc oxide
Zinc sulfate
Zinc methionine
Zinc chloride
Zinc carbonate
Zinc sulfate heptahydrate
zinc acetate
Zinc carbonate
Zinc oxide
Zinc sulfate
Zinc
Zinc oxide

F
F
F
F
F
F
F

Result

Study LOAEL

Attia, et al, 1987
Huerta et al, 2002
Huerta et al, 2002
Alaoui et al, 1985
Hill et. al., 1983
Weigarnd and Kirchgessner, 1978
Eisemann et al, 1979
Cerklewski, 1979
Elliot and Walker, 1968
Cerklewski and Forbes, 1976
Wapnir and Lee, 1993
Agarwal et al, 1986
Brandt, 1983
Shankar et al, 1986
Food and Drug Res. Lab, 1973
Reeves and Newman, 1997
Gaynor et al, 1988
Gaynor et al, 1988
Khera and Shah, 1979
Evenson et al, 1993
Food and Drug Res. Lab, 1973
Brink et al, 1959
Miller et al., 1989
Reeves et al, 1994
Food and Drug Res. Lab, 1974
Food and Drug Res. Lab, 1973
Van Vleet et al, 1981
Schell and Kornegay, 1996
Schell and Kornegay, 1996
Anderson et al., 1993
Maita et al, 1981
Bentley and Grubb, 1991
Llewellyn et al, 1985
Maita et al, 1981
Ketcheson et al, 1969
Maita et al, 1981
O'Neil-Cutting et al, 1981
Zhang et al, 1995
Zhang et al, 1995
Zhang et al, 1995
Pettersen, et al, 2002
Urabe and Hayakawa, 1990
Maita et al, 1981
Nakamura et al., 1983
Rosa et al, 1986
Subramanian et al, 2000
Davies, et al, 1977
Barone et al, 1998
Hsu et al, 1975

d
100
d GE
d
NR NR GE
d
NR NR GE
d 120-130 d GE
d
NR NR LC
d
NR NR GE
d
NR NR GE

Study NOAEL

36003
25973
25973
36854
45143
41855
43242
37008
38623
2627
39821
21084
2033
46830
42289
21067
47892
47892
21134
14660
42289
14525
14685
37015
42292
42289
21045
149
42234
42234
139
43680
40436
2203
43680
37837
43680
14656
39356
39356
39356
36374
40997
43680
638
47007
21011
14527
21042
14376

Response Site

17
10
16
18
14
22
18

Effect Measure

FD
FD
FD
FD
FD
FD
FD

Effect Type

U
U
U
U
U
U
U

General Effect Group

NR
ADL
ADL
ADL
ADL
ADL
NR

Test Location

Exposure Duration

na
na
na
na
na
na
na

Control Type

Route of Exposure

N
N
N
N
N
N
N

Sex

Method of Analyses

mg/kg diet
mg/kg diet
mg/kg bw/d
mg/kg diet
% in diet
% in diet
% in diet

Conversion to mg/kg bw/day

Lifestage

Application Frequency

0/150
0/1000
0/232
0/4000
0/0.4
0/0.4
0/0.4

Age Units

Percent Moisture

2
2
2
2
2
2
2

Age

Wet Weight Reported?

1
1
1
1
1
1
1

Duration Units

Conc/Dose Units

Rat (Rattus norvegicus)

Conc/ Doses

100
100
100
100
100
100
100

Test Species

Zinc sulfate
Zinc
Zinc acetate dihydrate
Zinc sulfate
Zinc
Zinc oxide
Zinc oxide

MW%

Kumar, 1976
Barone et al, 1998
Newman et al, 2002
Pal and Pal, 1987
Chu and Cox, 1972
Cox et al, 1969
Schlicker and Cox, 1968

Chemical Form

43587
21042
48540
14664
42670
42838
25

Reference

of Conc/ Doses

Effects

Phase #

112
113
114
115
116
117
118
Growth
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

Exposure

Ref N.

Result #

Ref

6
6
6
7
7
6
7
7
6
7
6
6
6
7
10
5
7
7
10
6
10
7
7
10
10
10
10
6
7
7
10
7
6
5
7
7
7
6
6
6
6
6
7
7
7
7
7
5
6
7

8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8

June 2007


Appendix 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

Page 4 of 5

<table>
<thead>
<tr>
<th>Ref</th>
<th>Assay Code</th>
<th>Species</th>
<th>Route</th>
<th>Conc/Doses</th>
<th>Wet Weight Reported?</th>
<th>Percent Moisture</th>
<th>Duration</th>
<th>Route of Exposure</th>
<th>Effect Type</th>
<th>General Effect Group</th>
<th>Exposure Duration</th>
<th>Date</th>
<th>LOAEL Dose (mg/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>FD</td>
<td>NR</td>
<td>N</td>
<td>0.0872</td>
<td>0.0092483</td>
<td>424</td>
</tr>
<tr>
<td>116</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/1%</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>NR</td>
<td>0.1558</td>
<td>0.0149021</td>
<td>956</td>
</tr>
<tr>
<td>117</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.75%</td>
<td>N</td>
<td>na</td>
<td>ADL</td>
<td>U</td>
<td>FD</td>
<td>NR</td>
<td>0.029</td>
<td>0.0037415</td>
<td>968</td>
</tr>
<tr>
<td>171</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.055</td>
<td>0.0074262</td>
<td>560</td>
</tr>
<tr>
<td>176</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.067</td>
<td>0.0085352</td>
<td>58</td>
</tr>
<tr>
<td>186</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.047</td>
<td>0.0042980</td>
<td>58</td>
</tr>
<tr>
<td>188</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.067</td>
<td>0.0085352</td>
<td>58</td>
</tr>
<tr>
<td>190</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.047</td>
<td>0.0042980</td>
<td>58</td>
</tr>
<tr>
<td>191</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.067</td>
<td>0.0085352</td>
<td>58</td>
</tr>
<tr>
<td>192</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.067</td>
<td>0.0085352</td>
<td>58</td>
</tr>
<tr>
<td>193</td>
<td>N</td>
<td>Rat</td>
<td>Oral</td>
<td>0/0.4%</td>
<td>N</td>
<td>na</td>
<td>NR</td>
<td>ADL</td>
<td>U</td>
<td>NR</td>
<td>0.067</td>
<td>0.0085352</td>
<td>58</td>
</tr>
</tbody>
</table>

Eco-SSL for Zinc
Appendix 6.1 Mammalian Toxicity Data Extracted for Wildlife Toxicity Reference Value (TRV)

Zinc

Ref	Name	Species	Test Concentrations	Route of Exposure	Age	Age Units	Test Species	Route	Dose Route	Concentrations	Wet Weight Reported?	Percent Moisture	Application Frequency	Expt Duration	Study LOAEL	Body Weight Reported?	Body Weight in kg	NOAEL Dose (mg/kg/day)	LOAEL Dose (mg/kg/day)	Study Notes													
232	38516	Katouli et al., 1999	Rattus norvegicus	0/5400 mg/kg diet	RD	9 w	3-4 w	JV	B	C	COM	BIO	CHM	PCLV	BL	5400	Y	181.44	Y	2.81232	83.7	10	10	5	5	6	1	4	1	10	4	56	
233	14385	Willoughby et al., 1972	Equus caballus	0/1000/2000 mg/kg diet	RD	13 w	4 w	JV	M	C	COM	BIO	CHM	PCLV	BL	2000	Y	565	Y	22	77.9	10	10	5	10	7	1	4	1	10	4	62	
234	14376	Hsu et al., 1975	Sus scrofa	0/4000 mg/kg diet	RD	13 w	4 w	JV	B	C	DOM	GRO	GRO	BDWT	WO	4000	N	31.5	N	1.17103	92.9	10	10	5	5	5	8	4	1	10	4	62	
235	38511	Katouli et al., 1999	Sus scrofa	0/5000 mg/kg diet	RD	20 w	5 w	JV	B	C	GRO	GRO	BDWT	WO	5000	Y	140.6	Y	2.75	97.8	10	10	5	5	7	8	4	1	10	4	64		
236	42838	Cox et al., 1969	Rattus norvegicus	0/1200/2400/3600/4800/6000 mg/kg diet	RD	21 d	35 d	JV	M	C	COM	GRO	GRO	BDWT	WO	8400	Y	0.1893	Y	0.019	843	10	10	5	5	7	8	4	1	10	4	64	
237	14526	Cox and Hale, 1962	Sus scrofa	0/0.2/0.4 % in diet	RD	69 d	NR	NR	JV	B	C	DOM	GRO	GRO	BDWT	WO	0.4	Y	59.10309	Y	1.98	134	10	10	5	5	7	1	4	1	10	4	57
238	14526	Cox and Hale, 1962	Sus scrofa	0/0.2/0.4 % in diet	RD	69 d	NR	NR	JV	B	C	DOM	GRO	GRO	BDWT	WO	0.4	Y	59.10309	Y	1.98	134	10	10	5	5	7	1	4	1	10	4	57
239	14662	Ansari et al., 1976	Rattus norvegicus	0/1200/2400/3600/4800/6000/7200 mg/kg diet	RD	21 d	35 d	JV	M	C	COM	BEH	FDB	FCNS	WO	8400	Y	0.1893	Y	0.019	843	10	10	5	5	7	4	4	1	10	4	60	
240	42838	Cox et al., 1969	Rattus norvegicus	0/1200/2400/3600/4800/6000/7200 mg/kg diet	RD	21 d	35 d	JV	M	C	COM	BEH	FDB	FCNS	WO	8400	Y	0.1893	Y	0.019	843	10	10	5	5	7	4	4	1	10	4	60	
241	14662	Ansari et al., 1976	Rattus norvegicus	0/1200/2400/3600/4800/6000/7200 mg/kg diet	RD	21 d	35 d	JV	M	C	COM	BEH	FDB	FCNS	WO	8400	Y	0.1893	Y	0.019	843	10	10	5	5	7	4	4	1	10	4	60	
242	14662	Ansari et al., 1976	Rattus norvegicus	0/1200/2400/3600/4800/6000/7200 mg/kg diet	RD	21 d	35 d	JV	M	C	COM	BEH	FDB	FCNS	WO	8400	Y	0.1893	Y	0.019	843	10	10	5	5	7	4	4	1	10	4	60	
243	14662	Ansari et al., 1976	Rattus norvegicus	0/1200/2400/3600/4800/6000/7200 mg/kg diet	RD	21 d	35 d	JV	M	C	COM	BEH	FDB	FCNS	WO	8400	Y	0.1893	Y	0.019	843	10	10	5	5	7	4	4	1	10	4	60	
244	43680	Maita et al., 1981	Rattus norvegicus	0/0.09746 mg/g bw	DR	7 d	NR	NR	GE	F	V	COM	BIO	CHM	MCPR	LI	0.9746	Y	0.2562	N	0.0224289	975	10	8	10	4	10	1	4	1	10	4	62
245	43680	Maita et al., 1981	Rattus norvegicus	0/24.5/243/2486 mg/kg bw/d	RD	13 w	5 w	JV	F	C	COM	BEH	FDB	FCNS	WO	2486	Y	0.231	Y	0.0149	2486	10	10	5	10	7	4	4	1	10	4	65	
246	43680	Maita et al., 1981	Rattus norvegicus	0/46.4/479/4878 mg/kg bw/d	RD	13 w	5 w	JV	F	C	COM	BEH	FDB	FCNS	WO	4878	Y	0.0327	Y	0.0036	4878	10	10	5	10	7	4	4	1	10	4	65	
247	43680	Maita et al., 1981	Rattus norvegicus	0/42.7/458/4927 mg/kg bw/d	RD	13 w	5 w	JV	M	C	COM	BEH	FDB	FCNS	WO	4927	Y	0.0386	Y	0.0054	4927	10	10	5	10	7	4	4	1	10	4	65	
248	21006	Sinha, et al., 1989	Rattus norvegicus	0/200 mg/L	RD	18 mo	NR	NR	JV	F	C	COM	PHY	PHY	BLPR	WO	200	N	0.179	N	0.0210476	23.5	10	5	5	5	4	4	1	10	4	62	
249	45042	Katya-Katya et al., 1984	Rattus norvegicus	0/200 mg/L	RD	18 mo	NR	NR	JV	F	C	COM	PHY	PHY	BLPR	WO	200	N	0.179	N	0.0210476	23.5	10	5	5	5	4	4	1	10	4	62	

Eco-SSL for Zinc

June 2007