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PREFACE

The purpose of this report is to describe computer programs that provide improved methods of
determining the concentrations appropriate for use in ORO risk assessments. According to EPA, because
of uncertainty associated with any estimate of exposure concentration, the 95% upper confidence limit of
the arithmetic mean will be used for the reasonable maximum exposurein risk assessment. The SAS
macros described in the report provide an efficient way of calculating this value, as well as other important
summary statistics. It is especially noteworthy that the programs include methods that are appropriate
when nondetects are present, when the distribution of the underlying data is unknown, and when both
situations apply. Thiswork was performed under Work Breakdown Structure 1.4.12.2.3.04.05.03
(Activity Data Sheet 8304). This Work Breakdown Structure is entitled Risk Assessment: Decision
Support. The ultimate objective of thisreport is to provide and explain new statistical software that should
be applied to improve the concentration estimates applied in ORO risk assessments. This document was
previously released as a draft with the document number ES/ER/TM-211.
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EXECUTIVE SUMMARY

In order to estimate the potential health or environmental effects of a particular substance in a given
medium at a particular location, an estimate is needed of the concentration of the substance that is present.
Under current Environmental Protection Agency (EPA) guidance for risk assessment (EPA 1992, 1995a), the
average concentration is the value of the exposure to be used in such estimation.

Because only afinite number of samples can be taken, the average concentration cannot be determined
precisely. For this reason, EPA requires that a 95% upper confidence limit (95% UCL) on the arithmetic
average concentration be calculated to estimate exposure concentration used in risk assessments. The 95%
UCL of the average concentration isthe value that, when calculated for an infinitely large number of randomly
drawn subsets of site data, will equal or exceed the true average 95% of the time.

Commonly used methods for calculating exact confidence limits on the mean require assumptions about
the underlying distribution of values. For example, it iscommonly assumed that the data are either normally
or lognormally distributed. Lognormal data are data that are normally distributed after the logarithms of the
data (to any base) aretaken. Before thistransformation has been made, the distribution of the dataiis skewed
withalongright tail. Frequently samplesof concentrations of contaminantsin the environment appear to have
alognormal distribution.

The problem of nondetects (also called left censoring) occurs commonly for environmental data. A
“nondetect” is an observation that is below the level of detection of the anaytical method. The limit of
detection is generally defined as the lowest concentration that can be determined to be statistically different
from ablank specimen. The limit of detection is an imprecise quantity that can vary from sample to sample
and laboratory to laboratory.  Several methods of low reliability are commonly used when analyzing left-
censored data. These include substituting O for nondetects, substituting the detection limit divided by 2 for
nondetects, or procedures which involve graphing the data and repl acing the nondetects with valuesthat fit the
assumed underlying distributions.

In either the normal or lognormal casg, it is possibleto estimate exact confidence limits on the mean using
an uncensored random sample from the distribution. When there is censoring, approximations are needed.

This report describes macros devel oped for use with SAS software!. These macros simplify calculation
of 95% UCLs and of other environmental summary statistics based on the normal and lognorma models, as
well as on a nonparametric method. Two of the macros account for nondetects in ways that are more
sophisticated than commonly used methods. This is important because environmental data are often left
censored. Thesummary statistics provided by the macros are needed for Baseline Risk Assessment Reports
and in other applicationsin environmental restoration.

The SAS macros described in this report should provide the basis for development of exposure
concentrationsfor all ORO risk assessmentsin which the sample sel ection procedure emul ates simple random
sampling. While the methods provide a more reliable way of analyzing data that are left censored, it is
important to realizethat these methods are al so applicableto normal and lognormal datathat are not censored.
(Seereport BJC/OR-271 for an overview of the dataeval uation process.) Itisrecommended that much weight

ISAS® and SYSTAT® are registered trademarks used to identify products or services of SAS Institute, Inc
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be given to the Product Limit Estimate (PLE) approach becauseit isfree of assumptions about the underlying
distributions, and it is particularly well adapted for handling nondetects. It will often be necessary to report the
confidencelimitsand other summary statisticsfor thelognormal and normal distributions, which arealso easily
calculated using these macros. However, it should berealized that the lognormal approach, in particular, can
sometimes lead to large errorsin estimating confidence limits. When the 95% UCL of the lognormal mean is

many timeslarger than the 95% UCL of the PLE mean, there would seem to be good reason to apply the latter
in risk estimation.

Xii



1. INTRODUCTION

In order to estimate the potential health or environmental effects of a particular substance in a given
medium at a particular location, an estimate is needed of the concentration of the substance that is present.
Under current Environmental Protection Agency (EPA) guidance for risk assessment (EPA 1992, 1995), the
average concentration is the desired value of the exposure to be used in such estimation. The average is
suggested for use based on the following:

D carcinogenic and chronic noncarcinogenic toxicity criteria are based on estimated lifetime
average exposures to low levels of such substances;

2 the average concentration is most representative of the concentration to which individuals
would be exposed over time at a site.

The average of interest is actually the time-averaged concentration. 1n some cases, thisis approximated
using the spatial average. For example, if the medium is contaminated soil, then the spatially-averaged
concentration can be used to approximate the time-averaged concentration if one assumes that the exposed
individual moves randomly across the exposure area.

Because it is impractical to characterize sites completely regarding the exposure concentration, it is
necessary to address the uncertainty when estimating the average using a finite number of samples. Indeed,
EPA (1989, pp. 6-19 and 22) requires that an estimate of the upper 95 percent confidence limit (95% UCL)
on the arithmetic average concentration be calculated, and that the smaler of the maximum detected
concentration and the 95% UCL be used to estimate the exposure concentration used in risk assessments.

Inrisk assessment, the reasonabl e maximum exposure (RME) i sthe maximum exposurethat isreasonably
expected to occur at asite. It isimportant to realize that according to EPA (1989, p. 6-19) the statistic that
isused for the RME isthe 95% UCL onthe arithmetic average. Theemphasisinthisreportison morereliable
methods for calculating the 95% UCL. The 95% UCL of the average concentration is the value that, when
calculated for an infinitely large number of randomly drawn subsets of site data, will equal or exceed the true
average 95% of the time.

The validity of any estimate of the 95% UCL is dependant on the quality of the data used. Much of the
theory behind summary statistics such asmeansand UCL sisbased on the assumption that the dataval ues used
were obtained by random sampling. EPA (1995b) providesadiscussion of theimportance of random sampling
and how it can be accomplished.

Commonly used methods for calculating exact confidence limits on the mean require assumptions about
the underlying distribution of values. For example, it iscommonly assumed that the data are either normally
or lognormally distributed. 1n both of these cases, it is possibleto estimate exact confidence limits on the mean
using an uncensored random sample from the distribution. Lognormal data are data that are normally
distributed after the logarithms of the data (to any base) are taken. Before thistransformation has been made,
the distribution of the data is skewed with a long right tail. Frequently samples of concentrations of
contaminants in the environment appear to have alognormal distribution. Thisisthe main reason why much
of this report deals with methods for calculating the mean for the lognormal distribution, together with



estimates of the uncertainty about it. Despite the seemingly simple connection between the normal and
lognormal distributions, the methods of cal culating means, and their degree of uncertainty, differ substantially.

EPA (1995b) discusses methods for testing whether data fit the normal or lognormal distributions. (For
thelognormal case, usually the natural logarithms of the data are taken and the transformed data are tested to
seeif they follow the normal distribution.) Often the number of samplesisfar too sparseto provide any means
of reliably determining the shape of the underlying distribution. On the other hand, large sample sizescan lead
to thergjection of aparticular distribution even though, in actuality, the distribution may be adequate. 1n some
instances, neither the normal nor the lognormal distribution is appropriate. The above difficulties are one of
the reasons why a nonparametric estimate, together with estimates of the uncertainty about it, is particularly
attractive. Nonparametric approaches are not dependent upon one's guessing correctly which type of
underlying distribution is appropriate. For very small sample sizes, EPA (1995b) recommends that
nonparametric hypothesis tests “be selected during Step 3 of the DQA Process in order to avoid incorrectly
assuming that the data are normally distributed when, instead, thereis ssimply not enough information to make
this determination.” (Step 3 of the DQA process is the one that involves selection of the “most appropriate
procedure for summarizing and analyzing the data’.) The nonparametric approach that will be considered is
based on the product limit estimate (PLE ; Kaplan and Meier, 1958).

The problem of left censoring occurs commonly for environmental data.  “Left censoring” means that
some of the observations (often denoted “U” or “*”) are below the level of detection of the analytical method.
(Often a sizeable fraction of the observations are nondetects.) For example, assume that a given instrument
under particular sampling conditions cannot detect aconcentration of substance R equal to, or lower than, 0.30
units. Perhaps 20 samplesaretested and only 12 of them yield detectable concentrations, perhapsranging from
0.32 to 3.40 units/gram of soil. The remaining samples are reported as nondetects of value 0.30U. These 8
samples are important because they show that 8 of 20 samples were < 0.30 units per gram of soil. Itis
possible that all of them were zero units per gram of sail..

The limit of detection isastatistical concept not a chemical concept. The limit of detection is generdly
defined as the lowest concentration that can be determined to be statistically different from a blank specimen.
The limit of detection is an imprecise quantity that can vary from sample to sample because of variationsin
matrix interference, calibrations, dilutions, etc. Detection limits are especialy likely to vary when samples
combine data collected by different laboratories.

With this report, three macros for use with SAS software are being made available. Thisreport provides
background, explanation, and discussion of the three macros and their output. The macros, together with brief
descriptions, are asfollows:

1. Macro “logconf” provides summary statistics for lognormal data that are uncensored. Two methods
are applied depending primarily on sample size. When any more than a dight proportion of the datais left
censored, it isinappropriate to use this macro. Instead, use the two macros described below.

2. Macro “Inor” provides summary statistics for the lognormal distribution, as well as for the normal
distribution, that take into consideration left-censoring of data. When thereisno censoring, the normal-based
approach reduces to computing ordinary sample means, standard deviations, confidence limits, etc. The
lognormal -based approach reduces to a method called Cox’ s direct method (see section 3).



3. Macro “pl€’ is a nonparametric aternative that provides summary statistics for the product limit
estimate (PLE). Itiswell adapted for application when the dataareleft censored. When thereisno censoring,
it provides the same results as the ordinary mean and its confidence limits.

Only a univariate approach will be taken in thisreport. That is, concentrations for only one anayte (a
chemical or radionuclide) will be considered at atime. This contrasts with a multivariate approach, where
concentrations of several anaytes are considered simultaneously.  When conducting Basdline Risk
Assessments, it is also important to report information on the percentiles of the exposure concentrations. The
50th percentile (called the 50%-ile in the computer output of the macros) is the median, and in certain
situations the median provides a better measure of the average than the arithmetic mean. (In the normal
distribution, the mean, the median, and the mode are identical.) Confidence bounds (or limits) of percentiles
are termed tolerance bounds (or limits). In this report confidence limits of estimates of the mean will aways
be referred to as confidence limits, and confidence limits of percentileswill always be referred to astolerance
bounds. The Inor and ple macros report whatever percentiles are requested, together with their tolerance
bounds. (For normal or lognormal-based tolerance bounds, usethe LNOR macro even in the all-detects case.)

It isimportant to realize that these three macros do not takeinto consideration the statistical complications
caused by right-censored data or by the clustering of data. It is the responsibility of those who apply these
macros to realize these limitations, so asto avoid reporting inappropriate measures of concentrations. Right
censoring could result if some of the sampled concentrations were so high that they exceeded the upper limit
of the measurement device. 1t would seem that technical adjustments such asfurther dilution of samplesor the
use of aless senditive scale (for radiation) could eliminate the reporting of environmental data that are right
censored.  Clustered data, in which certain regions of an area of interest are oversampled, violate the
assumption that the data constitute a random sample. As stressed earlier, valid application of the macros
assumes that the data are collected by random sampling. If it is known that thisis not the case, appropriate
caution must be made in the presentation and the interpretation of the data.

In addition to the summary statistics mentioned above, the Inor .sas and ple.sas macros a so provide the
following basic summary statistics and characteristics of the concentration data that must be reported in a
Baseline Risk Assessment:

» tota number of samples

* number of samples that are detects

» frequency of detection

* minimum value (including nondetects)
* minimum detected concentration

* maximum detected concentration

* minimum nondetected concentration

* maximum nondetected concentration

* maximum value

» ordinary mean (i.e., the usual arithmetic mean or sample average)
* ordinary standard error of the mean

* 95% LCL of the ordinary mean

* 95% UCL of the ordinary mean



2. BACKGROUND STATISTICAL INFORMATION

Some basic statistical concepts will be reviewed briefly to provide background for the mathematical
explanations that will be provided for the procedures implemented by the macros. After the concepts have
been introduced in terms of the population of al possible values, explanations will be provided for random
samples drawn from those populations.

The set of al possiblevaluesfor aparticular attributeis called the sample space, and arandomvariable
is any function from a sample space Sto the real numbers. In most instances in this report, the sample space
of interest isthat of al possible concentration values, and the random variable is the concentration in agiven
exposure area.

L et X denote arandom variable. The cumulative distribution function, or cdf, denoted by F,(x) isgiven
by
F.(X) = Probability that X<x = P[X<X]

Associated with a (continuous) random variable X is the probability density function (pdf), denoted by
f«(X), which gives probabilities that X isin an interval, as follows:

b
Pla<X<b] = [f,09 ok

This expression can intuitively be interpreted as “adding up” the continuum of the “probabilities’ f(X)
for a<X<b.

There is a smple relationship between the cdf and pdf for a given random variable (in fact, thisis
sometimes given as the definition of the pdf):

b
F(b) = f f (X) dx

The average, or expected value, of a random variable is, intuitively, the weighted sum of all possible
valuesof therandom variable; i.e., each possible outcomeismultiplied by its probability of occurring and these
products are summed. The precise definition of the expected value or the mean () of arandom variable X,
denoted by 1. = E[X], isgiven by

E[X] :}x f (X) dx



It is necessary to make statements about the concentration of interest in order to perform a risk
assessment. An example of such a statement would be a95% UCL for the mean. These statements must be
made with only asmall subset of all possible concentrations. The process of making such statementsis called
statistical inference.

Only a small subset of the entire population can be known, and without knowing the underlying
distribution completely, it is impossible to make statements about it with complete (i.e., 100%) confidence.
However, if the subset is collected appropriately, statements can be made with a specified level of confidence.
The most widely used method of collecting data appropriately is random sampling. In essence, theideain
random sampling is that every member of a population has an equa chance of being selected. Methods for
sampling data randomly are discussed by EPA (1995b). Biased sampling is a broad term applied to any
method of collecting a subset such that one does not abtain a representative picture of the population. For
valid application of the statistical methods discussed in thisreport, it is essential that data be collected using
methods that protect against bias.

Thusonly afinite number of samplesfrom agiven distribution can be used to estimate its expected value.
Consider n observations x,, X,,...,X,. |f preferential sampling does not occur spatially or over time, then the
samples are considered random and independent. If the values are correlated, they arereferred to as clustered.
Different statistical methods must be used with data that are correlated, clustered or otherwise interdependent.
The methods discussed in the report are not appropriate for such data

L et x denotearandom variablein asample drawn from apopulation. The sample cumulativedistribution
function denoted by F (X), is given by

No. of samplevalues < x
n

F,(X) =

_ This function provides a convenient and familiar way to summarize and display data. A plot of
F.(X)versus x makes it easy to visualize the sample, and it provides information on the percentiles and the
dispersion of thedata. It isalso useful for ascertaining the distributional shape of the population from which
the sample was taken.

To estimate the true mean of the distribution that is being sampled, the arithmetic mean (or sample mean)
is calculated by summing the values of the samples and dividing by the number of samples as shown below.
In this report the sample mean is usually referred to as the “ordinary mean”.

x-y 2

n
i-1 N

In the common situation of random sampling with no censoring, x is an unbiased estimate of the mean.
(“Unbiased” meansthat if alarge number of sample meansis calculated, the average of these sample means
will approach the true mean.)



The variance of arandom variable provides a measure of the spread in a probability distribution. When
thevarianceissmall, it ismorelikely that the sasmpled valueswill be close to the mean of the distribution. The
variance is defined mathematically as follows:

Var(X) = E(X?) - p?

An unbiased estimate of the sample variance is given by

Zl (%~ X)?
n-1

s? =

The sample standard deviation is the square root of the estimate of the sample variance and is more
commonly reported than the sample variance.

3. CALCULATION OF CONFIDENCE LIMITS: UNCENSORED CASE

31 CONFIDENCELIMITSOFTHEMEANOFNORMALLY DISTRIBUTED UNCENSORED
DATA

In this section the concept of the upper and lower 95% confidence limits of themean (95% UCL and LCL)
will be developed for the case where an anayte's concentration distribution is assumed to be normally
distributed and the data are both uncensored and unclustered. In the previous section, the basis for the
estimation of the sample mean and sample variance were described. The summary statistics are to be
calculated for all analytes of the data set, independently and one analyte at atime. All three macros provide
the 95% UCL, and the Inor and ple macros also provide the 95% LCL. Asnoted in theintroduction, for risk
analysis the 95% UCL is more important.

X-H

sh/n

Aswas the case for calculation of the sample mean, let x;, X,,..., X, denote a random sample of n values
from a normal distribution with unknown mean and variance of P and o2, respectively. If X denotes the
sample mean and s denotes the sample standard deviation, then it isknown that (see, e.g., Casellaand Berger
1990, p. 226) the distribution of the ratio depends only on the number of samplesn. Thisdistribution is called
Student’ s t-distribution with n-1 degrees of freedom, and it is denoted by t,, ;.

The 95% UCL isthen given by



UCL =X + t_,(0.95) >
n

and the 95% LCL by

LCL=X-t_(0.95 >
n

where t_,(0.95) isthe upper 95th percentile of the t-distribution with n-1 degrees of freedom.
Another common summary statistic, which has importance in calculation of confidence limits for the

sample mean, is the standard error of the mean (SE, or, as it is referred to in the output of the macros,
“Ordinary mean std. err.”). It is defined as follows:

S =

Sl

Itisobviousthat the SE is part of the equation for the confidence limits given above. The proper number
to use for multiplication by the SE can be read directly from the t-table, which is found, for example, in EPA
(1995b, p. A-11). In that table the number to use is found in the column headed by “.95" and in the row
headed by “n”. (It should be noted that “n” in the table means degrees of freedom, whichinthiscaseisn- 1.)

3.2 UPPER CONFIDENCELIMITOFTHE LOGNORMAL MEAN OF UNCENSORED DATA

The objective here is to demonstrate how to estimate the mean and its 95% UCL for data that are
lognormal, and for which thereisno censoring. The approachesdescribed providethebasisfor the calculations
in the macro named logconf. Again, the statistics are to be calculated for all analytes of the data set that are
lognormally distributed, and they must be calculated independently, one analyte at atime. Unlike the other
macros, the logconf macro does not calculate lower confidence limits or any tolerance bounds. Also, unlike
the other macros, the user cannot select other confidence limits (or tolerance bounds) besides those at the 95%
level. These capabilities may be incorporated into later versions of the macros.

Intuitively it might seem possible that one could calculate the mean of alognormal distribution smply
by calculating the logarithms of the data points, finding the mean of those logarithms using the methods
described above, and then simply finding the antilogarithm of the answer. However, that approach does not
work. To seewhy, let Z be arandom variable having a standard normal distribution (i.e., amean of O and a
variance of 1). Thequantity e ** then hasalognormal distribution with alogscale mean of pand alogscale
variance of 6°>. The expectation of e ¥, that is E[e°% "], isthus



+oo +00
e—zzlzdz _ euf 1 e—(zz—202+02)/2e02/2dz _ eumzlzf 1 e(Z_O)Z/ZdZ,
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[ =

whichise" "2 becausethelast integral (i.e., f ée(z“’)z’zdz) is1. Thepoint hereisthat the expectation
of e9Z*H is el 92 not eM, J \2n

Let X, X,,..., X, denote arandom sample from alognormal distribution (i.e., « isthe arithmetic mean of
log (X,), log (Xy), .., log (X)), with unknown mean p and variance 2. If [i denotesthelogscale sample mean
and G denotes the log-scale sample standard deviation, then Land (1971) showed that a UCL (optimal in a
sense) can be calculated by

where H,_, depends on the confidence level «, the standard deviation, and the sample size.

This method of calculating the 95% UCL is implemented in the SAS macro named logconf. It applies
atable of H valuesthat was derived for every sample size from 3 to 1001, and for sample standard deviations
ranging from 0.1 to 10.0 (after thelog transformation) at intervalsof 0.1. The H-valueswere calculated using
a computer program (Lyon and Land 1999) that is an implementation of methods described by Land (1971,
1972).

When an exact H value was not located in the table, the H value to apply was derived using linear
interpolation from values present in the table. 1f the sample standard deviation was less than 0.1, the H value
for a sample standard deviation equal to 0.1 was used. Likewise if the sample standard deviation was greater
than 10.0, the H value calculated for a sample standard deviation equal to 10.0 was used.

When the sampl e size was greater than 1001, the macro logconf applies "Cox's Method" (Land 1971) to
calculate the UCL as shown below

NES

a2
+ 1645/ +
n

o+

95% UCL = e 2n+1)

in which 1.645 is the 95 percentile of the standard normal cumulative distribution function.

~2
This equation can beused aslong as 1 + % is approximately normally distributed. For sample sizes

of 1000 or more, this holds by the Central Limit Theorem. Unless standard deviations are unusual, Land's
method and Cox's method generally yield ssimilar 95% UCL sfor asample size of 1000. Asnoted, the macro



logconf automatically applies the method appropriate for the data. The logconf macro smplifies the
calculation of summary statistics of lognormal data that are not censored by eliminating the present need of
looking up tabulated values and of interpol ating between them. If there are extensive data, and if they contain
no more than afew nondetects, it would still be of interest to apply the macro logconf to see how its results
compare to the results from the applications (described in detail below) that are preferred when data are | eft
censored.

4. CALCULATION OF THE MEAN, CONFIDENCE LIMITS, AND
TOLERANCE BOUNDS THAT APPLY WHEN DATA ARE EITHER
UNCENSORED OR LEFT CENSORED

4.1 LOGNORMAL AND NORMAL MODEL ESTIMATES

This section deals specifically with | eft-censored data that fit either anormal or alognormal distribution.

If examination of the data shows them to be consistent with the normal distribution, most of the derivations

shown below apply without transforming the datalogarithmically. On the other hand, if the data appear to be

lognormal, then the derivations are exactly as shown below. Estimation under the normal model issimpler and
will not be discussed here. For a discussion of estimation under both models, see Lawless (1982).

Regardless of whether the normal or lognormal approach is used, it seems advisable to apply the product
limit estimate methods (using SAS macro ple described in the next subsection) for comparison with other
values when there is an appreciable number of nondetects. The difficulty of determining the underlying
distribution of the databecomes more extreme when the data contain many nondetects. Application of the PLE
avoids the problem of tying the statistical estimatesto a particular distribution when the true distribution may
be unknown. The lognormal distribution isthe most commonly used distribution for modeling environmental
contaminant data (EPA 1995b). As will be shown below, in some situations the lognormal estimates may
appear absurdly large, and in other instances they may not seem conservative enough (i.e., the PLE 95% UCL
is much higher).

Thefollowing discussion points out the statistical foundation for the method applied in the macro named
Inor. Whilethis method has some similarity to what Land (1971) called "Cox's Method", it goes beyond that
method by providing a mechanism to account for nondetects. While the macro is suitable when the data are
left censored, it can a so be applied when there are not any nondetects. However, for uncensored data, known
to be lognormal, for which the sample sizes are smaller than 1001, the macro logconf should be applied.

It should be noted that the macro Inor calculates both the lognormal and normal model estimates. Aswill
be described in detail later, the actual concentration values (not their logs) are input to the macro. To derive
the lognormal estimates, the macro, of course, begins by calculating the logarithms. For the norma model
estimates, it does the calculation without a transformation to logarithms. While comparison of the results of
thetwo methodsis useful, knowledge about the underlying distribution, when available, indicates which result
isapplicable.

Again let p denote the log-scale mean, and let o2 denote the log-scale variance. Because the lognormal
02
u F —

meanis€ - ,if (L, U) isa 1-o confidence interval for p+0%2, eV isa 1-o confidence interval for
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thelognormal mean. Thisargument providesthe basis, in both the left-censored and all-detects cases, for the
lognormal confidence limits and tolerance bounds discussed here. For the case of all detects, the approachis
called Cox’ sdirect method (Land 1972). (Thisapproach was devel oped in the previous section for application
in the macro logconf when the sample size exceeds 1001.)

First consider the case of all detects. Let [i and 62denote the sample mean and variance of the data after
logarithms have been taken. Then [i and 62 are known to be optimal in asense: they are unbiased complete
sufficient statistics for g and o? (see, for example, Wilks 1962), and [1+62%/2 is the minimum variance
unbiased estimate (MVUE) of p+0%/2.

The variance of {1 + 6%/2 is Var(fi)+Var(6%/2) because fI and 62are (Statistically) independent. It is
knownthat (n-1)62%/o2has achi-square distribution with n-1 degrees of freedom. From thisit can be shown
that Var(6?) = 20%/(n-1), and thus

~2 2 4
Var [p+2| =2+ 9
2 n 2(n-1)
0? N 62
— = Var () o1 :Var(7)
In the above equation, " and 2(n-1) . Because as |logarithms the data are

normally distributed, the sample mean and variance are independent and there is no need to deal with an
estimate of the covariance.

Because E[6%] = (n+1)o¥(n-1), thevalue of (n-1)6%/(n+1) isunbiased for ¢*, and

becomes the MVUE of Var({i+6%2). In Cox's direct method, this variance estimate is then used
with{i+6%/2 (i.e., the point estimate) to compute confidence limitsfor, or testsabout, p+02/2. By the Central
Limit Theorem, thedistribution of 1+6%/2 is approximately normal. The confidence limits (when expressed
as logarithms) are symmetrical about the mean just as they are for the non-logarithmic methods. The
confidence limitsreported in the output are asymmetrical because they are found by taking the antilogarithms.

With left-censored data, an analogous approach isused. Let X; ,..., X, denote the n observations with

x;denoting the detection limit for the i "observation if it is a nondetect. The maximum likelihood estimates
(MLEs) of p and o are computed by maximizing the likelihood (L) of the following equation

L- TI id)[ Iog(x)u) e Itq,( Iog(X)u),

x detect OX g g
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where ¢ and @ are the standard normal density and distribution function (see Lawless). The values of
M and o that result in the maximum value of L are called the maximum likelihood estimates (MLEs), and they
arecdled [i and G, respectively. The SASLifereg procedure (SAS/STAT PROC LIFEREG) computesthese
MLE's.

When thereis censoring, {i and 6 are not independent, and thus the covariance of [i and & is nonzero.
The variances and covariance of [i and & can be estimated by inverting the information matrix.

Plog(L) dlog(L)

auz oldo
d%log(L) olog(L)
auao 80.2 ~

i, 6.

Theinverse of the above information matrix provides an estimate of the covariance matrix of the MLE's
(see Wilks 1962). Denoting the parts of the above information matrix with letters as follows

ab

b ¢’
it can be shown by direct matrix multiplication that itsinverseis
A B 1 c -
B C _acsz b al’

The SASLifereg procedureis used to compute thisinverse, which providesthe estimate of the covariance
matrix of i and 6. With this information on the variability of the estimates, it is possible to calculate
confidence limits.

The goal is to estimate p + 0%/2. The variance of & can be estimated as above (using variable C).
However, the variance of 52is needed in order to compute confidence limits for u + 0%/2. To compute the
variance of &2, it is necessary to move beyond the regular SAS routines and to parameterize the likelihood,
aternatively, in terms of p and < instead of P and o, where t = 0%. The MLE % isjust 62, and the
covariance estimatesfor theMLE's [i and T can beinferred fromthe i and o parameterization results using
the chain rule of partial differentiation:

Flogll) _ Flogl) 80 _ 1Fogll) 1o
OopoT Opdo ot 2 Judo

and
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d?log(L) _ a2|09(|—)1t—1 _ dlog(L) 1 a2
ot? do® 4 do 4

otice that T“reduces to o)t /4 a the ecause ——=— iszero.) Inthis
Notice that 62log(L)/at2red log(L)/a0%)t Y4 at the MLE b dog(L) ; In thi
way the following covariance matrix estimate do

A D

D G

isderived for the MLE's [i and T, where D=27 V2B and G=4%1C.

It is straightforward to verify that in the uncensored case

1¢ 1¢
f==3x, =) (%7
ni-1 Ni-1

A = %/n,and G = 2%%n. (B and D are 0 in the uncensored case.)

However, because E(T) = (n-1)t/n, and E(3?) = (n?-1)t%n? (from similar results for 62), the
adjusted etimate of © = 02, n%/(n-1), is used instead of 7, the adjusted estimate nA/(n-1) is used instead
of A, and the adjusted estimate [n/(n-1)][n%/(n?-1)]G isused instead of G. (Then the expectation of G
becomes 2t%/(n-1), whichisthevarianceof n¥/(n-1).) Inorder that the censored case reduces continuously
to Cox'sdirect method asthe detection limits approach 0, these same adjustments are madein the censored case
aswell. Then, u+02/2 is estimated by [i+7/2, and its variance,

Var[ﬁ . g) - Var(@) + ,Var(®) + Cov(ii, %),

isestimated by thesumof theterms A + G/4 + D, which correspond to the threetermson theright side
of the equation above.

Tolerance bounds, that is, confidence limits for lognormal quantiles, can be computed in much the same
way. Letz, denotethe p™ quantile of the standard normal distribution. On the log scale, the pt" quantile
ISy + zpo,whimcanbeestimatedbyplugginginestimaesof M and o. Toleranceboundsfortheestimate i + z, 0
can be computed using an estimate of

Var(fi + z5) = Var(fl) + z-Var() + 2z,Cov(, 3),

namely A + ZpZC + 2z,B, andby treating fi + z, 0 as(approximately) normal. Tolerance boundsfor
the same quantiles onthe original scal e can then be obtained by exponentiating thelog-scal e confidence bounds
asfollows:

12



. - / 2
eu +2,6 + t(lfac) A + zpB + ZzpC

where 1-a isthe confidencelevel, and t, _, isthe 1-« quantile of thet-distribution (with n-1degrees
of freedom). For p = .50, z,=0, and the quantiles (on either scale) are medians. When there are only detects,
the median estimate on the origina scale is the geometric mean (on the log scale).

Toillustrate how quantile estimates and tol erance bounds can be used, confidence limitswill be computed

for theunderlying lognormal distributionitself. Supposethat X, isthe p™ quantile (on the original scale), and
that U(p) isa 1-a upper confidence limit for X (Note that the 90" percentile is the same asthe 0.9

guantile) Then
P(X, < U(p)) = 1-a,

where, P is the probability. From this, a lower confidence limit for F(x), the cumulative distribution
function at x, can be derived as follows.

P[x < UFX)] = 1-a,

hence
Pl[U X < F(X)] = 1-a,

where U ~! denotesthe (functiond) inverseof U. Thatis, U "1(x) isa 1-a lower toleranceboundfor F(X).
Likewise, upper tolerance bounds for F(x) can be derived from the lower tolerance bounds for X,

On the log scale, tolerance bounds for Xp are of theform

~ ~ 2
TB(p) = fi + 2,8 +t, /A + 2B + 22C.

where TB(p) stands for the tolerance bound for X,. This reduces algebraically to
[62 - Cti 1z, - 2[(TB(p) - W5 + t7 Blz, + (TB(P) - @)* - t,A = O,
which is a quadratic equation in z,. The two solutions are

-9 - vg® - 4dh _, -9 +yg? - 4dn
2d 2d
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where d = & - Ct7,, g = -2[(TB(p) - W5 + t B, andh = (TB(p) - i) - t°,A. The
following showshow toinvert TB, and thushow to computetoleranceboundsfor F(x) : subgtitute log(x) for TB(p)
in g and h, and compute

-g - yg? - 4dh
2d

-g + yg? - 4dh
2d

® and @

which are the lower and upper 1-o confidence boundsfor F(X), respectively. These tolerance bounds
areillustrated in Figure 1 for lead in groundwater in the Upper East Fork Poplar Creek watershed. Thesedata
are discussed more in section 6.

4.2 PRODUCT LIMIT ESTIMATES

Theproduct limit estimate (PLE) isadtatistical distribution function estimate, likethe sampledistribution
function, except that the PLE adjusts for censoring. Like the sample distribution function, the PLE is not
premised on any underlying distribution model, and the PLE reduces to the sample distribution function as
detection limits (for nondetects) approach zero. As discussed below, the PLE can be used to compute mean
estimates aswell as standard errorsfor those estimates. Besides being agood mean estimate in its own right,
the PLE-based mean estimate and its standard error provide agood reference for parametric (e.g., lognormal)
estimates. It is often impossible to know what underlying distribution is appropriate for a particular data
analysis. Goodness-of-fit tests are often used to determine whether data fit a particular distribution. When
samples are small, however, as is often the case for environmental data, it is impossible to test adequately
whether the data fit a particular distribution. Ancther well-known problem with such testsis that they have
atendency to rgect even adequate models when the sample sizeislarge. For these reasons, it isagood idea
to compare any parametric estimate with the comparable PLE-based estimate.

ThePLE iscalculated using the macro plefrom aset of observations, which are measurementsin the case
of detects and detection limitsin the case of nondetects. Evenif detection limits are known for detected values,
they are not used in calculations. It isimportant to keep in mind that the macro PLE is adapted for left-
censored data and non-censored data, but not for right-censored data.

Themethod of the PLE and confidence limitswill be presented intwo ways, first mathematically and then
with a simple example that is explained geometrically. This approach is being taken because the underlying
concept is straightforward, and those features can be overlooked if there is only amathematical presentation,
which of necessity requiresalarge number of variablesto explain. Themathematical presentation isimportant
for completeness and because, for some, it will be easy to understand.

4.2.1 Mathematical Explanation of the PLE and its Application

ThePLE, whichiscaled F below, |sdef|nedasfollows For n observations, X, ... , X (detectionlimits
or actual measurements) let xl e < x denote the (say) n " distinct values at which detectsareobserved
Forj = n’, let m denotethe number of detects at x ,and Iet n denote the number of X; < x Also

let X denotethesmallest X. Thenfor x > x F(X) = 1 for x, < x < x/ s

- n -m
FX) = 11 J 1N
j such that x> x n;
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for x;, < X < %/, F() = F(x;); andfor 0 < x < x,, F(x) iseither 0 or undefined, the latter if there
isanondetect at x,,,.

To understand the PLE, it is necessary to understand the concept of conditional probability. Let
P(A|B)—read “probability of A given B"—denote the conditiona probability of event A given event B.
Introductory probability texts explain that

P(ANB)

P(AB) = PE)

where P(ANB) is the probability that the events A and B both occur.

As its name suggests, the PLE is a limit of a product of probabilities. Considerk arbitrary points
O0<y <..<Yy. Thenfori =1, .., k, F(y) =

P(X<y) = P(X<y X<y, )XP(Xs<y, ) = P(X<y X<y, )XP(X<y, X<y, ) XP(X<y; )
= ... = P(Xcy X<y, )xXP(X<y, X<y, ,) % . XP(X<y, X<y )XP(X<y,) .

Consider estimating F(y,). When thereisno censoring, the proportion of observations|essthan or equal
to y,isused. Whenthereis censoring, however, that proportion may be indeterminate because it is ambiguous
whether any nondetects with detection limits greater than y, actually exceed y,. To account for censoring, the
individual factors in the above product are estimated.

For each j, let ¢ denote the number of x; < Y, unambiguously. Only nondetects whose detection limits
arelessthan or equal to y. and detects whose values are less than or equal to y. are counted in c.. Let dj be
the number of detects between Y1 (exclusive) and Y| (inclusive). To estimate P(ngj|ngj+l), G /(:Mmlght
beused. That would be agood estimate unlessthere are nondetectswith detection limits between Y, (inclusive)
and Y1 (exclusive). Then G, >Ceven if the actua (but censored) values corresponding to the detection
limitsare all less than Y, (aswell as yj+l) and dj+l isO.

Instead, to estimate P(ngj|ngj+l), it is better to use (c“f dj+1)/01+1- That is, those nondetects are
ignored whose detection limit is between Y, and Yii1s because their actual valuesrelativeto y, are ambiguous.
Note that c“lfdj+l is C;, except possibly for any nondetects whose detection limits are between Y andyjd.
To minimize the effect of nondetects whose detection limits are between Y, and Y1 the Y, partition is made
asfineaspossible. Thatis, y, istakento bethelargest detect value, y, issetto 0, kistakento belarge(i.e,
k - ), and the y.’sare taken so that

j:1max ’ ly, = ¥l = O

It can be shown (see Kaplan and Meier 1958) that in the limit as k - ~, the estimate obtained by
substituting these estimates for the individua factors in the product expression for F(y;), isthe PLE.
As with the sample distribution function, a mean estimate can be computed from the PLE:
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i - E x [F() - FO5" )1,

where X, = 0. Anestimate V of the variance of [ can be determined similarly as follows

n’-1
V = L Z a1-2 L,
-1 = r’|i+1(ni+l - r.rhl)

where D isthetota number of detects, and

a = g (1 = X FOK),
a

fori =1, .., n’-1. For details see Kaplan and Meier (1958, Sections 2.3 and 6.2). A geometric
interpretation of V isgiven in the next section.

Once the variance of the mean has been determined, the calculation of the confidence limits, as shown
below, resembl esthat of the ordinary mean, except that thereisno need to divide the squareroot of thevariance
by the square root of the sample size to obtain the standard error of the mean. Thisis because the method of
calculation of Valready accounts for the number of samples. Thus, in the output of the macros, the “PLE
mean standard error” is simply \/\_/ .

95% UCL = fi + t_,(0.95){V

95% LCL = fi - t_,(0.95){V

The vaues multiplied by the standard error of the mean are taken from the t-distribution with n-1 degrees
of freedom, just as they were when calculating confidence limits for the ordinary mean.

Thus far attention has been on the PLE for mean estimation; however, the PLE itsalf is a distribution
function estimate. Confidence limits for the PLE as a distribution function estimate are discussed in Kaplan
and Meier (1958, Sections 2.2 and 6.1) and Lawless (1982, Section 2.3.2). The confidence limits are derived
from an estimate of the variance of the PLE at each x. The variance estimate (in the left-censored case) is

n ~ m
Var(F(x) = F(¥* ). ——

j such that x> x nj(njfmj)
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Confidence limits for F(x), based on this variance estimate, are computed in the usua way (i.e., by
assumingF(x) to be approximately normal). F and 95% tolerance boundsfor F areillustrated in Figure 4 for
the groundwater lead data. (The same data are considered in Figure 3 based on macro Inor.)

Figures 3 and 4 contrast the lognormal and PLE cumulative distribution function estimates. The
lognormal (parametric) analysis yields a smooth curve, which contrasts sharply with the nonparametric PLE
analysis which yields a granular step-function. The granularity of the PLE is especialy striking when the
sample size (or the number of distinct values at which detects occur) issmall. The granularity should not be
considered adrawback unless the smooth aternativeis a so better, which would be true only if the underlying
distribution is approximately lognormal.

Recall that for thelognormal model tol erance boundswere derived from which it was possibleto compute
confidence limitsfor the estimates for the probability distribution function F.  For the PLE, steps are carried
out in reverse order. That is, both quantile estimates and tolerance bounds are derived from the distribution
function estimate (i.e., the PL E) and confidence boundsjust discussed. For the pt" quantile X andfor U(x),
the 1-o upper confidence bound for F(x)

P[F(X) < U(X)] = P[p < U(X)] = P[Up) < X ] = 1-c.

That is, U Y(p) isal-a« lower tolerance bound for X, Figure 2 shows clearly that the PLE and its
confidence limits are step functions—that is, they have flat spots. For this reason their inverses, which are
needed to calculate tolerance bounds, are not uniquely defined.  To invert afunction with flat spots (i.e., to
find the value on the x-axis that corresponds to the value p on the y-axis), it is necessary to choose from
multiple values (i.e., from theinverseimage). Thefollowing rule was applied to deal with this problem in the
calculation of quantile estimates and confidencetol erance boundsinthe plemacro. Whenthe choiceistoresult
in a lower tolerance bound (for X ), the smallest value is chosen; when the choice is to result in an upper
tolerance bound, the largest value Is chosen. When the choice isto result in a point estimate, the average of
the largest and smallest values is taken. This approach is conservative in that it leads to the widest tolerance
bounds.

4.2.2 Simple Example of Calculation of the PLE

In this section the steps for computing the PLE mean, its standard error, and its 95% confidence limits
are demonstrated using an example. The following randomly sampled measurements of an analyte were
reported (concentrationsin pgram of analyte/gram of soil): 0.10U, .20, 1.30, 0.70, 0.40, 0.70, 0.10U, 0.26,
0.31U, 0.80, and 1.10. The U following anumber indicates that it is a nondetect. To compute the PLE, first
arrange the data in decreasing order, as shown below.

1.30
1.10
.80
.70
.70
40
31U
.26
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.20
10U
10U

These data are shown in Table 1, with one row for each of the measurements for which a detected
measurement was found. The lowest concentration was included even though it was a nondetect.

Tablel. Thestepsin the calculation of the product limit estimate (PLE)

Concentration (B) ©) B-C Termsmultiplied  Value of

of sample, in No. of detects or No. of B together to PLE justto
wgram/gram nondetects < this detects to calculate theleft of the
of soil concentration at this the PLE concentration

concentration

1.30 11 1 10/11=0909 1x 0.909 0.909
1.10 10 1 9/10=0.9 0.909 x 0.9 0.818
0.80 9 1 8/9=0.889 0.818 x 0.889 0.727
0.70 8 2 6/8=0.75 0.727 x 0.75 0.545
0.40 6 1 5/6 = 0.833 0.545 x 0.833 0.454
0.26 4 1 3/4=0.75 0.454 x 0.75 0.341
0.20 3 1 2/3=0.667 0.341 x 0.667 0.227
0.10U 2 0 22=1 0.227x 1 0.*

*When the smallest concentration is a detect, this calculated valueis 0. Otherwiseit must be set equal to zero, asit has been here.

Values from Table 1 should then be graphed, as shown in Fig. 1. The values on the X-axis come from
the first column in Table 1, and the values on the Y -axis from the last column.

1.0 — *—
0.8 — —

0g —
07 -4

0a —
05 |

04

03 —

PLE (Probability)

02 —

0.1 —

T T T T T T T T T T T 1

0 0102 0304050607 03802 1011 12 13

Concentration of Analyte

Fig. 1. The step function which isthe cumulative distribution function
for the sample used in the example.
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Thevalue of 1 iscalculated by finding the area between the step function and a line drawn horizontally
abovethe step function at the probability value of 1.0, as shown below. Thevalue of both the SE and the 95%
confidencelimitsof [1 arecalculated using the stepswhich are explicitly explained below. Begin by drawing
the rectangles shown in Fig. 2 using the same figure constructed above.
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Concentration of Analyte

Fig. 2. The step function shown in Fig. 1 with the addition of labeled rectangles.

The stepsto be carried out are as follows.

1
2.

3a

or

3b.

oA

Calculate the areas of all rectangles.

The [1of the PLE isequal to the sum of all rectangles A-H, that is, of all rectangles above the
step function.

If the smallest concentration is a nondetect, as in the example above, find the areas of the
following rectangles or groups of rectangles (al of those bel ow the step function except for the
left-most one, which inthisfigureisl): J, FK, FK+L, HK+L+M, HK+L+M+N, and lastly
for this particular step function, F+K+L+M+N+O.

If the smallest concentration is a detect, find the areas of the following rectangles or groups
of rectangles (all of those below the step function): I, 1+J, 1+3HK, [+HK+L, [+HK+L+M,
I+HK+L+M+N, and lastly for this particular step function, 1+HK+L+M+N+O.

Square the grouped aress.

When the smallest concentration is anondetect, asin the example, start with rectangle J (i.e,
the next to the left-most rectangle under the step function), divide each squared area cal culated
in step 3 by the product of B x (B-C) found in Table 1 for the row of the PLE (shown in the
last column) that matchesthetop of thetallest rectangleincluded inthe area. For example, the
top of rectangle Jis at the PLE of 0.341. SinceB is4 and Cis 1 in the row for the PLE of
0.341, divide the squared area of rectangle Jby 12, whichisthe product of 4 times 3, which
is4x (4-1). Working toward thetop of the Table 1, the top of the combined rectangles (J+K)
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10.
11.

is a the PLE of 0.454. Following the same rule, divide the squared area of combined
rectangles (HK) by 30. Continue this procedure until reaching the top of Table 1. If the
smallest concentration isadetect, the procedureisidentical except that you begin with the left-
most rectangle under the step function, or, in afigure like this one, with rectangle .

Multiply each of the resulting quantities by the value of C from the samerow of thesame PLE
in Table 1. Inthisexample, Cisaways 1 except inthe row of PLE 0.545, for which Cis2.
This means that the quantity calculated in step 5 for combined rectangles HK+L must be
multiplied by 2.

Thesum of all termsfound in step 6 is the variance uncorrected for the degrees of freedom.
Thedegreesof freedom correctioninvolvesmultiplying theuncorrected variance by the number
of detects and dividing by (the number of detects - 1).

Theresultingtermis V.

Take the square root of V to obtain the SE of [i.

Use the t-table to find the correct number to multiply times the SE to calculate the 95% LCL
and UCL. Oneof many placeswherethistable can befound ison page A-11 of EPA (1995h).
Select the value for column .95 on the row for the proper number of degrees of freedom. To
be consistent with the macro ple, the number of degrees of freedom for this step should equal
the total sample sizeminus 1. That is, this step is not restricted to the number of detects.

Tables 2 and 3 show the calculations for the above steps for the example.

Table 2. Calculations of areas of rectanglesin Figure 2

Rectangle Height Width Area
(units) (units) (units-sguar ed)

A 1 1 1

B 773 1 .0772
c .659 .06 .0395
D 545 14 .0764
E 455 3 .1364
F 273 A .0273
G .182 3 .0545
H .091 2 .0182
I 227 A .0227
J 341 .06 .0205
K 454 14 .0640
L 545 3 .1636
M 727 1 .0727
N .818 3 .2455
O .909 2 .1818

The sum of the areas of al rectangles above the step function, which in this example includes rectangles
A-H, is0.530. Thissumisthe 1 of the PLE.
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Table 3. Remaining stepsinvolved in the calculation of the SE of the mean of the PLE

Rectanglesincluded A =area A? (D) ©) A2xC
inarea (units squared) Thisis product No. of
D
o f n u m b e r s
detects from
s h o w n
Table 1
J .0205 .00042 4x3 1 .000035
FK .0841 00071 6x5 1 .000236
HK+L 2477 .06137 8x6 2 .002557
HK+L+M .3205 10269 9x8 1 .001426
FHK+L+M+N .5659 32025 10x9 1 .003558
FHK+L+M+N+O 7477 55910 11x10 1 .005083

Sum of the valuesin the right column of Table 3 = uncorrected V =.012895
Degrees of freedom correction = 8 + (8-1) = 1.1429

V =1.1429 x .012895 = 0.01474

SE =V = /0.01474 = 0.1214

Thesamplesizewas 11. There arethus 10 degrees of freedom. To calculate the 95% confidence limits,
the appropriate term from the t-distribution is 1.812.

Accordingly,

95% UCL = 0.530 + (1.812 x 0.1214) = 0.530 + 0.220 = 0.750

95% LCL = 0.530 - (1.812 x 0.1214) = 0.530 - 0.220 = 0.310

It isinteresting to note that when there are no nondetects present in a sample, the ordinary mean and its
confidence limits are identical to those computed for the PLE.

5. USING THE SASMACROS

The objective hereisto discuss how to use the three SAS macros described in the report. Examplesare
presented in Section 6. The macros themselves are in Appendices A, B, and C.. It is assumed that the user
has a basic familiarity with SAS, particularly in regard to what SAS data sets are like. For an introduction
to SAS see SAS (1990).

To usethe SAS macros, a SAS data set containing the input variables must be creasted. Thevariablesare
(1) aresult variable, which is the analysis result, or in the case of a nondetect, the detection limit; (2) a
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qualifier variable, "U" or blank, which indicates whether the observation isanondetect ("U") or detect (blank)
; (3) group variables (if any), which define the groups for which statistics are to be computed; (4) aparameter
variable, which namesthe chemical anayteto which the dataapply (e.g., Aluminum); and (5) any ID variables
that the user may wish to carry along with the statistics computed for each group and anayte.

For the Inor macro only, an additional variable is needed. It istermed lower, and it provides a lower
bound for each observation. Usually thevalue of lower isOfor anon-detect and identical totheresult variable
for a detect. In certain cases, however, the value for lower might reasonably be taken as neither O nor the
result. Thisoccurs, for examplewhen severa duplicates at asite are to be combined into asingle observation
for that site, with the recorded observation being the (mathematical) composite observation. To illustrate,
suppose there are two observations at a site, one a detect, say D, and the other, say L, the detection limit for
anondetect. The detect isasingle value, but the nondetect, if not for the censoring, could have been any value
between O and L. Therefore, if not for the censoring, the average of the two observations could have been
anywhere between D/2 and (D+L)/2. The average (or composite) is between D/2 and (D+L)/2, and issaid to
beinterval censored. Inthelnor macro, thevaluesof (D+L)/2 and D/2 are assigned to the variablesresult and
lower, respectively. When the macro Inor is applied to interval censored data, it applies these two variables
when it usesthe SAS Lifereg procedure.

The SAS macros must be accessible from the SAS program that callsthem. They can either be included
as part of the program code, or they can be called using the SAS autocall facility. To usethe autocall facility,
include

sasautos = ‘directory’

inaSASoptionsstatement. The macrosshould bein filesin thedirectory named, with file namelnor.sas
(for the Inor macro), ple.sas (for the ple macro), or logconf.sas (for the logconf macro).

To use the macros in a SAS program, include the statements

% Inor (input, output, group, result, lower, qual, parm, id, confid, toler),
or

% ple(input, output, group, result, qual, parm, id, confid, toler),

or

% logconf(input, output, group, result, parm, id).

Here"input" istheinput data set, which can have any valid dataset name, not just "input"”; "output" refers
to the name given to the data set of summary statistics computed with the macro (again, any name, not just
"output"), and so on. Theterm "confid" refersto the desired confidence level for upper and lower confidence
bounds, for example, .95. For "toler" it is necessary to substitute a space-delimited list of values for which
guantile estimates and tolerance bounds are to be computed (e.g., .75 .90 .99).

Thecalling of themacrosisillustrated inthe next section. At present macro logconf computes confidence
limits of means and tolerance bounds of percentiles at only the 95% level. In order to run the macro logconf,
the user must also have a copy of, or accessto, the hfun SAS data set. A copy of that data set can be found
at the same website as this report.
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6. AN EXAMPLE

Herethe macroslogconf, Inor, and ple are applied to several samplesof lead concentrations (mg/L) from
groundwater in wells at the Y-12 fuel station in the Upper East Fork Poplar Creek watershed at Oak Ridge,
Tennessee. Thedata, which arein Table 4 (located at end of text), consist of time series, one for each station
(i.e., wdl). Itisassumed that thereisno trend over time and that it is reasonabl e to treat the data as arandom
sample. Thedataillustratethe structure appropriatefor input to thethree SAS macros. The processing groups
are the different stations. The U’ s indicate observations that are nondetects. Figures 3 and 4 (located at end
of text) were computed from this data set for station ST-006. Thelead concentration dataused for illustration
are taken from an early listing of the data, which was before they were subjected to careful quality assurance
examination.

Table 5 (located at end of text) contains a description of the contents (SAS proc contents output) of the
data set produced by calling Inor.sas for the datain Table 4. Table 6 (located at end of text) lists the output
(i.e., the parameters and summary statistics) produced by the Inor macro for the datain Table 4. Table 7
(located at end of text) contains a description of the contents of the data set produced by calling ple.sas for the
datain Table 4. Table 8 (at end of text) lists the output produced by the ple macro for the data in Table 4.
The ordinary mean statistics found in tables containing summary statistics are computed by straightforward
substitution of detection limits for nondetects and by proceeding with mean-and-standard-error calculations
that are usual for the all-detects case.

Tables 9 (at end of text) contains additional data from groundwater in wells at the same source. These
data, which lack nondetects, arein the format required by the logconf macro. Table 10 (at end of text) contains
adescription of the contents (SAS proc contents output) of the data set produced by calling logconf.sasfor the
Y-12 fuel station data. Table 11 (at end of text) lists the output produced by the logconf macro for the data
inTable9. The SAS program used to print the datain Tables 4 and 9, to call the SAS macros, and to produce
Tables5-8 and 10-11 islisted in Appendix D.

7. DISCUSSION

The three SAS macros reported here provide a variety of methods for computing confidence limits for
environmental data. They also provide severa approaches for dealing with left-censored data, which are
common when making environmental measurements.

A recent publication (Schmoyer et a., 1996) has considerable relevance to the application of these
programs. It addressesthe uncertainty regarding whether thelognormal distribution isthe best model for mean
estimation of concentrations of analytes in the environment. The authors simulated data sets for lognormal,
truncated normal, and gamma data for arange of sample sizes and coefficients of variation. They found that
with the small sample sizestypical of environmental data, when using the Shapiro-Wilk test it was difficult to
detect departuresfrom lognormality that wereimportant in the sense of appreciably degrading the performance
of lognormal -based estimates and tests. They concluded that “ (i) the lognormal distribution may be too heavy
tailed to be a reasonable statistical model, and (ii) alternatives may be better than the lognormal-based
methods.” They pointed out that thereis “usually no physical basisfor lognormality, normality, or any other
distribution.” They concluded from their simulationsthat “lognormal -based stati stics might not be asgood as
the ordinary sample mean and t-test, if there are complete (i.e. uncensored) data, or as good as means or tests
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computed from the product limit estimate (PLE; Kaplan and Meier, 1958), when there is random left
censoring.”

Because the lognormal approach is standard in the analysis of concentrations of analytes in the
environment, it would be remiss not to provide statistical methodsfor thelognormal distribution. The macros
Inor and logconf serve this purpose. The implementation in the Inor macro of modifications, both for the
lognormal and normal models, that address| eft-censoring of datamake application of thelognormal and normal
mode approaches much more reliable for environmental data. These methods are more solidly grounded in
theory than such methods as substituting O for nondetects, substituting the detection level divided by 2 for
nondetects, or procedures which involve graphing the data and replacing the nondetects with values that fit
assumed underlying distributions. The logconf macro simplifies the calculation of summary statistics for
uncensored lognorma data by eliminating the need of looking up tabulated values and of interpolating between
them.

A feature of the PLE that is of practical importance when dealing with left-censored dataisthat it works
well even when there are nondetects at different detection level sthat overlap detected concentrations. 1n some
other methods, which are based on percentiles or trimming, measurements and detection limits cannot be
arbitrarily interleaved.

Asnoted earlier, al of the macrosexcept for logconf provide both upper and lower confidencelimitsand
tolerancebounds. 1t isperhaps more obviouswhy the upper limitsareimportant, and especially the 95% UCL,
because of the EPA guidance that in risk analysis either the 95% UCL or the highest concentration reported
should be used, depending on which is lower. It isimportant to realize that the LCLs aso have important
applications. For example, if the 95% LCL is less than zero, there is reason to question whether the
contaminant iseven present. Insuch acase, and if the 95% UCL were high enough to cause concern, the great
width of the confidence limits would strongly suggest the need for additional sampling before recommending
that action betake. A second example of theimportance of having L CLs occursin situationsin which the 95%
UCL ishigh enough to exceed an action level for acontaminant at asite. When that happens, if the 95% L CL
also exceeds the action levd, it is clear that action should be considered.

Some additional comparisons between the methods applied in the macros are worth considering when
deciding which of the 95% UCL s of means are reasonabl e candidates as input concentrationsin risk analysis.
Ordinary means are conservative (upwardly biased) concentration estimates, and the 95% UCLSs of the
ordinary means are likewise conservative. They are upwardly biased because the nondetects are treated as
actual concentrations, which meansthat some very small values arelikely to be treated as substantially larger
onesintheanaysis. Intheeight examplesusing actual environmental data, which were compared inthisreport
for both the Inor and ple macros, this upward bias could be substantial because usually a high proportion of
the samples were nondetects.

In the eight examples, the 95% UCL of the normal model mean calculated by the Inor macro, when
compared to that of the ordinary mean (Table 6), was aways smaller with a mean ratio (i.e., norma +
ordinary) between them being 0.679 with a minimum of 0.341 and a maximum of 0.923. In our examples,
alot of the normal-model estimates are negative, suggesting that the normal-model is not appropriate in this
situation. (Indeed, 5 of the 8 estimates of the mean were negative.)

In the eight examples, the 95% UCL s of the PLE, which corrects for nondetection, were dways smaller
than those of the ordinary mean (Table 8) . The mean ratio of the 95% UCL s between them (i.e,, ordinary +
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PLE) was 1.38 with aminimum of 1.01 and amaximum of 2.80. Sincetheordinary UCL isupwardly biased,
ratios no larger than this provide little reason for concern that use of the 95% UCL of the PLE would lead to
any important underestimation of risk.

Much larger differenceswerefound between the 95% UCL sof the ordinary mean and thelognormal mean,
as calculated using the Inor macro (Table 6). In the examples, the median ratio of the 95% UCL s between
them (i.e., lognormal + ordinary) was 3.86 with a minimum of 1.15 and a maximum of 6146. Three of the 8
examples had aratio of 12.8 or higher. The lognormal 95% UCL at station ST-007, which yielded the ratio
of 6146, is enormous compared to the ordinary UCL. It isimportant to realize that that estimate is not a
mistake. Instead it illustrates a fundamental problem and practical difficulty of the lognormal model. The
problem is that the right tail of the lognormal distribution is extremely heavy. For mean estimates and
confidence limits, this leads to occasional anomalous results such asthis. Thisdifficulty isdiscussed in detail
by Schmoyer et a. (1996), where—as noted earlier—advantages of the PLE over the lognormal approach are
demonstrated in computer smulations. For the ST-007 UCL the problem can be seen (though not so glaringly)
in the log-scale standard deviation (_ LS _STD), which is much bigger in this case than for the other stations.
Even the two ratios between 12 and 24 represent probable overestimates that could seriously impact risk
estimates. This is because there is usually a linear relationship between exposure concentrations and risk
estimates, and thus adecision to apply uncritically thelognormal estimate of the 95% UCL could result inrisk
estimates over an order of magnitude too high. There is aways the possibility, however remote, in such a
situation that the underlying distribution islognormal, in which case the large estimate might bevalid. For this
reason, unless the lognormal distribution can be discounted on statistical grounds, the large estimate should
be reported. However, there would seem to be good reason in such a case to apply instead in risk estimation
the 95% UCL of the PLE mean, which, as shown above, is likely to have a magnitude much more similar to
that of the 95% UCL of the ordinary mean.

In our example, for both the ple and Inor macros, 50, 75, and 90th percentiles were estimated. For the
Inor macro, both lognormal and normal-based percentiles are calculated. These estimates and confidence
(tolerance) bounds may be compared. The PLE estimates and tolerance bounds generally assume dataval ues,
and are thus coarser. In many cases, the upper tolerance bounds for the 90th percentiles cannot be computed
at al. That happens when the lower confidence bound for PLE distribution estimate is below .90. It could
happen for other quantiles as well.

Inview of the many uncertaintiesin the cal culation of means, confidence limits, and tolerance boundsfor
environmental data, it isadvisableto comparethe output for the three macros. When the dataareleft censored
to more than a trivial extent, the logconf macro is inappropriate. Unless the data to be used in a risk
assessment areclearly not lognormal, the results of the stati sticscomputed for thelognormal distribution should
be reported. However, it is strongly recommended that those confidence limits and tolerance bounds be
compared with those found using the ple macro. In many cases the upper 95% UCL of the PLE mean would
be the most appropriate concentration to apply in risk anaysis.

The SAS macros described in this report should provide the basis for development of exposure

concentrationsfor all ORO risk assessmentsin which the sample sel ection procedure emulates simple random
sampling. See report BJC/OR-271 (Bechtel Jacobs 1999) for an overview of the data evaluation process.
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Table 4. Groundwater lead concentrations (mg/L) from Y-12 Fuel Station®

Monitoring Date Analytical lower (for Qualifier
station collected result/detection Inor.sas)
limit
ST-001 19JUNSO .0073 .0073
26SEP90 .0054 .0054
06DEC90 .0020 U
08MAR91 .0020 U
18JUN91 .0020 . U
25SEP91 .0070 .0070
14DEC91 .0020 U
08MAR92 .0020 U
07MAY92 .0020 U
19AUG92 .0020 U
09NOV92 .0020 U
10MAR93 .0020 U
21JUN93 .0020 U
22SEP93 .0250 U
16NOV93 .0250 U
ST-002 04MAY 89 .0120 .0120
24AUG89 .0020 . U
03NOV89 .0054 .0054
26FEB90 .0020 U
17MAY90 .0020 U
04AUG90 .0020 U
230CT90 .0020 U
24JAN91 .0020 . U
19APR91 .0078 .0078
29JUL91 .0200 .0200
090CT91 .0020 . U
11JAN92 .0160 .0160
14APR92 .0020 U
27JUL92 .0020 U
200CT92 .0020 U
02FEB93 .0020 . U
16APR93 .0056 .0056
04AUG93 .0250 U
140CT93 .0250 U
ST-003 08MAY 89 .0350 .0350
25AUG89 .0091 .0091
04NOV 89 .0110 .0110
27FEB90 .0057 .0057
17MAY90 .0210 .0210
04AUG90 .0020 . U
230CT90 .0042 .0042
25JAN91 .0020 U
19APR91 .0020 U
30JUL91 .0020 . U
090CT91 .0067 .0067
11JAN92 .0020 U
14APR92 .0020 U
29JUL92 .0020 U
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Table 4 (continued)

Monitoring Date Analytical lower (for Qualifier
station collected result/detection Inor.sas)
limit
ST-004 04MAY 89 .0071 .0071
24AUG89 .0020 . U
04NOV89 .0020 . U
27FEB90 .0042 .0042
17MAY90 .0360 .0360
04AUG90 .0020 . U
230CT90 .0020 . U
24JAN91 .0120 .0120
19APR91 .0020 . U
29JUL91 .0020 . U
090CT91 .0046 .0046
11JAN92 .0020 U
14APR92 .0020 U
27JUL92 .0020 . U
220CT92 .0071 .0071
03FEB93 .0020 U
19APR93 .0020 U
06AUGIO3 .0250 U
140CT93 .0250 U
ST-005 230CT90 .0820 .0820
08MAY 89 .0110 .0110
24AUG89 .0020 U
04NOV 89 .0020 . U
26FEB90 .0055 .0055
18MAY90 .0310 .0310
06AUG90 .0020 U
24JAN91 .0020 U
19APR91 .0020 . U
29JUL91 .0150 .0150
090CT91 .0280 .0280
11JAN92 .0020 U
14APR92 .0020 . U
27JUL92 .0100 .0100
220CT92 .0020 U
02FEB93 .0020 U
16APR93 .0020 U
05AUG93 .0250 U
140CT93 .0250 U
ST-006 04MAY 89 .0640 .0640
25JAN91 .0610 .0610
090CT91 .0700 .0700
14APR92 .0620 .0620
24AUG89 .0049 .0049
07NOV89 .0020 . U
26FEB90 .0020 . U
18MAY90 .0085 .0085
06AUG90 .0060 .0060
230CT90 .0020 . U
19APR91 .0020 . U
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Table 4 (continued)

Monitoring Date Analytical lower (for Qualifier
station collected result/detection Inor.sas)
limit
ST-006 29JUL91 .0020 . U
continued 11JAN92 .0020 . U
27JUL92 .0042 .0042
200CT92 .0020 . U
02FEB93 .0020 . U
19APR93 .0110 .0110
05AUG93 .0250 . U
140CT93 .0250 . U
ST-007 08MAY92 .1400 .1400
20AUG92 .0800 .0800
09MAR91 .0020 . U
18JUN91 .0020 . U
26SEP91 .0190 .0190
14DEC91 .0020 U
12MAR92 .0020 . U
10NOV92 .0068 .0068
11IMAR93 .0020 U
23JUN93 .0020 U
27SEP93 .0250 U
19NOV93 .0250 U
ST-008 08MAR91 .0064 .0064
20JUN91 .0054 .0054
25SEP91 .0020 . U
14DEC91 .0170 .0170
08MAR92 .0140 .0140
06MAY 92 .0062 .0062
19AUG92 .0220 .0220
09NOV92 .0210 .0210
10MAR93 .0056 .0056
18JUN93 .0170 .0170
22SEP93 .0250 . U
15NOV93 .0250 . U

The datain this table are from an early listing of the data, which was before they had been subjected to careful quality assurance examination.
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Table5. SAS macro Inor.sas output data set contents for groundwater lead (Y-12 Fuel Station)

CONTENTS PROCEDURE

Data Set Name: WORK.OUTPUT

Member Type: DATA

Engine: V611

Created: 7:19 Monday, Sep 23, 1996
Last Modified: 7:19 Monday, Sep 23, 1996
Protection:

Data Set Type:

Labdl:

Data Set Page Size: 32768
Number of Data Set Pages: 1

File Format: 607
First Data Page: 1

Max Obs per Page: 93
Obsin First Data Page: 8

File Name:

Inode Number: 5282
Access Permission: W-r--r--
Owner Name: schmoyer
File Size (bytes): 40960

----- Alphabetic List of Variablesand Attributes-----

Observations: 8
Variables: 40
Indexes: 0

Observation Length:

349

Deleted Observations: 0

Compressed:
Sorted:

NO
YES

Jusr/tmp/SAS_worka00000548/outputl.ssd01

# Variable Type Len Pos Format Label

2 ANALYSIS Char 35 10 $35.

11 LOWER Num 8 109

1 STATION  Char 10 0 $10.

9 _AR LCL Num 8 93 Ordinary mean, LCL (p=.95)
4 _AR_MN Num 8 53 Ordinary mean

7 _AR_SEM  Num 8 77 Ordinary mean, std. err.

10 _ARUCL Num 8 101 Ordinary mean, UCL (p=.95)
8 _DET Num 8 85 Detects

25 _LN_LCL Num 8 221 Lognorma mean, LCL (p=.95)
24 _LN_MN Num 8 213 Lognormal mean

26 _LN_UCL Num 8 229 Lognorma mean, UCL (p=.95)
21 LS MN Num 8 189 Ln-scale mean

23 LS SEM Num 8 205 Ln-scale mean, std. err.

22 LS STD Num 8 197 Ln-scale std. dev.

12 _LT500 Num 8 117

13 _LT750 Num 8 125

14  _LT900 Num 8 133

6 _MAX Num 8 69 Maximum

5 _MIN Num 8 61 Minimum

27  _NL500 Num 8 237

28 _NL750 Num 8 245

29  _NL900 Num 8 253

30 _NQ500 Num 8 261

31  _NQ750 Num 8 269

32 _NQ900 Num 8 277
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Table 5 (continued)

# Variable Type Len Pos Format Labd

33  _NUS500 Num 8 285

34 _NU750 Num 8 293

35  _NU900 Num 8 301

39 N LCL Num 8 333 Normal mean, LCL (p=.95)
36 _N_MN Num 8 309 Normal mean

38 _N_SEM Num 8 325 Normal mean, std. err.

37 _N_STD Num 8 317 Normal scale std. dev.

40 N _UCL Num 8 341 Normal mean, UCL (p=.95)
3 _OBS Num 8 45 Observed

15 QU500 Num 8 141

16 _QU750 Num 8 149

17 QU900 Num 8 157

18 _UT500 Num 8 165

19 _UT750 Num 8 173

20 _UT900 Num 8 181

Sortedby:
Validated:
Character Set:

STATION ANALYSIS
YES
ASCII
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Table 6. Output of sasmacro Inor.sasfor groundwater lead (Y-12 Fuel Station)!

Ordinary mean Ordinary

Station Observed Detects  Minimum Maximum LCL (p=.95) mean

ST-001 15 3 .002 0.025 .0023642 0.005980
ST-002 19 6 .002 0.025 .0040552 0.007305
ST-003 14 7 .002 0.035 .0031129 0.007621
ST-004 19 6 .002 0.036 .0035510 0.007526
ST-005 19 7 .002 0.082 .0055121 0.013289
ST-006 19 9 .002 0.070 .0088167 0.018821
ST-007 12 4 .002 0.140 .0036627 0.025650
ST-008 12 9 .002 0.025 .0095179 0.013883

Ordinary mean Ordinary mean Lognormal mean Lognormal

Station UCL (p=.95) std. err. LCL (p=.95) mean
ST-001 0.009596 0.002053 .0005677 0.00269
ST-002 0.010555 0.001874 .0013973 0.00726
ST-003 0.012130 0.002546 .0024582 0.01112
ST-004 0.011502 0.002292 .0013533 0.00656
ST-005 0.021067 0.004485 .0020880 0.03244
ST-006 0.028825 0.005769 .0045854 0.04117
ST-007 0.047637 0.012243 .0003124 0.30242
ST-008 0.018249 0.002431 .0073280 0.01228

Lognormal mean 95% LTB Estimate 95% UTB 95% LTB
Station UCL (p=.95) 50%-ile 50%-ile 50%-ile 75%-ile
ST-001 0.013 .0001093 .0006545 0.003919 .0006132
ST-002 0.038 .0003122 .0011131 0.003969 .0015330
ST-003 0.050 .0008549 .0023732 0.006588 .0029288
ST-004 0.032 .0003091 .0010737 0.003730 .0014653
ST-005 0.504 .0003024 .0013421 0.005957 .0021501
ST-006 0.370 .0008040 .0026223 0.008552 .0042257
ST-007 292.770 .0000542 .0009075 0.015196 .0009633
ST-008 0.021 .0054525 .0086904 0.013851 .0090535

Estimate 95% UTB 95% LTB Estimate 95% UTB Ln-scale

Station 75%-ile 75%-ile 90%-ile 90%-ile 90%-ile mean
ST-001 0.001958 0.006252 0.001681 0.005250 0.01640 -7.33166
ST-002 0.003969 0.010273 0.004077 0.012460 0.03808 -6.80057
ST-003 0.007437 0.018886 0.006335 0.020792 0.06824 -6.04352
ST-004 0.003743 0.009561 0.003848 0.011517 0.03447 -6.83666
ST-005 0.007037 0.023031 0.007388 0.031265 0.13230 -6.61352
ST-006 0.012240 0.035454 0.012934 0.048978 0.18546 -5.94371
ST-007 0.008199 0.069790 0.004728 0.059449 0.74758 -7.00481
ST-008 0.014869 0.024420 0.013140 0.024110 0.04424 -4.74553




Table 6 (continued)

Ln-scale mean Ln-scale Normal mean Normal Normal mean
Station std. err. std. dev. LCL (p=.95) mean UCL (p=.95)
ST-001 1.01618 1.68173 -0.00485 -0.000791 0.003269
ST-002 0.73317 1.93638 -0.01034 -0.002213 0.005916
ST-003 0.57657 1.75745 -0.00805 0.001326 0.010699
ST-004 0.71807 1.90218 -0.01650 -0.005310 0.005877
ST-005 0.85940 2.52391 -0.03219 -0.009634 0.012920
ST-006 0.68174 2.34679 -0.02148 0.000005 0.021494
ST-007 1.56921 3.40848 -0.11127 -0.033658 0.043953
ST-008 0.25957 0.83164 0.00675 0.011187 0.015621
Normal Normal Model Normal Model Normal Model
Normal mean scale std. 95% LTB Estimate 95% UTB

Station std. err. dev. 50%-ile 50%-ile 50%-ile
ST-001 0.002305 0.004408 -0.00485 -0.000791 0.003269
ST-002 0.004688 0.012515 -0.01034 -0.002213 0.005916
ST-003 0.005293 0.016053 -0.00805 0.001326 0.010699
ST-004 0.006452 0.017235 -0.01650 -0.005310 0.005877
ST-005 0.013006 0.038182 -0.03219 -0.009634 0.012920
ST-006 0.012392 0.042469 -0.02148 0.000005 0.021494
ST-007 0.043216 0.093615 -0.11127 -0.033658 0.043953
ST-008 0.002469 0.007811 0.00675 0.011187 0.015621

Normal Model Normal Model Normal Model Normal Model

95% LTB Estimate 95% UTB 95% LTB
Station 75%-ile 75%-ile 75%-ile 90%-ile
ST-001 -0.000989 0.002081 0.005152 0.001859
ST-002 -0.000213 0.006004 0.012220 0.006077
ST-003 0.003196 0.011760 0.020324 0.010429
ST-004 -0.002609 0.006005 0.014618 0.006295
ST-005 -0.002651 0.015432 0.033514 0.016478
ST-006 0.008650 0.027886 0.047122 0.029159
ST-007 -0.032186 0.026796 0.085778 0.012416
ST-008 0.011479 0.016231 0.020983 0.014972

Normal Model Normal Model
Estimate 95% UTB

Station 90%-ile 90%-ile
ST-001 0.004667 0.00747
ST-002 0.013399 0.02072
ST-003 0.021151 0.03187
ST-004 0.016189 0.02608
ST-005 0.037992 0.05951
ST-006 0.052980 0.07680
ST-007 0.081207 0.15000
ST-008 0.020771 0.02657

A few of the columns of lesser important information have been omitted from this table to save space.
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Table 7. SASmacro ple.sasoutput data set contents for groundwater lead (Y-12 Fuel Station)

CONTENTS PROCEDURE

Data Set Name: WORK.OUTPUT Observations: 8
Member Type: DATA Variables: 23
Engine: V611 Indexes: 0
Created: 7:20 Monday, Sep 23, 1996 Observation Length: 213
Last Modified: 7:20 Monday, Sep 23, 1996 Deleted Observations: 0O
Protection: Compressed: NO
Data Set Type: Sorted: YES
Label:

Data Set Page Size: 24576
Number of Data Set Pages: 1

File Format: 607

First Data Page: 1

Max Obs per Page: 115
Obsin First Data Page: 8

File Name: Jusr/tmp/SAS_worka00000548/outputp.ssd01
Inode Number: 5290
Access Permission: rw-r--r--
Owner Name: schmoyer
File Size (bytes): 32768

----- Alphabetic List of Variablesand Attributes-----

# Variable Type Len Pos Format Label

2 ANALYSIS Char 35 10 $35.

1 STATION  Char 10 0 $10.

9 _AR LCL Num 8 93 Ordinary mean, LCL (p=.95)
4 _AR_MN Num 8 53 Ordinary mean

7 _AR_SEM Num 8 77

Ordinary mean, std. err.

10 _ARUCL Num 8 101 Ordinary mean, UCL (p=.95)
8 _DET Num 8 85 Detects
16 _LT50 Num 8 149
17 _LT75 Num 8 157
18  LT90 Num 8 165

6 _MAX Num 8 69 Maximum

5 _MIN Num 8 61 Minimum

3 _OBS Num 8 45 Observed

22 PLLCL Num 8 197 PLE mean, LCL (p=.95)
11 PLMN  Num 8 109 PLE mean

12 _PL_SEM Num 8 117 PLE mean, std. err.

23 _PL_UCL Num 8 205 PLE mean, UCL (p=.95)
13 _QUs0 Num 8 125

14 _QU75 Num 8 133

15 QU990 Num 8 141

19 _UTS50 Num 8 173

20 _UT75 Num 8 181

21 _UT90 Num 8 189
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Table 7 (continued)

Sortedby: STATION ANALYSIS
Validated: YES
Character Set: ASCII
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Table 8. Output of SAS macro ple.sas for groundwater lead (Y-12 Fue Station)1

Ordinary mean Ordinary

Station Observed Detects Minimum Maximum LCL (p=.95) mean
ST-001 15 3 .002 0.025 .0023642 0.005980
ST-002 19 6 .002 0.025 .0040552 0.007305
ST-003 14 7 .002 0.035 .0031129 0.007621
ST-004 19 6 .002 0.036 .0035510 0.007526
ST-005 19 7 .002 0.082 .0055121 0.013289
ST-006 19 9 .002 0.070 .0088167 0.018821
ST-007 12 4 .002 0.140 .0036627 0.025650
ST-008 12 9 .002 0.025 .0095179 0.013883
Ordinary mean Ordinary mean PLE mean

Station UCL (p=.95) std. err. LCL (p=.95) PLE mean
ST-001 0.009596 0.002053 .0026744 0.003054
ST-002 0.010555 0.001874 .0032712 0.005224
ST-003 0.012130 0.002546 .0032505 0.007621
ST-004 0.011502 0.002292 .0021256 0.005270
ST-005 0.021067 0.004485 .0034500 0.011120
ST-006 0.028825 0.005769 .0063935 0.016599
ST-007 0.047637 0.012243 .0000000 0.022271
ST-008 0.018249 0.002431 .0077189 0.011660

PLE mean PLE mean 95%LTB Estimate 95% UTB 95% LTB

Station UCL (p=.95) std.err. 50%-ile 50%-ile 50%-ile 75%-ile
ST-001 0.003433 0.000215 .0020 0.0020 0.0020 .0020
ST-002 0.007176 0.001126 .0020 0.0020 0.0054 .0020
ST-003 0.011992 0.002468 .0020 0.0031 0.0091 .0042
ST-004 0.008414 0.001813 .0020 0.0020 0.0042 .0020
ST-005 0.018791 0.004423 .0020 0.0020 0.0100 .0020
ST-006 0.026805 0.005885 .0020 0.0042 0.0085 .0049
ST-007 0.046237 0.013345 .0020 0.0020 0.0068 .0020
ST-008 0.015601 0.002195 .0056 0.0102 0.0170 .0064
Estimate 95% UTB 95% LTB Estimate 95% UTB
Station 75%-ile 75%-ile 90%-ile 90%-ile 90%-ile
ST-001 0.0020 0.0070 0.0020 0.0070 0.0073
ST-002 0.0056 0.0120 0.0056 0.0160 0.0200
ST-003 0.0091 0.0350 0.0091 0.0210
ST-004 0.0046 0.0071 0.0046 0.0120
ST-005 0.0110 0.0310 0.0110 0.0310
ST-006 0.0110 0.0640 0.0085 0.0640
ST-007 0.0190 0.1400 0.0068 0.0800 .
ST-008 0.0170 0.0220 0.0170 0.0215 0.0220

A few of the columns of lesser important information have been omitted from this table to save space.

38



Table 9. Groundwater barium concentrations (mg/L) from Y-12 Fuel Station®

Monitoring Date Analytical
station collected result
STB-01 19JUNSO 0.32
26SEP90 0.26
06DEC90 0.24
08MAR91 0.22
18JUN91 0.22
25SEP91 0.27
14DEC91 0.22
08MAR92 0.23
07MAY92 0.21
19AUG92 0.24
09NOV92 0.20
10MAR93 0.23
21JUN93 0.22
22SEP93 0.24
16NOV93 0.21
STB-02 08MAY 89 0.09
25AUG89 0.08
04NOV89 0.08
27FEB90 0.06
17MAY 90 0.12
04AUG90 0.06
230CT90 0.10
25JAN91 0.09
19APR91 0.04
30JUL91 0.06
090CT91 0.11
11JAN92 0.04
14APR92 0.05
29JUL92 0.07
STB-03 04MAY 89 0.59
24AUG89 0.58
04NOV89 0.58
27FEB90 0.58
17MAY 90 1.30
04AUG90 0.50
230CT90 0.52
24JAN91 0.97
19APR91 0.50
29JUL91 0.51
090CT91 0.53
11JAN92 0.47
14APR92 0.47
27JUL92 0.45
220CT192 0.57
O3FEB93 0.54
19APR93 0.48
06AUG93 0.57
140CT93 0.57

This early listing of the barium datais used for demonstration purposes only, recognizing that barium is not considered to be a site-related
contaminant.
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Table 10. SAS macr o logconf.sas output data set contents for groundwater barium
(Y-12 Fuel Station)

CONTENTSPROCEDURE
Data Set Name: WORK.OUTPUTL Observations: 3
Member Type: DATA Variables: 6
Engine: V611 Indexes: 0
Created: 7:30 Wednesday, Sep 25, 1996 Observation Length: 77
Last Modified: 7:30 Wednesday, Sep 25, 1996 Deleted Observations: 0
Protection: Compressed: NO
Data Set Type: Sorted: NO
Label:
----- Engine/Host Dependent I nfor mation-----
Data Set Page Size: 8192
Number of Data Set Pages: 1
File Format: 607
First Data Page: 1
Max Obs per Page: 106
Obsin First Data Page: 3
File Name: tmp/SAS_worka00002577/outputl.ssd01
Inode Number: 7681
Access Permission: W-r--r--
Owner Name: schmoyer
File Size (bytes): 16384
----- Alphabetic List of Variablesand Attributes-----
# Variable Type Len Pos Format Labe
2 ANALYSIS Char 35 10 $35.
4 MEAN Num 8 53 Log-scale mean
5 STAND Num 8 61 Log-scale standard deviation
1 STATION Char 10 0 $10.
6 UCL_95 Num 8 69 Land's lognormal 95% UCL
3 _OBS Num 8 45 Observed

Table 11. Output of SAS macro logconf.sas for groundwater barium (Y-12 Fuel Station)

Log-scale Land's
Log-scale standard lognormal
Station Observed mean deviation 95% UCL
STB-02 14 -2.64814 0.35203 0.09089
STB-01 15 -1.45359 0.11812 0.24876
STB-03 19 -0.55913 0.25686 0.65937
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APPENDIX A

THE LNOR MACRO



The Inor macro is listed below.

#*******************************************************************\

SAS macro Inor: Calculate lognormal and normal-based statistics for analytes
that have one or more detects.

© 1999
Lockheed Martin Energy Research Corporation
All rights reserved

Neither the Government nor LMER makes any warrantee, express or implied, or
assumes any liability or responsibility for the use of this software. *

* ok ok k% k% kX

v*******************************************************************/

*NOTE: Nonpositive or missing & RESULT values, validation rejects, and any
other data that is not wanted should not be entered into these calculations.
Validation rejects will be treated as detects. Proc lifereg will drop

nonpositive values from the lognormal model analyses, but proc means will
include them when it calculates the number of observations (_obs), which

will then be used incorrectly to adjust the lifereg estimates;;

%Mmacro
LNOR (input, output, group, result, lower, qual, parm, id, confid, toler);

*MACRO ARGUMENTS:

input--name of input data set.

output--name of output data set.

group--list of variables (delimited by spaces) that defines groups (e.g.,
sites) over which statistics are to be computed.

result--variable that gives analysis result or, in the case of a nondetect,
the detection limit.

lower--same as result for detects. For simple nondetects, missing (.). Can
also be a numeric value less than result, namely, for interval censoring.
For example, if an observation represents an average for two duplicates,
one of which is adetect, at say X, the other a nondetect at say L, then
the average is between (X+0)/2 and (X+L)/2. Then take lower=X/2, and
result=(X+L)/2.

qual--qualifier variable, "U" for nondetect, "I" for interval-censored.
Anything elseis treated as a detect.

parm--variable that names the analytes (e.g., Aluminium, Arsensic).

id--list of ID variablesto be carried aong.

confid--confidence level, between 0 and 1 (e.g., .95), for confidence limits.

toler--space delimited list of values for which tolerance bounds should be
computed.



data_null_;

length toll $ 100;

if index(''||'& TOLER",".") > O then do;
toll="g="|[trim(left("& TOLER"));

call symput( TOLER' trim(left(tall)));
end;

run;

proc sort data=&INPUT out = detects,

where &RESULT /= ;

by & GROUP & PARM & QUAL;
run;
data detects

nondet;

et detects;

by & GROUP & PARM;

if &QUAL in ('U'I') then cen=1;

ese cen=0;

retain _keep O;

if first.& PARM then do;

if &QUAL =""then _keep_=1; /* Atleast one detect */
else_keep =0; /* All non-detects */

end;

if _keep then output detects;
else output nondet;

drop _keep_;

run;

/* Calculate mean, minimum, maximum, number of observations for detects */

proc means data = detects noprint;
by & GROUP & PARM,;
var cen & RESULT;
id &1D;
output out = stat (drop = _freq_ _type )
sum  (cen) = _ndt
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n (&RESULT) =_obs

mean (&RESULT)=_ar_mn

min (&RESULT) =_min

max (&RESULT) =_max

stderr (& RESULT) = _ar_sem;
run;

data stat;
Set stat;

label _det ="Detects"
_ar_Ic ="Ordinary mean, LCL (p=& CONFID)"
_ar_ucl ="Ordinary mean, UCL (p=& CONFID)"

_det=_obs- _ndt; /* Number of detects*/
if _obs> 1 then do;

_ar_ucl=_ar mn+ _ar_sem* tinv (& CONFID, _obs- 1);
_ar I =max (0, _ar_mn-_ar_sem* tinv (& CONFID, _obs- 1));

end;

run;

/* Calculate mean, minimum, maximum, number of observations for
nondetects */

proc means data = nondet noprint;
by & GROUP & PARM;
var &RESULT;
id &ID;
output out = nonstat (drop = _freq_ _type )
n (&RESULT) = _obs
mean (& RESULT) = _ar_mn
min (&RESULT) =_min
max (&RESULT) =_max;
run;

* Proc lifereg is used to compute lognormal-based maximum likelihood
estimates. The information required to bias-adjust the estimate
(subsequent data step) is output. Biasis due to inequality Ef(X)
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ne f(EX), for nonlinear f and nondegenerate X.*/

proc lifereg data= detects covout outest = estm noprint;
by & GROUP & PARM;
model (&LOWER, & RESULT) =/ dist = Inormal covb;
*censoring: O=uncensored, 1=right, 2=left, 3=interval;
output out=toler
& TOLER
predicted=pred
std_err=se_pred;
run;

datatoler;
merge toler stat (keep = & GROUP & PARM _obs);
by & GROUP & PARM;

proc sort data=toler;
by & GROUP & PARM _prob_;

datatoler; set toler;
by & GROUP & PARM _prob_;
if first._prob_;

if _obs> 1 then df_adj = sgrt( _obs/ (_obs - 1));
esedf_adj = ;
* degrees-of-freedom adjustment same as below for all stats;

_ut=pred*exp(tinv(& CONFID,_obs-1)*se pred*df_adj/pred);
_It=pred* exp(tinv(1- & CONFID,_obs-1)*se pred*df_adj/pred);
rename pred=_qu;

prob_lab=_prob_;

_prob_=round(1000* _prob_,1);

keep & PARM & GROUP pred _ut It _prob_ prob_lab;

data_lt;

et toler;

length label $40;

label="Lognormal '||trim(left(prob_lab))|| LTB'||" (p=& CONFID)";
rename label=prob_lab;

drop prob_lab;

proc transpose data=_|t prefix=_It out=_lt;
by & GROUP & PARM;

var _lt;

id_prob_;

idlabel prob_lab;

data_qu;
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Set toler;

length label $40;

label="Lognormal '|[trim(left(prob_lab))|| Quantile Estimate';
rename label=prob_lab;

drop prob_lab;

proc transpose data=_qu prefix=_qu out=_qui;
by & GROUP & PARM;

var _qu;

id_prob_;

idlabel prob_lab;

data_ut;

et toler;

length label $40;

label="Lognormal '||trim(left(prob_lab))|| UTB'||" (p=& CONFID)";
rename label=prob_lab;

drop prob_lab;

proc transpose data=_ut prefix=_ut out=_ut;
by & GROUP & PARM;

var _ut;

id_prob_;

idlabel prob_lab;

datatol;
merge It _qu _ut;
by & GROUP & PARM;

proc datasets nolist;
delete It _qu _ut;

/* Merge LIFEREG output data set with stat. Extract parameter
estimates from estm and adjust the estimates if the data
are uncensored. Basically, the adjustments involve removing
the bias inherent in the MLE of the variance in the case of
uncensored data. Calculate arithmetic mean and confidence
limits and output estimates to the SAS data set & OUTPUT. */

data output;

merge stat estm tol;
by & GROUP & PARM;

drop _name_ _type intercep _scale _shapel ndt

Isvar Iscov Issev cin_ dist _Inlike. _model  labd ;
retain _Is mn _Is var |Is std _Is sem |s sev _Is cov;
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label _In_mn ="Lognorma mean"
_In_lcl ="Lognorma mean, LCL (p=& CONFID)"
_In_ucl ="Lognorma mean, UCL (p=& CONFID)"
_Is mn ="Ln-scale mean"
_|Is std ="Ln-scae std. dev.”
_ls sem = "Ln-scale mean, std. err.”
_obs ="Observed"
_ar_mn ="Ordinary mean"
_min "Minimum"
"Maximum"
_ar_sem ="QOrdinary mean, std. err."

max

if _type ="PARMS' then do;

_Is mn =intercep;

* | og-scale Mean--mu tilde in report;

_Is var=_scade ** 2

* Log-scale sample variance--tau tilde in report;
end;

eseif _type ="COV" and _name_="INTERCPT" then do;
_Is sem = intercep;
* Variance estimate for mean--A in report;

_Is cov =2*sgrt (_Is var)*_scale ;
* Covariance estimate for mean and variance--D in report;
end;

eseif _type ="COV" and _name_="SCALE" then
Issev=4* |svar* scde ;
* Variance estimate for variance--G in report;

if last.& PARM then do;

if _obs> 1 then do;

_Is var=_|s var* obs/(_obs- 1);

_Is sem=_|s sem* obs/ (_obs- 1);

_Is sev = _|s sev*(_obs*_obs*_obs/ ((_obs-1)*(_obs-1)* (_obs+1)));

_Inmn=exp (s mn+ (s var/2)); /* lognorma mean estimate */
_cin_=sgrt(_Is sem+_|s sev/4+_|s cov) * tinv (& CONFID, (_abs - 1));
_Inlcl=_In mn* exp (-_cin); /* LCL */

_In_uc = _In mn* exp(_cin); /* UCL */

if _min<=0thendo;
Inmn =, Inlc=. Inuc=,

Ismn =, Issd=.; Issem=_
end;
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_Is std =sgrt (_Is var);
_Is sem=sgrt(_Is_sem);

end;

dsedo;
Isvar=.; Issem=.; Is sev=.; Is std=;
end;

output;

Ismn =, Isvar=. Issem=
Issev=. Iscov=.

end;
run;

* Proc lifereg is aso used to compute normal-based maximum likelihood
estimates.*/

proc lifereg data = detects covout outest = estn noprint;
by & GROUP & PARM;
model (& LOWER, & RESULT) =/ dist = normal covb;
*censoring: O=uncensored, 1=right, 2=left, 3=interval;
output out=tolern
& TOLER
predicted=pred
std_err=se_pred;
run;

datatolern;
merge tolern stat (keep = & GROUP & PARM _obs);
by & GROUP & PARM;

proc sort data=tolern;
by & GROUP & PARM _prob_;

datatolern; set tolern;
by & GROUP & PARM _prob_;
if first._prob_;

if _obs> 1 then df_adj = sgrt( _obs/ (_aobs - 1));
esedf_adj = ;
* degrees-of-freedom adjustment same as below for all stats;

_ut=pred+tinv(& CONFID,_obs-1)*se pred*df_adij;
_It=pred+tinv(1- & CONFID,_obs-1)*se pred*df_ad;;
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rename pred=_qu;

prob_lab=_prob_;

_prob_=round(1000* _prob_,1);

keep & PARM & GROUP pred _ut It _prob_ prob_lab;

datanltb;

set toler;

length label $40;

label="Normal ‘[[trim(left(prob_lab))|[ LTB'|[" (p=& CONFID)";
rename label=prob_lab;

drop prob_lab;

proc transpose data=nltb prefix=_nl out=nltb;
by & GROUP & PARM;

var _lt;

id_prob_;

idlabel prob_lab;

data nqua;

Set toler;

length label $40;

[abel="Normal '|[trim(left(prob_lab))| Quantile Estimate';
rename label=prob_lab;

drop prob_lab;

proc transpose data=nqua prefix=_nq out=nqua;
by & GROUP & PARM;

var _qu;

id_prob_;

idlabel prob_lab;

data nutb;

et toler;

length label $40;

label="Normal *|[trim(left(prob_lab))|| UTB'||" (p=& CONFID)";
rename label=prob_lab;

drop prob_lab;

proc transpose data=nutb prefix=_nu out=nutb;
by & GROUP & PARM;

var _ut;

id_prob_;

idlabel prob_lab;

data ntol;

merge nltb nqua nutb;
by & GROUP & PARM;
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proc datasets nolist;
delete nltb nqua nutb;

/* Merge LIFEREG output data set with stat. Extract parameter
estimates from estm and adjust the estimates if the data
are uncensored. Basically, the adjustments involve removing
the bias inherent in the MLE of the variance in the case of
uncensored data. Calculate arithmetic mean and confidence
limits and output estimates to the SAS data set & OUTPUT. */

data outputn;

merge stat estn ntal;
by & GROUP & PARM;

drop _name_ _type intercep _scale _shapel ndt
_nvar _dig _Inlike  mode label
lower ar Icl _ar mn_ar sem_ar ucl _det max
_min_obs;

retain_nmn_n var n std n sem;

label n mn ="Norma mean"
_n_Icl ="Normal mean, LCL (p=& CONFID)"
_Nn_ucl ="Norma mean, UCL (p=& CONFID)"
_n_std ="Normal scae std. dev."
_n_sem = "Normal mean, std. err."

if _type ="PARMS' then do;

_n_mn =intercep; /* Mean*/
_n var=_scale ** 2; [* Variance*/

if _obs>1then_n var=_n var* _obs/(_obs-1);
gdse nva=.

_n std =sgrt (_n_var);

end;

eseif _type ="COV" and _name_="INTERCPT" then do;
_n_sem = sqrt (intercep); [* Standard error of mean */

if _obs>1then_n sem=_n sem* sgrt (_obs/ (_obs - 1));
dse n sem=
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end;
if last.& PARM then do;
/* Compute normal lower and upper confidence limits*/

_n ucl=_n mn+tinv (&CONFID, (_obs- 1)) * _n_sem;
_nlcd=_n_mn-tinv (&CONFID, (_obs- 1)) * n_sem,

if _min<=0thendo;
nmn=. nld=. nuc=
nsd=.; nsem=,
end;
output;
nmn=. nvar=. nsem=.
end;

run;

data& OUTPUT;
merge output outputn;
by & GROUP & PARM,;

data & OUTPUT;

set &OUTPUT (in=inl) /* Summary statistics for detects */
nonstat (in = in2); /* Summary statistics for nondetects */

run;
proc sort data= &OUTPUT;
by & GROUP & PARM;

run;

%MEND Inor;
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APPENDIX B

THE PLE MACRO



The ple macrois listed below.

#*******************************************************************\

ple.sas: Calculate statistics based on the product limit estimate
(PLE), also known as Kaplan-Meier estimate, at least in the
setting of right-censored (failure-time) data.

© 1999
Lockheed Martin Energy Research Corporation
All rights reserved

* ok ok ok ok ok *

*

*  Neither the Government nor LMER makes any warrantee, express or implied, or
* assumes any liability or responsibility for the use of this software.

v*******************************************************************/

*NOTE: Nonpositive or missing & RESULT values, validation rejects, and any
other data that is not wanted should not be entered into these calculations.
Validation rejects will be treated as detects. The PLE calculations were

not designed to handle nonpositive & RESULT values, but proc means will
include them when it calculates the number of observations (_obs ), which

will then be used incorrectly to compute PLE-based estimates;;

*Labels for tolerance bounds could fail if there are too many, because
of length 200 limit for character variablesin SAS. (Limitation to be
removed in Verson 7.);

%macro ple (input, output, group, result, qual, parm, id, confid, toler);

*MACRO ARGUMENTS:

input--name of input data set.

output--name of output data set.

group--list of variables (delimited by spaces) that defines groups (e.g.,
sites) over which statistics are to be computed.

result--variable that gives analysis result or, in the case of a nondetect,
the detection limit.

qua--"U" for nondetect, "I" for interval censored. Otherwise, a detect.
"I" treated as nondetect.

parm--variable that names the analytes (e.g., Aluminium, Arsensic).

id--list of ID variablesto be carried aong.

confid--condfidence level, between 0 and 1 (e.g., .95), for confidence limits.

toler--space delimited list of values for which tolerance bounds should be
computed.

%local PL UN TOL;
%let TOL = 1.e-10; /* Rounding tolerance */
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data null ;

length newt newltb newqua newutb $ 100 labell labelq labelu $200 g $ 8;
newt=translate(’.00001 '||'& TOLER",""," ");
newltb=";

newqua=";

newutb=";

labell=";

labelg=";

|abelu=";

n=0;

g=0;

do until (g="";

number=put(g,8.);

if number ne O then do;
newltb=trim(left(newltb))||' _It|trim(left(g));
newqua=trim(left(newqua))||' _qu'||trim(left(g));
newutb=trim(left(newutb))||' _ut'|[trim(left(g));
end;
if number gt O then do;
[abell=
trim(left(labell))||' _It|itrim(left(g))|"=""|trim(left(g))||' LTB '||"(p=& confid)"";

labelg=
trim(left(label )| _qu|ftrim(left(g))||"=""|trim(left(g))|" quantile estimate™;

labelu=
trim(left(labelw))|[' _ut'|[trim(left(g))|["=""|[trim(left(g))|[ UTB '||" (p=& confid)"’;
end;

n=n+1;

g=scan(newt,n,.");

end;

call symput('L" trim(left(newltb)));

call symput('P,trim(left(newqua)));
call symput('U' trim(left(newutb)));
call symput(TOLER',.00001 '||'"& TOLER");
call symput('labell',trim(left(labell)));
call symput('labelq,trim(left(labelg)));
call symput('labelu’ trim(left(labelu)));
run;

data_null_;

array gnt &P;

call symput('N',trim(left(dim(gnt))));
run;
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proc sort data= &INPUT out = aggr;

where &RESULT ~= ;

by & GROUP & PARM & QUAL;
run;
data detects

nondet;

set agor;

by & GROUP & PARM;

if &QUAL in ('U'I') then cen=1;

ese cen=0;

retain _keep O;

if first.& PARM then do;

if cen=0then _keep =1; /* Atleast one detect */
else_keep =0 * All non-detects */

end;

if _keep then output detects;
else output nondet;

run;

/* Calculate mean, minimum, maximum, number of observations for detects */

proc means data = detects noprint;
by & GROUP & PARM;
var cen & RESULT;
output out = stat (drop = _freq_ _type )
sum (CEN) = _ndt
n (&RESULT) =_obs
mean (&RESULT)=_ar_mn
min (&RESULT) =_min
max (&RESULT) =_max
stderr (& RESULT) = _ar_sem;
run;

data stat;
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Set stat;

label _det ="Detects"
_ar_Ic ="Ordinary mean, LCL (p=& CONFID)"
_ar_ucl ="Ordinary mean, UCL (p=& CONFID)"

_det=_obs- _ndt; /* Number of detects*/
if _obs> 1 then do;

_ar_ucl=_ar mn+ _ar_sem* tinv (& CONFID, _obs- 1);
_ar I =max (0, _ar_mn-_ar_sem* tinv (& CONFID, _obs- 1));

end;

run;

/* Calculate mean, minimum, maximum, number of observations for detects */

proc means data = nondet noprint;
by & GROUP & PARM;
var &RESULT;
id &ID;
output out = nonstat (drop = _freq_ _type )
n (&RESULT) = _obs
mean (& RESULT) = _ar_mn
min (&RESULT) =_min
max (&RESULT) =_max;
run;

/* Begin SAS code for product limit estimation. Means and standard
errors, upper confidence limits for means, and percentiles and their
upper and lower confidence limits are computed, all based on PLEs.
The percentiles are computed using the PLE with averaging (asin the
SAS Proc Univariate default method - "empirical distribution function
with averaging"). Because of discreteness, percentile estimates can
be off when sample sizes are small. (What is the fortieth percentile
for asample of size 1?) Therefore percentile estimates should aways
be interpreted in light of sample sizes and confidence bounds. */

proc sort data = detects;
by & GROUP & PARM descending & RESULT & QUAL;
run;
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*PLE requires pass through data in order of descending & RESULT;
* Pass through to compute PLE, PLE mean, and statistic "a" (defined on
page 98 in STATISTICAL MODELS AND METHODS FOR LIFETIME DATA by J. F.
Lawless (1982), John Wiley & Sons, New Y ork) used to compute standard
error of PLE mean (in subsequent pass through data) */

data ple (keep = enter remain ple & RESULT last & QUAL &PARM &1D
& GROUP ase plelch pleucb_ple)
ple_mn (keep = & PARM & GROUP & QUAL _obs_ndt _det _pl_mn biasl);
merge detects (in = inl)
stat  (in=in2);
by & GROUP & PARM;
if inl1andin2;

retain censored tot_cen enter remain ple _pl_mn se_ple last ss;

label _pl_mn ="PLE mean"

&RESULT = max (&RESULT, 0);

if first.& PARM then do;

S =0;

censored = 0;

tot cen =0;

enter = _obs,

remain = _obs;

ple =1,

_pl_mn =0

last =&RESULT;
end;

/* Note: if &QUAL ="', observation is treated as a detect */

if &QUAL in ('U','l") then do;
censored = censored + 1; /* Sum number of nondetects */
tot_ cen =tot cen + 1;

end;

dsedo;
SS =ss+ (enter - remain) / (enter * remain);
_pl_mn=_pl_mn+ (last - &RESULT) * (1 - ple); /* plemean*/

a =(last- &RESULT) * ple;
se ple=ple* sort(ss);
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[* Calculate lower and upper confidence limits for ple */

Ich_ple=max (0, ple- (se_ple* probit (& CONFID)));
ucb_ple=min (1, ple + (se_ple* probit (& CONFID)));

[* Compute exact confidence limits where censoring has no effect */
if tot_cen = 0 then do;
freqg = round (_obs* ple, 1);

if freq =_obsthen ucb_ple=1.0;
else uch_ple = betainv (& CONFID, freq + 1, _obs - freq);

if freq = 0 then Icb_ple = 0.0;
elselch ple=1.0- betainv (& CONFID, _obs - freq + 1, freq);

end;

/* Output standard error, lower and upper confidence limits
for ple. */

output ple;

enter =remain - censored;
remain = enter - 1;

ple =ple* remain/ enter;
censored = 0;

last =&RESULT;

end;

[* Calculate confidence limits at origin - needed for percentile
estimates Also calculate mean */

if last.& PARM then do;

a=0;
bias1=0;

if &QUAL in ('U','l") then do;
SS =ss+ (enter - remain) / (enter * remain);
se ple=ple* sort(ss);

[* Calculate lower and upper confidence limits for ple */

Ich_ple=max (0, ple- (se_ple* probit (& CONFID)));
ucb_ple=min (1, ple + (se_ple* probit (& CONFID)));
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* Compute exact confidence limits where censoring has no effect */
if tot_cen = 0 then do;
freqg = round (_obs* ple, 1);

if freq =_obsthen ucb_ple=1.0;
else uch_ple = betainv (& CONFID, freq + 1, _obs - freq);

if freq =0 then Icb_ple =0.0;
elselch _ple=1.0- betainv (& CONFID, _obs - freq + 1, freq);

end;
output ple;
biasl=-(& RESULT-last)*ple;
end;
ple =0;
&RESULT =0;
_pl_mn = _pl_mn + (last - &RESULT) * (1 - ple);
/* Output ple mean, ordinary mean, and std. error of ord. mean */
output ple_mn;
uch ple=1-(1- &CONFID)**(1/ _obs);
Ich_ple=0;
a =0;
se ple =
enter =0.1;
remain =0.1;

/* Output standard error, lower and upper confidence limits
for ple*/

output ple;
end;
run;
proc sort data = ple;
by & GROUP & PARM &RESULT ple;

run;

*print here for ple distribution function estimates;
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*proc print data=ple;
*by & GROUP & PARM;
*id & GROUP & PARM,;

/* Compute standard errors of PLE means using statistic "a' computed
above, as on page 98 in text by Lawless (see above)
Also eliminate superfluous points to actual PLES */

dataple_se (keep = &PARM & GROUP & QUAL &ID _pl_sem)
ple_cb (keep = & PARM & GROUP & QUAL &ID plese ple
&RESULT Icb_ple ucb_ple);

set ple;
by & GROUP & PARM & RESULT;

retainsa_pl_sem 0;
/* Output ple, and std. error, LCL, and UCL of ples*/
if last.& RESULT then output ple_cb;
sa=sa+ g
[* Compute standard error of ple mean */
_pl_sem=_pl_sem+sa* sa* (enter - remain) / (enter * remain);
/* Output standard error of ple mean */
if last.& PARM then do;

output ple_se;

sa =0;

_pl_sem=0;
end;

run;

[* Compute percentile estimates and their confidence bounds by
inverting PLEs and their upper and lower confidence bounds.
Where PLE is constant, use U-inverse (p) = inf{x|U(x) >= p}, and
L-inverse (p) = sup{x|L(x) <= p}, and point estimate is average
of upper and lower extremes. */

data ple_cb;

set ple_cb;
by & GROUP & PARM;
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array pct (i) &P; /* Percentiles*/

array Icb (i) &L; /* LTB*/

array ucb (i) &U; /* UTB */

array gnt (&N) _temporary_ (& TOLER);

*Code variables indicate whether percentiles and corresponding
Icb's and ucb's have been reached during passage through data.*/

array codex (i) codex1 - codex&N;
array codel (i) codell - codel&N;
array codeu (i) codeul - codeu&N;

keep & PARM & GROUP &1D
&P&L &U;

retain lastx codex1 - codex& N codell - codel& N codeul - codeu& N
&P &L &U;

if first.& PARM then do;
lastx = .;

* Set percentiles and confidence bounds to missing and zero
to denote not defined */

do over pct;
pct =.;
ucbh =
Icb =
codex = 0;
coddl = 0;
codeu = 0;
end;

end;
/* Rounding to ensure exact matches are not missed */
do over pct;
* code values = 0 denote not yet defined
code values = 1 denote partially done
code values = 2 denote done */
if codel = 0 and round (ucb_ple - gnt(i), & TOL) ge 0 then do;
codd = 2;
Icb =&RESULT; /* Setlower confidence bound */

end;
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if round (Icb_ple - gnt(i), & TOL) > 0 then do;
if codeu = 0 then do;
codeu = 2;
ucb =&RESULT; /* Set upper confidence bound */
end;
end;

dsedo;
ucbh =;
codeu = 0;
end;
if codex = 0 then do;
if round (ple - gnt(i), & TOL) = 0 then codex = 1,
elseif round (ple - gnt(i), &TOL) > 0 then do;
codex = 2;
pct =&RESULT,; /* Percentiles*/
end;
end;
elseif codex = 1 and round (ple - gnt(i), & TOL) > 0 then do;
codex = 2;
pct = (lastx + &RESULT) / 2; /* Percentiles*/
end;
end;
lastx = &RESULT;
if last.& PARM then output;

run;

data ple_mn;

merge ple_mn
ple se
ple_cb;
by & GROUP & PARM;

label _pl_sem ="PLE mean, std. err.”

_pl_Icl ="PLE mean, LCL (p=& CONFID)"
_pl_ucl ="PLE mean, UCL (p=& CONFID)"
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_det = 'Detects

/* Use t-distribution with n-1 df here. Alternatives might be
normal distribution or t with (n-_ndkt) df. */

[* Standard error of ple mean */

if _det>1then_pl_sem=sgrt (_pl_sem™* _det/ (_det - 1));
ese_pl_sem=;

[* Confidence limits */
if _obs> 1 then do;
_pl_ucl =_pl_mn+ (_pl_sem* tinv (& CONFID, _obs- 1));
_pl_lcl=_pl_mn- (_pl_sem* tinv (& CONFID, _obs- 1));
end;
drop _[t00001 _qu00001 _ut00001;

run;

/* End SAS code for PLE-based statistics. */

data detects;

merge stat (in =inl)
ple mn (in=in3);
by & GROUP & PARM;

drop_ndt _avg var__cov__sem_ _sev_hiasl &QUAL;
retain _avg__var__Ssem__Sev__Cov_;

label _obs ="Observed"
_ar_mn ="Ordinary mean"
_min "Minimum"
| "Maximum"
_ar_sem ="QOrdinary mean, std. err."

max
if last.& PARM then do;
/* COMPUTE BIAS ADJUSTED PRODUCT LIMIT ESTIMATES & LIMITS */

_pl_mn=_pl_mn - biasl,
_pl_Icl=max(0,_pl_lcl - biasl);
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_pl_ucl=_pl_ucl - biasl,

output;
_avg_=. var_=. _sem =. Sev_=. _COV_=.
end;
run;
data & OUTPUT;

Set detects (in =inl) /* Summary statistics for detects */
nonstat (in = in2); /* Summary statistics for nondetects */
if in2 then _det=0;
label &labell;
label &labelq;
label &labelu;

run;
proc sort data= & OUTPUT;
by & GROUP & PARM;

run;

%MEND ple;
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APPENDIX C

THE LOGCONF MACRO



The logconf macrois listed below.

#*******************************************************************\

*

* |ogeonf.sas: Calculate statistics based on the longnormal distribution when
* there is no censoring.
*
© 1999
Lockheed Martin Energy Research Corporation
All rights reserved

Neither the Government nor LMER makes any warrantee, express or implied, or
assumes any liability or responsibility for the use of this software.

* ok ok ok ok *

v*******************************************************************/

%macro logconf(INPUT, OUTPUT, GROUP, RESULT, PARM, ID);

libname temp '/home/sun4/u5/schmoyer/lyon/project/macros;
*Put hfun.ssdO1 SAS data set with Land H-function values
in same directory as macros,

data & output;
set & INPUT,;
Iresult=log(& RESULT);

proc sort data=& output;
by & GROUP & PARM;

proc means data=& output noprint;
var lresult;

by & GROUP & PARM;

output out=a (drop=_type__freq )
n=n

mean=mean

std=stand;

id &ID;

proc sort;
by n;

data & output;

merge a (in=inl) temp.hfun;
array col {99} col1-col99;
by n;

if inl;

/* maximum number of samples. Anything above
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this number uses the theory that
(X-u)/(S/sgrt(n)) follows N(0,1)*/
_max_n_ = 1000;

temp=10* stand,

/* constants for the table of h values

used to calculate "Land's method" of UCL
for the 95% UCL. This assumes constant
interval sized for the whole H table. */

[* 1f the sigmais lower than what is found
in the table, use the lowest interval */
IF temp <1 THEN temp = 1;

* 1f the sigmais higher than what is found
in the table, use the highest interval */
IF temp > 99 THEN temp = 99;

index=int(temp);

* Interpolate for new H value. */
h=col (index)* (index+1-temp)+col (index+1)* (temp-index);

IFN <= _max_n_then
UCL_95 = exp(mean + 0.5* stand* stand + stand * H/SQRT(N-1));
*Calculate Upper 95% Confidence Limit via"Land's Method" ;

ELSE UCL_95 = exp(mean + stand* stand/2 + tinv(.95,n-1)* SQRT (stand* stand/N +
stand* stand* stand* stand/(2* (N+1))));

[* Calculate Upper 95% Confidence Limit via Cox's method
exp((y+$S'2/2) + Z.95*Beta) Y = sample mean
Beta = SQRT(S"2/(nu+1) + SM/(2* (nu+2)))
Z.95 = 95 percentile of N(0,1) = 1.645.
t-95 substituted for z-95 to force exact agreement with
Inor macro--RLS.*/

keep n & GROUP & PARM & 1D UCL_95 mean stand;
label ucl_95="Land's lognormal 95% UCL"
n="Observed"

mean="L og-scale mean’

stand="L og-scale standard deviation’;

rename n=_obs,

run;
%mend logconf;
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APPENDIX D

THE SASPROGRAM USED TO PRINT THE INPUT DATA, TO
CALL THE SASMACROS, AND TO PRODUCE THE OUTPUT
FILES



The SAS program used to print the input data, to call the SAS macros, and to produce the output
filesislisted below.

#*******************************************************************\

SAS program that prints the data, calls the SAS macros, and prints the output

*
*
* © 1999
*  Lockheed Martin Energy Research Corporation
* All rights reserved
*
*  Neither the Government nor LMER makes any warrantee, express or implied, or
* assumes any liability or responsibility for the use of this software.

*

v*******************************************************************/

options 1s=72 ps=60 sasautos="../macros symbolgen mlogic mprint noovp nodate
nonumber;
libname there '/home/sun4/u5/schmoyer/lyon/project/transport.sam’;

proc print data=there.subset label split="",
titlel " "

title2 " ";

title3

"Table 1. Groundwater Lead Concentrations (mg/L) from Y-12 Fuel Station';
var date_col result lower qual;

by station;

id station;

label station="Monitoring* Station’
result="Analytical* Result/Detection* Limit'
date_col="Date* Collected'

qual='"Qualifier’

lower="Lower (for*Inor.sas)’;

format date col date7. lower result 5.4;

%Inor (there.subset, outputl, station, result, lower, qual, analysis, ,
.95,.50 .75 .90);
run;

options |s=72 ps=56;

proc contents data = outputl;

titlel " ";

title2 " ";

title3 "Table 2. SAS Macro Inor.sas Output Data Set Contents’;
titled "for Groundwater Lead (Y-12 Fuel Station)";

run;

options |s=72 ps=63;

proc print data=outputl label split=",";
titlel ' *;

title2 ' ",



title3 "Table 3. Output of SAS Macro Inor.sas;

titled 'for Groundwater Lead (Y-12 Fuel Station)';

id station;

var_ OBS DET MIN _MAX AR LCL AR MN_AR UCL AR SEM
LN LCL LN MN LN UCL LT500_ QU500 UT500

_LT750 QU750 UT750 LT900 QU900 UT900 LS MN LS SEM LS STD
"N LCL_ NMN NUCL NSEM N STD

~NL500 NQ500 NU500 NL750 NQ750 NU750 NL900 NQ900 NU900;
label LT500="95% LTB, 50%-ile

_QU500="Estimate, 50%-il€e

_UT500="95% UTB, 50%-il€e

_LT750="95% LTB, 75%-il€e

_QU750="Estimate, 75%-il€e

_UT750="95% UTB, 75%-il€e

_LT900="95% LTB, 90%-il€e

_QU900="Estimate, 90%-ile

_UT900="95% UTB, 90%-ile

station="Station'

_|Is std ="Ln-scale,std. dev."

_NQ500='Normal Moddl, Estimate, 50%-ile

_NQ750='Normal Moddl, Estimate, 75%-ile

_NQ900='Normal Moddl, Estimate, 90%-ile

_NL500="Normal Modédl, 95% LTB, 50%-ile

_NL750="Normal Modédl, 95% LTB, 75%-ile

_NL900="Normal Modedl, 95% LTB, 90%-ile

_NU500="Normal Modedl, 95% UTB, 50%-ile

_NU750="Normal Modedl, 95% UTB, 75%-ile

_NU900="Normal Moddl, 95% UTB, 90%-il€’;

run;

%ple (there.subset, outputp, station, result, qual, anaysis, ,
.95,.50 .75 .90);

options |s=72 ps=56;

proc contents data = outputp;

footnote;

titlel " "

title2 " ";

title3 "Table 4. SAS Macro ple.sas Output Data Set Contents';
titled "for Groundwater Lead (Y-12 Fuel Station)";

run;

options |s=72 ps=60;

proc print data=outputp label split="";

titlel " "

title2 " ";

title3 'Table 5. Output of SAS Macro ple.sas;
titled 'for Groundwater Lead (Y-12 Fuel Station)';
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id station;

var_ OBS DET MIN MAX AR LCL AR MN AR UCL AR SEM PL LCL PL _MN
PL UCL PL SEM LT50 QU50 UT50 LT75 QU75 UT75 LT90 QU90 UT9O0;
label LT50="95% LTB, 50%-il€e

_QU50="Estimate, 50%-il€

_UT50="95% UTB, 50%-il€

_LT75='95% LTB, 75%-ile

_QU75='Edtimate, 75%-il€

_UT75='95% UTB, 75%ile

_LT90="95% LTB, 90%-ile

_QU90="Estimate, 90%-il€

_UT90="95% UTB, 90%-ile

station="Station’;

run;

proc print data=there.subsetd label split="";
titlel " *;

title2 " ";

title3

Table 6. Groundwater Barium Concentrations (mg/L) from Y-12 Fuel Station’;
var date _col result;

by station;

id station;

label station="Monitoring* Station’
result="Analytical* Result'

date_col="Date* Collected’

format date _col date?. result 4.2;

%l ogconf(there.subsetd, outputl, station , RESULT, anaysis, );

options |s=72 ps=56;

proc contents data = outputl;

titlel " *;

title2 " ";

title3 "Table 7. SAS Macro logconf.sas Output Data Set Contents';
title4 "for Groundwater Barium (Y-12 Fuel Station)";

run;

options |s=72 ps=63;

proc print data=outputl label split=",";

titlel " ";

title2 " ";

title3 'Table 8. Output of SAS Macro logconf.sas;
titled 'for Groundwater Barium (Y-12 Fuel Station)';
var _obs mean stand ucl_95;

id station;

label station="Station’;

run;



