An Overview of the Risk Assessment Information System

Tara A. Bhat Fredrick G. Dolislager Debra J. Stewart Karessa L. Manning Katie A. Noto Leslie D. Galloway Anthony Q. Armstrong

August 2023

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via OSTI.GOV.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone* 703-605-6000 (1-800-553-6847) *TDD* 703-487-4639 *Fax* 703-605-6900 *E-mail* info@ntis.gov *Website* http://classic.ntis.gov/

Reports are available to US Department of Energy (DOE) employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source:

Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 *Telephone* 865-576-8401 *Fax* 865-576-5728 *E-mail* reports@osti.gov *Website* https://www.osti.gov/

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM-2023/3036

Environmental Sciences Division

AN OVERVIEW OF THE RISK ASSESSMENT INFORMATION SYSTEM

Tara A. Bhat, Fredrick G. Dolislager, Debra J. Stewart, Karessa L. Manning, Katie A. Noto, Leslie D. Galloway, Anthony Q. Armstrong

August 2023

Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, TN 37831 managed by UT-BATTELLE LLC for the US DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

This research was supported in part by an appointment to the Oak Ridge National Laboratory Graduate Research Student Internship, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education

CON	NTEN	TS		iii
LIS	ΓOF	FIGURE	ES	. v
			S	
LIST	ΓOF	ACRON	YMS AND ABBREVIATIONS	xi
ABS			Σ	
1.	INT		TION	
	1.1		7	
	1.2		e	
		1.2.1	1	. 1
		1.2.2	Purpose of RAIS	
	1.3	<u> </u>	uration Control	
	1.4	User S	upport	
		1.4.1	Tutorials	
		1.4.2	Document Search	
		1.4.3	Guidance	
		1.4.4	Glossary	
		1.4.5	Training	. 4
2.			OF RISK ASSESSMENT PROCESS	
	2.1		ssessment Background	
	2.2		ssessment	
	2.3		are Assessment	
		2.3.1	Land Use Scenarios	
		2.3.1.1	Resident	
		2.3.1.2	Composite Worker	
		2.3.1.3	Outdoor Worker	
		2.3.1.4	Indoor Worker	
		2.3.1.5	Construction Worker	
		2.3.1.6	Excavation Worker	
	_	2.3.1.7	Recreator	
	2	2.3.1.8	Farmer	
	. .	2.3.2	Chronic Daily Intake (CDI)	
	2.4		ty Assessment	
		2.4.1	Cancer/Carcinogenic Toxicity Values	
	~ ~	2.4.2	Noncancer/Noncarcinogenic Toxicity Values	
	2.5		haracterization	
	~		Cancer	
	4	2.5.1.1	One-Hit Rule	
2	CUIT	2.5.2	Noncancer	
3.			TOOLS	
	3.1		cal Toxicity and Parameters	
		3.1.1	Chemical Toxicity Values	
		3.1.2	Chemical Toxicity Metadata	
		3.1.3	Chemical Data Profiles	
	2 2	3.1.4	Chemical Parameters	
	3.2		cal PRG Calculator	
	3.3		cal Risk Calculator	
	3.4		cal Regulatory Limits (ARAR Search)	
	3.5	Chemi	cal Ecological Benchmarks	22

CONTENTS

	3.6	Adult Lead Model	22
		3.6.1 Lead Industrial Worker Soil PRG Calculator	22
		3.6.2 Lead Industrial Worker Soil Risk Calculator	23
	3.7	Media Transport Tools	24
		3.7.1 Chemical Groundwater Transport Calculator	24
		3.7.2 Chemical PEF Transport Calculator	24
		3.7.3 VF Transport Calculator	24
	3.8	Chemical Background Values	25
4.	RAD	DIONUCLIDE TOOLS	
	4.1	Radionuclide Toxicity and Parameters	
		4.1.1 Radionuclide Risk Slope Factors	
		4.1.2 Radionuclide Dose Conversion Factors	27
		4.1.3 Radionuclide Parameters	27
	4.2	Radionuclide PRG Calculator	
	4.3	Radionuclide Risk Calculator	
	4.4	Radionuclide Regulatory Limits (ARAR Search)	
	4.5	Radionuclide Ecological Benchmarks	28
	4.6	Radionuclide Media Transport Tools	
	4.7	Radionuclide Background Values	
5.	OTH	ER TOOLS AVAILABLE ON THE RAIS	
	5.1	EPA tools	
	5.2	Alaska Tools	
	5.3	Delaware Tools	
6.		ICLUSION	
7.		ERENCES	
		IX A. TABLES OF VARIABLES USED IN CHEMICAL PRG EQUATIONS	
		IX B. CHEMICAL PRG EQUATIONS	
		IX C. TABLES OF VARIABLES USED IN CHEMICAL AND RISK EQUATIONS	
		IX D. CHEMICAL AND RISK CDI EQUATIONS	D-1
API		IX E. TABLES OF RECOMMENDED DEFAULT EXPOSURE PARAMETERS FOR	
		DIONUCLIDE PRG CALCULATOR	
		IX F. RADIONUCLIDE PRG EQUATIONS	F-1
API		IX G. TABLES OF RECOMMENDED DEFAULT EXPOSURE PARAMETERS FOR	
		DIONUCLIDE RISK CALCULATOR	
		IX H. RADIONUCLIDE CDI AND RISK EQUATIONS	
		IX I. SUPPORTING TABLES	
API	APPENDIX J. EQUATION AND MODEL REFERENCE DOCUMENTS J-1		

LIST OF FIGURES

Figure 1. Conceptual site model of quantified exposure pathways for RAIS chemical PRG and	
risk calculators.	8
Figure 2. Conceptual site model of quantified exposure pathways for RAIS radionuclide PRG and	
Risk calculators.	9
Figure 3. Low concentration vs. intake and ELCR for benzene, composite worker	. 13
Figure 4. One-hit rule concentration vs. intake and ELCR composite worker, benzene	. 14
Figure 5. Concentration vs. intake and HQ for benzene, composite worker, noncancer	. 15

LIST OF TABLES

Table 1. EPA Recommended Human Health Toxicity Value Hierarchy	17
Table 2. Established Regulatory Limits for Surface Water and Groundwater - Federal Source	
Table 3. Established Regulatory Limits for Surface Water and Groundwater - U.S. States	21
Table 4. Parameters for Lead Industrial Worker Soil PRG Equation	23
Table 5. Parameters for Lead Industrial Worker Soil Risk Equations	
Table 6. EPA Calculators for the Protection of Human Health Used in the Superfund Program	29
Table A-1: Toxicity Values	A-1
Table A-2. Miscellaneous Variables	A-1
Table A-3. Resident Soil Land Use Equation Variables	
Table A-4. Composite Worker Soil Land Use Equation Variables	A-5
Table A-5. Outdoor Worker Soil Land Use Equation Variables	A-6
Table A-6. Indoor Worker Soil Land Use Equation Variables	A-7
Table A-7. Construction Worker Soil Land Use Equation Variables	A-8
Table A-8. Excavation Worker Soil Land Use Equation Variables	A-9
Table A-9. Recreator Soil/Sediment Land Use Equation Variables	
Table A-10. Recreator Surface Water Land Use Equation Variables	
Table A-11. Resident Tap Water Land Use Equation Variables	
Table A-12. Indoor Worker Tap Water Land Use Equation Variables	
Table A-13. Resident Air Land Use Equation Variables	
Table A-14. Composite Worker Air Land Use Equation Variables	
Table A-15. Outdoor Worker Air Land Use Equation Variables	
Table A-16. Indoor Worker Air Land Use Equation Variables	
Table A-17. Construction Worker Air Land Use Equation Variables	
Table A-18. Excavation Worker Air Land Use Equation Variables	
Table A-19. Resident Fish Land Use Equation Variables	
Table A-20. Farmer Land Use Equation Variables	
Table A-21. Soil to Groundwater SSL Factor Variables	
Table A-22. Wind Particulate Emission Factor Equation Variables	
Table A-23. Mechanical Particulate Emission Factor Variables from Vehicle Traffic	
Table A-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic	
Table A-25. Volatilization Factor Equation Variables	
Table A-26. Mass Limit Volatilization Factor Equation Variables	
Table A-27. Subchronic Volatilization Factor Equation Variables	
Table A-28. Subchronic Mass Limit Volatilization Factor Equation Variables	
Table C-1. Toxicity Values	
Table C-2. Miscellaneous Variables	
Table C-3. Resident Soil Land Use Equation Variables	
Table C-4. Composite Worker Soil Land Use Equation Variables	
Table C-5. Outdoor Worker Soil Land Use Equation Variables	
Table C-6. Indoor Worker Soil Land Use Equation Variables	
Table C-7. Construction Worker Soil Land Use Equation Variables	
Table C-8. Excavation Worker Soil Land Use Equation Variables	C-10
Table C-9. Recreator Soil/Sediment Land Use Equation Variables	
Table C-10. Recreator Surface Water Land Use Equation Variables	
Table C-11. Resident Tap Water Land Use Equation Variables	
Table C-12. Indoor Worker Tap Water Land Use Equation Variables	
Table C-12. Indoor Worker Tap Water Land Use Equation Variables	
Table C-14. Composite Worker Air Land Use Equation Variables	
Table C The composite worker fin Lund Obe Equation variables	0 45

Table C-15. Outdoor Worker Air Land Use Equation Variables	C-23
Table C-16. Indoor Worker Air Land Use Equation Variables	C-24
Table C-17. Construction Worker Air Land Use Equation Variables	
Table C-18. Excavation Worker Air Land Use Equation Variables	C-25
Table C-19. Resident Fish Land Use Equation Variables	
Table C-20. Farmer Land Use Equation Variables	
Table C-21. Soil to Groundwater SSL Factor Variables	
Table C-22. Wind Particulate Emission Factor Equation Variables	
Table C-23. Mechanical Particulate Emission Factor Variables from Vehicle Traffic	C-32
Table C-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic	
Table C-25. Volatilization Factor Equation Variables	
Table C-26. Mass Limit Volatilization Factor Equation Variables	
Table C-27. Subchronic Volatilization Factor Equation Variables	
Table C-28. Subchronic Mass Limit Volatilization Factor Equation Variables	
Table E-1. Slope Factors (SFs)	E-1
Table E-2. Miscellaneous Variables	
Table E-3. Resident Soil	
Table E-4. Indoor Worker Soil	
Table E-5. Outdoor Worker Soil	
Table E-6. Composite Worker Soil	
Table E-7. Excavation Worker Soil	
Table E-8. Construction Worker Soil	
Table E-9. Recreator Soil/Sediment	
Table E-10. Farmer Soil	
Table E-10. Fainer Soft Table E-11. Resident Tap Water	
Table E-11: Resident Tap Water Table E-12. Indoor Worker Tap Water	L-12 E_15
Table E-12. Indoor Worker Tap water	
Table E-15: Recitator Surface Water Table E-14: Farmer Tap Water	
Table E-14. Fainter Tap water	
Table E-15. Resident All Table E-16. Indoor Worker Air.	
Table E-10. Indoor Worker Air	
Table E-17. Outdoor Worker Air	
Table E-18. Composite Worker Air Table E-19. Excavation Worker Air	
Table E-19. Excavation Worker Air	
Table E-20. Construction worker Air Table E-21. Recreator Air	
Table E-22. Resident Fish Consumption Table E-22. Resident Fish Consumption	
Table E-23. Recreator Game and Fowl Consumption Table E-24. Formum Direct In gostion	
Table E-24. Farmer Direct Ingestion Table E-25. Soil to Groundwater SSL Factor Variables	
Table E-25. Son to Groundwater SSL Factor Variables Table E-26. Wind Particulate Emission Factor Variables	
Table E-20. Wind Particulate Emission Factor Variables from Vehicle Traffic	
Table E-27. Mechanical Particulate Emission Factor Variables from vehicle Traffic	
Table G-1. Slope Factors (SFs) Table G-2. Miscellaneous Variables	
Table G-3. Resident Soil Table G-4. Indeer Worker Soil	
Table G-4. Indoor Worker Soil Table C-5. Outdoor Worker Soil	
Table G-5. Outdoor Worker Soil Table G-6. Composite Worker Soil	
Table G-6. Composite Worker Soil Table G-7. Execution Worker Soil	
Table G-7. Excavation Worker Soil. Table C-8. Construction Worker Soil.	
Table G-8. Construction Worker Soil	
Table G-9. Recreator Soil/Sediment	G-9

Table G-10. Farmer Soil	.G-10
Table G-11. Resident Tap Water	.G-12
Table G-12. Indoor Worker Tap Water	.G-15
Table G-13. Recreator Surface Water	.G-16
Table G-14. Farmer Tap Water	.G-16
Table G-15. Resident Air	.G-20
Table G-16. Indoor Worker Air	
Table G-17. Outdoor Worker Air	
Table G-18. Composite Worker Air	.G-22
Table G-19. Excavation Worker Air	
Table G-20. Construction Worker Air	
Table G-21. Recreator Air	.G-24
Table G-22. Resident Fish Consumption	.G-25
Table G-23. Recreator Game and Fowl Consumption	
Table G-24. Farmer Direct Ingestion	.G-27
Table G-25. Soil to Groundwater SSL Factor Variables	.G-29
Table G-26. Wind Particulate Emission Factor Variables	.G-30
Table G-27. Mechanical Particulate Emission Factor Variables from Vehicle Traffic	.G-31
Table G-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic	.G-31

LIST OF ACRONYMS AND ABBREVIATIONS

%	percent
ALM	Adult Lead Model
ARAR	Applicable or Relevant and Appropriate Requirement
CDI	Chronic Daily Intake
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act 1980
cm ²	square centimeters
COC	Contaminants of Concern
COPC	Chemical of Potential Concern
DI	Daily Intake
DoD	Department of Defense
DOE	Department of Energy
ELCR	Excess Lifetime Cancer Risk
EPA	Environmental Protection Agency
FGR	Federal Guidance Report
GIABS	Fraction of Contaminant Absorbed in Gastro-Intestinal Tract
GSDi	Geometric Standard Deviation
HEAST	Health Effects Assessment Summary Tables
HI	Hazard Index
HQ	Hazard Quotient
ICRP	International Commission on Radiological Protection
IUR	Inhalation Unit Risk
LOC	Land Use Scenario of Concern
MCL	Maximum Contaminant Level
$\mu g/m^3$	micrograms per cubic meter
μg/dL	microliters per deciliter
mg/day	milligrams per day
mg/kg-day	milligrams per kilogram-day
mg/L	milligrams per liter
mg/m ³	milligrams per cubic meter
MOC	Media of Concern
NCP	National Oil and Hazardous Substance Pollution Contingency Plan
ORNL	Oak Ridge National Laboratory
ORO	Oak Ridge Operations
ORR	Oak Ridge Reservation
OSF	Oral Slope Factor
OSRTI	Office of Superfund Remediation and Technology Innovation
OW	Office of Water
PbB	Blood Lead Concentration
pCi	picocurie
PEF	Particulate Emission Factor
PPRTV	Provisional Peer-Reviewed Toxicity Values
PRG	Preliminary Remediation Goal
RAGS	Risk Assessment Guidance for Superfund
RAIS	Risk Assessment Information System
RfC	Reference Concentration
RfD	Reference Dose
RML	Regional Removal Management Levels
ROC	Exposure Route of Concern
RVISL	Radon Vapor Intrusion Screening Level
SADA	Spatial Analysis and Decision Assistance
SDI	Subchronic Daily Intake

SF	Slope Factor
TBC	To-Be-Considered
TCE	Trichloroethylene
TDS	Total Dissolved Solids
TM	Technical Memorandum
TR	Radioactive Half-Life
TRW	Technical Review Workgroup
UCOR	United Cleanup Oak Ridge LLC
U.S.	United States
VF	Volatilization Factor
WQC	Water Quality Criteria

ABSTRACT

This technical memorandum (TM) presents an overview of the Risk Assessment Information System (RAIS), a collection of web-based tools designed to assist with the environmental risk assessment process. The objective of the RAIS is to be a single resource for the risk assessment process, providing guidance when planning and performing the steps: data assessment, exposure assessment, toxicity assessment, and risk characterization.

The RAIS evolved as a result of the initial remediation efforts at various United States (U.S.) Department of Energy (DOE) facilities. The goal was to increase the efficiency and transparency of the human health and ecological assessments being performed by DOE's Office of Environmental Management, Oak Ridge Operations (ORO) office by providing a repository for toxicity information, physicochemical data, risk assessment procedures, standardized risk calculation methods, and web-based tools. Since the initial launch in 1996, the RAIS has expanded its user base outside of the federal government and now has users from over 100 countries, universities, states, and local governments. What sets the RAIS apart from other risk assessment sites are the publicly available, searchable toxicity and physicochemical databases and the wide range of chemical and radionuclide risk calculation tools.

The purpose of this TM is to present the RAIS tools in order of the website menus and explain how they fit in the risk assessment process. In addition, this TM describes differences between the chemical and radionuclide tools of the RAIS. Screening level equations, chronic daily intake equations, and default exposure factors used in the chemical and radionuclide calculators are included in the appendices of this TM. This TM is not intended to be a detailed guide to risk assessment or the RAIS tools. The tools on the RAIS can be used to comply with procedures from multiple agencies, including but not limited to DOE, U.S. Environmental Protection Agency (EPA), U.S. Department of Defense (DoD), and many state governments. Further information on the RAIS tools can be found in the user guides and tutorials available on the webpage.

1. INTRODUCTION

The Risk Assessment Information System (RAIS) is a collection of web-based tools designed to assist with the steps of an environmental risk assessment. The RAIS was designed to streamline all risk assessment processes, from toxicity data curation to risk calculation, in a transparent format. Taking advantage of searchable and executable databases, menu-driven queries, data downloads, and dynamic calculators, the RAIS offers essential tools that are used in the risk assessment process from project scoping to implementation. The RAIS tools are available at https://rais.ornl.gov/. The RAIS is sponsored by the United States (U.S.) Department of Energy (DOE), Office of Environmental Management, Oak Ridge Operations (ORO) Office through a joint collaboration between United Cleanup Oak Ridge LLC (UCOR) and Oak Ridge National Laboratory (ORNL).

The main RAIS tools either calculate screening levels, called preliminary remediation goals (PRGs), or risk. Many of the other tools provide details on the inputs into these PRG and risk calculations. The term "risk" or "risk assessment" is used throughout this technical memorandum (TM) to describe both excess lifetime cancer risk (ELCR) probability and the noncancer hazard index calculations.

1.1 HISTORY

The RAIS was developed to assist with remediation efforts at various DOE sites involved with The Manhattan Project legacy waste by standardizing toxicity values, exposure equations, and essentially the entire risk assessment process. The goal was to increase the efficiency and transparency of the ecological and human health risk assessment projects being performed by DOE's Office of Environmental Management, ORO Office by providing a repository for information, established procedures, and standardized risk calculation methods and tools. The RAIS website was activated in 1996.

Prior to the RAIS, there was a lot of duplication in terms of curating toxicity values, physicochemical parameters, toxicity profiles, exposure parameters, and risk models. It was also common for risk assessments performed by different entities to have inconsistencies. Risk assessments were often multiple volumes of paper, because no central repository of common parameters could be cited. In addition, without the benefits of a single integrated system, each risk assessor was responsible for the maintenance of all databases needed for the risk assessment process. DOE's implementation of the RAIS and its associated guidance has streamlined the risk assessment process and eliminated the need for costly duplication of effort and printing.

Over time, the RAIS user base has expanded outside of the federal government and now has users from over 100 countries, 45 state governments, and many university programs. The RAIS also expanded to contain tools (or links to tools) developed by the RAIS team for the U.S. Environmental Protection Agency (EPA), Alaska, and Delaware. Additions to the RAIS continue to benefit all risk information users (e.g., DOE, EPA, U.S. Department of Defense [DoD], etc.).

1.2 PURPOSE

1.2.1 Purpose of this technical memorandum

The purpose of this TM is to:

- Present the risk assessment process and how the RAIS tools assist in each step,
- Identify all tools currently available on the RAIS and at linked sites,
- Provide brief instructions on how to access specific data and tools on the RAIS, and
- Provide a reference for those citing the RAIS and its applicability for use on their sites.

This TM is not intended to be a comprehensive resource for risk assessment methods. The tools on the RAIS can be used to comply with procedures from multiple agencies, including but not limited to DOE, U.S. Environmental Protection Agency (EPA), U.S. Department of Defense (DoD), and many state governments.

1.2.2 Purpose of RAIS

The objective of the RAIS is to provide a service-oriented environmental risk assessment expert system that is under configuration control. The RAIS offers tools and guidance for performing risk assessments based on general procedures applicable to many agencies or methods. The purpose of this on-line menudriven system is to provide risk tools and information to an unlimited audience in a timely and efficient manner, enable consistent and high-quality risk calculations, eliminate the tedious collection of up-to-date toxicity values and other parameters necessary for conducting risk activities, automate the exposure assessment, and provide the means for site comparisons. RAIS tool inputs can also be modified by the user to accommodate site-specific needs. These modifications include changing exposure parameters, toxicity values, physicochemical properties, mutagenic status, volatility status, and modeling parameters.

Use of the RAIS will reduce the cost of assessment activities and provide a platform for standardizing basic environmental cleanup decision processes for hazardous and radioactive waste sites. The RAIS provides links to other innovative risk assessment tools developed by the RAIS team in support of the EPA Superfund program to provide all the publicly available risk assessment tools in one place.

Drawing upon its history of assisting the DOE with the aftermath of the Manhattan Project, the RAIS webpage contains two high levels of organization: Chemical Tools and Radionuclide Tools. Chemical tools address over 2,400 chemicals, including common chemicals such as trichloroethylene (TCE), benzene, and formaldehyde as well as inorganic metals such as lead, arsenic, and chromium. The tools and information offered for chemicals are further discussed in **Section 3**. Radionuclide tools address metals that undergo nuclear decay and emit ionizing radiation. For example, the isotopes of uranium, U-235, U-236, and U-238, are three of the over 1,200 radionuclides on the RAIS. The tools and information offered for radionuclides are further discussed in **Section 4**.

1.3 CONFIGURATION CONTROL

The RAIS is reviewed on a consistent basis to ensure the information is current. Changes to the system are based on routine updates, sponsor/user request, and regulatory changes.

Updates to the RAIS are tracked and recorded in a project management system. When a change is deemed necessary to correct an error, comply with new guidance, update chemical or radiological parameters, or add new modules, the task is added to the project management system, and RAIS team members are assigned. The changes are first made on an internal (development) version of the RAIS, where they are subjected to a Quality Assurance (QA) process by the RAIS team that checks for function and accuracy. If the changes to the internal version are approved, the modified files are moved into production and are publicly visible to all RAIS users. The QA process is repeated on the production site to ensure function and accuracy.

Changes to toxicity values, physicochemical parameters, ecological screening benchmarks, and other screening values primarily occur during the semiannual updates in May and November. Users can view the What's New page to see a log of updates made each month as far back as February 1996 (<u>https://rais.ornl.gov/home/whatnew.html</u>). The information on the "What's New" page is also distributed via e-mail to users who sign up as members of the RAIS User's Group (<u>https://rais.ornl.gov/cgi-bin/tools/rais_user_signup</u>). A key benefit of this feature is to inform users of updates that may impact

ongoing risk assessments (e.g., revised toxicity values). It is recommended that the "What's New" page be checked prior to finalizing risk results and again before remedial action decisions are finalized.

The RAIS chemical and radionuclide PRG calculator results are checked frequently for accuracy and stability. Every default land use and media combination in these calculators are programmed to run nightly. The results are compared against a standard set of verified results stored in the database. An email is generated with the results of these comparisons and sent to the RAIS Team. If the nightly run does not match the standard set for a calculator, the discrepancy is flagged for attention in the email.

In addition to QA checks for accuracy and function, the RAIS servers and file systems are monitored. Service disruption notices that may be due to power outages, hardware failures, or software maintenance issues are automatically sent to the RAIS team. Planned service disruptions are posted on the RAIS website in advance of any outage. Any unplanned event is addressed immediately to ensure a great customer experience.

1.4 USER SUPPORT

All questions and suggestions from RAIS users are welcomed. General questions may be submitted through the RAIS contact feature at the bottom of each page. The Contact/Staff Listing page presents the contact information for the RAIS team including the area of expertise for each staff member (<u>https://rais.ornl.gov/tools/people.php</u>). The tutorials, glossary, user guides, and frequently asked question pages often contain the answers users are looking for. They are described in detail in the following text.

1.4.1 Tutorials

The RAIS has two online training platforms: "RAIS Main Tutorial" and "What is Risk Assessment?". The "RAIS Main Tutorial" is a detailed guide that covers all RAIS tools in the order that they are currently found on the RAIS (<u>https://rais.ornl.gov/tutorials/tutorial.html</u>). The "What is Risk Assessment?" tutorial provides a basic introduction to risk assessment as a concept and goes through the four main steps of a typical risk assessment (<u>https://rais.ornl.gov/tutorials/whatisra.html</u>).

1.4.2 Document Search

The RAIS includes a Document Search tool that allows users to search for risk assessment guidance, chemical or radionuclide-specific information, results from previous investigations, and more (<u>https://rais.ornl.gov/tools/doc_search.php</u>). A list of documents that contain RAIS PRG and risk calculation equation and model sources is included in **Appendix I**.

1.4.3 Guidance

The RAIS includes 3 types of guidance:

- ORO Regulatory Guidance TM: provides a repository for procedures and technical memoranda developed for risk assessments conducted on the Oak Ridge Reservation (ORR) (<u>https://rais.ornl.gov/guidance/tm.html</u>);
- EPA Regulatory Guidance:
 - EPA Human Health Risk Assessment Guidance: provides a comprehensive list of EPA guidance for human health risk assessment (<u>https://rais.ornl.gov/guidance/epa_hh.html</u>),

- EPA Ecological Risk Assessment Guidance: provides a comprehensive list of EPA guidance for ecological risk assessment (<u>https://rais.ornl.gov/guidance/epa_eco.html</u>), and
- EPA Regional Supplemental Risk Assessment Guidance: provides regional-specific documents or links to the individual EPA regions (<u>https://rais.ornl.gov/guidance/epa_reg.html</u>); and
- State Guidance: provides links to health and environmental agencies from different states and territories (<u>https://rais.ornl.gov/guidance/state.html</u>).

1.4.4 Glossary

The RAIS webpage includes a glossary of environmental restoration terms with definitions from DOE-ORO staff and affiliates and other sources (<u>https://rais.ornl.gov/home/glossary.html</u>).

1.4.5 Training

The RAIS team has developed one- to -five-day risk assessment courses that can be modified to fit client needs and performed at the client locale (<u>https://rais.ornl.gov/home/training.html</u>). Additionally, training courses are held biannually, if possible, at ORNL. These classes provide hands-on use of the RAIS with education and supervision by the RAIS developers. The purpose of the training is to educate users on every aspect of the RAIS. The course clarifies sources of the databases, identifies many ways to apply the tools, provides users with an opportunity to voice concerns, educates beginners on the methods of risk assessment, and clarifies RAIS methods for advanced risk professionals. EPA tools developed by the RAIS team are also covered in these classes.

2. OVERVIEW OF RISK ASSESSMENT PROCESS

2.1 RISK ASSESSMENT BACKGROUND

The methods outlined in this document are consistent with parts A through F of the EPA's Risk Assessment Guidance for Superfund (RAGS) Volume I: Human Health Evaluation Manual (EPA 1989, 1991a, 1991b, 2001, 2004, and 2009). Under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), RAGS serves as the primary regulatory guidance document for all risk assessments and their application to risk management in the Superfund program. While the RAIS was built to support the RAGS process, the tools can also be used for other EPA programs, other federal agencies, and state agencies as-is or by altering values and parameters in site-specific mode.

Environmental risk assessments can be utilized to:

- Aid in making decisions, such as the need for and the extent of remediation necessary at a given site,
- Develop criteria for handling chemical and/or radionuclide-contaminated materials,
- Estimate the likelihood of adverse effects as a result of exposure to contaminants, and
- Evaluate the effectiveness of various treatment technologies for hazardous/radioactive waste.

In this document, risk assessment is defined as the process to evaluate potential adverse health effects resulting from exposure to chemicals and radionuclides under a given set of circumstances. The following sections describes the four steps of a typical environmental risk assessment.

2.2 DATA ASSESSMENT

The risk assessment process begins with data compilation and evaluation of health problems that may be caused by the potential contaminants; this is sometimes called the hazard assessment. The objective of the data assessment step is to verify that the data are appropriate for use and are considered to be representative of current conditions. During this step, all available data are compiled, sorted by environmental medium, and evaluated relative to established criteria.

In the data assessment step, screens are used to determine contaminants of potential concern (COPCs). Typically, the maximum detected concentration of each analyte reported by a laboratory is compared to various screening levels. If the analyte concentration is above the screening level(s) for the applicable media and land use, the analyte is determined to be a COPC, and it is carried through the next step of the risk assessment process. Screens can be performed against risk-based PRGs, applicable or relevant and appropriate requirements (ARARs), background values, etc.

• Preliminary Remediation Goals (PRGs)

A PRG is the average concentration of a chemical and/or radionuclide in an exposure area that will yield the specified target risk or hazard quotient in an individual who is exposed at random within the exposure area (EPA, 2022). PRGs can be thought of as "backward risk calculations", as the process starts with a target risk to calculate an acceptable media concentration.

The PRGs presented on the RAIS were developed following general EPA guidance on using toxicity values and exposure information to derive risk-based PRGs that are protective of human health. The toxicity values used in the PRG calculations are discussed in Section 3.1 for chemicals and in Section 4.1 for radionuclides. The risk-based PRGs are applicable to all sites and, if used to guide early clean-up decisions, will result in residual risks from direct contact with a contaminated medium that satisfy the general acceptable ELCR range of 1E-04 to 1E-06 (10^{-4} to 10^{-6}) and a hazard index (HI) of 1 or less.

The Chemical PRG Calculator (https://rais.ornl.gov/cgi-bin/prg/PRG_search?select=chem) and Radionuclide PRG Calculator (https://rais.ornl.gov/cgi-bin/prg/PRG_search?select=rad) are discussed in Sections 3.2 and 4.2, respectively.

• Applicable or Relevant and Appropriate Requirements (ARARs)

Data should also be screened against promulgated standards such as ARARs (https://rais.ornl.gov/tools/arar_search.php). ARARs often include EPA's Office of Water (OW) maximum contaminant levels (MCLs) for drinking water as well as other water quality criteria (WQC). Many States also promulgate ARARs that should be considered if they are more stringent than federal requirements. The RAIS ARAR search tool includes those established regulatory limits for surface water and groundwater.

The chemical (https://rais.ornl.gov/cgi-bin/prg/PRG_search?select=chem) and radionuclide (https://rais.ornl.gov/tools/arar_search.php) ARAR search tools are discussed in Sections 3.4 and 4.4, respectively.

• Background Values

Along with risk-based PRG and ARAR screens, data is sometimes screened against appropriate background values in order to account for naturally occurring or anthropogenic levels of chemicals unrelated to the contamination.

The chemical and radionuclide background search tools are discussed in Sections 3.8 and 4.7, respectively.

• Ecological Benchmarks

Risk assessments of many contaminated areas require that data be screened to identify those chemicals and/or radionuclides that may pose an ecological hazard. This screening assessment involves a comparison of the reported contaminant with toxicological benchmarks derived from laboratory or field data for a particular species or group of organisms. If an analyte concentration or the estimated exposure level is lower than the lowest calculated benchmark, then the analyte is unlikely to present an ecological risk. However, if the analyte concentration or the reported detection limit exceeds a benchmark, then further analysis is needed to determine what, if any, hazard is posed by that analyte for ecological receptors. The more the analyte concentration exceeds the benchmark value, the more likely that the contaminant poses an ecological risk. Screening ecological benchmarks, therefore, provide a quick way to determine priority contaminants at a particular waste site.

The RAIS offers two versions of the ecological benchmark tool: one for chemicals (https://rais.ornl.gov/tools/eco_search.php?select=chem) and one for radionuclides (https://rais.ornl.gov/tools/eco_search.php?select=rad). More information can be found in the RAIS Ecological Benchmark User Guide (https://rais.ornl.gov/tools/eco_guide.html).

Ecological benchmarks for chemicals and radionuclides are further discussed in Sections 3.5 and 4.5, respectively.

2.3 EXPOSURE ASSESSMENT

The objective of the exposure assessment step is to estimate the type and magnitude of COPC exposures that are present at or migrating from a site/facility. This step starts with characterizing the exposure setting, which involves defining the physical environment and identifying potential land use scenarios and media that may be impacted. After the exposure setting has been characterized, the appropriate exposure pathways are identified, and exposure is quantified for each route (i.e., ingestion, inhalation, dermal, external exposure, and consumption of produce).

2.3.1 Land Use Scenarios

Prior to beginning risk calculations, the RAIS PRG and risk calculator user guides can be used to help identify which land use scenarios and exposure pathways would be appropriate for a project by considering the default exposure factors of each land use scenario (e.g., exposure frequency, duration, and time). Additionally, the default exposure factors can often be replaced with site-specific values when calculating PRGs or performing risk characterization.

The land use scenarios considered in the chemical and radionuclide RAIS calculators are presented in **Figures 1** and **2**, respectively. The land use and media combinations available in the PRG calculators are the same as those available in the risk calculators.

For sites with an unknown future use (unrestricted future use), acceptable residential land use concentrations are typically used. If residential concentrations cannot be met, land use restrictions are typically deeded.

2.3.1.1 Resident

This receptor spends most, if not all, of the day at home. The media assessed for this receptor are soil, tap water, and air. The activities for this receptor involve typical home making chores (cooking, cleaning, showering, and laundering) as well as outdoor activities like gardening. For the soil pathway, it is assumed that there is an unlimited potential for surface erosion and the production of airborne particulates and vapor emissions. Adults and children may exhibit different exposure rates for some parameters. For example, the child resident is assumed to ingest 200 milligrams of soil per day (mg/day) while the adult ingests 100 mg/day. To account for changes in soil intake as the receptor ages, PRG calculations and risk characterization based on carcinogenic risk due to incidental ingestion of soil are calculated using age-adjusted ingestion factors. Additionally, the PRGs and/or risk results based on systemic toxicity (i.e., hazard) are calculated separately for the child and the adult.

Because most radionuclides are not volatile, exposure to vapors emitted from tap water are only considered for tritium and radon. Tritium is considered because it may exist as either hydrogen gas in water or replace one of the hydrogens found in the water molecule. Radon is considered because groundwater that is in contact with rock or soil containing radium will pick up radon and release it to the atmosphere when the water is used in a residence.

Refer to Figures 1 and 2 for residential exposure pathways for chemicals and radionuclides, respectively.

2.3.1.2 Composite Worker

This is a long-term receptor exposed during the workday who is a full-time employee working on-site and spends most of the workday conducting maintenance activities outdoors. The media assessed for this receptor are soil and air. The activities for this receptor (e.g., moderate digging, landscaping) typically involve on-site exposure to surface soils. The composite worker is expected to have an elevated soil ingestion rate (100 mg/day). The composite worker combines the most protective exposure assumptions of the outdoor and indoor workers. The only difference between the outdoor worker and the composite worker uses the more protective exposure frequency of 250 days/year from the indoor worker scenario. Refer to **Figures 1** and **2** for applicable exposure pathways for chemicals and radionuclides, respectively, for this land use.

2.3.1.3 Outdoor Worker

This is a long-term receptor exposed during the workday who is a full-time employee working on-site and spends most of the workday conducting maintenance activities outdoors. The media assessed for this receptor are soil and air. The activities for this receptor (e.g., moderate digging, landscaping) typically involve on-site exposure to surface soils. The outdoor worker is expected to have an elevated soil ingestion rate (100 mg/day). The outdoor worker receives more exposure than the indoor worker under commercial/industrial conditions. Refer to **Figures 1** and **2** for applicable exposure pathways for chemicals and radionuclides, respectively, for this land use.

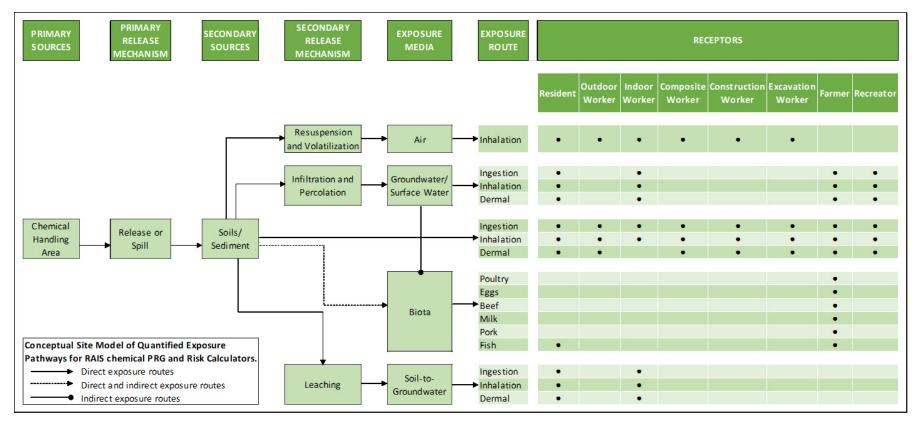


Figure 1. Conceptual site model of quantified exposure pathways for RAIS chemical PRG and risk calculators.

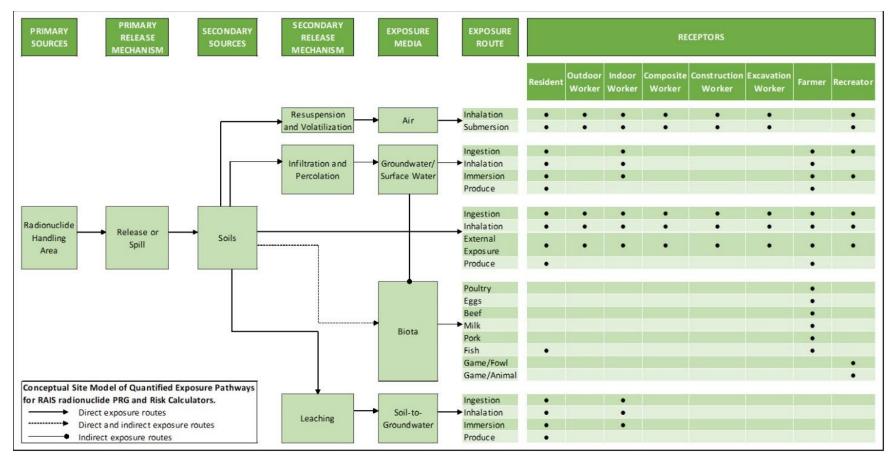


Figure 2. Conceptual site model of quantified exposure pathways for RAIS radionuclide PRG and Risk calculators.

2.3.1.4 Indoor Worker

This receptor spends most, if not all, of the workday indoors. Thus, an indoor worker has no direct dermal contact with outdoor soils. This worker may, however, be exposed to contaminants through ingestion of contaminated soils that have been incorporated into indoor dust and inhalation of volatiles and particulates from outside soils. PRGs calculated for this receptor are expected to be protective of both workers engaged in low intensity activities such as office work and those engaged in more strenuous activity (e.g., factory or warehouse workers). The indoor worker is expected to drink water at the facility, which could be sourced from contaminated groundwater or surface water. Refer to **Figures 1** and **2** for applicable exposure pathways for chemicals and radionuclides, respectively, for this land use.

2.3.1.5 Construction Worker

The construction worker land use scenario has two different options for soil: exposure to unpaved road traffic and exposure to other construction activities. These two scenarios differ in their calculations of particulate emission factor (PEF) and volatilization factor (VF) values. Both scenarios address two types of mechanical soil disruption: standard vehicle traffic and activities other than vehicle traffic (i.e., dozing, grading, tilling, dumping). Because the exposure durations are limited to one year, the PRGs and/or risk results are calculated using subchronic reference doses for all exposure routes. The construction worker is expected to have a soil ingestion rate of 330 mg/day, higher than the worker land use scenarios presented in **Sections 2.3.1.2 - 2.3.1.4**. Refer to **Figures 1** and **2** for applicable exposure pathways for chemicals and radionuclides, respectively, for this land use.

2.3.1.6 Excavation Worker

For the excavation worker land use scenario, individuals are assumed to be exposed to contaminated soil infrequently and for only a short period of time. The excavation worker is expected to have a soil ingestion rate of 330 mg/day, higher than the worker land use scenarios presented in **Sections 2.3.1.2** - **2.3.1.4**. Due to the nature of this scenario, exposure frequency is assumed to be only one month in length and, because excavation is assumed to be a rare occurrence, the exposure duration for any one worker is assumed to be for only one year. The calculations in the RAIS assume that there is an unlimited potential for soil erosion and production of particulate and vapor emissions. Because the exposure durations are limited, the PRGs and/or risk results are calculated using subchronic reference doses for all exposure routes. Refer to **Figures 1** and **2** for applicable exposure pathways for chemicals and radionuclides, respectively, for this land use.

2.3.1.7 Recreator

Under the recreator land use scenario, individuals are assumed to be exposed to contaminated media while playing, hiking, etc. This land use can also include what is often described as a "trespasser" or "site visitor" scenario in some risk assessments. For the soil and sediment pathways, it is assumed that there is an unlimited potential for surface erosion and the production of particulates and vapor emissions. Since the rate of incidental ingestion of soil and sediment in relation to body weight varies significantly between children and adults, PRG calculations and risk characterization based on carcinogenic risk due to incidental ingestion of soil are calculated using an age-adjusted ingestion factor. For the same reason, the PRGs and/or risk results based on systemic toxicity (i.e., hazard) are calculated separately for the child and the adult. Refer to **Figures 1** and **2** for applicable exposure pathways for chemicals and radionuclides, respectively, for this land use.

2.3.1.8 Farmer

The farmer land use scenario considers a receptor that raises and consumes various farm products (produce, milk, and beef). PRGs for protective concentrations in soil and water can be back-calculated from farm product direct consumption PRGs. The calculators can generate separate PRGs or risk outputs for the pathways presented in **Figures 1** and **2**. Like the resident land use scenario, age-adjusted intake equations are factored into the consumption model, particularly because rate of milk consumption tends to vary with age and body weight.

Presently, the radionuclide PRG and risk calculators assess swine, poultry, egg, and fish in addition to the beef, milk, and produce assessed by the chemical PRG and risk calculators.

2.3.2 Chronic Daily Intake (CDI)

The chronic daily intake (CDI) represents the amount of an individual contaminant taken in by the receptor on a chronic, daily basis via a specific exposure pathway (e.g., ingestion of groundwater from a well downgradient of a spill). The CDI, combined with a toxicity value, can give the ELCR or the HI of COPC exposure. The RAIS offers the ability to calculate PRGs, HI, and ELCR based on subchronic daily (SDI) intakes as well.

2.4 TOXICITY ASSESSMENT

The toxicity assessment portion of the risk assessment consists of two steps: hazard identification and dose-response assessment. Hazard identification determines whether exposure to a chemical can increase the incidence of a particular adverse health effect and the likelihood of occurrence in humans. Dose-response assessment presents the relationship between the magnitude of exposure and adverse effects. For example, the length of time (magnitude of exposure) a person stays in the sun without protection is directly related to the severity of sunburn (adverse health effect) that person will receive. These two steps are used to produce toxicity values. The toxicity values are compiled from multiple sources.

During the toxicity assessment, toxicity values for each COPC are identified for the risk and hazard equations. The most common types of toxicity values are discussed below. Chemical toxicity and parameter tools are further discussed in **Section 3.1**, and radionuclide toxicity and parameter tools are further discussed in **Section 4.1**.

2.4.1 Cancer/Carcinogenic Toxicity Values

Slope factors and unit risks are the toxicity data most commonly used to evaluate potential human carcinogenic risks. They are used in risk assessments to estimate an upper-bound lifetime probability of an individual developing cancer as a result of exposure to a particular level of a potential carcinogen. Both are accompanied by a weight-of-evidence classification to indicate the strength of the evidence that the agent is a human carcinogen.

An oral slope factor (OSF) represents an upper bound, approximating a 95 percent (%) confidence limit, on the increased cancer risk from a lifetime oral exposure to an agent. The use of the "upper bound" means that the "true risk" is likely to be lower than the risk estimate derived through the slope factor model (EPA, 1989). The inhalation unit risk (IUR) is defined as the upper-bound ELCR estimated to result from continuous exposure to an agent at a concentration of 1 microgram per cubic meter (μ g/m³) in air.

2.4.2 Noncancer/Noncarcinogenic Toxicity Values

An oral reference dose (RfD) is defined as "an estimate (with uncertainty spanning perhaps an order of magnitude) of a daily exposure level for the human population, including sensitive subpopulations, that is likely to be without an appreciable risk of deleterious effects during a lifetime" (EPA, 1989). Similary, an inhalation reference concentration (RfC) is an estimate (with uncertainty spanning perhaps an order of magnitude) of a continuous inhalation exposure to the human population, including sensitive subpopulations, that is likely to be without an appreciable risk of deleterious effects during a lifetime. Various types of RfDs and RfCs are available depending on the length of exposure being evaluated (acute, chronic, or subchronic).

2.5 RISK CHARACTERIZATION

Risk characterization is the last step of the risk assessment process. Risk characterization incorporates the outcomes of the previous risk assessment steps and calculates the ELCR and HI resulting from potential exposure to chemicals and/or radionuclides via the applicable pathways and routes of exposure for a site.

All the COPCs have their ELCR and HI calculated using the CDIs from the exposure assessment and appropriate toxicity values from the toxicity assessment. Any ELCR that exceeds 1E-06 or HI exceeding 1 is of concern. Land use scenarios exceeding either of these benchmarks are land use scenarios of concern (LOCs). Risk characterization results for routes exceeding these criteria over all chemicals within a LOC are exposure routes of concern (ROCs). COPCs within a land use scenario of concern exceeding either of these benchmarks are contaminants of concern (COCs) for the LOC. ROCs are reviewed to determine media of concern (MOCs).

Risk characterization consists of the following steps:

- Quantify ELCR and HI for each COPC by exposure route for each land use/media combination;
- Quantify Total ELCR and HI for each COPC across all exposure routes;
- Quantify Total ELCR and HI for each exposure route across all COPCs;
- Quantify Total ELCR and HI across all exposure routes for each COPC for each land use/media combination;
- Identify LOCs, MOCs, ROCs, and COCs;
- Assess and present uncertainties;
- Consider site-specific human studies, if available; and
- Summarize and present baseline risk assessment characterization results.

All steps can be done using the RAIS risk calculators after selecting the appropriate land use and media combination and inputting the contaminant concentrations. Risk characterization can be understood as "forward risk calculations", since the risk or hazard resulting from potential exposure to chemicals and/or radionuclides will be calculated from known concentrations and the applicable pathways and exposure routes. PRG determinations are backwards-calculated (extrapolated from a set risk or hazard standard back to a "safe" or "acceptable" residual concentration level for a specific medium).

The risk calculator determines the individual risk from each of the contaminants within each pathway and sums the risks from the different contaminants within each pathway and across all pathways in order to determine total risk and hazard values for each pathway and each scenario.

The Chemical Risk Calculator (<u>https://rais.ornl.gov/cgi-bin/prg/RISK_search?select=chem</u>) and Radionuclide Risk Calculator (<u>https://rais.ornl.gov/cgi-bin/prg/RISK_search?select=rad</u>) are discussed in **Sections 3.2** and **4.2**, respectively.

2.5.1 Cancer

Risk for carcinogens is "estimated as the incremental probability of an individual developing cancer over a lifetime as a result of exposure to the potential carcinogen" or ELCR (EPA, 1989). Figure 3 presents the linearity of increasing ELCR as concentration and CDI increases.

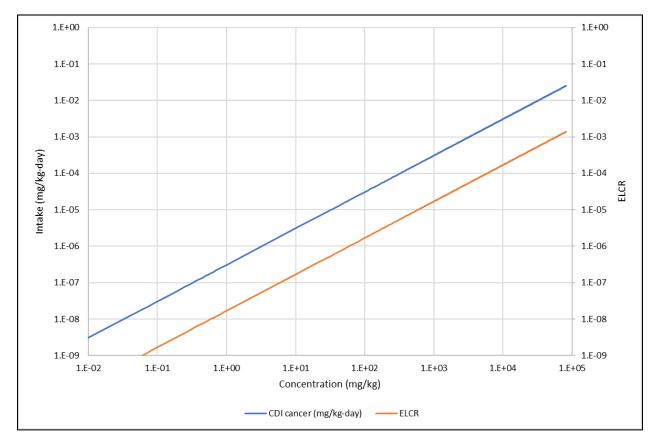


Figure 3. Low concentration vs. intake and ELCR for benzene, composite worker.

ELCR is calculated using the linear cancer risk equation shown below (EPA, 1989):

Linear Low Dose Cancer Risk Equation

$$Oral Risk = Intake \times SF [1a]$$

$$Inhlation Risk = Intake \times IUR [1b]$$

$$Dermal Risk = Intake \times \frac{SF}{GIABS} [1c]$$

$$External Risk = Intake \times SF [1d]$$

Where:

• Risk = a unitless probability of an individual developing cancer;

- Intake = daily intake (DI) (units vary per exposure route, see Appendices C and H);
- SF = slope factor (units vary per exposure route, see Appendices C and H);
- IUR = inhalation unit risk expressed as $(\mu g/m^3)^{-1}$; and
- GIABS = Fraction of contaminant absorbed in gastrointestinal tract, which is chemical-specific and unitless.

2.5.1.1 One-Hit Rule

The one-hit rule is an alternate calculation method that is utilized in instances of high exposure to chemicals and/or radionuclides (resulting in estimated risks that exceed 0.01) (EPA, 2020a and 2023). **Figure 4** shows the impact of the one-hit rule on the ELCR, as concentrations and CDI increase. The net effect of the one-hit rule is that the probability of getting cancer cannot exceed 100%.

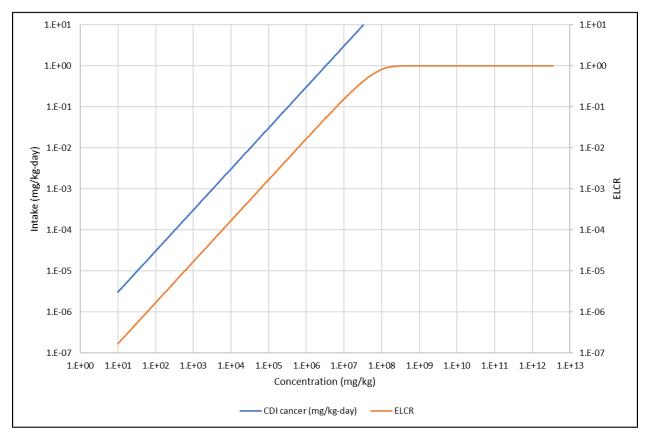


Figure 4. One-hit rule concentration vs. intake and ELCR composite worker, benzene.

The one-hit equation (shown in equation [2]) is consistent with the linear low-dose model for cancer risk (shown in equations [1a, 1b, and 1c]) (EPA, 1989):

One-Hit Equation for High Carcinogenic Risk Levels

$$Risk = 1 - \exp(-Intake \times TV) [2],$$

Where:

- Risk = a unitless probability of an individual developing cancer;
- exp = the exponential;
- Intake = DI as described in Section 2.5.1; and
- TV = toxicity value as described in Section 2.5.1.

2.5.2 Noncancer

The potential for non-carcinogenic effects to occur is evaluated by comparing an exposure level over a specific time period against an RfD derived for a similar exposure period.

Figure 5 presents a graph of a noncancer CDI and hazard quotient (HQ) calculation by increasing concentration. Also presented is the RfD, showing that any CDI below the RfD is not expected to show an adverse effect, and any CDI above the RfD is likely to show an adverse effect.

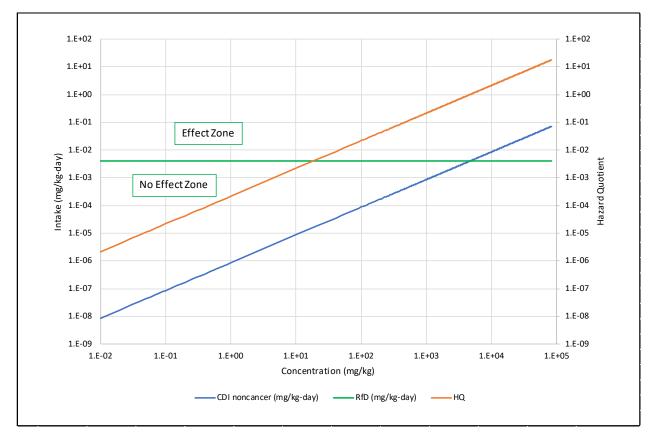


Figure 5. Concentration vs. intake and HQ for benzene, composite worker, noncancer.

The noncancer HQ is calculated using the equations shown below (EPA, 1989):

$$Oral Hazard Quotient = \frac{Intake}{RfD} [3a]$$

$$Inhalation Hazard Quotient = \frac{Intake}{RfC} [3b]$$

Dermal Hazard Quotient =
$$\frac{Intake}{RfD \times GIABS}$$
 [3c]

Where:

- Intake = can be CDI or SDI for the toxicant, expressed in milligrams per kilogram-day (mg/kg-day) for oral exposure or milligrams per cubic meter (mg/m³) for inhalation;
- RfD = oral reference dose for the toxicant, expressed in mg/kg-day;
- RfC = inhalation reference concentration for the toxicant, expressed in mg/m^3 ; and
- GIABS = fraction of contaminant absorbed in gastrointestinal tract, which is chemical-specific and unitless.

3. CHEMICAL TOOLS

The RAIS chemical tools provide information that can be used in all the steps of a risk assessment. Tools include screening level and risk calculators, database look up tools, and transport models. The sections below are presented in the order that they are currently found on the RAIS.

Note that when searching by chemical name, organic compounds and some inorganic chemicals often have synonyms. For example, 2-butanone is also called methyl ethyl ketone, methyl acetone, 2-oxybutane, or simply MEK, depending on the chemical application. If the chemical of interest is not seen in the pick list, an internet search for synonyms should be conducted.

3.1 CHEMICAL TOXICITY AND PARAMETERS

The RAIS has four tools for obtaining chemical toxicity information:

- Chemical Toxicity Values
- Chemical Toxicity Metadata
- Chemical-Specific Parameters
- Chemical Data Profiles

The tools listed above are described in further detail below.

3.1.1 Chemical Toxicity Values

The Chemical Toxicity Values tool (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox</u>) searches for human health toxicological values for multiple chemicals simultaneously. After selecting chemicals of interest and the desired toxicity values, the RAIS will generate table(s) of toxicity values, chosen according to slight modifications of the EPA Office of Solid Waste and Emergency Response (OSWER) Directive 9285.7-53 recommended hierarchy of toxicity values, as shown in **Table 1** (EPA, 2003b). The slight modifications include archived, draft, and addendum values from various sources.

Results can be downloaded in .xlsx format. Chronic, subchronic, and acute toxicity values are available.

Hierarchy Level	Toxicity Value	
Tier 1	EPA's Integrated Risk Information System (IRIS)	
Tier 2 EPA's Provisional Peer Reviewed Toxicity Values (PPRTVs)		
Tier 3	 Other Toxicity Values: EPA's Office of Pesticide Programs (OPP) Human Health Benchmarks for Pesticides (HHBPs), 	
	 Agency for Toxic Substances and Disease Registry (ATSDR) Minimal Risk Levels (MRLs), EPA Office of Water (OW), PPRTV Appendix Screening Values, and EPA's Health Effects Assessment Summary Tables (HEAST). 	

 Table 1. EPA Recommended Human Health Toxicity Value Hierarchy

3.1.2 Chemical Toxicity Metadata

The Chemical Toxicity Metadata tool (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemmeta</u>) displays toxicity values as well as supporting information, such as target organs, cancer classification, tumor types, confidence levels, uncertainty factors, and other study details. Similar to the Chemical Toxicity Values tool, select chemicals of interest and the desired information. Results can be downloaded in .xlsx format. Chronic and subchronic toxicity metadata are available.

3.1.3 Chemical Data Profiles

The Chemical Data Profiles tool (https://rais.ornl.gov/tools/profile.php) is used to obtain a wide range of information on a specific chemical. The display includes a brief summary of the chemical, all toxicity values available in the database, and all chemical-specific parameters (ex., VF). The unique aspect of the RAIS Chemical Data Profiles tool is that data is displayed from a variety of federal, state, and other sources. While the Chemical Toxicity Values and Chemical Toxicity Metadata tools provide toxicity values based on the EPA OSWER Directive 9285.7-53 hierarchy only (EPA, 2003b), the Chemical Data Profiles tool shows all available toxicity values and parameters. The toxicity values and physicochemical properties that are used in the PRG and risk calculations are highlighted. Toxicity metadata is also available in this tool.

3.1.4 Chemical Parameters

The Chemical-Specific Parameters tool (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemspef</u>) searches for chemical-specific parameters for multiple chemicals simultaneously. After selecting chemicals of interest and the desired parameters, the RAIS will generate a table containing the values, chosen according to the EPA hierarchy (see Section 2.4.2 of the RAIS Chemical PRG Calculator User Guide for more information here: <u>https://rais.ornl.gov/tools/rais_chemical_prg_guide.html</u>). Results can be downloaded in .xlsx format. Over 40 parameters are available, including melting point, density, vapor pressure, water solubility, and Henry's Law constants. The major sources used to populate the database of chemical-specific parameters are listed below:

- The Physical Properties Database (PHYSPROP) developed by Syracuse Research Corporation (SRC). <u>https://www.srcinc.com/services/engineering-operational-and-environmental-services/scientific-databases.html</u>.
- The Estimation Programs Interface (EPI SuiteTM) developed by the U.S. Environmental Protection Agency's Office of Pollution Prevention and Toxics and SRC. <u>https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface</u>.

- 3. CRC Handbook of Chemistry and PhysicsExit. (Various Editions). https://hbcp.chemnetbase.com/.
- 4. Perry's Chemical Engineers' Handbook (Various Editions). McGraw-Hill. Online version available here: <u>https://www.accessengineeringlibrary.com/browse/perrys-chemical-engineers-handbook-eighth-edition</u>. Green, Don W.; Perry, Robert H. (2008).
- 5. Lange's Handbook of Chemistry (Various Editions). Speight, James G. (2005). McGraw-Hill. https://www.accessengineeringlibrary.com/content/book/9781259586095.
- 6. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds. Knovel, 2003.
- 7. EPA Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (SSL) and Appendix A-C. <u>https://rais.ornl.gov/documents/SSG_nonrad_supplemental.pdf</u>.
- Summary of Physical/Chemical and Environmental Parameters for PFAS: Subject to Interim Special Order by Consent No. 20-086-CWP/AP/GW/HW/DW/SW, paragraph 37(J)(3). Environmental Studies Report E21-0037. 3M, 2021. <u>https://rais.ornl.gov/documents/3M.pdf</u>.
- U.S. EPA 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP. July 2004. <u>https://rais.ornl.gov/node/118631</u>.
- U.S. EPA 2015 Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2-154. <u>https://www.epa.gov/vaporintrusion/technical-guide-assessing-and-mitigating-vapor-intrusion-pathway-subsurface-vapor</u>.
- IAEA TRS 472 (IAEA). Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments. Technical Reports Series No. 472. International Atomic Energy Agency, Vienna. 2010. <u>http://www-pub.iaea.org/MTCD/publications/PDF/trs472_web.pdf</u>.
- 12. NCRP 123 (NCRP). NCRP Report No. 123, Screening Models for Releases of Radionuclides to the Atmosphere, Surface Water, and Ground. National Council on Radiation Protection and Measurements. January 22, 1996. <u>http://ncrponline.org/publications/reports/ncrp-reports-123/</u>.
- BAES. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. C. F. Baes III, R. D. Sharp, A. L. Sjoreen, R.W. Shor. Oak Ridge National Laboratory 1984. <u>https://www.nrc.gov/docs/ML1015/ML101590306.pdf</u>.

3.2 CHEMICAL PRG CALCULATOR

Chemical preliminary remediation goals (PRGs) (https://rais.ornl.gov/cgi-

<u>bin/prg/PRG_search?select=chem</u>) are calculated by selecting the applicable chemical(s) together with the applicable media, land use, and exposure route combination. If "site-specific" is selected as the PRG type, the following page will show the equations and exposure parameters used for deriving the PRGs, and some of the parameter values may be changed as necessary. If "default" is selected as the PRG type, the RAIS will proceed directly to the results page. Multiple chemicals can be selected. Results can be downloaded in .xlsx or .pdf formats. Additionally, the session inputs for the PRG calculator can be saved for future use and recalled by the PRG calculator.

The derivation of the selected PRG and the applicable equations and exposure parameters can be reviewed in more detail using the RAIS Chemical PRG Calculator User Guide (<u>https://rais.ornl.gov/tools/rais_chemical_prg_guide.html</u>). Tables of recommended default exposure parameters for the RAIS Chemical PRG Calculator can be found in **Appendix A**. Equations specific to the Chemical PRG Calculator are listed in **Appendix B**, while supporting equations applicable to multiple scenarios are listed in **Appendix J**.

3.3 CHEMICAL RISK CALCULATOR

Chemical risks (<u>https://rais.ornl.gov/cgi-bin/prg/RISK_search?select=chem</u>) are calculated by selecting COPCs from the chemical list together with the applicable media, land use, and exposure route combination.

On the following page, enter the known COPC concentrations for each media. This page also shows the equations and exposure parameters used for deriving the PRGs, and some of the parameter values may be changed as necessary. Results can be downloaded in .xlsx or .pdf formats. Additionally, the session inputs for the risk calculator can be saved for future use and recalled by the risk calculator.

The equations and exposure parameters used for the calculations are explained in greater detail in the RAIS Chemical Risk Calculator User Guide, available here:

<u>https://rais.ornl.gov/tools/rais_chemical_risk_guide.html</u>. Tables of recommended default exposure parameters for the RAIS Chemical Risk Calculator can be found in **Appendix C**. Equations specific to the Chemical Risk Calculator are listed in **Appendix D**, while supporting equations applicable to multiple scenarios are listed in **Appendix J**.

3.4 CHEMICAL REGULATORY LIMITS (ARAR SEARCH)

The regulatory limits for groundwater and surface water contained in the RAIS database comprise chemical-specific values based on potential applicable or relevant and appropriate requirements (ARARs). These values should be used in conjunction with risk-based PRGs to ensure that the PRGs for a site meet the residual risk requirements for protection of human health and the environment in the National Oil and Hazardous Substance Pollution Contingency Plan (NCP). In some cases, the ARAR values presented in the RAIS may be To-Be-Considered (TBC) Guidance, because these values are superseded by site-specific State requirements.

To use the Chemical ARAR Search tool (<u>https://rais.ornl.gov/tools/arar_search.php</u>), first select a regulatory limit source (currently the options are "Federal" or 13 different states). On the following page, select the chemicals of interest and applicable regulatory limits for the selected source. Results can be downloaded in .xlsx format.

The Federal ARAR options are listed in Table 2.

Primary Drinking Water Standards	Federal Water Quality Criteria
Primary Drinking Water MCLs	Human Health WQC for Aquatic Organisms and Drinking Water
Primary Drinking Water MCLGs	Human Health WQC for Aquatic Organisms Only
Maximum Residual Detergent Levels	Federal Freshwater WQC – Maximum
Proposed Primary Drinking Water MCLs	Federal Freshwater WQC – Continuous
Proposed Drinking Water MCLGs	Federal Saltwater WQC – Maximum
Secondary Drinking Water SMCLs	Federal Saltwater WQC – Continuous
	Organoleptic Effect Criteria
	Federal WQC Source

Table 2. Established Regulatory Limits for Surface Water and Groundwater – Federal Source

Notes: MCL = maximum contaminant level; MCLG = maximum contaminant level goal; SMCL = secondary maximum contaminant level; WQC = water quality criteria

The state-specific ARARs available on the RAIS are listed in Table 3.

State	Available Criteria
California	Primary Drinking Water Standards
	Water Quality Control Standards
Georgia	Primary Drinking Water Standards
e	Water Quality Control Standards
	Hazardous Site Response Type 1 Standards
Illinois	Primary Drinking Water Standards
	State Groundwater Standards
	Water Quality Standards
	Lake Michigan Basin Water Quality Standard
	General Use Derived Water Quality Criteria
	Lake Michigan Basin Derived Water Quality Criteria
Kentucky	Primary Drinking Water Standards
	Secondary Drinking Water Standards
	State Water Quality Criteria
New Jersey	Primary Drinking Water Standards
	Secondary Drinking Water Standards
New Mexico	Primary Drinking Water Standards
1.0.0.1.100000	Standards for Interstate and Intrastate Waters
	Standards for Groundwater of 10,000 mg/L TDS Concentration or Less
Nevada	Primary Drinking Water Standards
1.0.000	Water Quality Standards
New York	State WQ Standards – Aquatic (Acute)
1.0	State WQ Standards – Aquatic (Chronic)
	State WQ Standards – Aesthetics
	State WQ Standards – Health (Fish Consumption)
	State WQ Standards – Health (Water Source)
	State WQ Standards – Wildlife
Ohio	Primary Drinking Water Standards
	Secondary Drinking Water Standards
	Ohio Statewide Water Quality Criteria
	Lake Erie Standards
	Ohio River Water Quality Criteria
	Lake Erie Drainage Basin Water Quality Criteria
	Ohio River Drainage Basin Water Quality Criteria
South Carolina	Primary Drinking Water Standards
	State Groundwater Standards
	Water Quality Standards
Tennessee	Primary Drinking Water Standards
	Water Quality Criteria (WQC)
Washington	Primary Drinking Water Standards
0	State Groundwater Standards
	Water Quality Standards
Wisconsin	Primary Drinking Water Standards
	Water Quality Standards
	State Groundwater Standards

Table 3. Established Regulatory Limits for Surface Water and Groundwater – U.S. States

Notes: mg/L = milligrams per liter; TDS = total dissolved solids; WQ = water quality

3.5 CHEMICAL ECOLOGICAL BENCHMARKS

The Ecological Benchmark Tool for Chemicals (<u>https://rais.ornl.gov/tools/eco_search.php?select=chem</u>) presents benchmarks for air, surface water, sediment, surface soil, and biota applicable to a range of aquatic organisms, soil invertebrates, mammals, and terrestrial plants. Benchmarks are from 29 sources including national, state, and international agencies. Many of the benchmarks were originally derived from the Environmental Sciences Division of ORNL or compiled as part of the Spatial Analysis and Decision Assistance (SADA) Project (<u>https://www.sadaproject.net/</u>). To find ecological benchmarks, select the benchmark source(s), media, and chemical(s) of interest. The RAIS displays separate tables for each selected media with a list of all available ecological benchmark values for the selected chemical(s) of interest plus references and footnotes. Results can be downloaded in .xlsx format.

3.6 ADULT LEAD MODEL

The RAIS includes two methods to assess risks associated with industrial worker exposures to lead in soil: the Adult Lead Model (ALM) PRG Calculator and the ALM Risk Calculator. For both, the methodology focuses on estimating fetal blood lead concentrations in women exposed to lead-contaminated soils. This approach also provides tools for evaluating risks of elevated blood lead concentrations among exposed adults.

Based on the Technical Review Workgroup's (TRW) analysis of the data collected in the completed NHANES III survey (1999-2004), updated ranges for the baseline adult blood lead concentration (PbB) and geometric standard deviation PbB (GSDi) adult parameters in the ALM have been included in the spreadsheets (EPA, 2003a). However, recent scientific evidence has demonstrated adverse health effects at blood lead concentrations below 10 microliters per deciliter (μ g/dL) (down to 5 μ g/dL and possibly below). The EPA Office of Superfund Remediation and Technology Innovation (OSRTI) is developing a new soil lead policy to address this new information. Until that soil lead policy is finalized, regional risk assessors and managers should consult with the TRW's Lead Committee before applying these updated values for risk assessment.

3.6.1 Lead Industrial Worker Soil PRG Calculator

Use this tool (<u>https://rais.ornl.gov/cgi-bin/lead_model/prg_model</u>) to calculate a PRG for an industrial worker exposed to lead-contaminated soils. The ALM PRG calculator displays the default exposure parameters used in the calculations, which can be changed if evaluating a site-specific scenario. The Lead Industrial Worker Soil PRG Equation is shown below (equation [4a]) along with the associated parameters in **Table 4**.

Lead Industrial Worker Soil PRG Equation

$$PRG_{soil} = \left[\left(\frac{PbB_{fetal,0.95}}{(GSD_i^{1.645}) \times R_{\frac{fetal}{maternal}}} \right) - PbB_0 \right] \times \left[\frac{AT_{S,D}}{BKSF \times IR_s \times AF_{S,D} \times EF_{S,D}} \right] [4a]$$

Parameter	Description	Value	Units
PRG _{soil}	Industrial Worker PRG in Soil for no more than 5%	1050	mg/kg, μ g/g, or ppm
	probability that fetal PbB exceeds target PbB		
AT _{S, D}	Averaging time (same for soil and dust))	365	days/year
EF _{S, D}	Exposure frequency (same for soil and dust)	219	days/year
IRs	Soil ingestion rate (including soil-derived indoor dust)	0.05	g/day
AFs, d	Absorption fraction (same for soil and dust)	0.12	unitless
BKSF	Biokinetic Slope Factor	0.4	μg/dL per μg/day
GSD _i	Geometric Standard Deviation PbB	1.8	unitless
PbB_0	Baseline PbB	0.6	µg/dL
R _{fetal/maternal}	Fetal/Maternal PbB ratio	0.9	unitless
PbB _{fetal, 0.95}	Target PbB in fetus; value of 5 is used because it is the	5	µg/dL
	midpoint of the recommended range of 2 to 8 μ g/dL		

Table 4. Parameters for Lead Industrial Worker Soil PRG Equation

Notes: g/day = grams per day; $\mu g/day = microliters per day$; $\mu g/dL = microliters per deciliter$; $\mu g/g = micrograms per gram$; mg/kg = milligrams per kilogram; ppm = parts per million

3.6.2 Lead Industrial Worker Soil Risk Calculator

The ALM Risk Calculator (<u>https://rais.ornl.gov/cgi-bin/lead_model/risk_model</u>) calculates the probability (risk) of the fetal blood lead concentration exceeding target blood levels by determining the fetal blood lead level concentration from the user-provided soil lead concentration. The ALM Risk Calculator displays the default exposure parameters used in the calculations, which can be changed if evaluating a site-specific scenario. Results can be downloaded in .xlsx or .pdf formats. The two equations (equations [4b] and [4c]) used for the risk calculations are shown below along with their associated parameters in **Table 5**.

Probability (Risk) of Fetal Blood Lead Level Exceeding Lead Blood Target Level Equation

Probability of
$$PbB_{fetal} > PbB_t(\%) = 1 - CDF_{log-normal-dist}(x, \mu, \sigma)$$
 [4b]

Where:

•
$$x = PbB_t \left[\frac{(2:8 \ \mu g)}{dl} \right];$$

•
$$\mu = \ln \left(PbB_{adult} \times R_{\frac{fetal}{maternal}} \right);$$

•
$$\sigma = \ln(GSD_i)$$
; and

•
$$PbB_{adult} = \left[\frac{PbS \times BKSF \times IR_S \times AF_{S,D} \times EF_{S,D}}{AT_{S,D}}\right] + PbB_0.$$

Fetal Blood Lead Level Concentration Equation

$$PbB_{fetal,0.95} = \left[\left(\frac{PbS \times BKSF \times IR_S \times AF_{S,D} \times EF_{S,D}}{AT_{S,D}} \right) + PbB_0 \right] \times \left[(GSD_i^{1.645}) \times R_{\frac{fetal}{maternal}} \right] [4c]$$

Parameter	Description	Value	Units
PbS	Soil Lead Concentration	Site-Specific	μ g/g, or ppm
$AT_{S, D}$	Averaging time (same for soil and dust))	365	days/year
EFs, D	Exposure frequency (same for soil and dust)	219	days/year
IRs	Soil ingestion rate (including soil-derived indoor dust)	0.05	g/day
AF _{S, D}	Absorption fraction (same for soil and dust)	0.12	unitless
BKSF	Biokinetic Slope Factor	0.4	μg/dL per μg/day
GSD _i	Geometric Standard Deviation PbB	1.8	unitless
R _{fetal/maternal}	Fetal/Maternal PbB ratio	0.9	unitless
PbB_0	Baseline PbB	0.6	µg/dL
PbB _{adult}	PbB of adult worker, geometric mean	2.1	µg/dL
PbB _{fetal, 0.95}	95 th percentile PbB among fetuses of adult workers	5	µg/dL
PbB _t	Target PbB level of concern; value of 5 is used	5	µg/dL
	because it is the midpoint of the recommended range		
	of 2 to 8 µg/dL		

Table 5. Parameters for Lead Industrial Worker Soil Risk Equations

Notes: g/day = grams per day; $\mu g/day = microliters$ per day; $\mu g/dL = microliters$ per deciliter; $\mu g/g = micrograms$ per gram

3.7 MEDIA TRANSPORT TOOLS

The RAIS offers tools that model the migration of chemicals from soil to groundwater, resuspension of particulates into air, and volatilization of chemicals from soil into air.

3.7.1 Chemical Groundwater Transport Calculator

The Chemical Groundwater Transport Calculator (<u>https://rais.ornl.gov/cgi-bin/prg/groundwater_transport?select=chem</u>) recreates the migration pathway of contaminants from soil to groundwater by calculating the expected groundwater concentration from user-provided soil concentrations. The user can adjust parameters prior to exporting the results.

3.7.2 Chemical PEF Transport Calculator

There are multiple PEFs that can be calculated based on the exposure scenario at hand. The PEF Transport Calculator (<u>https://rais.ornl.gov/cgi-bin/prg/air_transport_pef</u>) guides the user through the calculation of the following PEFs:

- PEF Wind-Driven (PEF)
- Subchronic PEF Mechanically Driven Unpaved Road Traffic (PEF_{sc})
- Subchronic PEF Mechanically Driven Other Construction Activities (PEF'sc)
- Mechanical Particulate Emission Factor for Off-site Receptors (Standard Vehicle Traffic) (PEF_{off})
- Mechanical Particulate Emission Factor for Off-site Receptors (Other Construction Activities) (PEF'_{off})

3.7.3 VF Transport Calculator

VF is an inhalation variable that has different methods of calculation. VFs are chemical-specific unlike the PEFs that are scenario-specific. The VF Transport Calculator (<u>https://rais.ornl.gov/cgi-bin/prg/air_transport_vf</u>) guides the user through the calculation of the following:

- Infinite Source Chronic Volatilization Factor (VF_{ulim})
- Mass-limit Chronic Volatilization Factor (VF_{mlim})
- Unlimited Source Subchronic Volatilization Factor for Construction Worker (VF_{ulim-sc})
- Mass-limit Subchronic Volatilization Factor for Construction Worker (VF_{mlim-sc})

This calculator is only available for non-radionuclides.

3.8 CHEMICAL BACKGROUND VALUES

The RAIS offers two approaches to background screening: generic and site-specific.

The Generic Background Values tool (<u>https://rais.ornl.gov/tools/bg_search.php</u>) contains generic soil background values for selected non-radionuclide chemicals. These values can be applied to any area across the U.S. Users can compare these values against local background data or supplement an existing background value dataset. Results can be downloaded in .xlsx format.

The RAIS offers three site-specific background options: Oak Ridge, Portsmouth, and Paducah.

- The Oak Ridge Background Values (<u>https://rais.ornl.gov/tools/orr_background.html</u>)are from a Background Soil Characterization Project done at ORR in 1993 (DOE, 1993a, 1993b, 1993c, 2003). The purpose of the project was to evaluate the potential human health concerns from naturally occurring background constituents.
- The Portsmouth Background Values (<u>https://rais.ornl.gov/tools/ports_background.html</u>) are from a Soil Background Report for the Portsmouth Gaseous Diffusion Plant, which sought to develop a comprehensive soil dataset using surface and subsurface soil samples (DOE, 2015). The Portsmouth background dataset on the RAIS also includes background concentrations for groundwater.
- The Paducah Background Values (<u>https://rais.ornl.gov/documents/DOE_Paducah-June-2023.pdf</u>) are from Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant, Volume 1, Human Health, which sought to establish provisional background values for groundwater and soil (DOE, 2023). These values were developed by considering agreements reached between the DOE and the regulatory agencies during comment resolution meetings, in the Federal Facility Agreement, and at technical meetings. The Paducah background concentrations are available for soil (surface and subsurface) and groundwater (filtered and unfiltered).

4. RADIONUCLIDE TOOLS

In many cases, the radionuclide tools mirror and function just as the chemical tools on the RAIS. This design promotes consistency and ease of use. The sections below are presented in the order that they are currently found on the RAIS.

Some of the radionuclide tool picklists contain isotopes with designations of +D, +E, m, and n. The +D and +E designations mean that the first 100 and 1000 years of progeny ingrowth are included in the slope factors, respectively (e.g., U-238, U-238+D, and U-238+E). The +D and +E radionuclide use is now discouraged, as the parent half-life, biota uptake factors, and soil-to-water partition coefficients are de facto used for the progeny, which is not accurate. Metastable forms of the isotopes are designated by the letters "m", "n", etc. After decay, a nucleus may be in an excited state (metastable state) and emit a specific decay. When the half-life is long enough, unique toxicity values are derived for the metastable state, as is the case with Tc-99 and Tc-99m.

4.1 RADIONUCLIDE TOXICITY AND PARAMETERS

The radionuclide toxicity value and parameter tools contain isotopes capable of carcinogenesis (i.e., SFs). If it is necessary to consider the noncancer effects (e.g., RfD) of the radionuclide metals, as is often the case with uranium, the Chemical Toxicity Value search tool should also be used. For example, the radionuclide tools contain ingestion, inhalation, and external exposure SFs for each uranium isotope (e.g., U-234, U-235, and U-238); however, the chemical tools would contain the RfD for "Uranium (Soluble Salts)".

The RAIS maintains separate tables of the historic dose conversion factors (dose coefficients), whereas the SFs (risk coefficients) are always replaced with the latest values. Historic dose conversion factors are provided, as many regulatory values were promulgated based on their values.

RAIS radionuclide toxicity and parameter tools include:

- Radionuclide Risk Slope Factors
- Radionuclide Dose Conversion Factors for:
 - International Commission on Radiological Protection (ICRP) 107
 - ICRP 30
 - ICRP 60
- Radionuclide Parameters

The tools listed above are described in further detail below.

4.1.1 Radionuclide Risk Slope Factors

For a given radionuclide, Slope Factors (SFs) represent the ELCR equivalent per unit intake (i.e., ingestion or inhalation) or external exposure of that radionuclide (EPA, 2020b). These SFs are used to convert a radionuclide concentration in soil, air, water, or foodstuffs to a radiation ELCR. The primary use of SFs, also called risk coefficients, is to compute the ELCR resulting from site-related exposures. This is accomplished by multiplying the route-specific SF by the CDI of each radionuclide of potential concern for each route of exposure.

Ingestion and inhalation slope factors are central estimates in a linear model of the age-averaged, lifetime attributable radiation cancer incidence (fatal and nonfatal cancer) risk per unit of activity inhaled or ingested, expressed as risk/picocurie (pCi) (EPA, 2020a). External exposure SFs are central estimates of lifetime attributable radiation cancer incidence risk for each year of exposure to external radiation from photon-emitting radionuclides distributed uniformly in a thick layer of soil, expressed as risk/year per pCi/gram soil. External exposure SF units can also be risk/year per pCi/square centimeters (cm²) of soil. When combined with site-specific media concentration data and appropriate exposure assumptions, SFs can be used to estimate lifetime cancer risks to members of the general population due to radionuclide exposures.

It should be noted that a SF for dermal contact is not included in the radionuclide SF tool; they are not available, and EPA has concluded that dermal exposure is generally not an important route of exposure for radionuclides (EPA, 1989). The only additional chemical-specific parameter for radionuclides is radioactive half-life (TR). This value assists in determining the importance of radioactive decay and daughter(s) in the risk evaluation.

The SFs presented on the RAIS (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=radslopes</u>) are updated values from Federal Guidance Report (FGR) 13 supplement (EPA, 1999) using the International Commission on Radiological Protection (ICRP) 107 decay data (ICRP, 2008). The derivation and values

are found in "Calculations of Slope Factors and Dose Coefficients" (ORNL, 2014). Results can be downloaded in .xlsx format.

4.1.2 Radionuclide Dose Conversion Factors

Radionuclide dose conversion factors, also known as dose coefficients, are used alongside SFs for radionuclide calculations. The dose conversion factors from the ICRP 107 (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=rad107</u>) are updated values from FGR 13 supplement (EPA, 1999) using ICRP 107 decay data (ICRP, 2008). The derivation and values are in "Calculations of Slope Factors and Dose Coefficients" (ORNL, 2014). The dose conversion factors from ICRP 30 (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=rad30</u>) can be found in FGR 11 (EPA, 1988), and the dose conversion factors from ICRP 60 (<u>https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=rad60</u>) can be found in FGR 12 (EPA, 1993). Results from all three tools can be downloaded in .xlsx format.

4.1.3 Radionuclide Parameters

The Radionuclide Parameters tool searches for radionuclide-specific parameters for multiple radionuclides. After selecting radionuclides of interest and the desired parameters, the RAIS will generate a table containing the values, chosen according to the hierarchy explained in Section 2.3.2 of the RAIS Radionuclide PRG Calculator User Guide (<u>https://rais.ornl.gov/tools/rais_rad_prg_guide.html</u>). Results can be downloaded in .xlsx format.

4.2 RADIONUCLIDE PRG CALCULATOR

Radionuclide PRGs (<u>https://rais.ornl.gov/cgi-bin/prg/PRG_search?select=rad</u>) are calculated by selecting the applicable radionuclide(s) together with the applicable media, land use, and exposure route combination. If "site-specific" is selected as the PRG type, the following page will show the equations and exposure parameters used for deriving the PRGs, and some of the parameter values may be changed as necessary. If "default" is selected as the PRG type, the RAIS will proceed directly to the results page. Multiple radionuclides can be selected with this tool. Results can be downloaded in .xlsx or .pdf formats. Additionally, the session inputs for the PRG calculator can be saved for future use and recalled by the PRG calculator.

The derivation of the selected PRG(s) and the applicable equations and exposure parameters can be reviewed in more detail using the RAIS Radionuclide PRG Calculator User Guide available here: https://rais.ornl.gov/tools/rais_rad_prg_guide.html.

Tables of recommended default exposure parameters for the RAIS Radionuclide PRG Calculator can be found in **Appendix E**. Equations specific to the Radionuclide PRG Calculator are listed in **Appendix F**, while supporting equations applicable to multiple scenarios are listed in **Appendix J**.

4.3 RADIONUCLIDE RISK CALCULATOR

Radionuclide risks (<u>https://rais.ornl.gov/cgi-bin/prg/RISK_search?select=rad</u>) are calculated by selecting the COPCs from the radionuclide list together with the applicable media, land use, and exposure route combination.

On the following page, enter the known COPC concentrations for each media. The page also shows the equations and exposure parameters used for deriving the PRGs, and some of the parameter values may be changed as necessary. Results can be downloaded in .xlsx or .pdf formats. Additionally, the session inputs for the risk calculator can be saved for future use and recalled by the risk calculator.

The user can explore the equations and exposure parameters used for the calculations in the RAIS Radionuclide Risk Calculator User Guide available here: <u>https://rais.ornl.gov/tools/rais_rad_risk_guide.html</u>.

Tables of recommended default exposure parameters for the RAIS Radionuclide Risk Calculator can be found in **Appendix G**. Equations specific to the Radionuclide Risk Calculator are listed in **Appendix H**, while supporting equations applicable to multiple scenarios are listed in **Appendix J**.

4.4 RADIONUCLIDE REGULATORY LIMITS (ARAR SEARCH)

Refer to **Section 3.4** for a detailed discussion on the RAIS Chemical ARAR search tool, since the radionuclide tool works similarly. Few radionuclides are listed in ARARs, with the notable exceptions being tritium, radium, and uranium.

4.5 RADIONUCLIDE ECOLOGICAL BENCHMARKS

The Ecological Benchmark Tool for Radionuclides (<u>https://rais.ornl.gov/tools/eco_search.php?select=rad</u>) presents benchmarks from two sources: Los Alamos National Laboratory ECORISK Database – Release 4.1 and the Texas Commission on Environmental Quality (TCEQ) (recommended for use by U.S. EPA Region 6). Select a source(s), one or more of the three media options (sediment, soil, and surface water), and the radionuclide(s) of interest. The RAIS displays separate tables for each selected media with a list of all available ecological benchmark values for the selected radionuclide(s) of interest plus references and footnotes. Results can be downloaded in .xlsx format.

4.6 RADIONUCLIDE MEDIA TRANSPORT TOOLS

Refer to **Sections 3.7.1 and 3.7.2** for a detailed discussion of the Chemical Groundwater Transport Calculator and PEF Transport Calculator, since the radionuclide tools work similarly. There is no VF transport calculator for radionuclides, as most radionuclides are metals. The RAIS team has developed a separate radon vapor intrusion screening level (RVISL) calculator for the EPA (<u>https://epa-visl.ornl.gov/radionuclides/</u>).

4.7 RADIONUCLIDE BACKGROUND VALUES

The radionuclide background value search tool takes the user to the same pages as the chemical tools. Refer to **Section 3.8** for a detailed discussion on the background value search tools.

5. OTHER TOOLS AVAILABLE ON THE RAIS

The RAIS Team has produced a suite of calculators for the EPA, Alaska, and Delaware using the RAIS platform.

5.1 EPA TOOLS

The EPA tools consist of chemical and radionuclide calculators, toxicity value databases, and a radionuclide decay calculator. Below is a table that summarizes the existing EPA online calculators for assessing risks from chemicals and radionuclides at Superfund sites, with a link provided for each tool.

Media Addressed	Chemical Risk	Radiological Risk	Radiological Dose
Soil, Water, Air, Biota, Soil to Groundwater	<u>RSL</u>	PRG	DCC
Inside Buildings (Dust, Air, Fixed Contamination)	WTC*	BPRG	BDCC
Outside Buildings (Dust, Air, Fixed Contamination)		<u>SPRG</u>	<u>SDCC</u>
Vapor Intrusion (Air, Soil Gas, Groundwater	<u>VISL</u>	<u>RVISL</u>	<u>RVISL</u>

 Table 6. EPA Calculators for the Protection of Human Health Used in the Superfund Program

Notes: *The WTC item is a document available at: <u>https://epa-</u>

<u>visl.ornl.gov/radionuclides/copc_benchmark.pdf</u>; BPRG = building preliminary remediation goal; DCC = dose compliance concentrations; PRG = preliminary remediation goal; RSL = regional screening level; RVISL = radon vapor intrusion screening level; SDCC = dose compliance concentrations for radionuclides on outdoor surfaces; SPRG = preliminary remediation goals for radionuclides on outdoor surfaces; WTC = World Trade Center

Other EPA tools hosted on the RAIS include:

- The Office of Emergency Management Regional Removal Management Level (RML) Calculator (<u>http://www.epa.gov/risk/regional-removal-management-levels-chemicals-rmls</u>);
- The EPA's Health Effects Assessment Summary Table (HEAST) (<u>https://epa-heast.ornl.gov/</u>);
- A duplicate of the Provisional Peer-reviewed Toxicity Values (PPRTVs) (<u>https://hhpprtv.ornl.gov/</u>); and
- A radionuclide decay chain (<u>https://epa-prgs.ornl.gov/cgi-bin/radionuclides/chain.pl</u>) tool that can predict the state of a radionuclide decay chain at any time in the future using a novel Bateman equation solver.

5.2 ALASKA TOOLS

The RAIS Team produces two tools for the state of Alaska. The Cleanup Levels Calculator (https://csites.ornl.gov/cgi-bin/cl_search) is similar to the RAIS Chemical PRG calculator described in **Section 3.2**, with the following notable exceptions: three precipitation zones are available for soil media and chemicals can be selected based on categories (e.g., metals, VOCs, PFAS, etc.). The Cumulative Risk Calculator (https://csites.ornl.gov/cgi-bin/risk_search) is similar to the RAIS Chemical Risk calculator described in **Section 3.3**. This calculator also provides the three precipitation zones.

5.3 DELAWARE TOOLS

The RAIS Team produces the Delaware Risk Assessment Calculator (DERAC) (<u>https://derac.ornl.gov/cgi-bin/derac_search</u>) for the state of Delaware Department of Natural Resources and Environmental Control. The DERAC is similar to the RAIS Chemical Risk calculator described in **Section 3.3** with the addition of a trespasser land use scenario.

6. CONCLUSION

The overall objective of the RAIS is to be a single source for environmental risk assessment, with assistance and guidance for planning and completing all steps of the risk assessment process through a variety of tools, searchable databases that cover a wide range of sources, and detailed user guides. While originally developed for the DOE ORR, the tools can be tailored for site-specific needs to benefit a broader scope of national and international users.

The RAIS provides essential tools for performing basic risk assessment activities, such as calculating preliminary remediation goals, locating toxicity values and profiles, accessing Federal and State guidelines, calculating human health risk models, and locating ecological benchmarks. The RAIS also provides the latest EPA risk guidance and directs the user to specific EPA and State guidance necessary for performing risk assessment activities within the CERCLA process that benefit all risk information users.

Implementation of the RAIS and its associated guidance streamlines the risk assessment process, avoids costly duplication of effort, provides risk tools and information in a timely and efficient manner, and enables consistent and high-quality risk analyses.

7. **REFERENCES**

- DOE, 1993a. Final Report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee, Volume 1 - Results of Field Sampling Program, October 1993, DOE/OR/01-1175/V1.
- DOE, 1993b. Final Report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee, Volume 2 Data, October 1993, DOE/OR/01-1175/V2.
- DOE, 1993c. Final Report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee, Volume 3 Project Plan, October 1993, DOE/OR/01-1175/V3.
- DOE, 2003. Soil Background Supplemental Data Set for the East Tennessee Technology Park, Oak Ridge, Tennessee, September 2003, DOE/OR/01-2105&D1. https://rais.ornl.gov/documents/BKGRDStudyfinalcopy.pdf.
- DOE, 2023. Methods for Conducting Risk Assessments and Risk Evaluations at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Volume 1. Human Health, DOE/LX/07-0107&D2/R14/V1. Portsmouth/Paducah Project Office, U.S. Department of Energy, Lexington, Kentucky. June. <u>https://rais.ornl.gov/documents/DOE_Paducah-June-2023.pdf</u>.
- DOE, 2015. Final Soil Background Report for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio (DOE/PPO/03-0667&D1). Portsmouth/Paducah Project Office, U.S. Department of Energy, Lexington, Kentucky. May. <u>https://rais.ornl.gov/documents/Final_Soil_Background_Report_for_PORTS_DOE_PPPO_03_0667_D1.pdf</u>.
- EPA, 1988. Federal Guidance Report No. 11: Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, And Ingestion. EPA 520-1-88-020. Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C., September.
- EPA, 1989. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual. (Part A) EPA/540/1-89/002. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., December.

- EPA, 1991a. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals) OSWER Directive 9285.7-01B. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., December.
- EPA, 1991b. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part C, Risk Evaluation of Remedial Alternatives). OSWER Directive 9285.7-01C. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., December.
- EPA, 1993. Federal Guidance Report No. 12: External Exposure to Radionuclides in Air, Water, and Soil. EPA 402-R-93-081. Office of Radiation and Indoor Air, U.S. Environmental Protection Agency, Washington, D.C., September.
- EPA, 1999. Federal Guidance Report No. 13: Cancer Risk Coefficients for Environmental Exposure to Radionuclides. EPA 402-R-99-001. Office of Air and Radiation, U.S. Environmental Protection Agency, Washington, D.C., September.
- EPA, 2001. Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments) (Final).
 Publication 9285.7-47. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C., December.
- EPA, 2003a. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil. Office of Solid Waste and Emergency Response (OSWER) Directive 9285.7-54 [EPA-540-R-03-001]. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., December 1996 (January 2003). <u>https://www.epa.gov/superfund/lead-superfund-sites-software-and-users-</u> <u>manuals#recommend</u>.
- EPA, 2003b. Human health toxicity values in Superfund risk assessments. OSWER Directive 9285.7-53. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C., December 5.
- EPA, 2020a. Preliminary Remediation Goals for Radionuclides at Superfund Sites User's Guide. Last updated July 24, 2020. <u>https://epa-prgs.ornl.gov/radionuclides/users_guide.html</u>.
- EPA, 2020b. PRG Frequently Asked Questions (FAQ). Last updated July 24, 2020. <u>https://epa-prgs.ornl.gov/radionuclides/faq.html</u>.
- EPA, 2022. Calculating Preliminary Remediation Goals (PRGs). Last updated June 28, 2022. https://www.epa.gov/risk/calculating-preliminary-remediation-goals-prgs.
- EPA, 2023. Regional Screening Levels (RSLs) User's Guide. Last updated May 4, 2023. https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide.
- ICRP, 2008. Nuclear Decay Data for Dosimetric Calculations. ICRP Publication 107. Ann. ICRP 38 (3). https://www.icrp.org/publication.asp?id=ICRP%20Publication%20107.
- ORNL, 2014. Calculation of Slope Factors and Dose Coefficients. ORNL/TM-2013/00. Center for Radiation Protection Knowledge, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

APPENDIX A. TABLES OF VARIABLES USED IN CHEMICAL PRG EQUATIONS

APPENDIX A. TABLES OF VARIABLES USED IN CHEMICAL PRG EQUATIONS

Symbol	Definition (units)	Default	Reference
RfDo	Chronic Oral Reference Dose (mg/kg-day)	Contaminant-	EPA Superfund
		specific	hierarchy
RfC	Chronic Inhalation Reference Concentration	Contaminant-	EPA Superfund
	(mg/m^3)	specific	hierarchy
CSFo	Chronic Oral Slope Factor (mg/kg-day) ⁻¹	Contaminant-	EPA Superfund
		specific	hierarchy
IUR	Chronic Inhalation Unit Risk (µg/m ³) ⁻¹	Contaminant-	EPA Superfund
		specific	hierarchy

Table A-1: Toxicity Values

Table A-2. Miscellaneous	Variables
--------------------------	-----------

Symbol	Definition (units)	Default	Reference
TR	Target risk (unitless)	1 × 10 ⁻⁶	Determined in this calculator
THQ	Target hazard quotient (unitless)	1	Determined in this calculator
LT	Lifetime (years)	70	U.S. EPA 2014 (Attachment 1)
К	Andelman Volatilization Factor (L/m ³)	0.5	U.S. EPA 1991b (pg. 20)
K _p	Permeability constant (cm/hr)	Chemical- specific	
t*	Time to reach steady-state (hours)	Chemical- specific	U.S. EPA 2004 (Page 3-4)
τ_{event}	Lag time per event (hours/event)	Chemical- specific	U.S. EPA 2004 (Page 3-4)
В	Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability coefficient across the viable epidermis (unitless)	Chemical- specific	U.S. EPA 2004 (Page 3-4)
FA	Fraction absorbed water (unitless)	Chemical- specific	U.S. EPA 2004 (Page 3-4)
ABS _d	Fraction of contaminant absorbed dermally from soil (unitless)	Chemical- specific	U.S. EPA 2004 (Exhibit 3-4)
GIABS	Fraction of contaminant absorbed in gastrointestinal tract (unitless); Note: if the GIABS is >50% then it is set to 100% for the calculation of dermal toxicity values.	Chemical- specific	U.S. EPA 2004 (Exhibit 4-1)
H'	Dimensionless Henry's Law Constant	Contaminant- specific	Hierarchy selection in Section 2.4.2
$\Delta H_{v,b}$	Enthalpy of vaporization at the normal boiling point (cal/mol)	Contaminant- specific	Hierarchy selection in Section 2.4.2
$\Delta H_{v,gw}$	Enthalpy of vaporization at temperature of groundwater (cal/mol)	Contaminant- specific	Determined in this calculator
T_{w}	Groundwater Temperatures (Kelvin)	Site-specific	Site-specific

Symbol	Definition (units)	Default	Reference
T _c	Critical Temperatures (Kelvin)	Contaminant- specific	Hierarchy selection in Section 2.4.2
T _b	Normal Boiling Point (Kelvin)	Contaminant- specific	Hierarchy selection in Section 2.4.2
n	$ \begin{array}{l} If (T_b/T_c < 0.57) \\ If (T_b/T_c > 0.71) \\ If (0.57 < T_b/T_c \leq 0.71) \end{array} \\ \end{array} $	n = 0.3 n = 0.41 n = (0.74 x) $T_b/T_c - 0.116$	U.S. EPA VISL 2014

Table A-2. Miscellaneous Variables

 Table A-3. Resident Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{res-sol-}	Resident Child Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
ingnc	Ingestion (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Child Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
dernc	Dermal (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Child Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
inhn	Inhalation (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Child Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
totnc	Total (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Adult Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
ingna	Ingestion (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Adult Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
derna	Dermal (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Adult Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
inhna	Inhalation (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Adult Soil Noncarcinogenic	Contaminant-specific	Determined in this calculator
totna	Total (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this calculator
ingnadj	Noncarcinogenic Ingestion (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this calculator
dernadj	Noncarcinogenic Dermal (mg/kg)	Child, Adult and Age-	
		adjusted Specific	
PRG _{res-sol-}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this calculator
inhnadj	Noncarcinogenic Inhalation (mg/kg)	Child, Adult and Age-	
-		adjusted Specific	
PRG _{res-sol-}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this calculator
totnadj	Noncarcinogenic Total (mg/kg)	Child, Adult and Age-	
5		adjusted Specific	

Symbol	Definition (units)	Default	Reference
PRG _{res-sol-}	Resident Soil Carcinogenic Ingestion	Contaminant-specific	Determined in this calculator
ingc	(mg/kg)	-	
PRG _{res-sol-}	Resident Soil Carcinogenic Dermal	Contaminant-specific	Determined in this calculator
derc	(mg/kg)	-	
PRG _{res-sol-}	Resident Soil Carcinogenic Inhalation	Contaminant-specific	Determined in this calculator
inhc	(mg/kg)	_	
PRG _{res-sol-}	Resident Soil Carcinogenic Total	Contaminant-specific	Determined in this calculator
totc	(mg/kg)	_	
PRG _{res-sol-}	Resident Soil Mutagenic Ingestion	Mutagen-specific	Determined in this calculator
ingmu	(mg/kg)		
PRG _{res-sol-}	Resident Soil Mutagenic Dermal	Mutagen-specific	Determined in this calculator
dermu	(mg/kg)		
PRG _{res-sol-}	Resident Soil Mutagenic Inhalation	Mutagen-specific	Determined in this calculator
inhmu	(mg/kg)		
PRG _{res-sol-}	Resident Soil Mutagenic Total (mg/kg)	Mutagen-specific	Determined in this calculator
totmu			
PRG _{res-sol-}	Resident Soil Carcinogenic Vinyl	Vinyl Chloride -specific	Determined in this calculator
ingvc	Chloride Ingestion (mg/kg)		
PRG _{res-sol-}	Resident Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this calculator
dervc	Chloride Dermal (mg/kg)		
PRG _{res-sol-}	Resident Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this calculator
inhvc	Chloride Inhalation (mg/kg)		
PRG _{res-sol-}	Resident Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this calculator
totvc	Chloride Total (mg/kg)		
PRG _{res-sol-}	Resident Soil Carcinogenic and	Trichloroethylene -	Determined in this calculator
ingtce	Mutagenic Trichloroethylene Ingestion	specific	
	(mg/kg)		
PRG _{res-sol-}	Resident Soil Carcinogenic	Trichloroethylene -	Determined in this calculator
dertce	Trichloroethylene Dermal (mg/kg)	specific	
PRG _{res-sol-}	Resident Soil Carcinogenic	Trichloroethylene -	Determined in this calculator
inhtce	Trichloroethylene Inhalation (mg/kg)	specific	
PRG _{res-sol-}	Resident Soil Carcinogenic	Trichloroethylene -	Determined in this calculator
tottce	Trichloroethylene Total	specific	
BW _{res-a}	Body Weight - adult (kg)	80	U.S. EPA 2014 (Attachment 1)
BW _{res-c}	Body Weight - child (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
BW16-26	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{res}	Exposure Duration - adult + child	26	U.S. EPA 2014 (Attachment 1)
	(years)		
ED _{res-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014 (Attachment 1)
ED _{res-c}	Exposure Duration - child (years)	6	U.S. EPA 2014 (Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years (years)	2	U.S. EPA 2014 (Attachment 1)
ED ₂₋₆	Exposure Duration - 2-6 Years (years)	4	U.S. EPA 2014 (Attachment 1)
ED ₆₋₁₆	Exposure Duration - 6-16 Years (years)	10	U.S. EPA 2014 (Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years	10	U.S. EPA 2014 (Attachment 1)
	(years)		
EF _{res}	Exposure Frequency - adult + child	350	U.S. EPA 2014 (Attachment 1)
	(days/year)		

Table A-3	Resident Soil	Land Use Ed	quation Variables
1 4010 11 0	itestaene son		quation variables

Symbol	Definition (units)	Default	Reference
EF _{res-a}	Exposure Frequency - adult (days/year)	350	U.S. EPA 2014 (Attachment 1)
EF _{res-c}	Exposure Frequency - child (days/year)	350	U.S. EPA 2014 (Attachment 1)
EF ₀₋₂	Exposure Frequency - 0-2 Years	350	U.S. EPA 2014 (Attachment 1)
21 0-2	(days/year)	550	
EF ₂₋₆	Exposure Frequency - 2-6 Years	350	U.S. EPA 2014 (Attachment 1)
LA 2-6	(days/year)	550	0.5. EITT 2011 (FitueInheitt 1)
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	350	U.S. EPA 2014 (Attachment 1)
LI 0-10	(days/year)	550	0.5. EITT 2011 (FitueInheitt 1)
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years	350	U.S. EPA 2014 (Attachment 1)
10-20	(days/year)	550	0.5. EITT 2011 (FitueInheitt 1)
ET _{res-a}	Resident Exposure Time - adult	24	The whole day
L I res-a	(hours/day)	21	The whole duy
ET _{res-c}	Resident Exposure Time - child	24	The whole day
L I res-c	(hours/day)	21	The whole duy
ET _{res}	Resident Exposure Time (hours/day)	24	The whole day
ET _{res} ET ₀₋₂	Exposure Time - age segment 0-2	24	The whole day
→ + 0-2	(hours/day)	- '	The whole duy
ET ₂₋₆	Exposure Time - age segment 2-6	24	The whole day
L I 2-0	(hours/day)	21	The whole duy
ET ₆₋₁₆	Exposure Time - age segment 6-16	24	The whole day
L 1 0-10	(hours/day)	27	The whole duy
ET ₁₆₋₂₆	Exposure Time - age segment 16-26	24	The whole day
L I 10-20	(hours/day)	27	The whole duy
IRS _{res-c}	Ingestion Rate - Child (mg/day)	200	U.S. EPA 2014 (Attachment 1)
IRS _{res-a}	Ingestion Rate - Adult (mg/day)	100	U.S. EPA 2014 (Attachment 1)
IRS ₀₋₂	Ingestion Rate - 0-2 years (mg/day)	200	U.S. EPA 2014 (Attachment 1)
IRS ₂₋₆	Ingestion Rate - 2-6 years (mg/day)	200	U.S. EPA 2014 (Attachment 1)
IRS ₆₋₁₆	Ingestion Rate - 6-16 years (mg/day)	100	U.S. EPA 2014 (Attachment 1)
IRS ₁₆₋₂₆	Ingestion Rate - 16-26 years (mg/day)	100	U.S. EPA 2014 (Attachment 1)
IFS _{res-adj}	Ingestion Rate - Age-adjusted (mg/kg)	36,750	Calculated using the age-
II Ores-adj	ingestion Rate Tige adjusted (ing/kg)	50,750	adjusted intake factors equation
IFSM _{res-adj}	Mutagenic Ingestion Rate - Age-	166,833	Calculated using the mutagenic
II Olvires-adj	adjusted (mg/kg)	100,055	age-adjusted intake factors
	uajastea (ing/ing)		equation
AF _{res-c}	Adherence factor-child (mg/cm ²)	0.2	U.S. EPA 2014 (Attachment 1)
AF _{res-a}	Adherence factor-adult (mg/cm ²)	0.07	U.S. EPA 2014 (Attachment 1)
AF ₀₋₂	Adherence factor 0-2 years (mg/cm^2)	0.2	U.S. EPA 2014 (Attachment 1)
AF ₂₋₆	Adherence factor 2-6 years (mg/cm ²)	0.2	U.S. EPA 2014 (Attachment 1)
AF ₆₋₁₆	Adherence factor 6-16 years (mg/cm^2)	0.07	U.S. EPA 2014 (Attachment 1)
AF ₁₆₋₂₆	Adherence factor 16-26 years (mg/cm ²)	0.07	U.S. EPA 2014 (Attachment 1)
DFS _{res-adj}	Dermal contact factor- age-adjusted	103,390	Calculated using the age-
DI Ores-adj	(mg/kg)	105,570	adjusted intake factors equation
DFSM _{res-adj}		428,260	Calculated using the mutagenic
La Civires-adj	adjusted (mg/kg)	120,200	age-adjusted intake factors
			equation
SA _{res-c}	Surface area - child (cm ²)	2373	U.S. EPA 2014 (Attachment 1)
SA _{res-a}	Surface area - adult (cm ²)	6032	U.S. EPA 2014 (Attachment 1)
SA _{res-a}	Surface area 0-2 years (cm ²)	2373	U.S. EPA 2014 (Attachment 1)
SA ₂₋₆	Surface area 2-6 years (cm ²)	2373	U.S. EPA 2014 (Attachment 1)
SA ₆₋₁₆	Surface area 6-16 years (cm ²)	6032	U.S. EPA 2014 (Attachment 1)
SA6-16	Surface area 0-10 years (cill)	0052	0.5. EFA 2014 (Attachment 1)

Table A-3. Resident Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
SA16-26	Surface area 16-26 (cm ²)	6032	U.S. EPA 2014 (Attachment 1)
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{res-c}	Averaging time – child (days/year)	365 x ED _{res-c}	U.S. EPA 2014 (Attachment 1)
AT _{res-a}	Averaging time - adult (days/year)	365 x ED _{res}	U.S. EPA 2014 (Attachment 1)

Table A-3. Resident Soil Land Use Equation Variables

Table A-4. Composite Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{com-sol-}	Composite Worker Soil Noncarcinogenic	Contaminant-	Determined in this
ingn	Ingestion (mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Noncarcinogenic	Contaminant-	Determined in this
dern	Dermal (mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Noncarcinogenic	Contaminant-	Determined in this
inhn	Inhalation (mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Noncarcinogenic Total	Contaminant-	Determined in this
totn	(mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Carcinogenic Ingestion	Contaminant-	Determined in this
ingc	(mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Carcinogenic Dermal	Contaminant-	Determined in this
derc	(mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Carcinogenic Inhalation	Contaminant-	Determined in this
inhc	(mg/kg)	specific	calculator
PRG _{com-sol-}	Composite Worker Soil Carcinogenic Total	Contaminant-	Determined in this
totc	(mg/kg)	specific	calculator
BW _{com}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{com}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EF _{com}	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{com}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
IRS _{com}	Ingestion Rate (mg/day)	100	U.S. EPA 2014
			(Attachment 1)
AF _{com}	Adherence factor (mg/cm ²)	0.12	U.S. EPA 2014
			(Attachment 1)
SA _{com}	Surface area (cm ²)	3527	U.S. EPA 2014
			(Attachment 1)
AT _{com}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
	· · · · · · · · · · · · · · · · · · ·		(Attachment 1)
AT _{com-a}	Averaging time (days/year)	365 x ED _{com}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
PRG _{out-sol-}	Outdoor Worker Soil Noncarcinogenic	Contaminant-	Determined in this
ingn	Ingestion (mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Noncarcinogenic Dermal	Contaminant-	Determined in this
dern	(mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Noncarcinogenic	Contaminant-	Determined in this
inhn	Inhalation (mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Noncarcinogenic Total	Contaminant-	Determined in this
totn	(mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Carcinogenic Ingestion	Contaminant-	Determined in this
ingc	(mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Carcinogenic Dermal	Contaminant-	Determined in this
derc	(mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Carcinogenic Inhalation	Contaminant-	Determined in this
inhc	(mg/kg)	specific	calculator
PRG _{out-sol-}	Outdoor Worker Soil Carcinogenic Total	Contaminant-	Determined in this
totc	(mg/kg)	specific	calculator
BW _{out}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{out}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EFout	Exposure Frequency (days/year)	225	U.S. EPA 2014
			(Attachment 1)
ET _{out}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
IRS _{out}	Ingestion Rate (mg/day)	100	U.S. EPA 2014
			(Attachment 1)
AFout	Adherence factor (mg/cm ²)	0.12	U.S. EPA 2014
			(Attachment 1)
SA _{out}	Surface area (cm ²)	3527	U.S. EPA 2014
			(Attachment 1)
AT _{out}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{out-a}	Averaging time (days/year)	365 x ED _{out}	U.S. EPA 2014
			(Attachment 1)

Table A-5. Outdoor Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{ind-sol-}	Indoor Worker Soil Noncarcinogenic Ingestion	Contaminant-	Determined in this
ingn	(mg/kg)	specific	calculator
PRG _{ind-sol-}	Indoor Worker Soil Noncarcinogenic	Contaminant-	Determined in this
inhn	Inhalation (mg/kg)	specific	calculator
PRG _{ind-sol-}	Indoor Worker Soil Noncarcinogenic Total	Contaminant-	Determined in this
totn	(mg/kg)	specific	calculator
PRG _{ind-sol-}	Indoor Worker Soil Carcinogenic Ingestion	Contaminant-	Determined in this
ingc	(mg/kg)	specific	calculator
PRG _{ind-sol-}	Indoor Worker Soil Carcinogenic Inhalation	Contaminant-	Determined in this
inhc	(mg/kg)	specific	calculator
PRG _{ind-sol-}	Indoor Worker Soil Carcinogenic Total	Contaminant-	Determined in this
totc	(mg/kg)	specific	calculator
BW_{ind}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{ind}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EFind	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{ind}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
IRS _{ind}	Soil Ingestion Rate (mg/day)	50	U.S. EPA 2014
			(Attachment 1)
AT _{ind-a}	Averaging time (days/year)	365 x ED _{ind}	U.S. EPA 2014
			(Attachment 1)
AT _{ind}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)

Table A-6. Indoor Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{con-sol-}	Construction Worker Soil	Contaminant-	Determined in this calculator
ingn	Noncarcinogenic Ingestion (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil	Contaminant-	Determined in this calculator
dern	Noncarcinogenic Dermal (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil	Contaminant-	Determined in this calculator
inhn	Noncarcinogenic Inhalation (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil	Contaminant-	Determined in this calculator
totn	Noncarcinogenic Total (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil Carcinogenic	Contaminant-	Determined in this calculator
ingc	Ingestion (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil Carcinogenic	Contaminant-	Determined in this calculator
derc	Dermal (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil Carcinogenic	Contaminant-	Determined in this calculator
inhc	Inhalation (mg/kg)	specific	
PRG _{con-sol-}	Construction Worker Soil Carcinogenic	Contaminant-	Determined in this calculator
totc	Total (mg/kg)	specific	
BW_{con}	Body Weight (kg)	80	U.S. EPA 2014 (Attachment 1)
ED_{con}	Exposure Duration (years)	1	U.S. EPA 2014 (Attachment 1)
$\mathrm{EW}_{\mathrm{con}}$	Exposure (weeks/year)	50	Based on 50 weeks per year
			(reasonable work season)
$\mathrm{DW}_{\mathrm{con}}$	Exposure (days/week)	5	Based on 5 days per week for 50
			weeks
EFcon	Exposure Frequency (days/year)	EW x DW	Based on 5 days per week for 50
			weeks
ET _{con}	Exposure Time (hours/day)	8	U.S. EPA 2014 (Attachment 1)
IRS _{con}	Ingestion Rate (mg/day)	330	U.S. EPA 2002 (Exhibit 1-2)
AF_{con}	Adherence factor (mg/cm ²)	0.3	U.S. EPA 2002 (Exhibit 1-2)
SA _{con}	Surface area (cm ²)	3527	U.S. EPA 2014 (Attachment 1)
AT _{con}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{con-a}	Averaging time (days/year)	365 x ED _{con}	U.S. EPA 2014 (Attachment 1)

 Table A-7. Construction Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{exc-sol-}	Excavation Worker Soil Noncarcinogenic	Contaminant-	Determined in this calculator
ingn	Ingestion (mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Noncarcinogenic	Contaminant-	Determined in this calculator
dern	Dermal (mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Noncarcinogenic	Contaminant-	Determined in this calculator
inhn	Inhalation (mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Noncarcinogenic	Contaminant-	Determined in this calculator
totn	Total (mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Carcinogenic	Contaminant-	Determined in this calculator
ingc	Ingestion (mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Carcinogenic Dermal	Contaminant-	Determined in this calculator
derc	(mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Carcinogenic	Contaminant-	Determined in this calculator
inhc	Inhalation (mg/kg)	specific	
PRG _{exc-sol-}	Excavation Worker Soil Carcinogenic Total	Contaminant-	Determined in this calculator
totc	(mg/kg)	specific	
BW _{exc}	Body Weight (kg)	80	U.S. EPA 2011, Table 8-1
ED _{exc}	Exposure Duration (years)	1	U.S. EPA 1991a (pg. 15)
EFexc	Exposure Frequency (days/year)	20	Based on 5 days per week for
			4 weeks
ET _{exc}	Exposure Time (hours/day)	8	U.S. EPA 2014 (Attachment
			1)
IRS _{exc}	Ingestion Rate (mg/day)	330	U.S. EPA 2002 (Exhibit 1-2)
AFexc	Adherence factor (mg/cm ²)	0.3	U.S. EPA 2002 (Exhibit 1-2)
SA _{exc}	Surface area (cm ²)	3527	U.S. EPA 2014 (Attachment
			1)
AT _{exc}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment
			1)
AT _{exc-a}	Averaging time (days/year)	365 x ED _{exc}	U.S. EPA 2014 (Attachment
			1)

Table A-8. Excavation Worker Soil Land Use Equation Variables

Table A-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{rec-sol-}	Recreator Child Soil	Contaminant-specific Child,	Determined in this
ingnc	Noncarcinogenic Ingestion (mg/kg)	Adult and Age-adjusted	calculator
		Specific	
PRG _{rec-sol-}	Recreator Child Soil	Contaminant-specific Child,	Determined in this
dernc	Noncarcinogenic Dermal (mg/kg)	Adult and Age-adjusted	calculator
		Specific	
PRG _{rec-sol-}	Recreator Child Soil	Contaminant-specific Child,	Determined in this
inhn	Noncarcinogenic Inhalation	Adult and Age-adjusted	calculator
	(mg/kg)	Specific	
PRG _{rec-sol-}	Recreator Child Soil	Contaminant-specific Child,	Determined in this
totne	Noncarcinogenic Total (mg/kg)	Adult and Age-adjusted	calculator
tottic		Specific	

Symbol	Definition (units)	Default	Reference
PRG _{rec-sol-}	Recreator Adult Soil	Contaminant-specific Child,	Determined in this
ingna	Noncarcinogenic Ingestion (mg/kg)	Adult and Age-adjusted	calculator
		Specific	
PRG _{rec-sol-}	Recreator Adult Soil	Contaminant-specific Child,	Determined in this
derna	Noncarcinogenic Dermal (mg/kg)	Adult and Age-adjusted	calculator
		Specific	
PRG _{rec-sol-}	Recreator Adult Soil	Contaminant-specific Child,	Determined in this
inhna	Noncarcinogenic Inhalation	Adult and Age-adjusted	calculator
	(mg/kg)	Specific	
PRG _{rec-sol-}	Recreator Adult Soil	Contaminant-specific Child,	Determined in this
totna	Noncarcinogenic Total (mg/kg)	Adult and Age-adjusted	calculator
totna		Specific	
PRG _{rec-sol-}	Recreator Age-adjusted Soil	Contaminant-specific Child,	Determined in this
ingnadj	Noncarcinogenic Ingestion (mg/kg)	Adult and Age-adjusted	calculator
		Specific	
PRG _{rec-sol-}	Recreator Age-adjusted Soil	Contaminant-specific Child,	Determined in this
dernadj	Noncarcinogenic Dermal (mg/kg)	Adult and Age-adjusted	calculator
		Specific	
PRG _{rec-sol-}	Recreator Age-adjusted Soil	Contaminant-specific Child,	Determined in this
inhnadj	Noncarcinogenic Inhalation	Adult and Age-adjusted	calculator
	(mg/kg)	Specific	
PRG _{rec-sol-}	Recreator Age-adjusted Soil	Contaminant-specific Child,	Determined in this
	Noncarcinogenic Total (mg/kg)	Adult and Age-adjusted	calculator
totnadj	6 (66)	Specific	
PRG _{rec-sol-}	Recreator Soil Carcinogenic	Contaminant-specific	Determined in this
ingc	Ingestion (mg/kg)	-	calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic	Contaminant-specific	Determined in this
derc	Dermal (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic	Contaminant-specific	Determined in this
inhc	Inhalation (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic Total	Contaminant-specific	Determined in this
tote	(mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Mutagenic Ingestion	Mutagen-specific	Determined in this
ingmu	(mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Mutagenic Dermal	Mutagen-specific	Determined in this
dermu	(mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Mutagenic	Mutagen-specific	Determined in this
inhmu	Inhalation (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Mutagenic Total	Mutagen-specific	Determined in this
totmu	(mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride -specific	Determined in this
ingvc	Chloride Ingestion (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this
dervc	Chloride Dermal (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this
inhvc	Chloride Inhalation (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this
totvc	Chloride Total (mg/kg)		calculator
PRG _{rec-sol-}	Recreator Soil Carcinogenic and	Trichloroethylene-specific	Determined in this
ingtce	Mutagenic Trichloroethylene		calculator
	Ingestion (mg/kg)		

Symbol	Definition (units)	Default	Reference
PRG _{rec-sol-}	Recreator Soil Carcinogenic and	Trichloroethylene-specific	Determined in this
dertce	Mutagenic Trichloroethylene	· · ·	calculator
	Dermal (mg/kg)		
PRG _{rec-sol-}	Recreator Soil Carcinogenic and	Trichloroethylene-specific	Determined in this
inhtce	Mutagenic Trichloroethylene	7 1	calculator
	Inhalation (mg/kg)		
PRG _{rec-sol-}	Recreator Soil Carcinogenic and	Trichloroethylene-specific	Determined in this
tottce	Mutagenic Trichloroethylene Total	5 1	calculator
lolice	(mg/kg)		
BW _{rec-a}	Body Weight - adult (kg)	80	U.S. EPA 2014
_ ~ ice-a			(Attachment 1)
BW _{rec-c}	Body Weight - child (kg)	15	U.S. EPA 2014
2			(Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014
D 110-2	Doug weight of 2 reals (lig)	10	(Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014
D 11 2-0	Body weight 2 o reals (kg)	10	(Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014
D W 6-16	Dody weight - 0-10 Tears (kg)	00	(Attachment 1)
BW ₁₆₋₂₆	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014
D W 16-26	Body weight - 10-20 Tears (kg)	80	(Attachment 1)
ED _{rec}	Exposure Duration - adult + child	26	U.S. EPA 2014
LD _{rec}	(years)	20	(Attachment 1)
ED _{rec-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014
ED _{rec-a}	Exposure Duration - adult (years)	20	
ED	Exposure Duration - child (years)	6	(Attachment 1) U.S. EPA 2014
ED _{rec-c}	Exposure Duration - child (years)	0	
ED	E D	2	(Attachment 1) U.S. EPA 2014
ED ₀₋₂	Exposure Duration - 0-2 Years	2	
ED	(years)	4	(Attachment 1)
ED ₂₋₆	Exposure Duration - 2-6 Years	4	U.S. EPA 2014
ED	(years) Exposure Duration - 6-16 Years	10	(Attachment 1) U.S. EPA 2014
ED ₆₋₁₆	1	10	
ED	(years)	10	(Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years	10	U.S. EPA 2014
FF	(years)	7.5	(Attachment 1)
EF _{rec}	Exposure Frequency - adult + child	75	Reasonable Estimate
EE	(days/year)	75	
EF _{rec-a}	Exposure Frequency - adult	75	Reasonable Estimate
	(days/year)		D 11 D
EF _{rec-c}	Exposure Frequency - child	75	Reasonable Estimate
	(days/year)		
EF ₀₋₂	Exposure Frequency - 0-2 Years	75	Reasonable Estimate
	(days/year)		
EF ₂₋₆	Exposure Frequency - 2-6 Years	75	Reasonable Estimate
	(days/year)		
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	75	Reasonable Estimate
	(days/year)		
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years	75	Reasonable Estimate
	(days/year)		
ET _{rec}	Exposure Time (hours/day)	1	Reasonable Estimate
ET _{rec-c}	Exposure time - child (hours/day)	1	Reasonable Estimate
ET _{rec-a}	Exposure time - adult (hours/day)	1	Reasonable Estimate

 Table A-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
ET ₀₋₂	Exposure time 0-2 years	1	Reasonable Estimate
	(hours/day)		
ET ₂₋₆	Exposure time 2-6 years	1	Reasonable Estimate
	(hours/day)		
ET ₆₋₁₆	Exposure time 6-16 years	1	Reasonable Estimate
	(hours/day)		
ET ₁₆₋₂₆	Exposure time 16-26 years	1	Reasonable Estimate
	(hours/day)		
IRS _{rec-c}	Ingestion Rate - Child (mg/day)	200	U.S. EPA 2014
			(Attachment 1)
IRS _{rec-a}	Ingestion Rate - Adult (mg/day)	100	U.S. EPA 2014
			(Attachment 1)
IRS ₀₋₂	Ingestion Rate - 0-2 years (mg/day)	200	U.S. EPA 2014
			(Attachment 1)
IRS ₂₋₆	Ingestion Rate - 2-6 years (mg/day)	200	U.S. EPA 2014
			(Attachment 1)
IRS ₆₋₁₆	Ingestion Rate - 6-16 years	100	U.S. EPA 2014
	(mg/day)		(Attachment 1)
IRS ₁₆₋₂₆	Ingestion Rate - 16-26 years	100	U.S. EPA 2014
	(mg/day)		(Attachment 1)
IFS _{rec-adj}	Ingestion Rate - Age-adjusted	7,875	Calculated using the age-
	(mg/kg)		adjusted intake factors
			equation
IFSM _{rec-adj}	Mutagenic Ingestion Rate - Age-	35,750	Calculated using the
	adjusted (mg/kg)		mutagenic age-adjusted
			intake factors equation
AF _{rec-c}	Adherence factor-child (mg/cm ²)	0.2	U.S. EPA 2002 (Exhibit 1-
			2)
AF _{rec-a}	Adherence factor-adult (mg/cm ²)	0.07	U.S. EPA 2014
			(Attachment 1)
AF ₀₋₂	Adherence factor 0-2 years	0.2	U.S. EPA 2014
	(mg/cm ²)		(Attachment 1)
AF ₂₋₆	Adherence factor 2-6 years	0.2	U.S. EPA 2014
	(mg/cm ²)		(Attachment 1)
AF ₆₋₁₆	Adherence factor 6-16 years	0.07	U.S. EPA 2014
	(mg/cm ²)		(Attachment 1)
AF ₁₆₋₂₆	Adherence factor 16-26 years	0.07	U.S. EPA 2014
	(mg/cm ²)		(Attachment 1)
DFS _{rec-adj}	Dermal contact factor- age-	22,155	Calculated using the age-
	adjusted (mg/kg)		adjusted intake factors
			equation
DFSM _{rec-adj}	Mutagenic dermal contact factor-	91,770	Calculated using the age-
	age-adjusted (mg/kg)		adjusted intake factors
			equation
SA _{rec-c}	Surface area - child (cm ²)	2373	U.S. EPA 2014
~ .		6022	(Attachment 1)
SA _{rec-a}	Surface area - adult (cm ²)	6032	U.S. EPA 2014
~ .		0.070	(Attachment 1)
SA_{0-2}	Surface area 0-2 years (cm ²)	2373	U.S. EPA 2014
~ .			(Attachment 1)
SA2-6	Surface area 2-6 years (cm ²)	2373	U.S. EPA 2014
			(Attachment 1)

 Table A-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
SA ₆₋₁₆	Surface area 6-16 years (cm ²)	6032	U.S. EPA 2014
			(Attachment 1)
SA16-26	Surface area $16-26 (cm^2)$	6032	U.S. EPA 2014
			(Attachment 1)
AT _{rec}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{rec-c}	Averaging time - child (days/year)	365 x ED _{rec-c}	U.S. EPA 2014
			(Attachment 1)
AT _{rec-a}	Averaging time - adult (days/year)	365 x ED _{rec-a}	U.S. EPA 2014
			(Attachment 1)

Table A-9. Recreator Soil/Sediment Land Use Equation Variables

 Table A-10. Recreator Surface Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{rec-wat-}	Recreator Child Surface Water	Contaminant-specific	Determined in this calculator
ingnc	Noncarcinogenic Ingestion (µg/L)	Child, Adult and Age-	
		adjusted Specific	
PRG _{rec-wat-}	Recreator Child Surface Water	Contaminant-specific	Determined in this calculator
dernc	Noncarcinogenic Dermal (µg/L)	Child, Adult and Age-	
		adjusted Specific	
PRG _{rec-wat-}	Recreator Child Surface Water	Contaminant-specific	Determined in this calculator
totnc	Noncarcinogenic Total (µg/L)	Child, Adult and Age-	
		adjusted Specific	
PRG _{rec-wat-}	Recreator Adult Surface Water	Contaminant-specific	Determined in this calculator
ingna	Noncarcinogenic Ingestion (µg/L)	Child, Adult and Age-	
		adjusted Specific	
PRG _{rec-wat-}	Recreator Adult Surface Water	Contaminant-specific	Determined in this calculator
derna	Noncarcinogenic Dermal (µg/L)	Child, Adult and Age-	
		adjusted Specific	
PRG _{rec-wat-}	Recreator Adult Surface Water	Contaminant-specific	Determined in this calculator
totna	Noncarcinogenic Total (µg/L)	Child, Adult and Age-	
		adjusted Specific	
PRG _{rec-wat-}	Recreator Age-adjusted Surface	Contaminant-specific	Determined in this calculator
ingnadj	Water Noncarcinogenic Ingestion	Child, Adult and Age-	
	$(\mu g/L)$	adjusted Specific	
PRG _{rec-wat-}	Recreator Age-adjusted Surface	Contaminant-specific	Determined in this calculator
dernadj	Water Noncarcinogenic Dermal	Child, Adult and Age-	
	$(\mu g/L)$	adjusted Specific	
PRG _{rec-wat-}	Recreator Age-adjusted Surface	Contaminant-specific	Determined in this calculator
totnadj	Water Noncarcinogenic Total	Child, Adult and Age-	
	$(\mu g/L)$	adjusted Specific	
PRG _{rec-wat-}	Recreator Surface Water	Contaminant-specific	Determined in this calculator
ingc	Carcinogenic Ingestion (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Contaminant-specific	Determined in this calculator
derc	Carcinogenic Dermal (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Contaminant-specific	Determined in this calculator
totc	Carcinogenic Total (µg/L)	-	

Symbol	Definition (units)	Default	Reference
PRG _{rec-wat-}	Recreator Surface Water	Mutagen-specific	Determined in this calculator
ingmu	Mutagenic Ingestion (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Mutagen-specific	Determined in this calculator
dermu	Mutagenic Dermal (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Mutagen-specific	Determined in this calculator
totmu	Mutagenic Total (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Vinyl Chloride-specific	Determined in this calculator
ingvc	Carcinogenic Vinyl Chloride		
	Ingestion (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Vinyl Chloride-specific	Determined in this calculator
dervc	Carcinogenic Vinyl Chloride		
	Dermal (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Vinyl Chloride-specific	Determined in this calculator
totvc	Carcinogenic Vinyl Chloride		
	Total (μ g/L)		
PRG _{rec-wat-}	Recreator Surface Water	Trichloroethylene-specific	Determined in this calculator
ingtce	Carcinogenic and Mutagenic		
	Trichloroethylene Ingestion		
	(µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Trichloroethylene-specific	Determined in this calculator
dertce	Carcinogenic and Mutagenic		
	Trichloroethylene Dermal (µg/L)		
PRG _{rec-wat-}	Recreator Surface Water	Trichloroethylene-specific	Determined in this calculator
tottce	Carcinogenic and Mutagenic		
	Trichloroethylene Total (µg/L)		
BW _{rec-a}	Body Weight - adult (kg)	80	U.S. EPA 2014 (Attachment 1)
BW _{rec-c}	Body Weight - child (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
BW ₁₆₋₂₆	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{rec-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014 (Attachment 1)
ED _{rec-c}	Exposure Duration - child (years)	6	U.S. EPA 2014 (Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years	2	U.S. EPA 2014 (Attachment 1)
	(years)		, , , , , , , , , , , , , , , , , , ,
ED ₂₋₆	Exposure Duration - 2-6 Years	4	U.S. EPA 2014 (Attachment 1)
	(years)		, , , , , , , , , , , , , , , , , , ,
ED ₆₋₁₆	Exposure Duration - 6-16 Years	10	U.S. EPA 2014 (Attachment 1)
0.10	(years)		
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years	10	U.S. EPA 2014 (Attachment 1)
10 20	(years)		()
EF _{rec-a}	Exposure Frequency - adult	45	Region 4 Bulletin
100-a	(days/year)		
EF _{rec-c}	Exposure Frequency - child	45	Region 4 Bulletin
	(days/year)		
EF ₀₋₂	Exposure Frequency - 0-2 Years	45	Region 4 Bulletin
	(days/year)		

 Table A-10. Recreator Surface Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
EF ₂₋₆	Exposure Frequency - 2-6 Years	45	Region 4 Bulletin
	(days/year)		
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	45	Region 4 Bulletin
	(days/year)		
EF ₁₆₋₂₆	Exposure Frequency - 16-26	45	Region 4 Bulletin
LA 10-20	Years (days/year)	5	<u>Region + Duneum</u>
ET _{event-rec-c}	Exposure Time - child	1	Reasonable Estimate
L I event-rec-c	(hours/event)	1	Reasonable Estimate
ET	× ,	1	Reasonable Estimate
ET _{event-rec-a}	Exposure Time - adult (hours/event)	1	Reasonable Estimate
Г.Т.		1	
ET _{event-rec(0-}	Exposure Time (hours/event)	1	Reasonable Estimate
2)			
ET _{event-rec(2-}	Exposure Time (hours/event)	1	Reasonable Estimate
6)			
ET _{event-rec(6-}	Exposure Time (hours/event)	1	Reasonable Estimate
		-	
16)	$\mathbf{T}_{\mathbf{x}} = \mathbf{T}_{\mathbf{x}} + (1_{\mathbf{x}} + 1_{\mathbf{x}})$	1	
ET _{event-}	Exposure Time (hours/event)	1	Reasonable Estimate
rec(16-26)			
EV _{rec-c}	Events - child (events/day)	1	Reasonable Estimate
EV _{rec-a}	Events - adult (events/day)	1	Reasonable Estimate
EV ₀₋₂	Events (events/day)	1	Reasonable Estimate
EV ₂₋₆	Events (events/day)	1	Reasonable Estimate
EV ₆₋₁₆	Events (events/day)	1	Reasonable Estimate
EV ₁₆₋₂₆	Events (events/day)	1	Reasonable Estimate
IRW _{rec-c}	Ingestion Rate - Child (L/hour)	0.12	Table 3.5 in <u>EFH 2011</u>
IRW _{rec-a}	Ingestion Rate - Adult (L/hour)	0.11	Time weighted average was
ice u			calculated based on the upper
			percentile from Table 3.7 of
			EFH 2019
IRW ₀₋₂	Ingestion Rate - 0-2 years	0.12	Table 3.5 in EFH 2011
	(L/hour)		
IRW ₂₋₆	Ingestion Rate - 2-6 years	0.12	Table 3.5 in <u>EFH 2011</u>
20	(L/hour)		
IRW ₆₋₁₆	Ingestion Rate - 6-16 years	0.124	Time weighted average was
110 0-10	(L/hour)	0.121	calculated based on the upper
	(L/Hour)		percentile from Table 3.7 of
			<u>EFH 2019</u>
IRW ₁₆₋₂₆	Ingestion Rate - 16-26 years	0.0985	Time weighted average was
11 10 16-26	(L/hour)	0.0705	calculated based on the upper
			percentile from Table 3.7 of
			EFH 2019
IEW	In postion Data Arra 1'- t 1	2.4	
IFW _{rec-adj}	Ingestion Rate - Age-adjusted	3.4	Calculated using the age-
	(L/kg)		adjusted intake factors equation
IFWM _{rec-adj}	Mutagenic Ingestion Rate - Age-	14	Calculated using the mutagenic
	adjusted (L/kg)		age-adjusted intake factors
			equation
SA _{rec-c}	Surface area - child (cm ²)	6365	U.S. EPA 2014 (Attachment 1)
SA _{rec-a}	Surface area - $adult (cm^2)$	19,652	U.S. EPA 2014 (Attachment 1)

Table A-10. Recreator Surface Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
SA ₀₋₂	Surface area 0-2 years (cm ²)	6365	U.S. EPA 2014 (Attachment 1)
SA ₂₋₆	Surface area 2-6 years (cm ²)	6365	U.S. EPA 2014 (Attachment 1)
SA ₆₋₁₆	Surface area 6-16 years (cm ²)	19,652	U.S. EPA 2014 (Attachment 1)
SA16-26	Surface area 16-26 (cm ²)	19,652	U.S. EPA 2014 (Attachment 1)
DFW _{rec-adj}	Dermal contact factor- age-	335,655	Calculated using the age-
	adjusted (cm ² -event/kg)		adjusted intake factors equation
DFWM _{rec-}	Mutagenic dermal contact factor-	1,053,210	Calculated using the mutagenic
adj	age-adjusted (cm ² event/kg)		age-adjusted intake factors
			equation
AT _{rec-c}	Averaging time (days/year)	365 x ED _{rec-c}	U.S. EPA 2014 (Attachment 1)
AT _{rec-a}	Averaging time (days/year)	365 x ED _{rec-a}	U.S. EPA 2014 (Attachment 1)

Table A-10. Recreator Surface Water Land Use Equation Variables

 Table A-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{res-wat-ingnc}	Resident Child Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Ingestion (μ g/L)	adjusted Specific	
PRG _{res-wat-dernc}	Resident Child Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic Dermal	Child, Adult and Age-	calculator
	$(\mu g/L)$	adjusted Specific	
PRG _{res-wat-inhn}	Resident Child Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Inhalation (μ g/L)	adjusted Specific	
PRG _{res-wat-totnc}	Resident Child Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic Total	Child, Adult and Age-	calculator
	(µg/L)	adjusted Specific	
PRG _{res-wat-ingna}	Resident Adult Tap Water	Contaminant-specific	Determined in this
Ū.	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Ingestion ($\mu g/L$)	adjusted Specific	
PRG _{res-wat-derna}	Resident Adult Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic Dermal	Child, Adult and Age-	calculator
	(µg/L)	adjusted Specific	
PRG _{res-wat-inhna}	Resident Adult Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Inhalation (μ g/L)	adjusted Specific	
PRG _{res-wat-totna}	Resident Adult Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic Total	Child, Adult and Age-	calculator
	(µg/L)	adjusted Specific	
PRG _{res-wat-ingnadj}	Resident Age-adjusted Tap Water	Contaminant-specific	Determined in this
6 5	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Ingestion (μ g/L)	adjusted Specific	
PRG _{res-wat-dernadj}	Resident Age-adjusted Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic Dermal	Child, Adult and Age-	calculator
	(µg/L)	adjusted Specific	
PRG _{res-wat-inhnadj}	Resident Age-adjusted Tap Water	Contaminant-specific	Determined in this
	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Inhalation ($\mu g/L$)	adjusted Specific	

Symbol	Definition (units)	Default	Reference
PRG _{res-wat-}	Resident Age-adjusted Tap Water	Contaminant-specific	Determined in this
totnadj	(Groundwater) Noncarcinogenic Total	Child, Adult and Age-	calculator
-	(µg/L)	adjusted Specific	
PRG _{res-wat-ingc}	Recreator Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Carcinogenic Ingestion (µg/L)		calculator
PRG _{res-wat-derc}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Carcinogenic Dermal (µg/L)	-	calculator
PRG _{res-wat-inhc}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Carcinogenic Inhalation (µg/L)	1	calculator
PRG _{res-wat-totc}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Carcinogenic Total (µg/L)	1	calculator
PRG _{res-wat-ingmu}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
1 10 Oles-wat-highlu	Mutagenic Ingestion ($\mu g/L$)	mangen speeme	calculator
PRG _{res-wat-}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
dermu	Mutagenic Dermal ($\mu g/L$)	Widagen speenie	calculator
PRG _{res-wat-inhmu}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
• ••• res-wat-inhmu	Mutagenic Inhalation (μ g/L)	mangen speeme	calculator
PRG _{res-wat-totmu}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
r NOres-wat-totmu	Mutagenic Total (μ g/L)	widtagen-specific	calculator
PRG _{res-wat-ingvc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
I KOres-wat-ingvc	Carcinogenic Vinyl Chloride Ingestion	vinyr chioride-speeme	calculator
	$(\mu g/L)$		calculator
PRG _{res-wat-dervc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
I KOres-wat-dervc	Carcinogenic Vinyl Chloride Dermal	vinyr emonde speeme	calculator
	$(\mu g/L)$		culculator
PRG _{res-wat-inhvc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
reores-wat-milve	Carcinogenic Vinyl Chloride Inhalation	viniyi emonae speeme	calculator
	(µg/L)		
PRG _{res-wat-totvc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
ies wat totve	Carcinogenic Vinyl Chloride Total	5 1	calculator
	(µg/L)		
PRG _{res-wat-ingtce}	Resident Tap Water (Groundwater)	Trichloroethylene-	Determined in this
	Carcinogenic and Mutagenic	specific	calculator
	Trichloroethylene Ingestion (µg/L)	1	
PRG _{res-wat-dertce}	Resident Tap Water (Groundwater)	Trichloroethylene-	Determined in this
	Carcinogenic and Mutagenic	specific	calculator
	Trichloroethylene Dermal (µg/L)		
BW _{res-a}	Body Weight - adult (kg)	80	U.S. EPA 2014
			(Attachment 1)
BW _{res-c}	Body Weight - child (kg)	15	U.S. EPA 2014
			(Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014
			(Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014
			(Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014
. 0-10			(Attachment 1)
BW16-26	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014
10-20			(Attachment 1)
ED _{res}	Exposure Duration - adult + child (years)	26	U.S. EPA 2014
Lures	Exposure Duration - adult - child (years)	20	(Attachment 1)
			(Attachment 1)

 Table A-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
ED _{res-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014
			(Attachment 1)
ED _{res-c}	Exposure Duration - child (years)	6	U.S. EPA 2014
			(Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years (years)	2	U.S. EPA 2014
* -			(Attachment 1)
ED ₂₋₆	Exposure Duration - 2-6 Years (years)	4	U.S. EPA 2014
0			(Attachment 1)
ED ₆₋₁₆	Exposure Duration - 6-16 Years (years)	10	U.S. EPA 2014
220-10		10	(Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years (years)	10	U.S. EPA 2014
LD10-20	Exposure Duration 10 20 Tears (years)	10	(Attachment 1)
EF _{res}	Exposure Frequency - adult + child	350	U.S. EPA 2014
L1 res	(days/year)	550	(Attachment 1)
EF _{res-a}	Exposure Frequency - adult (days/year)	350	U.S. EPA 2014
LT res-a	Exposure Frequency - adult (days/year)	550	(Attachment 1)
EF _{res-c}		350	U.S. EPA 2014
EF _{res-c}	Exposure Frequency - child (days/year)	330	
F F		250	(Attachment 1) U.S. EPA 2014
EF ₀₋₂	Exposure Frequency - 0-2 Years	350	
- FF	(days/year)	250	(Attachment 1)
EF ₂₋₆	Exposure Frequency - 2-6 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
ET _{res}	Exposure Time (hours/day)	24	The whole day
ET _{event-res-c}	Exposure Time - child (hours/event)	0.54	U.S. EPA 2014
			(Attachment 1)
ET _{event-res-a}	Exposure Time - adult (hours/event)	0.71	U.S. EPA 2014
E i event-ies-a		0.71	(Attachment 1)
ET _{event-res (0-2)}	Exposure Time (hours/event)	0.54	U.S. EPA 2014
L 1 event-res (0-2)		0.51	(Attachment 1)
ET _{event-res (2-6)}	Exposure Time (hours/event)	0.54	U.S. EPA 2014
L I event-res (2-6)	Exposure Time (nours/event)	0.34	(Attachment 1)
БŢ	Exposure Time (hours/event)	0.71	U.S. EPA 2014
ET _{event-res (6-16)}	Exposure Time (nours/event)	0.71	(Attachment 1)
ET	Exposure Time (hours/event)	0.71	U.S. EPA 2014
ET _{event-res (16-26)}	Exposure Time (nours/event)	0.71	(Attachment 1)
FN		1	× ,
EV _{res-c}	Events - child (events/day)	1	U.S. EPA 2004 Exhibit
			3-2
EV _{res-a}	Events - adult (events/day)	1	U.S. EPA 2004 Exhibit
			3-2
EV ₀₋₂	Events (events/day)	1	U.S. EPA 2004 Exhibit
			3-2
EV ₂₋₆	Events (events/day)	1	U.S. EPA 2004 Exhibit
			3-2
EV ₆₋₁₆	Events (events/day)	1	U.S. EPA 2004 Exhibit
			3-2

Table A-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
EV ₁₆₋₂₆	Events (events/day)	1	U.S. EPA 2004 Exhibit
			3-2
IRW _{res-c}	Ingestion Rate - Child (L/day)	0.78	U.S. EPA 2014
			(Attachment 1)
IRW _{res-a}	Ingestion Rate - Adult (L/day)	2.5	U.S. EPA 2014
110 10105-0			(Attachment 1)
IRW ₀₋₂	Ingestion Rate - 0-2 years (L/day)	0.78	U.S. EPA 2014
110 00-2	ingestion rate of 2 years (Erady)	0.70	(Attachment 1)
IRW ₂₋₆	Ingestion Rate - 2-6 years (L/day)	0.78	U.S. EPA 2014
IIX W 2-6	ingestion Rate = 2-0 years (L/day)	0.76	(Attachment 1)
IRW ₆₋₁₆	Ingestion Rate - 6-16 years (L/day)	2.5	U.S. EPA 2014
IK VV 6-16	nigestion Rate - 0-10 years (L/day)	2.5	(Attachment 1)
IDW	$I_{1} = \frac{1}{2} \left(\frac{1}{2} \right)^{-1} \left(\frac{1}{2} \right)^$	2.5	
IRW ₁₆₋₂₆	Ingestion Rate - 16-26 years (L/day)	2.5	U.S. EPA 2014
			(Attachment 1)
IFW _{res-adj}	Ingestion Rate - Age-adjusted (L/kg)	327.95	Calculated using the
			age-adjusted intake
		1010.0	factors equation
IFWM _{res-adj}	Mutagenic Ingestion Rate - Age-adjusted	1019.9	Calculated using the
	(L/kg)		mutagenic age-
			adjusted intake factors
			equation
SA _{res-c}	Surface area - child (cm ²)	6365	U.S. EPA 2014
			(Attachment 1)
SA _{res-a}	Surface area - adult (cm ²)	19,652	U.S. EPA 2014
			(Attachment 1)
SA ₀₋₂	Surface area 0-2 years (cm ²)	6365	U.S. EPA 2014
			(Attachment 1)
SA2-6	Surface area 2-6 years (cm ²)	6365	U.S. EPA 2014
			(Attachment 1)
SA ₆₋₁₆	Surface area 6-16 years (cm ²)	19,652	U.S. EPA 2014
			(Attachment 1)
SA ₁₆₋₂₆	Surface area 16-26 (cm ²)	19,652	U.S. EPA 2014
			(Attachment 1)
DFW _{res-adj}	Dermal contact factor- age-adjusted	2,610,650	Calculated using the
~ ies uuj	(L/kg)	_,	age-adjusted intake
			factors equation
DFWM _{res-adj}	Mutagenic dermal contact factor- age-	8,191,633	Calculated using the
- ···-·105-auj	adjusted (L/kg)	- , - , - , - ,	mutagenic age-
	5 (6/		adjusted intake factors
			equation
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{res-c}	Averaging time (days/year)	365 x ED _{res-c}	U.S. EPA 2014
103-0	(augo, jour)	e de la Les-c	(Attachment 1)
AT _{res-a}	Averaging time (days/year)	365 x ED _{res-a}	U.S. EPA 2014
∩ I res-a	Averaging time (days/year)	JUJ A LDres-a	(Attachment 1)
			(Attachment 1)

 Table A-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{ind-wat-ingn}	Indoor Worker Tap Water Air	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (µg/m ³)		calculator
PRG _{ind-wat-dern}	Indoor Worker Tap Water	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (µg/m ³)		calculator
PRG _{ind-wat-inhn}	Indoor Worker Tap Water	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation (µg/m ³)		calculator
PRG _{ind-wat-totn}	Indoor Worker Tap Water	Contaminant-specific	Determined in this
	Noncarcinogenic Total (µg/m ³)		calculator
PRG _{ind-wat-ingc}	Indoor Worker Tap Water Air	Contaminant-specific	Determined in this
	Carcinogenic Ingestion (µg/m ³)		calculator
PRG _{ind-wat-derc}	Indoor Worker Tap Water Carcinogenic	Contaminant-specific	Determined in this
	Dermal ($\mu g/m^3$)		calculator
PRGind-wat-inhc	Indoor Worker Tap Water Carcinogenic	Contaminant-specific	Determined in this
	Inhalation ($\mu g/m^3$)	_	calculator
PRG _{ind-wat-totc}	Indoor Worker Tap Water Carcinogenic	Contaminant-specific	Determined in this
	Total ($\mu g/m^3$)		calculator
BW _{ind}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{ind}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EFind	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{ind}	Exposure Time (hours/event)	8	U.S. EPA 2014
			(Attachment 1)
ET _{event-iw}	Exposure Time Shower (hours/event)	0.71	U.S. EPA 2014
			(Attachment 1)
EV _{ind}	Events (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
IRW _{ind}	Ingestion Rate (L/day)	1.25	U.S. EPA 2014 (FAQ
			13)
SA _{ind}	Surface area (cm ²)	19,652	U.S. EPA 2014
			(Attachment 1)
AT _{ind}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{ind-a}	Averaging time (days/year)	365 x ED _{ind}	U.S. EPA 2014
			(Attachment 1)

 Table A-12. Indoor Worker Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{res-air-inhn}	Resident Air Noncarcinogenic (µg/m ³)	Contaminant-specific	Determined in this calculator
PRG _{res-air-inhc}	Resident Air Carcinogenic (µg/m ³)	Contaminant-specific	Determined in this calculator
PRG _{res-air-inhmu}	Resident Air Mutagenic (µg/m ³)	Mutagen-specific	Determined in this calculator
PRG _{res-air-inhvc}	Resident Air Carcinogenic Vinyl Chloride (µg/m ³)	Vinyl Chloride-specific	Determined in this calculator
PRG _{res-air-inhtce}	Resident Air Carcinogenic and Mutagenic Trichloroethylene (µg/m ³)	Trichloroethylene-specific	Determined in this calculator
ED _{res}	Exposure Duration (years)	26	U.S. EPA 2014 (Attachment 1)
ED ₀₋₂	Exposure Duration 0-2 years (years)	2	U.S. EPA 2014 (Attachment 1)
ED ₂₋₆	Exposure Duration 2-6 years (years)	4	U.S. EPA 2014 (Attachment 1)
ED ₆₋₁₆	Exposure Duration 6-16 years (years)	10	U.S. EPA 2014 (Attachment 1)
ED ₁₆₋₂₆	Exposure Duration 16-26 years (years)	10	U.S. EPA 2014 (Attachment 1)
EF _{res}	Exposure Frequency (days/year)	350	U.S. EPA 2014 (Attachment 1)
ET _{res}	Exposure Time (hours/day)	24	The whole day
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{res-a}	Averaging time (days/year)	365 x ED _{res}	U.S. EPA 2014 (Attachment 1)

Table A-13.	Resident Air	Land Use	Equation	Variables

Symbol	Definition (units)	Default	Reference	
PRG _{com-air-inhn}	Composite Worker Air	Contaminant-specific	Determined in this	
	Noncarcinogenic (µg/m ³)		calculator	
PRG _{com-air-inhc}	Composite Worker Air Carcinogenic	Contaminant-specific	Determined in this	
	$(\mu g/m^3)$		calculator	
ED _{com}	Exposure Duration (years)	25	U.S. EPA 2014	
			(Attachment 1)	
EF _{com}	Exposure Frequency (days/year)	250	U.S. EPA 2014	
			(Attachment 1)	
ET _{com}	Exposure Time (hours/day)	8	U.S. EPA 2014	
			(Attachment 1)	
AT _{com}	Averaging time (days/year)	365 x LT	U.S. EPA 2014	
			(Attachment 1)	
AT _{com-a}	Averaging time (days/year)	365 x ED _{com}	U.S. EPA 2014	
			(Attachment 1)	

 Table A-14. Composite Worker Air Land Use Equation Variables

Table A-15. Outdoor Worker Air Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{out-air-inhn}	Outdoor Worker Air Noncarcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
PRG _{out-air-inhc}	Outdoor Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{out}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EFout	Exposure Frequency (days/year)	225	U.S. EPA 2014
			(Attachment 1)
ET _{out}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{out}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{out-a}	Averaging time (days/year)	365 x ED _{out}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
PRG _{ind-air-inhn}	Indoor Worker Air Noncarcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
PRG _{ind-air-inhc}	Indoor Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{ind}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EF _{ind}	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{ind}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{ind}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{ind-a}	Averaging time (days/year)	365 x ED _{ind}	U.S. EPA 2014
			(Attachment 1)

Table A-16. Indoor Worker Air Land Use Equation Variables

Table A-17. Construction Worker Air Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{con-air-inhn}	Construction Worker Air	Contaminant-specific	Determined in this
	Noncarcinogenic (µg/m ³)		calculator
PRG _{con-air-inhc}	Construction Worker Air	Contaminant-specific	Determined in this
	Carcinogenic (µg/m ³)		calculator
ED _{con}	Exposure Duration (years)	1	U.S. EPA 2014
			(Attachment 1)
EW _{con}	Exposure (weeks/year)	50	Based on 50 weeks per
			year (reasonable work
			season)
DW _{con}	Exposure (days/week)	5	Based on 5 days per
			week for 50 weeks
EFcon	Exposure Frequency (days/year)	EW x DW	Based on 5 days per
			week for 50 weeks
ET _{con}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{con}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{con-a}	Averaging time (days/year)	365 x ED _{con}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
PRG _{exc-air-inhn}	Excavation Worker Air	Contaminant-specific	Determined in this
	Noncarcinogenic (µg/m ³)		calculator
PRG _{exc-air-inhc}	Excavation Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{exc}	Exposure Duration (years)	1	U.S. EPA 2014
			(Attachment 1)
EF _{exc}	Exposure Frequency (days/year)	20	Based on 5 days per
			week for 4 weeks
ET _{exc}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{exc}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{exc-a}	Averaging time (days/year)	365 x ED _{exc}	U.S. EPA 2014
			(Attachment 1)

 Table A-18. Excavation Worker Air Land Use Equation Variables

Table A-19. Resident Fish Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
PRG _{res-fsh-ingn}	Resident Fish Noncarcinogenic	Contaminant-specific	Determined in this
	(mg/kg)		calculator
PRG _{res-fsh-ingc}	Resident Fish Carcinogenic (mg/kg)	Contaminant-specific	Determined in this
			calculator
PRG _{res-fshw-ingn}	Resident Surface Water Fish	Contaminant-specific	Determined in this
	Noncarcinogenic (mg/kg)		calculator
PRG _{res-fshw-ingc}	Resident Surface Water Fish	Contaminant-specific	Determined in this
	Carcinogenic (mg/kg)		calculator
BW _{res-a}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{res}	Exposure Duration (years)	26	U.S. EPA 2014
			(Attachment 1)
EF _{res}	Exposure Frequency (days/year)	350	U.S. EPA 2014
			(Attachment 1)
IRF _{res-a}	Fish Ingestion Rate (g/day)	54	U.S. EPA 2014
			(Attachment 1)
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{res-a}	Averaging time (days/year)	365 x ED _{res}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
PRG _{far-prod-ingn}	Farmer Produce Noncarcinogenic Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far} -prod-ingc	Farmer Produce Carcinogenic Ingestion	Contaminant-specific	Determined in this calculator

Symbol	Definition (units)	Default	Reference
PRG _{far-wat-ingpn}	Farmer Produce Noncarcinogenic Back- calculated Concentration in Water	Contaminant-specific	Determined in this calculator
PRG _{far-wat-ingpc}	Ingestion Farmer Produce Carcinogenic Back-	Contaminant-specific	Determined in this
r reo lar-wat-ingpc	calculated Concentration in Water Ingestion	Containmant speerite	calculator
PRG _{far-sol-ingpn}	Farmer Produce Noncarcinogenic Back- calculated Concentration in Soil Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-sol-ingpc}	Farmer Produce Carcinogenic Back- calculated Concentration in Soil Ingestion	Contaminant-specific	Determined in this
PRG _{far-sw-ingpn}	Farmer Produce Noncarcinogenic Back- calculated Concentration in Soil and Water Ingestion	Contaminant-specific	calculator Determined in this calculator
PRG _{far-sw-ingpc}	Farmer Produce Carcinogenic Back- calculated Concentration in Soil and Water Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-dairy-ingn}	Farmer Dairy Noncarcinogenic Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-dairy-ingc}	Farmer Dairy Carcinogenic Ingestion	Contaminant-specific	Determined in this calculator
$PRG_{far-wat-ingdn}$	Farmer Dairy Noncarcinogenic Back- calculated Concentration in Water Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-wat-ingdc}	Farmer Dairy Carcinogenic Back- calculated Concentration in Water Ingestion	Contaminant-specific	Determined in this calculator
$PRG_{far-sol-ingdn}$	Farmer Dairy Noncarcinogenic Back- calculated Concentration in Soil Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-sol-ingdc}	Farmer Dairy Carcinogenic Back- calculated Concentration in Soil Ingestion	Contaminant-specific	Determined in this calculator
$PRG_{far-sw-ingdn}$	Farmer Dairy Noncarcinogenic Back- calculated Concentration in Soil and Water Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-sw-ingdc}	Farmer Dairy Carcinogenic Back- calculated Concentration in Soil and Water Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-beef-ingn}	Farmer Beef Noncarcinogenic Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-beef-ingc}	Farmer Beef Carcinogenic Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-wat-ingbn}	Farmer Beef Noncarcinogenic Back- calculated Concentration in Water Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-wat-ingbc}	Farmer Beef Carcinogenic Back- calculated Concentration in Water Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-sol-ingbn}	Farmer Beef Noncarcinogenic Back- calculated Concentration in Soil Ingestion	Contaminant-specific	Determined in this calculator
PRG _{far-sol-ingbc}	Farmer Beef Carcinogenic Back- calculated Concentration in Soil Ingestion	Contaminant-specific	Determined in this calculator

Table A-20. Farmer Land Use Equation Variab	es
---	----

Symbol	Definition (units)	Default	Reference
$PRG_{far-sw-ingbn}$	Farmer Beef Noncarcinogenic Back- calculated Concentration in Soil and Water Ingestion	Contaminant-specific	Determined in this calculator
$PRG_{far-sw-ingbc}$	Farmer Beef Carcinogenic Back- calculated Concentration in Soil and Water Ingestion	Contaminant-specific	Determined in this calculator
BW _{far-a}	Body Weight - adult (kg)	80	U.S. EPA 2014 (Attachment 1)
BW _{far-c}	Body Weight - child (kg)	15	U.S. EPA 2014 (Attachment 1)
$\mathrm{ED}_{\mathrm{far}}$	Exposure Duration - adult (years)	40	U.S. EPA 1991a (pg. 15)
ED _{far-c}	Exposure Duration - adult (years)	6	U.S. EPA 1991a (pg. 15)
$\mathrm{ED}_{\mathrm{far-a}}$	Exposure Duration - adult (years)	34	U.S. EPA 1991a (pg. 15)
EF _{far}	Exposure Frequency (days/year)	350	U.S. EPA 2014 (Attachment 1)
AT _{far}	Averaging Time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{far-c}	Averaging Time (days/year)	365 x ED _{far-c}	U.S. EPA 2014 (Attachment 1)
IRF _{far-c}	Fruit Ingestion Rate - Child (mg/day)	68.1×103	U.S. EPA 1997a (Table 13-61). U.S. EPA 1998 (Table C-1- 2)
IRF _{far-a}	Fruit Ingestion Rate - Adult (mg/day)	176.8×103	U.S. EPA 1997a (Table 13-61). U.S. EPA 1998 (Table C-1- 2)
$\mathrm{IFF}_{\mathrm{far-adj}}$	Fruit Ingestion Fraction - Age-adjusted (mg-year/kg-day)	35,833,000	Calculated using the age adjusted intake factors equation
IRV _{far-c}	Produce Ingestion Rate - Vegetables - Child (mg/day)	41.7×103	U.S. EPA 1997a (Table 13-61). U.S. EPA 1998 (Table C-1- 2)
IRV _{far-a}	Produce Ingestion Rate - Vegetables - Adult (mg/day)	125.7×103	U.S. EPA 1997a (Table 13-61). U.S. EPA 1998 (Table C-1- 2)
$\mathrm{IFV}_{\mathrm{far-adj}}$	Produce Ingestion Fraction - Vegetables - Age-adjusted (mg-year/kg-day)	24,535,875	Calculated using the age adjusted intake factors equation
IRD _{far-c}	Dairy Ingestion Rate - Child (mg/day)	349.5×103	U.S. EPA 1997a (Table 13-28). U.S. EPA 1998 (Table C-1- 3)
IRD _{far-a}	Dairy Ingestion Rate - Adult (mg/day)	445.6×103	Ú.S. EPA 1997a (Table 13-28). U.S. EPA 1998 (Table C-1- 3)

Table A-20. Farmer Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
$\mathrm{IFD}_{\mathrm{far-adj}}$	Dairy Ingestion Fraction - Age-adjusted (mg-year/kg-day)	115,213,000	Calculated using the age adjusted intake factors equation
IRB _{far-c}	Beef Ingestion Rate - Child (mg/day)	40.1×103	U.S. EPA 1997a (Table 13-28). U.S. EPA 1998 (Table C-1- 3)
IRB _{far-a}	Beef Ingestion Rate - Adult (mg/day)	178×103	U.S. EPA 1997a (Table 13-28). U.S. EPA 1998 (Table C-1- 3)
$\mathrm{IFB}_{\mathrm{far-adj}}$	Beef Ingestion Fraction - Age-adjusted (mg-year/kg-day)	32,091,500	Calculated using the age adjusted intake factors equation
Irr _{rup}	Root uptake from irrigation multiplier (L/kg)	Contaminant-specific	Calculated
Irr _{res}	Resuspension from irrigation multiplier (L/kg)	Contaminant-specific	Calculated
Irr _{dep}	Aerial deposition from irrigation multiplier (L/kg)	Contaminant-specific	Calculated
R _{upp}	Dry root uptake for pasture multiplier (unitless)	=BV _{dry}	
R_{upv}	Wet root uptake for vegetables multiplier (unitless)	=BV _{wet}	
Q _{p-beef}	Beef Fodder Intake Rate (kg/day)	11.77	U.S. EPA 2005 (pg. B- 138)
Q _{p-dairy}	Dairy Fodder Intake Rate (kg/day)	20.3	U.S. EPA 2005 (pg. B- 145)
Q _{w-dairy}	Dairy Water Intake Rate (kg/day)	92	U.S. EPA 1999a (pg. 10-23). U.S. EPA 1997b.
Q _{w-beef}	Beef Water Intake Rate (kg/day)	53	U.S. EPA 1999a (pg. 10-23). U.S. EPA 1997b.
Qs-dairy	Dairy Soil Intake Rate (kg/day)	0.4	U.S. EPA 2005 (pg. B- 146)
Qs-beef	Beef Soil Intake Rate (kg/day)	0.5	U.S. EPA 2005 (pg. B- 139)
f_{p-beef}	Fraction of Time Animal is On-Site (unitless)	1	Maximum value used (100%)
$f_{p\text{-}dairy}$	Fraction of Time Animal is On-Site (unitless)	1	Maximum value used (100%)
f_{s-beef}	Fraction of Animal's Food from Site when On-Site (unitless)	1	Maximum value used (100%)
$f_{s\text{-dairy}}$	Fraction of Animal's Food from Site when On-Site (unitless)	1	Maximum value used (100%)
$\mathrm{TF}_{\mathrm{dairy}}$	Dairy Transfer Factor (day/kg)	Contaminant-specific	Hierarchy selection in Section 2.4.2
TF _{beef}	Beef Transfer Factor (day/kg)	Contaminant-specific	Hierarchy selection in Section 2.4.2
BCF	Fish Bioconcentration Factor (L/kg)	Contaminant-specific	Hierarchy selection in Section 2.4.2

Symbol	Definition (units)	Default	Reference
$\mathrm{CF}_{\mathrm{far}\text{-}\mathrm{produce}}$	Fraction of Produce Consumed that is Contaminated	1	U.S. EPA 1998
$\mathrm{CF}_{\mathrm{far}\text{-}\mathrm{dairy}}$	Fraction of Dairy Consumed that is Contaminated	1	U.S. EPA 1998
CF _{far-beef}	Fraction of Beef Consumed that is Contaminated	1	U.S. EPA 1998
Ir	Irrigation rate (L/m ² -day)	3.62	Personal communication with agricultural extension agent
F	Irrigation period (unitless)	0.25 (based on 3 months per year)	Personal communication with agricultural extension agent
$\lambda_{ m B}$	Effective rate for removal (1/day)	$\lambda_i + \lambda_{HL}$	NCRP 1996
$\lambda_{\rm E}$	Decay for removal on produce (1/day)	$\lambda_{i} + (0.693/t_{w})$	NCRP 1996
$\lambda_{ m HL}$	Soil leaching rate (1/day)	0.000027	NCRP 1996
λ_i	Decay (1/day)	0.693/T _R - radionuclides, 0 - non- radionuclides	NCRP 1996
t _w	Weathering half -life (day)	14	NCRP 1996
T _R	Half-life (days)	Contaminant-specific	
MLF _{pasture}	Pasture plant mass loading factor (unitless)	0.25	Hinton, T. G. 1992
MLF _{produce}	Produce plant mass loading factor (unitless)	0.26 x 0.052 = 0.0135	Hinton, 1992. U.S. EPA SSG 1996 table G-1. Dry weight to wet weight conversion equation from section 4.10.9
t _b	Long term deposition and buildup (day)	10,950	NCRP 1996
t _v	Above ground exposure time (day)	60	NCRP 1996
I _f	Interception fraction (unitless)	0.42	Miller, C. W. 1980
Y _v	Plant yield (wet) (kg/m ²)	2	NCRP 1996
P	Area density for root zone (kg/m ²)	240	Hoffman, F. O., R. H. Gardner, and K. F. Eckerman. 1982; Peterson, H. T., Jr. 1983; McKone, T. E. 1994
Т	Translocation factor (unitless)	1	NCRP 1996
Res	Soil resuspension multiplier)	= MLF (produce or pasture)	Hinton, T.G. 1992

Table A-20. Farmer Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
Cw	Target soil leachate concentration	Nonzero MCL or RSL ×	U.S. EPA. 2002
	(pCi/L)	DAF	Equation 4-14
DAF	Dilution attenuation factor (unitless)	20 (or site-specific)	U.S. EPA. 2002
			Equation 4-11
ED _{gw}	Exposure duration	70	U.S. EPA. 2002
			Equation 4-14
Ι	Infiltration Rate (m/year)	0.18	U.S. EPA. 2002
			Equation 4-11
L	Source length parallel to ground water	Site-specific	U.S. EPA. 2002
	flow (m)		Equation 4-11
i	Hydraulic gradient (m/m)	Site-specific	U.S. EPA. 2002
			Equation 4-11
K	Aquifer hydraulic conductivity	Site-specific	U.S. EPA. 2002
	(m/year)		Equation 4-11
$\theta_{\rm w}$	Water-filled soil porosity (L _{water} /L _{soil})	0.3	U.S. EPA. 2002
			Equation 4-10
θ_a	Air-filled soil porosity (Lair/Lsoil)	$=$ n- θ_{w}	U.S. EPA. 2002
			Equation 4-10
n	Total soil porosity (L _{pore} /L _{soil})	$= 1 - (\rho_b / \rho_s)$	U.S. EPA. 2002
			Equation 4-10
ρ_s	Soil particle density (kg/L)	2.65	U.S. EPA. 2002
			Equation 4-10
ρ_{b}	Dry soil bulk density (kg/L)	1.5	U.S. EPA. 2002
			Equation 4-10
K _d	Soil-water partition coefficient (L/kg)	$= K_{oc} * f_{oc}$ for organics	U.S. EPA. 2002
			Equation 4-10
da	Aquifer thickness (m)	Site-specific	U.S. EPA. 2002
			Equation 4-10
ds	Depth of source (m)	Site-specific	U.S. EPA. 2002
			Equation 4-10
d	Mixing zone depth (m)	Site-specific	U.S. EPA. 2002
			Equation 4-12

Table A-21. Soil to	Groundwater	SSL Factor	Variables
	Groundhatt		, all mores

Symbol	Definition (units)	Default	Reference
PEFwind	Particulate Emission Factor -	1.36 × 109(region-	U.S. EPA 2002 Exhibit
	Minneapolis (m ³ /kg)	specific)	D-2
Q/C _{wind}	Inverse of the Mean Concentration at	93.77 (region-specific)	U.S. EPA 2002 Exhibit
	the Center of a 0.5-Acre-Square		D-2
	Source $(g/m^2$ -s per kg/m ³)		
V	Fraction of Vegetative Cover	0.5	U.S. EPA. 2002
	(unitless)		Equation 4-5
U _m	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA. 2002
			Equation 4-5
Ut	Equivalent Threshold Value of Wind	11.32	U.S. EPA. 2002
	Speed at 7m (m/s)		Equation 4-5
F(x)	Function Dependent on U _m /U _t	0.194	U.S. EPA. 2002
	(unitless)		Equation 4-5
А	Dispersion constant unitless	PEF and region-specific	U.S. EPA 2002 (pg. D-
			2)
As	Areal extent of the site or	0.5 (range 0.5 to 500)	U.S. EPA 2002 (pg. D-
	contamination (acres)		2)
В	Dispersion constant unitless	PEF and region-specific	U.S. EPA 2002 (pg. D-
			2)
С	Dispersion constant unitless	PEF and region-specific	U.S. EPA 2002 (pg. D-
			2)

Table A-22. Wind Particulate Emission Factor Equation Variables

Symbol	Definition (units)	Default	Reference	
PEF _{sc}	Particulate Emission Factor -	Contaminant-specific	U.S. EPA	2002
	subchronic (m ³ /kg)		Equation 5-5	
Q/C _{sr}	Inverse of the ratio of the 1-h	23.02 (for 0.5-acre site)	U.S. EPA	2002
	geometric mean concentration to the		Equation 5-5	
	emission flux along a straight road			
	segment bisecting a square site (g/m ² -s			
	per kg/m ³)			
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA	2002
			Equation 5-5	
Т	Total time over which construction	7,200,000	U.S. EPA	2002
	occurs (s)		Equation 5-5	
A _R	Surface area of contaminated road	$A_R = L_R \times W_R \times 0.092903$	U.S. EPA.	2002
	segment (m ²)	m^2/ft^2)	Equation 5-5	
L _R	Length of road segment (ft)	Site-specific	U.S. EPA.	2002
			Equation 5-5	
W _R	Width of road segment (ft)	20	U.S. EPA.	2002
			Equation E-18	
W	Mean vehicle weight (tons)	(Number of cars x	U.S. EPA.	2002
		tons/car + number of	Equation 5-5	
		trucks x tons/truck) / total		
		vehicles)		
р	Number of days with at least 0.01	Site-specific	U.S. EPA.	2002
	inches of precipitation (days/year)		Equation 5-5	
∑VKT	Sum of fleet vehicle kilometers	$\sum VKT = total vehicles x$	U.S. EPA	2002
	traveled during the exposure duration	distance (km/day) x	Equation 5-5	
	(km)	frequency (weeks/year) x		
		(days/year)		• • • •
А	Dispersion constant unitless	12.9351	U.S. EPA	2002
			Equation 5-6	• • • •
As	Areal extent of site surface soil	0.5 (range 0.5 to 500)	U.S. EPA	2002
	contamination (acres)		Equation 5-6	• • • •
В	Dispersion constant unitless	5.7383	U.S. EPA.	2002
~			Equation 5-6	
С	Dispersion constant unitless	71.7711	U.S. EPA	2002
		0.400	Equation 5-6	2002
t _c	Total time over which construction	8400	U.S. EPA.	2002
	occurs (hrs)		Equation 5-5	

Table A-23. Mechanical Particulate Emission Factor Variables from Vehicle Traffic

Table A-24. Mechanical Particulate Emission Factor	· Variables from other than Vehicle Traffic
--	---

Symbol	Definition (units)	Default	Reference
PEF'sc	Particulate Emission Factor -	Contaminant-specific	U.S. EPA 2002
	subchronic (m ³ /kg)		Equation E-26
Q/C _{sa}	Inverse of the ratio of the 1-h	Site-specific	U.S. EPA 2002
	geometric mean air concentration and		Equation E-15
	the emission flux at the center of the		

Symbol	Definition (units)	Default	Reference
	square emission source (g/m ² -s per		
	kg/m ³)		
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation 5-5
Т	Total time over which construction	7,200,000	U.S. EPA 2002
	occurs (s)		Equation 5-5
Ac	Areal extent of site surface soil	(range 0.5 to 500)	U.S. EPA. 2002
	contamination (acres)		Equation E-15
J' _T	Total time-averaged PM10 unit	Site-specific	U.S. EPA. 2002
	emission flux for construction		Equation E-25
	activities other than traffic on unpaved		
- DC	roads (g/m ² -s)		
$M^{PC}_{\ wind}$	Unit mass emitted from wind erosion	Site-specific	U.S. EPA. 2002
	(g)		Equation E-20
V	Fraction of Vegetative Cover	0	U.S. EPA. 2002
	(unitless)		Equation E-20
U_m	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA 2002
			Equation E-20
Ut	Equivalent Threshold Value of Wind	11.32	U.S. EPA 2002
	Speed at 7m (m/s)		Equation E-20
F(x)	Function Dependent on U _m /U _t	0.194	U.S. EPA 2002
	(unitless)		Equation E-20
A_{surf}	Areal extent of site surface soil	(range 0.5 to 500)	U.S. EPA 2002
	contamination (m ²)		Equation E-20
ED	Exposure duration (years)	Site-specific	U.S. EPA 2002
			Equation E-20
M _{excav}	Unit mass emitted from excavation	Site-specific	U.S. EPA 2002
	soil dumping (g)		Equation E-21
0.35	PM10 particle size multiplier	0.35	U.S. EPA 2002
	(unitless)	1.50	Equation E-21
U _m	Mean annual wind speed during	4.69	U.S. EPA 2002
	construction (m/s)		Equation E-21
M _{m-excav}	Gravimetric soil moisture content (%)	12 (mean value for	U.S. EPA 2002
		municipal landfill cover)	Equation E-21
ρ_{soil}	In situ soil density (includes water)	1.68	U.S. EPA 2002
	(mg/m ³)		Equation E-21
A _{excav}	Areal extent of excavation (m ²)	(range 0.5 to 500)	U.S. EPA 2002
1		<u> </u>	Equation E-21
d _{excav}	Average depth of excavation (m)	Site-specific	U.S. EPA 2002
N			Equation E-21
N _{A-dump}	Number of times soil is dumped	2	U.S. EPA 2002
	(unitless)	<u> </u>	Equation E-21
M_{doz}	Unit mass emitted from dozing	Site-specific	U.S. EPA 2002
0.75	operations (g)	0.75	Equation E-22
0.75	PM10 scaling factor (unitless)	0.75	U.S. EPA 2002
			Equation E-22
Sdoz	Soil silt content (%)	6.9	U.S. EPA 2002
			Equation E-22

Table A-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
M _{m-doz}	Gravimetric soil moisture content (%)	7.9 (mean value for	U.S. EPA 2002
		overburden)	Equation E-22
$\sum VKT_{doz}$	Sum of dozing kilometers traveled	Site-specific	U.S. EPA 2002
_	(km)		Equation E-22
S _{doz}	Average dozing speed (kph)	11.4 (mean value for	U.S. EPA 2002
		graders)	Equation E-22
N _{A-doz}	Number of times site is dozed	Site-specific	U.S. EPA 2002
	(unitless)	1	Equation E-22
B _d	Dozer blade length (m)	Site-specific	U.S. EPA 2002 Page
			E-28
M _{grade}	Unit mass emitted from grading	Site-specific	U.S. EPA 2002
0	operations (g)		Equation E-23
0.60	PM10 scaling factor (unitless)	0.60	U.S. EPA 2002
			Equation E-23
$\sum VKT_{grade}$	Sum of grading kilometers traveled	Site-specific	U.S. EPA 2002
	(km)	1	Equation E-23
S _{grade}	Average grading speed (kph)	11.4 (mean value for	U.S. EPA 2002
Brade		graders)	Equation E-23
N _{A-grade}	Number of times site is graded	Site-specific	U.S. EPA 2002
- A-glade	(unitless)		Equation E-23
Bg	Grader blade length (m)	Site-specific	U.S. EPA 2002 Page
-5			E-28
M _{till}	Unit mass emitted from tilling	Site-specific	U.S. EPA 2002
	operations (g)		Equation E-24
Still	Soil silt content (%)	18	U.S. EPA 2002
Still		10	Equation E-24
A _{c-till}	Areal extent of tilling (acres)	Site-specific	U.S. EPA 2002
c-uii			Equation E-24
A _{c-grade}	Areal extent of grading (acres)	Site-specific	Necessary to solve
1 Lo-grade		Site specific	$\sum VKT_{grade}$ in U.S.
			EPA 2002 Equation E-
			23
A _{c-doz}	Areal extent of dozing (acres)	Site-specific	Necessary to solve
0 402	······································		$\sum VKT_{doz}$ in U.S. EPA
			2002 Equation E-22
N _{A-till}	Number of times soil is tilled	2	U.S. EPA 2002
- A-un	(unitless)		Equation E-24
Α	Dispersion constant unitless	2.4538	U.S. EPA 2002
	<u>r</u>		Equation E-15
A _s	Areal extent of site surface soil	0.5 (range 0.5 to 500)	U.S. EPA 2002
5	contamination (acres)		Equation 5-6
В	Dispersion constant unitless	17.5660	U.S. EPA 2002
_			Equation E-15
С	Dispersion constant unitless	189.0426	U.S. EPA 2002
-	- aperator constant anticos		Equation E-15
t _c	Total time over which construction	8400	U.S. EPA. 2002
-U	occurs (hrs)		Equation 5-5
			Equation 5-5

Table A-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
VF _{ulim}	Unlimited Source Volatilization	Contaminant-specific	U.S. EPA. 2002
	Factor - Minneapolis (m ³ /kg)		Equation 4-8
Q/C _{vol}	Inverse of the Mean Concentration at	68.81	U.S. EPA. 2002
	the Center of a 0.5-Acre-Square		Equation 4-8
	Source $(g/m^2$ -s per kg/m ³)		
D _A	Apparent Diffusivity (cm ² /s)	Contaminant-specific	U.S. EPA. 2002
			Equation 4-8
Т	Exposure interval (s)	819,936,000	U.S. EPA. 2002
			Equation 4-8
ρь	Dry soil bulk density (g/cm ³)	1.5	U.S. EPA. 2002
			Equation 4-8
θ_a	Air-filled soil porosity (Lair/Lsoil)	0.28	U.S. EPA. 2002
			Equation 4-8
n	Total soil porosity (L _{pore} /L _{soil})	0.43	U.S. EPA. 2002
			Equation 4-8
$\theta_{\rm w}$	Water-filled soil porosity (L _{water} /L _{soil})	0.15	U.S. EPA. 2002
			Equation 4-8
ρs	Soil particle density (g/c m ³)	2.65	U.S. EPA. 2002
			Equation 4-8
D _{ia}	Diffusivity in air (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
$D_{\rm w}$	Diffusivity in water (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
K _d	Soil-water partition coefficient	Contaminant-specific	U.S. EPA. 2002
	$(K_{oc} \times f_{oc})$		Equation 4-8
K _{oc}	Soil organic carbon-water partition	Contaminant-specific	EPI Suite
	coefficient		
f_{oc}	Organic carbon content of soil (g/g)	0.006	U.S. EPA. 2002
			Equation 4-8
As	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	11.911	U.S. EPA 2002
			Exhibit D-3
В	Dispersion Constant	18.4385	U.S. EPA 2002
	-		Exhibit D-3
С	Dispersion Constant	209.7845	U.S. EPA 2002
			Exhibit D-3

Table A-25. Volatilization Factor Equation Variables

Symbol	Definition (units)	Default	Reference
VF _{mlim}	Mass Limit Volatilization Factor -	Contaminant-specific	U.S. EPA. 2002
	Minneapolis (m ³ /kg)		Equation 4-8
Q/C _{vol}	Inverse of the Mean Concentration at	68.81	U.S. EPA. 2002
	the Center of a 0.5-Acre-Square		Equation 4-8
	Source $(g/m^2$ -s per kg/m ³)		
Ds	Average Source Depth (m)	Site-specific	U.S. EPA. 2002
			Equation 4-13
Т	Exposure interval (years)	26	U.S. EPA. 2002
			Equation 4-8
ρь	Dry soil bulk density (g/cm ³)	1.5	U.S. EPA. 2002
			Equation 4-8
As	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	11.911	U.S. EPA 2002
			Exhibit D-3
В	Dispersion Constant	18.4385	U.S. EPA 2002
			Exhibit D-3
С	Dispersion Constant	209.7845	U.S. EPA 2002
			Exhibit D-3

 Table A-26. Mass Limit Volatilization Factor Equation Variables

Symbol	Definition (units)	Default	Reference
VF _{ulim-sc}	Volatilization Factor - Minneapolis	Contaminant-specific	U.S. EPA. 2002
	(m^3/kg)		Equation 5-14
Q/C _{sa}	Inverse of the ratio of the 1-h	14.31 (for 0.5 acre site)	U.S. EPA. 2002
	geometric mean air concentration to		Equation 5-14
	the volatilization flux at the center of a		
	square source $(g/m^2-s \text{ per } kg/m^3)$		
DA	Apparent Diffusivity (cm ² /s)	Contaminant-specific	U.S. EPA. 2002
			Equation 5-15
Т	Exposure interval (s)	30,240,000	U.S. EPA. 2002
			Equation 5-17
ρь	Dry soil bulk density (g/cm ³)	1.5	U.S. EPA. 2002
			Equation 5-14
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA. 2002
			Equation 5-14
θ_a	Air-filled soil porosity (Lair/Lsoil)	0.28	U.S. EPA. 2002
			Equation 5-14
n	Total soil porosity (L _{pore} /L _{soil})	0.43	U.S. EPA. 2002
			Equation 5-14
$\theta_{\rm w}$	Water-filled soil porosity (Lwater/Lsoil)	0.15	U.S. EPA. 2002
			Equation 5-14
ρ_s	Soil particle density (g/cm ³)	2.65	U.S. EPA. 2002
			Equation 5-14
D _{ia}	Diffusivity in air (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
D _{iw}	Diffusivity in water (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
K _d	Soil-water partition coefficient	Contaminant-specific	U.S. EPA. 2002
	$(\mathrm{K}_{\mathrm{oc}} imes \mathrm{f}_{\mathrm{oc}})$		Equation 4-8
K _{oc}	Soil organic carbon-water partition	Contaminant-specific	EPI Suite
	coefficient		
f_{oc}	Organic carbon content of soil (g/g)	0.006	U.S. EPA. 2002
			Equation 4-8
Ac	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	2.4538	U.S. EPA 2002
			Exhibit 5-15
В	Dispersion Constant	17.5560	U.S. EPA 2002
			Exhibit 5-15
С	Dispersion Constant	189.0426	U.S. EPA 2002
			Exhibit 5-15
t _c	Total time over which construction	8400	U.S. EPA. 2002
	occurs (hrs)		Equation 5-5

 Table A-27. Subchronic Volatilization Factor Equation Variables

Symbol	Definition (units)	Default	Reference
VF _{mlim-sc}	Volatilization Factor - Minneapolis	Contaminant-specific	U.S. EPA. 2002
	(m^{3}/kg)		Equation 5-14
Q/C _{sa}	Inverse of the ratio of the 1-h	14.31 (for 0.5 acre site)	U.S. EPA. 2002
	geometric mean air concentration to		Equation 5-14
	the volatilization flux at the center of a		
	square source (g/m ² -s per kg/m ³)		
ds	Average source depth (m)	Site-specific	U.S. EPA. 2002
			Equation 5-17
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA. 2002
			Equation 5-14
Т	Exposure interval (s)	30,240,000	U.S. EPA. 2002
			Equation 5-17
ρ _b	Dry soil bulk density (g/cm ³)	1.5	U.S. EPA. 2002
			Equation 5-14
Ac	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	2.4538	U.S. EPA 2002
			Exhibit 5-15
В	Dispersion Constant	17.5560	U.S. EPA 2002
			Exhibit 5-15
С	Dispersion Constant	189.0426	U.S. EPA 2002
			Exhibit 5-15
t _c	Total time over which construction	8400	U.S. EPA. 2002
	occurs (hrs)		Equation 5-5

 Table A-28. Subchronic Mass Limit Volatilization Factor Equation Variables

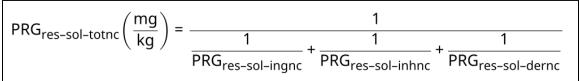
APPENDIX B. CHEMICAL PRG EQUATIONS

APPENDIX B. CHEMICAL PRG EQUATIONS

Resident Soil PRG Equations

Noncarcinogenic Child Soil Ingestion

$$\mathsf{PRG}_{\mathsf{res-sol-ingnc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-c}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res-c}}(6 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{res-c}}(15 \text{ kg})}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \text{ yr}) \times \mathsf{IRS}_{\mathsf{res-c}}\left(\frac{200 \text{ mg}}{\mathsf{day}}\right)}$$


Noncarcinogenic Child Soil Inhalation

$$\mathsf{PRG}_{\mathsf{res-sol-inhnc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-c}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-c}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}^{+} \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Child Soil Dermal

$$\mathsf{PRG}_{\mathsf{res-sol-dernc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-c}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{res-c}}(15 \ \mathsf{kg})}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{res-c}}\left(\frac{2,373 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{res-c}}\left(\frac{0.2 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Noncarcinogenic Child Soil Total

Noncarcinogenic Adult Soil Ingestion

$$\mathsf{PRG}_{\mathsf{res-sol-ingna}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{res-a}}(80 \text{ kg})}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res-a}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{IRS}_{\mathsf{res-a}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right)}$$

Noncarcinogenic Adult Soil Inhalation

$$\mathsf{PRG}_{\mathsf{res-sol-inhna}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RFC}}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{res-a}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-a}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^+ \frac{1}{\mathsf{PEF}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right)}$$

Noncarcinogenic Adult Soil Dermal

$$\mathsf{PRG}_{\mathsf{res-sol-derna}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{res-a}}\left(80 \ \mathsf{kg}\right)}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res-a}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{res-a}}\left(\frac{6,032 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{res-a}}\left(\frac{0.07 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Noncarcinogenic Adult Soil Total

$$PRG_{res-sol-totna}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{res-sol-ingna}} + \frac{1}{PRG_{res-sol-inhna}} + \frac{1}{PRG_{res-sol-derna}}}$$

Noncarcinogenic Age-adjusted Soil Ingestion

$$PRG_{res-sol-ingnadj}\left(\frac{mg}{kg}\right) = \frac{THQ \times AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}{\left(\frac{RBA}{RfD_{o}\left(\frac{mg}{kg-day}\right)}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right)}$$
where:
$$IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times IRS_{res-c}\left(\frac{200 \text{ mg}}{day}\right)}{BW_{res-c}(15 \text{ kg})} + \frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times IRS_{res-a}\left(\frac{100 \text{ mg}}{day}\right)}{BW_{res-a}(80 \text{ kg})}\right]$$

Noncarcinogenic Age-adjusted Soil Inhalation

$$\mathsf{PRG}_{\mathsf{res-sol-inhnadj}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \mathsf{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \mathsf{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \mathsf{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \mathsf{ yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \mathsf{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \mathsf{ day}}{24 \mathsf{ hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Age-adjusted Soil Dermal

$$PRG_{res-sol-dernadj}\left(\frac{mg}{kg}\right) = \frac{THQ \times AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}{\left(\frac{1}{RfD_{o}\left(\frac{mg}{kg-day}\right) \times GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) \times ABS_{d}}$$
where:
$$DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times SA_{res-c}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{res-c}(15 \text{ kg})} + \left[\frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times SA_{res-a}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{res-a}(80 \text{ kg})}\right]$$

Noncarcinogenic Age-adjusted Soil Total

$$PRG_{res-sol-totnadj}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{res-sol-ingnadj}} + \frac{1}{PRG_{res-sol-inhnadj}} + \frac{1}{PRG_{res-sol-dernadj}}}$$

Carcinogenic Soil Ingestion

$$PRG_{res-sol-ingc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right)}$$

$$IFS_{res-adj} \left(\frac{36,750 \text{ mg}}{\text{kg}}\right) = \begin{bmatrix} \frac{EF_{res-c} \left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{res-c} \left(6 \text{ yr}\right) \times IRS_{res-c} \left(\frac{200 \text{ mg}}{\text{day}}\right)}{BW_{res-c} \left(15 \text{ kg}\right)} + \\ \frac{EF_{res-a} \left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{res-a} \left(20 \text{ yr}\right) \times IRS_{res-a} \left(\frac{100 \text{ mg}}{\text{day}}\right)}{BW_{res-a} \left(80 \text{ kg}\right)} \end{bmatrix}$$

Carcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{res-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{\mathsf{24} \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)$$

Carcinogenic Soil Dermal

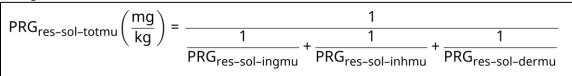
$$PRG_{res-sol-derc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{\left(\frac{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) \times ABS_{d}}$$
where:
$$DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) = \left[\frac{\frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times SA_{res-c}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{res-c}(15 \text{ kg})} + \left[\frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times SA_{res-a}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{res-a}(80 \text{ kg})}\right]$$

Carcinogenic Soil Total

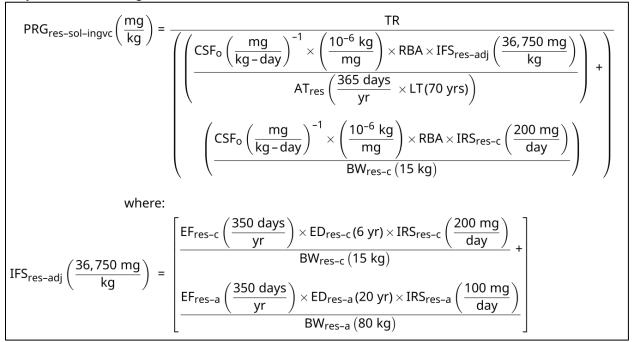
$$PRG_{res-sol-totc}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{res-sol-ingc}} + \frac{1}{PRG_{res-sol-inhc}} + \frac{1}{PRG_{res-sol-derc}}}$$

Mutagenic Soil Ingestion

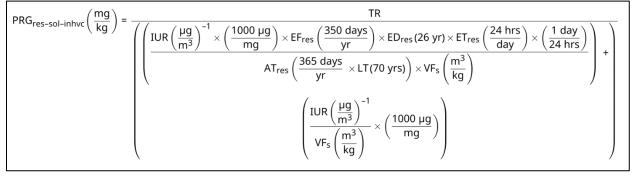
$$PRG_{res-sol-ingmu}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{0}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times IFSM_{res-adj}\left(\frac{166,833.3 \text{ mg}}{kg}\right)}$$
where:
$$IFSM_{res-adj}\left(\frac{166,833.3 \text{ mg}}{kg}\right) = \begin{bmatrix} \frac{EF_{0-2}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{day}\right) \times 10}{BW_{0-2}(15 \text{ kg})} + \frac{EF_{2-6}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times IRS_{2-6}\left(\frac{200 \text{ mg}}{day}\right) \times 3}{BW_{2-6}(15 \text{ kg})} + \frac{EF_{6-16}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{6-16}(10 \text{ yr}) \times IRS_{6-16}\left(\frac{100 \text{ mg}}{day}\right) \times 3}{BW_{6-16}(80 \text{ kg})} + \frac{EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times IRS_{16-26}\left(\frac{100 \text{ mg}}{day}\right) \times 1}{BW_{16-26}(80 \text{ kg})} \end{bmatrix}$$

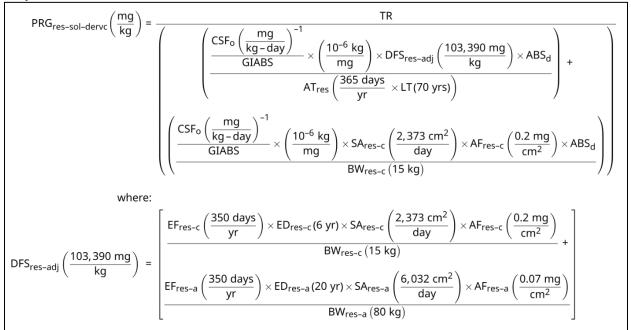

Mutagenic Soil Inhalation

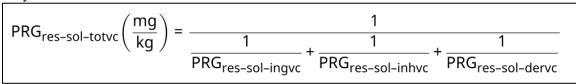
$$\begin{split} \mathsf{PRG}_{\mathsf{res-sol-inhmu}} \left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}} \left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR} \left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}} \left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{1}{\mathsf{PEF}} \left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right) \times}{\mathsf{IUR} \left(\frac{\mathsf{EF}_{\mathsf{0-2}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{0-2}}(2 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{0-2}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times 10\right) +}{\left(\mathsf{EF}_{\mathsf{2-6}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{2-6}}(4 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{2-6}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times 3\right) +}{\left(\mathsf{EF}_{\mathsf{6-16}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{6-16}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{6-16}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times 3\right) +}{\left(\mathsf{EF}_{\mathsf{16-26}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16-26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16-26}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times 1\right)\right]} \end{split}$$


Mutagenic Soil Dermal

$$PRG_{res-sol-dermu}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{\left(\frac{CSF_{0}\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFSM_{res-adj}\left(\frac{428,260 \text{ mg}}{kg}\right) \times ABS_{d}}$$
where:
$$DFSM_{res-adj}\left(\frac{428,260 \text{ mg}}{kg}\right) = \begin{bmatrix} \frac{EF_{0-2}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times SA_{0-2}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{0-2}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right) \times 10}{BW_{0-2}(15 \text{ kg})} + \frac{EF_{2-6}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times SA_{2-6}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{2-6}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right) \times 3}{BW_{2-6}(15 \text{ kg})} + \frac{EF_{6-16}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{6-16}(10 \text{ yr}) \times SA_{6-16}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{6-16}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right) \times 3}{BW_{6-16}(80 \text{ kg})} + \frac{EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times SA_{16-26}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{16-26}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right) \times 1}{BW_{16-26}(80 \text{ kg})} \end{bmatrix}$$

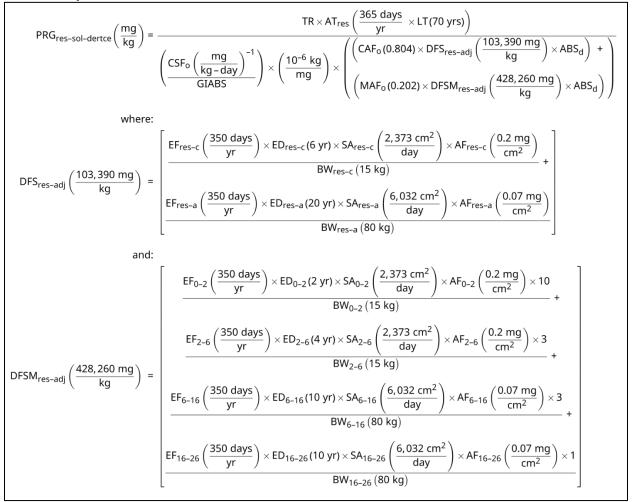

Mutagenic Soil Total


Vinyl Chloride Soil Ingestion

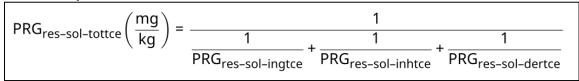

Vinyl Chloride Soil Inhalation

Vinyl Chloride Soil Dermal

Vinyl Chloride Soil Total


Trichloroethylene Soil Ingestion

$$\begin{split} \mathsf{PRG}_{\mathsf{res-sol-ingtce}} & \left(\frac{\mathsf{nng}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}} \left(\frac{365 \, \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \, \mathsf{yrs})\right)}{\mathsf{CSF}_0 \left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \, \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \left(\begin{array}{c} (\mathsf{CAF}_0(0.804) \times \mathsf{IFS}_{\mathsf{res-adj}} \left(\frac{36,750 \, \mathsf{mg}}{\mathsf{kg}}\right)\right) + \\ \left(\mathsf{MAF}_0(0.202) \times \mathsf{IFSM}_{\mathsf{res-adj}} \left(\frac{166, 833.3 \, \mathsf{mg}}{\mathsf{kg}}\right)\right) \right) \end{split}$$
where:
$$\mathsf{IFS}_{\mathsf{res-adj}} \left(\frac{36,750 \, \mathsf{mg}}{\mathsf{kg}}\right) = \left[\begin{array}{c} \frac{\mathsf{EF}_{\mathsf{res-c}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \, \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{res-c}} \left(\frac{200 \, \mathsf{mg}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-c}}(15 \, \mathsf{kg})} + \\ \frac{\mathsf{EF}_{\mathsf{res-a}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20 \, \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{res-a}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-a}}(80 \, \mathsf{kg})} \right] \\ and: \\\mathsf{IFSM}_{\mathsf{res-adj}} \left(\frac{166, 833.3 \, \mathsf{mg}}{\mathsf{kg}}\right) = \left[\begin{array}{c} \frac{\mathsf{EF}_{\mathsf{res-c}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20 \, \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{res-a}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-a}}(80 \, \mathsf{kg})} + \\ \frac{\mathsf{EF}_{\mathsf{res-ad}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20 \, \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{res-ad}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{10}}{\mathsf{BW}_{\mathsf{res-ad}}(50 \, \mathsf{kg})} + \\ \\ \mathsf{EF}_{\mathsf{fe-1}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-ad}}(20 \, \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{res-ad}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{10}}{\mathsf{BW}_{\mathsf{res-ad}}(50 \, \mathsf{kg})} + \\ \\ \frac{\mathsf{EF}_{\mathsf{fe-1}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{e-1}}(1 \, \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{e-1}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{3}}{\mathsf{BW}_{\mathsf{e-1}}(50 \, \mathsf{kg})} + \\ \\ \frac{\mathsf{EF}_{\mathsf{fe-1}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{e-1}} \left(10 \, \mathsf{yr}\right) \times \mathsf{IRS}_{\mathsf{fe-1}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{3}}{\mathsf{BW}_{\mathsf{e-1}}(60 \, \mathsf{kg})} + \\ \\ \frac{\mathsf{EF}_{\mathsf{fe-1}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{f-2}} \left(10 \, \mathsf{yr}\right) \times \mathsf{IRS}_{\mathsf{f-2}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{3}}{\mathsf{BW}_{\mathsf{e-1}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{3}} + \\ \\ \\ \frac{\mathsf{EF}_{\mathsf{fe-1}} \left(\frac{350 \, \mathsf{days}}{\mathsf{yr}\right) \times \mathsf{ED}_{\mathsf{f-2}} \left(10 \, \mathsf{yr}\right) \times \mathsf{IRS}_{\mathsf{f-2}} \left(\frac{100 \, \mathsf{mg}}{\mathsf{day}}\right) \times \mathsf{3}}{\mathsf{BW}_{\mathsf{6-1}} \left(80 \, \mathsf{kg}\right)} \mathsf{3}} \right)$$


Trichloroethylene Soil Inhalation

$$PRG_{res-sol-inhtce}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{IUR\left(\frac{\mu g}{m^3}\right)^{-1} \times \left(\frac{1000 \ \mu g}{mg}\right) \times \left(\frac{1}{VF_s}\left(\frac{m^3}{kg}\right)^{+} + \frac{1}{PEF\left(\frac{m^3}{kg}\right)}\right) \times \left[\left(EF_{res}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times ET_{res}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times CAF_i(0.756)\right) + \left(EF_{0-2}\left(\frac{350 \ days}{yr}\right) \times ED_{0-2}(2 \ yr) \times ET_{0-2}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times MAF_i(0.244) \times 10\right) + \left(EF_{2-6}\left(\frac{350 \ days}{yr}\right) \times ED_{2-6}(4 \ yr) \times ET_{2-6}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times MAF_i(0.244) \times 3\right) + \left(EF_{6-16}\left(\frac{350 \ days}{yr}\right) \times ED_{6-16}(10 \ yr) \times ET_{6-16}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times MAF_i(0.244) \times 3\right) + \left(EF_{16-26}\left(\frac{350 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times ET_{16-26}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times MAF_i(0.244) \times 1\right)\right)$$

Trichloroethylene Soil Dermal

Trichloroethylene Soil Total

Supporting Child Soil

$$\begin{split} & \text{ED}_{\text{res-c}}(6 \text{ yr}) = \text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr}) \\ & \text{BW}_{\text{res-c}}(15 \text{ kg}) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{BW}_{0-2}(15 \text{ kg}) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{BW}_{2-6}(15 \text{ kg})}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ & \text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EF}_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EF}_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ & \text{ET}_{\text{res-c}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{ET}_{0-2}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{ET}_{2-6}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ & \text{AF}_{\text{res-c}}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{AF}_{0-2}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{AF}_{2-6}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ & \text{AF}_{\text{res-c}}\left(\frac{2.373 \text{ cm}^2}{\text{day}}\right) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{AF}_{0-2}\left(\frac{2.373 \text{ cm}^2}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{SA}_{2-6}\left(\frac{2.373 \text{ cm}^2}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ & \text{AF}_{\text{res-c}}\left(\frac{2.00 \text{ mg}}{\text{day}}\right) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{SA}_{0-2}\left(\frac{2.30 \text{ mg}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{SA}_{2-6}\left(\frac{2.373 \text{ cm}^2}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ & \text{IRS}_{\text{res-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right) = \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{IRS}_{0-2}\left(\frac{200 \text{ mg}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{SA}_{2-6}\left(\frac{200 \text{ mg}}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ \end{array}$$

Supporting Adult Soil

$$\begin{split} & \text{ED}_{\text{res-a}}(20 \text{ yr}) = \text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \\ & \text{BW}_{\text{res-a}}(80 \text{ kg}) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{BW}_{6-16}(80 \text{ kg}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{BW}_{16-26}(80 \text{ kg})}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr})} \\ & \text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EF}_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{16-26}\left(10 \text{ yr}\right) \times \text{AF}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{16-26}(10 \text{ yr})} \\ & \text{AF}_{\text{res-a}}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{AF}_{6-16}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{AF}_{16-26}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{AF}_{16-26}\left(\frac{6,032 \text{ cm}^2}{\text{cm}^2}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{AF}_{16-26}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right)} \\ & \text{AF}_{\text{res-a}}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{SA}_{6-16}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{SA}_{16-26}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr})} \times \text{SA}_{16-26}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr})} \\ & \text{IRS}_{\text{res-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{IRS}_{6-16}\left(\frac{100 \text{ mg}}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{IRS}_{16-26}\left(\frac{100 \text{ mg}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr})} \\ \end{array}$$

Supporting Age-adjusted Soil

$$ED_{res}(26 \text{ yr}) = ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})$$

$$EF_{res}\left(\frac{350 \text{ days}}{\text{yr}}\right) = \frac{\left(\frac{ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{6-16}(10 \text{ yr}) \times EF_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right)\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{2-6}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-16}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-26}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-26}(10 \text{ yr}) \times ET_{6-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-26}(10 \text{ yr}) \times ET_{6-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{6-26}(10 \text{ yr}) \times ET_{6-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{6-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}\left(\frac{24 \text{ hrs}}{\text{day$$

Resident Air PRG Equations

Noncarcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{res-air-inhn}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Carcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{res-air-inhc}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Mutagenic Air Inhalation

$$\begin{aligned} \mathsf{PRG}_{\mathsf{res-air-inhmu}} \left(\frac{\mu g}{\mathsf{m}^3}\right) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}} \left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\left(\mathsf{EF}_{0-2} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{0-2}(2 \text{ yr}) \times \mathsf{ET}_{0-2} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 10\right) + \left(\mathsf{EF}_{2-6} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{2-6}(4 \text{ yr}) \times \mathsf{ET}_{2-6} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \left(\mathsf{EF}_{6-16} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{6-16}(10 \text{ yr}) \times \mathsf{ET}_{6-16} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \left(\mathsf{EF}_{16-26} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{16-26}(10 \text{ yr}) \times \mathsf{ET}_{16-26} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right)\right] \end{aligned}$$

Vinyl Chloride Air Inhalation

$$PRG_{res-air-inhvc}\left(\frac{\mu g}{m^{3}}\right) = \frac{TR}{IUR\left(\frac{\mu g}{m^{3}}\right)^{-1} + \left(\frac{IUR\left(\frac{\mu g}{m^{3}}\right)^{-1} \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}\right)}$$

Trichloroethylene Air Inhalation

$$\begin{split} \mathsf{PRG}_{\mathsf{res}-\mathsf{air}-\mathsf{inhtce}} \left(\frac{\mu g}{\mathsf{m}^3}\right) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}} \left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\left(\mathsf{EF}_{\mathsf{res}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{CAF}_{\mathsf{i}}(0.756)\right) + \\ & \left(\mathsf{EF}_{\mathsf{0}-2} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{0}-2}(2 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{0}-2} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 10\right) + \\ & \left(\mathsf{EF}_{\mathsf{2}-\mathsf{6}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{2}-\mathsf{6}}(4 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{2}-\mathsf{6}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{6}-\mathsf{16}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{6}-\mathsf{16}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{6}-\mathsf{16}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{16}-\mathsf{26}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16}-\mathsf{26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16}-\mathsf{26}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{16}-\mathsf{26}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16}-\mathsf{26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16}-\mathsf{26}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{16}-\mathsf{26}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16}-\mathsf{26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16}-\mathsf{26}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{16}-\mathsf{26}} \left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16}-\mathsf{26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16}-\mathsf{26}} \left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{\mathsf{24 \ \mathsf{hrs}}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 1\right)\right) \right] \\ \end{array}$$

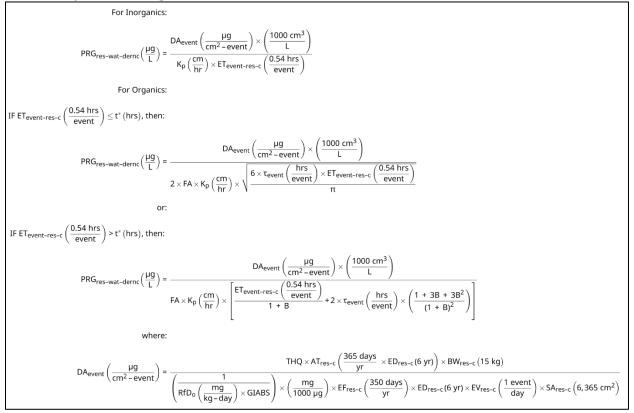
Refractory Ceramic Fibers Air Inhalation

$$\mathsf{PRG}_{\mathsf{res-air-inhrcf}}\left(\frac{f}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{f}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

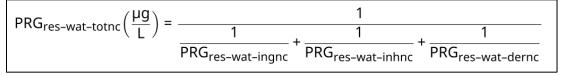
Asbestos Air Inhalation

$$\mathsf{PRG}_{\mathsf{res-air-inhasb}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Resident Tap Water PRG Equations


Noncarcinogenic Child Tap Water Ingestion

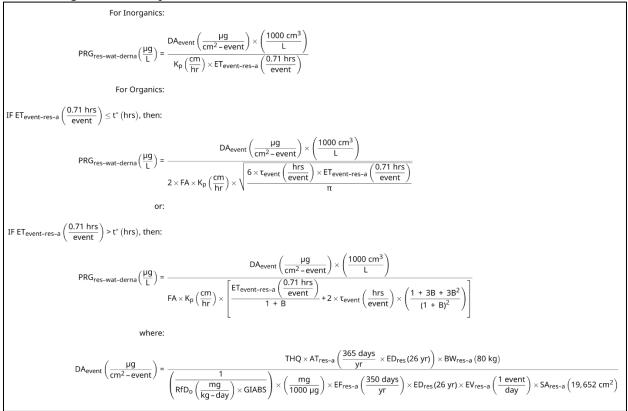
$$\mathsf{PRG}_{res-wat-ingnc}\left(\frac{\mu g}{L}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{res-c}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{res-c}(6 \text{ yr})\right) \times \mathsf{BW}_{res-c}\left(15 \text{ kg}\right)}{\left(\frac{1}{\mathsf{RfD}_o\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{res-c}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{res-c}(6 \text{ yr}) \times \mathsf{IRW}_{res-c}\left(\frac{0.78 \ \mathsf{L}}{\mathsf{day}}\right)}$$


Noncarcinogenic Child Tap Water Inhalation

$$\mathsf{PRG}_{\mathsf{res-wat-inhnc}}\left(\frac{\mu g}{L}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-c}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res-c}}(6 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \text{ yr}) \times \mathsf{ET}_{\mathsf{res-c}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{K}\left(\frac{0.5 \ \mathsf{L}}{\mathsf{m}^3}\right)}$$

Noncarcinogenic Child Tap Water Dermal

Noncarcinogenic Child Tap Water Total


Noncarcinogenic Adult Tap Water Ingestion

$$\mathsf{PRG}_{\mathsf{res-wat-ingna}}\left(\frac{\mu g}{\mathsf{L}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{res-a}}\left(80 \text{ kg}\right)}{\left(\frac{1}{\mathsf{RfD}_o\left(\frac{\mathsf{mg}}{\mathsf{kg-day}}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mathsf{\mu g}}\right) \times \mathsf{EF}_{\mathsf{res-a}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{IRW}_{\mathsf{res-a}}\left(\frac{2.5 \ \mathsf{L}}{\mathsf{day}}\right)}$$

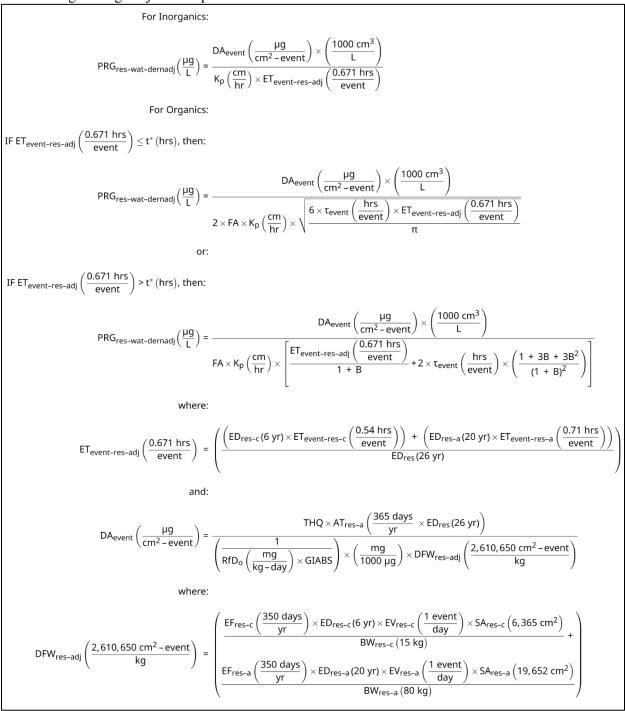
Noncarcinogenic Adult Tap Water Inhalation

$$\mathsf{PRG}_{\mathsf{res-wat-inhna}}\left(\frac{\mu g}{\mathsf{L}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{res-a}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-a}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{K}\left(\frac{0.5 \ \mathsf{L}}{\mathsf{m}^3}\right)}$$

Noncarcinogenic Adult Tap Water Dermal

Noncarcinogenic Adult Tap Water Total

$$PRG_{res-wat-totna}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{res-wat-ingna}} + \frac{1}{PRG_{res-wat-inhna}} + \frac{1}{PRG_{res-wat-derna}}}$$


Noncarcinogenic Age-adjusted Tap Water Ingestion

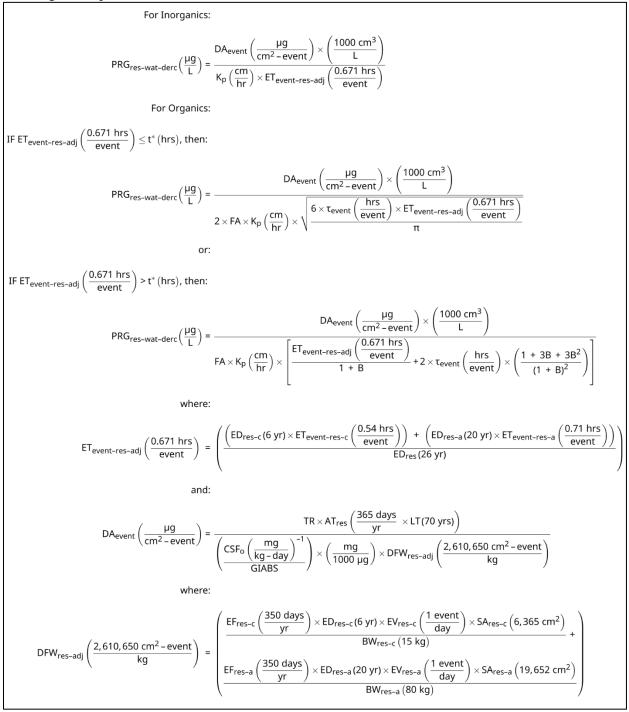
$$PRG_{res-wat-ingnadj}\left(\frac{\mu g}{L}\right) = \frac{THQ \times AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}{\left(\frac{1}{RfD_{o}\left(\frac{mg}{kg-day}\right)}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right)}$$
where:
$$IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}(15 \ kg)} + \frac{EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res-a}(20 \ yr) \times IRW_{res-a}\left(\frac{2.5 \ L}{day}\right)}{BW_{res-a}(80 \ kg)}\right]$$

Noncarcinogenic Age-adjusted Tap Water Inhalation

$$PRG_{res-wat-inhnadj}\left(\frac{\mu g}{L}\right) = \frac{THQ \times AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}{\left(\frac{1}{RfC\left(\frac{mg}{m^3}\right)}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times ET_{res-a}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times K\left(\frac{0.5 \ L}{m^3}\right)}$$

Noncarcinogenic Age-adjusted Tap Water Dermal

Noncarcinogenic Age-adjusted Tap Water Total


Carcinogenic Tap Water Ingestion

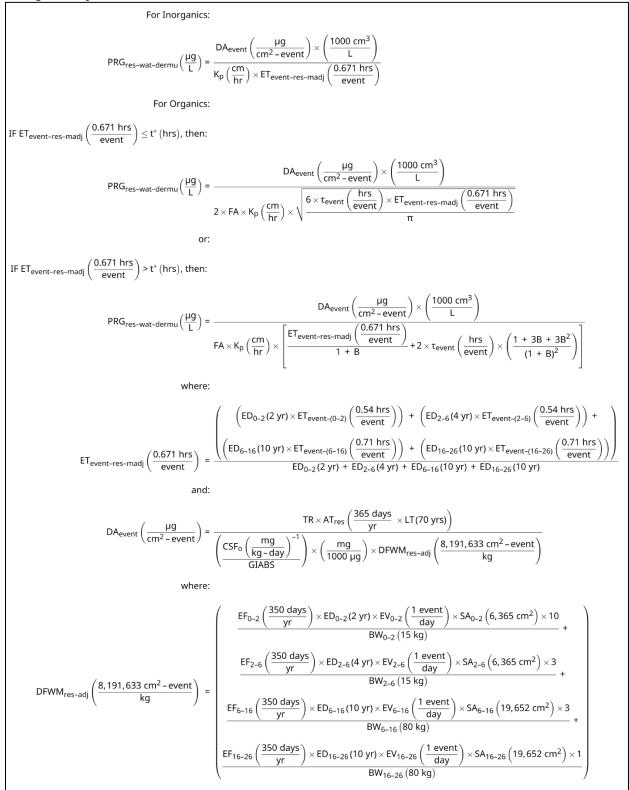
$$PRG_{res-wat-ingc}\left(\frac{\mu g}{L}\right) = \frac{TR \times AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right)}$$
where:
$$IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}\left(6 \ yr\right) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}\left(15 \ kg\right)} + \frac{EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res-a}\left(20 \ yr\right) \times IRW_{res-a}\left(\frac{2.5 \ L}{day}\right)}{BW_{res-a}\left(80 \ kg\right)}\right]$$

Carcinogenic Tap Water Inhalation

$$\mathsf{PRG}_{\mathsf{res-wat-inhc}}\Big(\frac{\mu g}{\mathsf{L}}\Big) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{K}\left(\frac{0.5 \text{ L}}{\mathsf{m}^3}\right)}$$

Carcinogenic Tap Water Dermal

Carcinogenic Tap Water Total


Mutagenic Tap Water Ingestion

$$\begin{split} \text{PRG}_{\text{res-wat-ingmu}} \Big(\frac{\mu g}{L}\Big) &= \frac{\text{TR} \times \text{AT}_{\text{res}} \left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)}{\text{CSF}_{0} \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right)^{-1} \times \left(\frac{\text{mg}}{1000 \ \mu g}\right) \times \text{IFWM}_{\text{res-adj}} \left(\frac{1,019.9 \ \text{L}}{\text{kg}}\right)} \\ & \text{where:} \\ \\ \text{IFWM}_{\text{res-adj}} \left(\frac{1,019.9 \ \text{L}}{\text{kg}}\right) &= \begin{bmatrix} \frac{\text{EF}_{0-2} \left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \ \text{yr}) \times \text{IRW}_{0-2} \left(\frac{0.78 \ \text{L}}{\text{day}}\right) \times 10}{\text{BW}_{0-2} (15 \ \text{kg})} + \\ & \frac{\text{EF}_{2-6} \left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \ \text{yr}) \times \text{IRW}_{2-6} \left(\frac{0.78 \ \text{L}}{\text{day}}\right) \times 3}{\text{BW}_{2-6} (15 \ \text{kg})} + \\ & \frac{\text{EF}_{6-16} \left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{6-16} (10 \ \text{yr}) \times \text{IRW}_{6-16} \left(\frac{2.5 \ \text{L}}{\text{day}}\right) \times 3}{\text{BW}_{6-16} (80 \ \text{kg})} + \\ & \frac{\text{EF}_{16-26} \left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26} (10 \ \text{yr}) \times \text{IRW}_{16-26} \left(\frac{2.5 \ \text{L}}{\text{day}}\right) \times 1}{\text{BW}_{16-26} (80 \ \text{kg})} \end{bmatrix} \end{split}$$

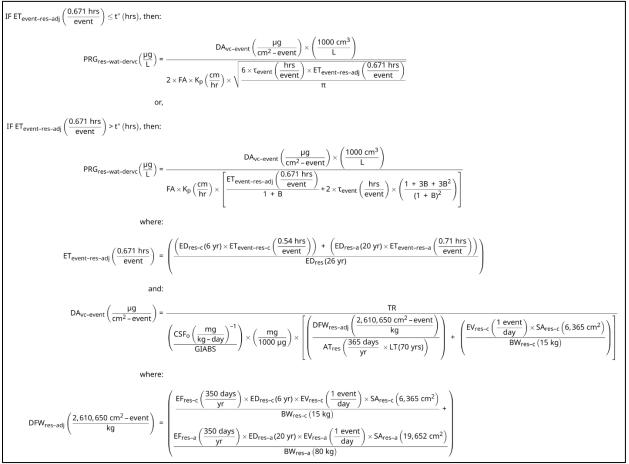
Mutagenic Tap Water Inhalation

$$\begin{split} \mathsf{PRG}_{\mathsf{res-wat-inhmu}} \Big(\frac{\mu g}{\mathsf{L}}\Big) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}} \left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR} \left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{K} \left(\frac{0.5 \text{ L}}{\mathsf{m}^3}\right) \times} \\ & \left[\begin{array}{c} \left(\mathsf{EF}_{0-2} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{0-2}(2 \text{ yr}) \times \mathsf{ET}_{0-2} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 10\right) + \\ \left(\mathsf{EF}_{2-6} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{2-6}(4 \text{ yr}) \times \mathsf{ET}_{2-6} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(\mathsf{EF}_{6-16} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{6-16}(10 \text{ yr}) \times \mathsf{ET}_{6-16} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(\mathsf{EF}_{16-26} \left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{16-26}(10 \text{ yr}) \times \mathsf{ET}_{16-26} \left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right) \right] \end{split}$$

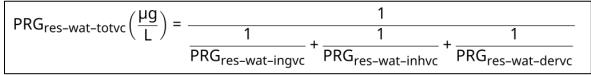
Mutagenic Tap Water Dermal

Mutagenic Tap Water Total

$$PRG_{res-wat-totmu}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{res-wat-ingmu}} + \frac{1}{PRG_{res-wat-inhmu}} + \frac{1}{PRG_{res-wat-dermu}}}$$


Vinyl Chloride Tap Water Ingestion

$$\begin{split} \mathsf{PRG}_{\mathsf{res-wat-ingvc}} \left(\frac{\mu g}{\mathsf{L}}\right) &= \frac{\mathsf{TR}}{\left(\left(\frac{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{\mathsf{mg}}{\mathsf{1000}\;\mu g}\right) \times \mathsf{IFW}_{\mathsf{res-adj}}\left(\frac{327.95\;\mathsf{L}}{\mathsf{kg}}\right)}{\mathsf{AT}_{\mathsf{res}}\left(\frac{365\;\mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70\;\mathsf{yrs})\right)}\right) + \right)} \\ &\left(\frac{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{\mathsf{mg}}{\mathsf{1000}\;\mu g}\right) \times \mathsf{IRW}_{\mathsf{res-c}}\left(\frac{0.78\;\mathsf{L}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-c}}\left(\mathsf{15\;\mathsf{kg}}\right)}\right)}\right) + \right)} \\ & \text{where:} \\ \\ \mathsf{IFW}_{\mathsf{res-adj}}\left(\frac{327.95\;\mathsf{L}}{\mathsf{kg}}\right) = \left[\frac{\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}\left(\mathsf{6\;\mathsf{yr}}\right) \times \mathsf{IRW}_{\mathsf{res-c}}\left(\frac{0.78\;\mathsf{L}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-c}}\left(\mathsf{15\;\mathsf{kg}}\right)} + \left[\frac{\mathsf{EF}_{\mathsf{res-adj}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-adj}}(20\;\mathsf{yr}) \times \mathsf{IRW}_{\mathsf{res-adj}}\left(\frac{2.5\;\mathsf{L}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-adj}}\left(\mathsf{20\;\mathsf{yr}}\right) \times \mathsf{IRW}_{\mathsf{res-adj}}\left(\frac{2.5\;\mathsf{L}}{\mathsf{day}}\right)}{\mathsf{BW}_{\mathsf{res-adj}}\left(\mathsf{80\;\mathsf{kg}}\right)}\right) \right] \end{split}$$


Vinyl Chloride Tap Water Inhalation

$$PRG_{res-wat-inhvc}\left(\frac{\mu g}{L}\right) = \frac{TR}{\left(\left(\frac{IUR\left(\frac{\mu g}{m^3}\right)^{-1} \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times K\left(\frac{0.5 \text{ L}}{m^3}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}\right) + \left(IUR\left(\frac{\mu g}{m^3}\right)^{-1} \times K\left(\frac{0.5 \text{ L}}{m^3}\right)\right)$$

Vinyl Chloride Tap Water Dermal

Vinyl Chloride Tap Water Total

Trichloroethylene Tap Water Ingestion

$$\begin{split} \text{PRG}_{\text{res-wat-ingtce}} \Big(\frac{\mu g}{L}\Big) &= \frac{\text{TR} \times \text{AT}_{\text{res}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)}{\text{CSF}_{0}\left(\frac{\text{mg}}{\text{kg}-\text{day}}\right)^{-1} \times \left(\frac{\text{mg}}{1000 \ \mu g}\right) \times \left(\begin{pmatrix} (\text{CAF}_{0}(0.804) \times \text{IFW}_{\text{res-adj}}\left(\frac{327.95 \ L}{\text{kg}}\right)\right) + \\ \left(\text{MAF}_{0}(0.202) \times \text{IFWM}_{\text{res-adj}}\left(\frac{1,019.9 \ L}{\text{kg}}\right)\right) \Big) \\ \end{split}$$

$$\begin{aligned} \text{where:} \\ \text{IFW}_{\text{res-adj}} \Big(\frac{327.95 \ L}{\text{kg}}\Big) &= \left[\frac{\text{EF}_{\text{res-c}}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \ \text{yr}) \times \text{IRW}_{\text{res-c}}\left(\frac{0.78 \ L}{\text{day}}\right)}{\text{BW}_{\text{res-c}}(15 \ \text{kg})} + \\ \frac{\text{EF}_{\text{res-a}}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}\left(20 \ \text{yr}\right) \times \text{IRW}_{\text{res-a}}\left(\frac{2.5 \ L}{\text{day}}\right)}{\text{BW}_{\text{res-a}}\left(80 \ \text{kg}\right)} + \\ \\ \text{and:} \\ \text{IFWM}_{\text{res-adj}}\left(\frac{1,019.9 \ L}{\text{kg}}\right) &= \left[\frac{\text{EF}_{0-2}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \ \text{yr}) \times \text{IRW}_{0-2}\left(\frac{0.78 \ L}{\text{day}}\right) \times 10}{\text{BW}_{0-2}(15 \ \text{kg})} + \\ \\ \frac{\text{EF}_{2-6}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \ \text{yr}) \times \text{IRW}_{2-6}\left(\frac{0.78 \ L}{\text{day}}\right) \times 3}{\text{BW}_{2-6}(15 \ \text{kg})} + \\ \\ \frac{\text{EF}_{6-16}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{6-16}(10 \ \text{yr}) \times \text{IRW}_{6-16}\left(\frac{2.5 \ L}{\text{day}}\right) \times 3}{\text{BW}_{6-16}(80 \ \text{kg})} + \\ \\ \frac{\text{EF}_{16-26}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \ \text{yr}) \times \text{IRW}_{16-26}\left(\frac{2.5 \ L}{\text{day}}\right) \times 1}{\text{BW}_{16-26}(80 \ \text{kg})} - \\ \end{array}$$

Trichloroethylene Tap Water Inhalation

$$\begin{split} \mathsf{PRG}_{\mathsf{res-wat-inhtce}}\Big(\frac{\mu g}{\mathsf{L}}\Big) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{K}\left(\frac{0.5 \ \mathsf{L}}{\mathsf{m}^3}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{CAF}_{\mathsf{i}}(0.756)\right) + \\ & \left(\mathsf{EF}_{\mathsf{0-2}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{0-2}}(2 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{0-2}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 10\right) + \\ & \left(\mathsf{EF}_{\mathsf{2-6}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{2-6}}(4 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{2-6}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{6-16}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{6-16}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{6-16}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{16-26}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16-26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16-26}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ & \left(\mathsf{EF}_{\mathsf{16-26}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{16-26}}(10 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{16-26}}\left(\frac{24 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 1\right) \right] \end{split}$$

Trichloroethylene Tap Water Dermal

$$\begin{split} \mathbb{P} \mbox{ Element-res-read} \left(\frac{0.671}{event} \right) &\leq t^*(hrs), \mbox{ there} \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) &= \frac{DA_{\text{Ele-event}} \left(\frac{|l_{2}|l}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ 2 \times FA \times F_{P} \left(\frac{m}{hr} \right) \times \sqrt{\frac{6 \times T_{\text{event}} \left(\frac{hrs}{event} \right) \times T_{\text{event}} \left(\frac{0.671 \text{ hrs}}{l} \right)}{\pi}} \\ \text{or:} \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) &= \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{|l_{2}|l}{l} \right) = \frac{DA_{\text{Ele-event}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{m^2}{event} \right) \times \left(\frac{1000 \text{ cm}^2}{L} \right) \\ \mathbb{PRG}_{\text{res-out-dettex}} \left(\frac{m^2}{event} \right) = \frac{1}{(100 \text{ cm}^2 \text{ cevent}^2 + 2 \text{ cevent}^2 \text{ cevent}^2 + 2 \text{ cevent}^2$$

Trichloroethylene Tap Water Total

$$PRG_{res-wat-tottce}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{res-wat-ingtce}} + \frac{1}{PRG_{res-wat-inhtce}} + \frac{1}{PRG_{res-wat-dertce}}}$$

Supporting Child Tap Water $ED_{res-c}(6 \text{ yr}) = ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})$ $BW_{res-c} (15 \text{ kg}) = \frac{ED_{0-2} (2 \text{ yr}) \times BW_{0-2} (15 \text{ kg}) + ED_{2-6} (4 \text{ yr}) \times BW_{2-6} (15 \text{ kg})}{ED_{0-2} (2 \text{ yr}) + ED_{2-6} (4 \text{ yr})}$ $\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) = \frac{\mathsf{ED}_{0-2}(2 \text{ yr}) \times \mathsf{EF}_{0-2}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) + \mathsf{ED}_{2-6}(4 \text{ yr}) \times \mathsf{EF}_{2-6}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right)}{\mathsf{ED}_{0-2}(2 \text{ yr}) + \mathsf{ED}_{2-6}(4 \text{ yr})}$ $\mathsf{ET}_{\mathsf{res-c}}\left(\frac{24\;\mathsf{hrs}}{\mathsf{day}}\right) \;=\; \frac{\mathsf{ED}_{0-2}(2\;\mathsf{yr}) \times \mathsf{ET}_{0-2}\left(\frac{24\;\mathsf{hrs}}{\mathsf{day}}\right) \;+\; \mathsf{ED}_{2-6}(4\;\mathsf{yr}) \times \mathsf{ET}_{2-6}\left(\frac{24\;\mathsf{hrs}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\;\mathsf{yr}) \;+\; \mathsf{ED}_{2-6}(4\;\mathsf{yr})}$ $ET_{event-res-c}\left(\frac{0.54 \text{ hrs}}{\text{event}}\right) = \frac{ED_{0-2}(2 \text{ yr}) \times ET_{event-(0-2)}\left(\frac{0.54 \text{ hrs}}{\text{event}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{event-(2-6)}\left(\frac{0.54 \text{ hrs}}{\text{event}}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})}$ $EV_{res-c}\left(\frac{1 \text{ event}}{day}\right) = \frac{ED_{0-2}(2 \text{ yr}) \times EV_{0-2}\left(\frac{1 \text{ event}}{day}\right) + ED_{2-6}(4 \text{ yr}) \times EV_{2-6}\left(\frac{1 \text{ event}}{day}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})}$ $SA_{res-c}(6,365 \text{ cm}^2) = \frac{ED_{0-2}(2 \text{ yr}) \times SA_{0-2}(6,365 \text{ cm}^2) + ED_{2-6}(4 \text{ yr}) \times SA_{2-6}(6,365 \text{ cm}^2)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})}$ $IRW_{res-c}\left(\frac{0.78 \text{ L}}{\text{day}}\right) = \frac{ED_{0-2}(2 \text{ yr}) \times IRW_{0-2}\left(\frac{0.78 \text{ L}}{\text{day}}\right) + ED_{2-6}(4 \text{ yr}) \times IRW_{2-6}\left(\frac{0.78 \text{ L}}{\text{day}}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})}$

Supporting Adult Tap Water

$$\begin{split} & \text{ED}_{\text{res-a}}(20 \text{ yr}) = \text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \\ & \text{BW}_{\text{res-a}}(80 \text{ kg}) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{BW}_{6-16}(80 \text{ kg}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{BW}_{16-26}(80 \text{ kg})}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EF}_{6-16}\left(\frac{24 \text{ hrs}}{\text{yr}}\right) + \frac{\text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \frac{\text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{16-26}(10 \text{ yr}) \times \text{ET}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)} \end{split}$$

$$\begin{aligned} & \text{ET}_{\text{res-a}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{6-16}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right) + \frac{\text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{event-(16-26)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{event-(6-16)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right) + \frac{\text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{event-(16-26)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{event-(16-26)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right)} \end{aligned}$$

$$\begin{aligned} & \text{EV}_{\text{res-a}}\left(\frac{1 \text{ event}}{\text{day}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EV}_{6-16}\left(\frac{1 \text{ event}}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EV}_{16-26}\left(\frac{1 \text{ event}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EV}_{16-26}\left(10 \text{ yr}\right) \times \text{SA}_{16-26}\left(\frac{19.652 \text{ cm}^2}{\text{cm}^2}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{SA}_{16-26}\left(\frac{19.652 \text{ cm}^2}{\text{day}}\right)} \end{aligned}$$

$$\begin{aligned} & \text{EW}_{\text{res-a}\left(\frac{2.5 \text{ L}}{\text{day}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{SA}_{6-16}\left(\frac{2.5 \text{ L}}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{SA}_{16-26}\left(\frac{2.5 \text{ L}}{\text{day}}\right)}$$

Supporting Age-adjusted Tap Water

Resident Fish PRG Equations

Noncarcinogenic Fish Ingestion

$$\mathsf{PRG}_{\mathsf{res-fsh-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{res-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{res-a}}\left(80 \text{ kg}\right)}{\left(\frac{1}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right)} \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{IRFI}_{\mathsf{res-a}}\left(\frac{54,000 \text{ mg}}{\mathsf{day}}\right)}{\mathsf{day}}\right)$$

Carcinogenic Fish Ingestion

$$\mathsf{PRG}_{\mathsf{res-fsh-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{res}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right) \times \mathsf{BW}_{\mathsf{res-a}}\left(80 \text{ kg}\right)}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}\left(26 \text{ yr}\right) \times \mathsf{IRFI}_{\mathsf{res-a}}\left(\frac{54,000 \text{ mg}}{\mathsf{day}}\right)}{\mathsf{day}}\right)}$$

Noncarcinogenic Fish Ingestion Back-calculated to Water

$$\mathsf{PRG}_{\mathsf{res-fsh-ingnw}}\left(\frac{\mathsf{mg}}{\mathsf{L}}\right) = \frac{\mathsf{PRG}_{\mathsf{res-fsh-ingnw}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{BCF}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)}$$

Carcinogenic Fish Ingestion Back-calculated to Water

$$\mathsf{PRG}_{\mathsf{res-fsh-ingcw}}\Big(\frac{\mathsf{mg}}{\mathsf{L}}\Big) = \frac{\mathsf{PRG}_{\mathsf{res-fsh-ingcw}}\Big(\frac{\mathsf{mg}}{\mathsf{kg}}\Big)}{\mathsf{BCF}\Big(\frac{\mathsf{L}}{\mathsf{kg}}\Big)}$$

Composite Worker Soil PRG Equations

Noncarcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{com-sol-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{com-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{com}}(80 \ \mathsf{kg})}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}-\mathsf{day}\right)}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{com}}\left(\frac{100 \ \mathsf{mg}}{\mathsf{day}}\right)}$$

Noncarcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{com-sol-inhn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{com-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RFC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} + \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Soil Dermal

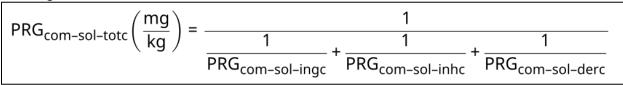
$$\mathsf{PRG}_{\mathsf{com-sol-dern}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{com-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{com}}\left(\mathsf{80 \ \mathsf{kg}}\right)}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{com}}\left(\frac{3,527 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{com}}\left(\frac{0.12 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Noncarcinogenic Soil Total

$$PRG_{com-sol-totn}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{com-sol-ingn}} + \frac{1}{PRG_{com-sol-inhn}} + \frac{1}{PRG_{com-sol-dern}}}$$

Carcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{com-sol-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{com}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right) \times \mathsf{BW}_{\mathsf{com}}\left(80 \ \mathsf{kg}\right)}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}\left(25 \ \mathsf{yr}\right) \times \mathsf{IRS}_{\mathsf{com}}\left(\frac{100 \ \mathsf{mg}}{\mathsf{day}}\right)}$$


Carcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{com-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{com}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}^{+} \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Carcinogenic Soil Dermal

$$\mathsf{PRG}_{\mathsf{com}-\mathsf{sol}-\mathsf{derc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{com}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right) \times \mathsf{BW}_{\mathsf{com}}\left(80 \ \mathsf{kg}\right)}{\left(\frac{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1}}{\mathsf{GIABS}}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{com}}\left(\frac{3,527 \ \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{com}}\left(\frac{0.12 \ \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Carcinogenic Soil Total

Composite Worker Air PRG Equations

Noncarcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{com-air-inhn}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{com-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Carcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{com-air-inhc}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{com}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Refractory Ceramic Fibers Air Inhalation

$$\mathsf{PRG}_{\mathsf{com-air-inhrcf}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{com-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Asbestos Air Inhalation

$$\mathsf{PRG}_{\mathsf{com-air-inhasb}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{com}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Outdoor Worker Soil PRG Equations

Noncarcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{out-sol-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{out-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{out}}(80 \text{ kg})}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)\right)}\right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{IRS}_{\mathsf{out}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right)$$

Noncarcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{out-sol-inhn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{out-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{out}}(25 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RFC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} + \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Soil Dermal

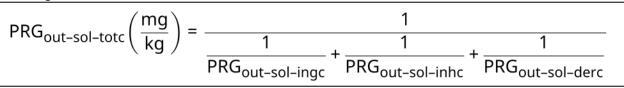
$$\mathsf{PRG}_{\mathsf{out-sol-dern}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{out-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{out}}(25 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{out}}(80 \ \mathsf{kg})}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{out}}\left(\frac{3,527 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{out}}\left(\frac{0.12 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Noncarcinogenic Soil Total

$$PRG_{out-sol-totn}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{out-sol-ingn}} + \frac{1}{PRG_{out-sol-inhn}} + \frac{1}{PRG_{out-sol-dern}}}$$

Carcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{out-sol-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{out}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right) \times \mathsf{BW}_{\mathsf{out}}\left(80 \text{ kg}\right)}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{IRS}_{\mathsf{out}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right)}$$


Carcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{out-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{out}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Carcinogenic Soil Dermal

$$PRG_{rec-sol-derc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{\left(\frac{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{kg}\right) \times ABS_{d}}$$
where:
$$DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{kg}\right) = \begin{bmatrix}\frac{EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times SA_{rec-c}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{rec-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{rec-c}(15 \text{ kg})} + \begin{bmatrix}EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-a}(20 \text{ yr}) \times SA_{rec-a}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{rec-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{rec-a}(80 \text{ kg})}\end{bmatrix}$$

Carcinogenic Soil Total

Outdoor Worker Air PRG Equations

Noncarcinogenic Air Inhalation

$$PRG_{out-air-inhn}\left(\frac{\mu g}{m^{3}}\right) = \frac{THQ \times AT_{out-a}\left(\frac{365 \text{ days}}{yr} \times ED_{out}(25 \text{ yr})\right)}{\left(\frac{1}{RfC\left(\frac{mg}{m^{3}}\right)}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Carcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{out-air-inhc}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{out}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Refractory Ceramic Fibers Air Inhalation

$$\mathsf{PRG}_{\mathsf{out-air-inhrcf}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{out-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right)\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Asbestos Air Inhalation

$$\mathsf{PRG}_{out-air-inhasb}\left(\frac{f}{m^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{out}\left(\frac{365 \text{ days}}{yr} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{f}{m^3}\right)^{-1} \times \mathsf{EF}_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \mathsf{ED}_{out}(25 \text{ yr}) \times \mathsf{ET}_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Indoor Worker Soil PRG Equations

Noncarcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{sol-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{ind}-\mathsf{a}}\left(\frac{365 \mathsf{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{ind}}(25 \mathsf{ yr})\right) \times \mathsf{BW}_{\mathsf{ind}}(80 \mathsf{ kg})}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right)} \right) \times \left(\frac{10^{-6} \mathsf{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \mathsf{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \mathsf{ yr}) \times \mathsf{IRS}_{\mathsf{ind}}\left(\frac{50 \mathsf{ mg}}{\mathsf{day}}\right)}$$

Noncarcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{ind-sol-inhn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{ind-a}}\left(\frac{365 \, \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{ind}}(25 \, \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RFC}}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \, \mathsf{yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^+ \frac{1}{\mathsf{PEF}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right)}$$

Noncarcinogenic Soil Total

$$PRG_{ind-sol-totn}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{ind-sol-ingn}} + \frac{1}{PRG_{ind-sol-inhn}}}$$

Carcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{sol-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{ind}}\left(\frac{365 \mathsf{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \mathsf{ yrs})\right) \times \mathsf{BW}_{\mathsf{ind}}\left(80 \mathsf{ kg}\right)}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \mathsf{ kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \mathsf{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \mathsf{ yr}) \times \mathsf{IRS}_{\mathsf{ind}}\left(\frac{50 \mathsf{ mg}}{\mathsf{day}}\right)}$$

Carcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{ind-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{ind}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Carcinogenic Soil Total

$$PRG_{ind-sol-totc}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{ind-sol-ingc}} + \frac{1}{PRG_{ind-sol-inhc}}}$$

Indoor Worker Air PRG Equations

Noncarcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air}-\mathsf{inhn}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{ind}-\mathsf{a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Carcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air}-\mathsf{inhc}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{ind}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

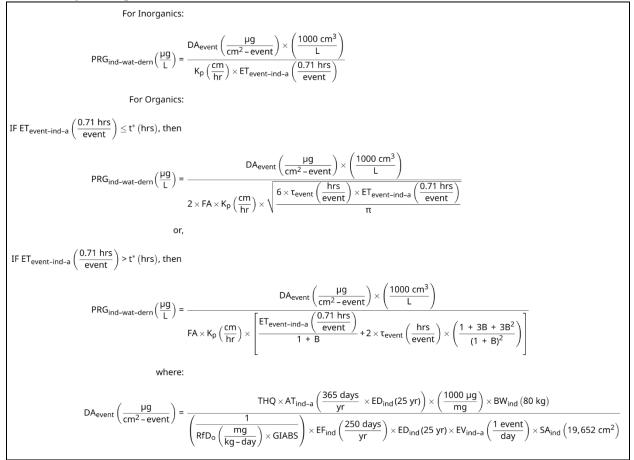
Refractory Ceramic Fibers Air Inhalation

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air}-\mathsf{inhrcf}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{ind}-\mathsf{a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Asbestos Air Inhalation

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air}-\mathsf{inhasb}}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{ind}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mathsf{f}}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Indoor Worker Tap Water PRG Equations


Noncarcinogenic Tap Water Ingestion

$$\mathsf{PRG}_{\mathsf{ind-wat-ingn}}\Big(\frac{\mu g}{\mathsf{L}}\Big) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{ind-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{ind}}(80 \text{ kg})}{\left(\frac{1}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right)} \\ \times \left(\frac{\mathsf{mg}}{1000 \ \mu \mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \ \mathsf{yr}) \times \mathsf{IRW}_{\mathsf{ind}}\left(\frac{1.25 \ \mathsf{L}}{\mathsf{day}}\right)}$$

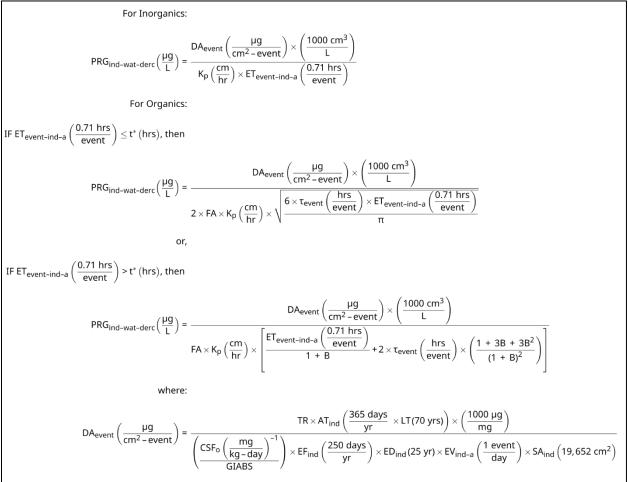
Noncarcinogenic Tap Water Inhalation

$$\mathsf{PRG}_{\mathsf{ind-wat-inhn}}\left(\frac{\mu g}{\mathsf{L}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{ind-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{ind}}(25 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{ind-a}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \mathsf{K}\left(\frac{0.5 \ \mathsf{L}}{\mathsf{m}^3}\right)}$$

Noncarcinogenic Tap Water Dermal

Noncarcinogenic Tap Water Total

$$PRG_{ind-wat-totn}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{ind-wat-ingn}} + \frac{1}{PRG_{ind-wat-inhn}} + \frac{1}{PRG_{ind-wat-dern}}}$$


Carcinogenic Tap Water Ingestion

$$\mathsf{PRG}_{\mathsf{ind-wat-ingc}}\left(\frac{\mu g}{\mathsf{L}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{ind}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right) \times \mathsf{BW}_{\mathsf{ind}}\left(80 \text{ kg}\right)}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg-day}}\right)^{-1} \times \left(\frac{\mathsf{mg}}{1000 \ \mu \mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \ \mathsf{yr}) \times \mathsf{IRW}_{\mathsf{ind}}\left(\frac{1.25 \ \mathsf{L}}{\mathsf{day}}\right)}$$

Carcinogenic Tap Water Inhalation

$$\mathsf{PRG}_{\mathsf{ind-wat-inhc}}\left(\frac{\mu g}{\mathsf{L}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{ind}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind-a}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{K}\left(\frac{0.5 \text{ L}}{\mathsf{m}^3}\right)}$$

Carcinogenic Tap Water Dermal

Carcinogenic Tap Water Total $PRG_{ind-wat-totc}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{ind-wat-ingc}} + \frac{1}{PRG_{ind-wat-inhc}} + \frac{1}{PRG_{ind-wat-derc}}}$

Construction Worker Soil Exposure to Unpaved Road Traffic PRG Equations

Noncarcinogenic Soil Ingestion Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \left(\frac{7 \text{ days}}{\mathsf{wk}}\right) \times \mathsf{ED}_{\mathsf{con}}\left(1 \text{ yr}\right)\right) \times \mathsf{BW}_{\mathsf{con}}\left(80 \text{ kg}\right)}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \text{ days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr}) \times \mathsf{IRS}_{\mathsf{con}}\left(\frac{330 \text{ mg}}{\mathsf{day}}\right)}{\mathsf{day}}\right)}$$

Noncarcinogenic Soil Inhalation Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-inhn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \left(\frac{7 \text{ days}}{\mathsf{wk}}\right) \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RFC}}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \text{ days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1}{\mathsf{VFs}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^+ \frac{1}{\mathsf{PEF}_{\mathsf{sc}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right)}$$

Noncarcinogenic Soil Dermal Unpaved Road Traffic

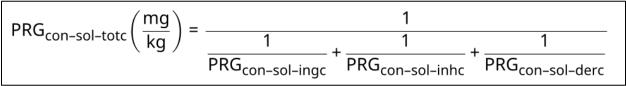
$$PRG_{con-sol-dern}\left(\frac{mg}{kg}\right) = \frac{THQ \times AT_{con-a}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times \left(\frac{7 \text{ days}}{wk}\right) \times ED_{con}(1 \text{ yr})\right) \times BW_{con}\left(80 \text{ kg}\right)}{\left(\frac{1}{RfD_{o}\left(\frac{mg}{kg-day}\right) \times GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times SA_{con}\left(\frac{3,527 \text{ cm}^{2}}{day}\right) \times AF_{con}\left(\frac{0.3 \text{ mg}}{cm^{2}}\right) \times ABS_{d}}$$

Noncarcinogenic Soil Total Unpaved Road Traffic

$$PRG_{con-sol-totn}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{con-sol-ingn}} + \frac{1}{PRG_{con-sol-inhn}} + \frac{1}{PRG_{con-sol-dern}}}$$

Carcinogenic Soil Ingestion Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right) \times \mathsf{BW}_{\mathsf{con}}\left(80 \ \mathsf{kg}\right)}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}\left(1 \ \mathsf{yr}\right) \times \mathsf{IRS}_{\mathsf{con}}\left(\frac{330 \ \mathsf{mg}}{\mathsf{day}}\right)}$$


Carcinogenic Soil Inhalation Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu g}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{\mathsf{PEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}{\mathsf{FEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right) = \mathsf{EEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right) = \mathsf{EEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right) \times \mathsf{EEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right) = \mathsf{EEF}_{\mathsf{sc}}\left(\frac{\mathsf{$$

Carcinogenic Soil Dermal Unpaved Road Traffic

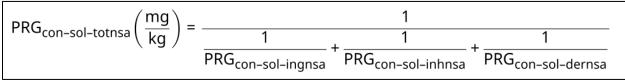
$$\mathsf{PRG}_{\mathsf{con-sol-derc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right) \times \mathsf{BW}_{\mathsf{con}}\left(80 \ \mathsf{kg}\right)}{\left(\frac{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1}}{\mathsf{GIABS}}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}\left(1 \ \mathsf{yr}\right) \times \mathsf{SA}_{\mathsf{con}}\left(\frac{3,527 \ \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{con}}\left(\frac{0.3 \ \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Carcinogenic Soil Total Unpaved Road Traffic

Construction Worker Soil Exposure to Other Construction Activities PRG Equations

Noncarcinogenic Soil Ingestion Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-ingnsa}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \left(\frac{7 \ \mathsf{days}}{\mathsf{wk}}\right) \times \mathsf{ED}_{\mathsf{con}}\left(1 \ \mathsf{yr}\right)\right) \times \mathsf{BW}_{\mathsf{con}}\left(80 \ \mathsf{kg}\right)}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}\left(1 \ \mathsf{yr}\right) \times \mathsf{IRS}_{\mathsf{con}}\left(\frac{330 \ \mathsf{mg}}{\mathsf{day}}\right)}$$


Noncarcinogenic Soil Inhalation Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-inhnsa}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \left(\frac{7 \ \mathsf{days}}{\mathsf{wk}}\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RFC}}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^+ \frac{1}{\mathsf{PEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)$$

Noncarcinogenic Soil Dermal Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-dernsa}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \left(\frac{7 \ \mathsf{days}}{\mathsf{wk}}\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{con}}(80 \ \mathsf{kg})}{\left(\frac{1}{\mathsf{RfD}_0}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{con}}\left(\frac{3,527 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{con}}\left(\frac{0.3 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{days}}$$

Noncarcinogenic Soil Total Other Construction Activities

Carcinogenic Soil Ingestion Other Construction Activities

$$PRG_{con-sol-ingcsa}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{con}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right) \times BW_{con}\left(80 \text{ kg}\right)}{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times IRS_{con}\left(\frac{330 \text{ mg}}{day}\right)}$$

Carcinogenic Soil Inhalation Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-inhcsa}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu g}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \mathsf{PEF}_{\mathsf{sc}}^{\prime}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right)}$$

Carcinogenic Soil Dermal Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-dercsa}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \; \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \; \mathsf{yrs})\right) \times \mathsf{BW}_{\mathsf{con}}\left(80 \; \mathsf{kg}\right)}{\left(\frac{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg} - \mathsf{day}}\right)^{-1}}{\mathsf{GIABS}}\right) \times \left(\frac{10^{-6} \; \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \; \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \; \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \; \mathsf{yr}) \times \mathsf{SA}_{\mathsf{con}}\left(\frac{3,527 \; \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{con}}\left(\frac{0.3 \; \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Carcinogenic Soil Total Other Construction Activities

$$PRG_{con-sol-totcsa}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{con-sol-ingcsa}} + \frac{1}{PRG_{con-sol-inhcsa}} + \frac{1}{PRG_{con-sol-dercsa}}}$$

Construction Worker Air PRG Equations

Noncarcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{con-air-inhn}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Carcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{con-air-inhc}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Refractory Ceramic Fibers Air Inhalation

$$\mathsf{PRG}_{\mathsf{con-air-inhrcf}}\left(\frac{f}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{con-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{f}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \text{ days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Asbestos Air Inhalation

$$\mathsf{PRG}_{\mathsf{con-air-inhasb}}\left(\frac{f}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{con}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{f}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \text{ days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Excavation Worker Soil PRG Equations

Noncarcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{exc-sol-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{exc-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{exc}}\left(80 \ \mathsf{kg}\right)}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)\right)} \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{exc}}\left(\frac{330 \ \mathsf{mg}}{\mathsf{day}}\right)}$$

Noncarcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{exc-sol-inhn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{exc-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^+ \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Soil Dermal

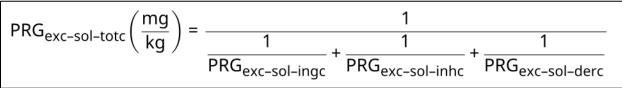
$$\mathsf{PRG}_{\mathsf{exc-sol-dern}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{exc-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{exc}}(\mathsf{80 \ \mathsf{kg}})}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{exc}}\left(\frac{3,527 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{exc}}\left(\frac{0.3 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{days}}}$$

Noncarcinogenic Soil Total

$$PRG_{exc-sol-totn}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{exc-sol-ingn}} + \frac{1}{PRG_{exc-sol-inhn}} + \frac{1}{PRG_{exc-sol-dern}}}$$

Carcinogenic Soil Ingestion

$$\mathsf{PRG}_{\mathsf{exc-sol-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{exc}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right) \times \mathsf{BW}_{\mathsf{exc}}(80 \text{ kg})}{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{IRS}_{\mathsf{exc}}\left(\frac{330 \text{ mg}}{\mathsf{day}}\right)}$$


Carcinogenic Soil Inhalation

$$\mathsf{PRG}_{\mathsf{exc-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{exc}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{1}{\mathsf{PEF}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right)}$$

Carcinogenic Soil Dermal

$$\mathsf{PRG}_{\mathsf{exc-sol-derc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{exc}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right) \times \mathsf{BW}_{\mathsf{exc}}\left(80 \text{ kg}\right)}{\left(\frac{\mathsf{CSF}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1}}{\mathsf{GIABS}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}\left(1 \text{ yr}\right) \times \mathsf{SA}_{\mathsf{exc}}\left(\frac{3,527 \text{ cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{exc}}\left(\frac{0.3 \text{ mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Carcinogenic Soil Total

Excavation Worker Air PRG Equations

Noncarcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{exc-air-inhn}}\left(\frac{\mu g}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{exc-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{\mathsf{mg}}{1000 \ \mu g}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Carcinogenic Air Inhalation

$$\mathsf{PRG}_{\mathsf{exc-air-inhc}}\left(\frac{\mu g}{m^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{exc}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{\mu g}{m^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Refractory Ceramic Fibers Air Inhalation

$$\mathsf{PRG}_{\mathsf{exc-air-inhrcf}}\left(\frac{f}{\mathsf{m}^3}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{exc-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{f}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right)}$$

Asbestos Air Inhalation

$$\mathsf{PRG}_{\mathsf{exc-air-inhasb}}\left(\frac{f}{\mathsf{m}^3}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{exc}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{LT}(70 \text{ yrs})\right)}{\mathsf{IUR}\left(\frac{f}{\mathsf{m}^3}\right)^{-1} \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}$$

Recreator Soil/Sediment PRG Equations

Noncarcinogenic Child Soil Ingestion

$$\mathsf{PRG}_{\mathsf{rec-sol-ingnc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-c}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec-c}}(6 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{rec-c}}(15 \text{ kg})}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)\right)} \right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(6 \text{ yr}) \times \mathsf{IRS}_{\mathsf{rec-c}}\left(\frac{200 \text{ mg}}{\mathsf{day}}\right)}$$

Noncarcinogenic Child Soil Inhalation

$$\mathsf{PRG}_{\mathsf{rec-sol-inhnc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-c}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec-c}}(6 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(6 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-c}}\left(\frac{1 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VFs}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} + \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Child Soil Dermal

$$\mathsf{PRG}_{\mathsf{rec-sol-dernc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-c}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec-c}}(6 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{rec-c}}\left(15 \ \mathsf{kg}\right)}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(6 \ \mathsf{yr}) \times \mathsf{SA}_{\mathsf{rec-c}}\left(\frac{2,373 \ \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{0.2 \ \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Noncarcinogenic Child Soil Total

$$PRG_{rec-sol-totnc}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{rec-sol-ingnc}} + \frac{1}{PRG_{rec-sol-inhnc}} + \frac{1}{PRG_{rec-sol-dernc}}}$$

Noncarcinogenic Adult Soil Ingestion

$$\mathsf{PRG}_{\mathsf{rec-sol-ingna}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-a}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{rec-a}}\left(80 \text{ kg}\right)}{\left(\frac{\mathsf{RBA}}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)\right)} \right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times \mathsf{IRS}_{\mathsf{rec-a}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right)}$$

Noncarcinogenic Adult Soil Inhalation

$$\mathsf{PRG}_{\mathsf{rec-sol-inhna}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec}}(26 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-a}}\left(\frac{1 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}^{+} \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Adult Soil Dermal

$$\mathsf{PRG}_{\mathsf{rec-sol-derna}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-a}}\left(\frac{365 \; \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec}}(26 \; \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{rec-a}}\left(80 \; \mathsf{kg}\right)}{\left(\frac{1}{\mathsf{RfD}_o}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) \times \mathsf{GIABS}\right) \times \left(\frac{10^{-6} \; \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75 \; \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \; \mathsf{yr}) \times \mathsf{SA}_{\mathsf{rec-a}}\left(\frac{6,032 \; \mathsf{cm}^2}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{rec-a}}\left(\frac{0.07 \; \mathsf{mg}}{\mathsf{cm}^2}\right) \times \mathsf{ABS}_{\mathsf{d}}}$$

Noncarcinogenic Adult Soil Total

$$PRG_{rec-sol-totna}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{rec-sol-ingna}} + \frac{1}{PRG_{rec-sol-inhna}} + \frac{1}{PRG_{rec-sol-derna}}}$$

Noncarcinogenic Age-adjusted Soil Ingestion

$$PRG_{rec-sol-ingnadj}\left(\frac{mg}{kg}\right) = \frac{THQ \times AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right)}{\left(\frac{RBA}{RfD_{o}\left(\frac{mg}{kg-day}\right)}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times IFS_{rec-adj}\left(\frac{7,875 \text{ mg}}{kg}\right)}$$
where:
$$IFS_{rec-adj}\left(\frac{7,875 \text{ mg}}{kg}\right) = \left[\frac{EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times IRS_{rec-c}\left(\frac{200 \text{ mg}}{day}\right)}{BW_{rec-c}(15 \text{ kg})} + \frac{EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-a}(20 \text{ yr}) \times IRS_{rec-a}\left(\frac{100 \text{ mg}}{day}\right)}{BW_{rec-a}(80 \text{ kg})}\right]$$

Noncarcinogenic Age-adjusted Soil Inhalation

$$\mathsf{PRG}_{\mathsf{rec-sol-inhnadj}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{rec-a}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{rec}}(26 \ \mathsf{yr})\right)}{\left(\frac{1}{\mathsf{RfC}\left(\frac{\mathsf{mg}}{\mathsf{m}^3}\right)}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec}}\left(\frac{1 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} + \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Noncarcinogenic Age-adjusted Soil Dermal

$$PRG_{rec-sol-dernadj}\left(\frac{mg}{kg}\right) = \frac{THQ \times AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right)}{\left(\frac{1}{RfD_{o}\left(\frac{mg}{kg-day}\right) \times GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{kg}\right) \times ABS_{d}}$$
where:
$$DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{kg}\right) = \left[\frac{EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times SA_{rec-c}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{rec-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{rec-c}(15 \text{ kg})} + \left[\frac{EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-a}(20 \text{ yr}) \times SA_{rec-a}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{rec-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{rec-a}(80 \text{ kg})}\right]$$

Noncarcinogenic Age-adjusted Soil Total

$$PRG_{rec-sol-totnadj}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{rec-sol-ingnadj}} + \frac{1}{PRG_{rec-sol-inhnadj}} + \frac{1}{PRG_{rec-sol-dernadj}}}$$

Carcinogenic Soil Ingestion

$$PRG_{rec-sol-ingc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times IFS_{rec-adj}\left(\frac{7,875 \text{ mg}}{kg}\right)}$$
where:
$$IFS_{rec-adj}\left(\frac{7,875 \text{ mg}}{kg}\right) = \begin{bmatrix}\frac{EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times IRS_{rec-c}\left(\frac{200 \text{ mg}}{day}\right)}{BW_{rec-c}(15 \text{ kg})} + \frac{1}{BW_{rec-a}(20 \text{ yr}) \times IRS_{rec-a}\left(\frac{100 \text{ mg}}{day}\right)}{BW_{rec-a}(80 \text{ kg})}\end{bmatrix}$$

Carcinogenic Soil Inhalation

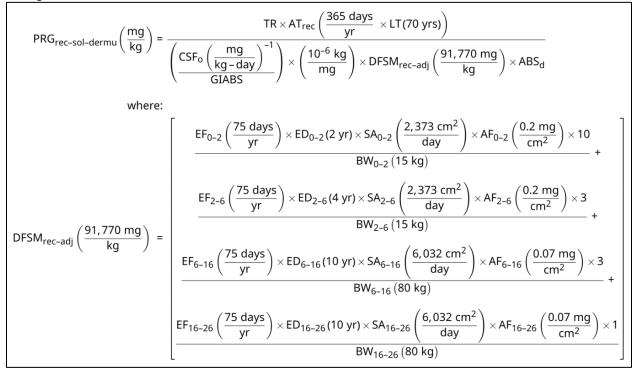
$$\mathsf{PRG}_{\mathsf{rec-sol-inhc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{rec}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right)}{\mathsf{IUR}\left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \ \mu \mathsf{g}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec}}\left(\frac{1 \ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \ \mathsf{day}}{24 \ \mathsf{hrs}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right)}$$

Carcinogenic Soil Dermal

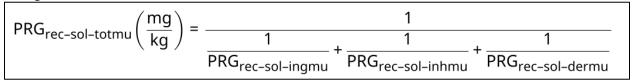
$$PRG_{rec-sol-derc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{\left(\frac{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1}}{GIABS}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{kg}\right) \times ABS_{d}}$$
where:
$$DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{kg}\right) = \left[\frac{\frac{EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times SA_{rec-c}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{rec-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{rec-c}(15 \text{ kg})} + \frac{EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-a}(20 \text{ yr}) \times SA_{rec-a}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{rec-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{rec-a}(80 \text{ kg})}\right]$$

Carcinogenic Soil Total

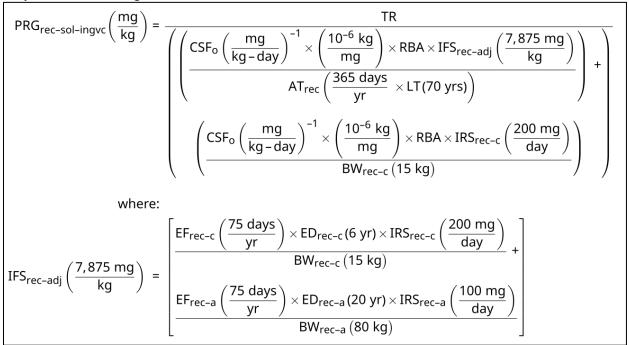
$$\mathsf{PRG}_{\mathsf{rec-sol-totc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{rec-sol-ingc}}} + \frac{1}{\mathsf{PRG}_{\mathsf{rec-sol-inhc}}} + \frac{1}{\mathsf{PRG}_{\mathsf{rec-sol-derc}}}}$$

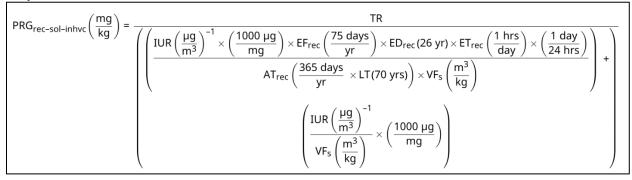

Mutagenic Soil Ingestion

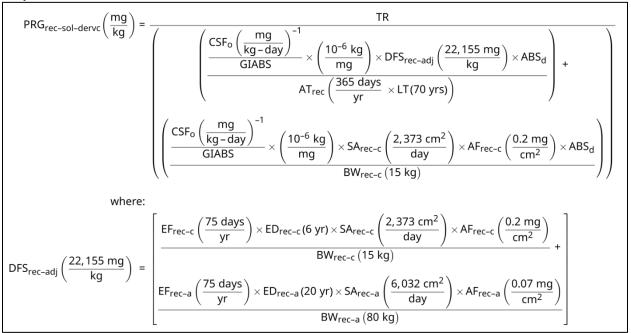
$$\begin{split} \text{PRG}_{\text{rec-sol-ingmu}} & \left(\frac{\text{mg}}{\text{kg}}\right) = \frac{\text{TR} \times \text{AT}_{\text{rec}} \left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)}{\text{CSF}_{0} \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{RBA} \times \text{IFSM}_{\text{rec-adj}} \left(\frac{35,750 \text{ mg}}{\text{kg}}\right)} \right) \\ & \text{where:} \\ \text{IFSM}_{\text{rec-adj}} \left(\frac{35,750 \text{ mg}}{\text{kg}}\right) = \begin{bmatrix} \frac{\text{EF}_{0-2} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \text{ yr}) \times \text{IRS}_{0-2} \left(\frac{200 \text{ mg}}{\text{day}}\right) \times 10}{\text{BW}_{0-2}(15 \text{ kg})} + \\ \frac{\text{EF}_{2-6} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{IRS}_{2-6} \left(\frac{200 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{2-6}(15 \text{ kg})} + \\ \frac{\text{EF}_{6-16} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{6-16}(10 \text{ yr}) \times \text{IRS}_{6-16} \left(\frac{100 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{6-16}(80 \text{ kg})} + \\ \frac{\text{EF}_{16-26} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \text{ yr}) \times \text{IRS}_{16-26} \left(\frac{100 \text{ mg}}{\text{day}}\right) \times 1}{\text{BW}_{16-26}(80 \text{ kg})} \end{bmatrix}$$

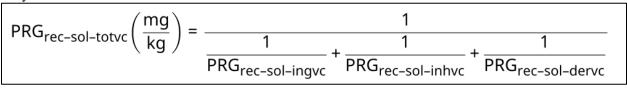

Mutagenic Soil Inhalation

$$\begin{split} \mathsf{PRG}_{\mathsf{rec-sol-inhmu}} \left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{rec}} \left(\frac{365 \, \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \, \mathsf{yrs})\right)}{\mathsf{IUR} \left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \, \mu \mathsf{g}}{\mathsf{mg}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{s}}} \left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{1}{\mathsf{PEF} \left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)}\right) \times \\ & \left[\begin{array}{c} \left(\mathsf{EF}_{0-2} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{0-2}(2 \, \mathsf{yr}) \times \mathsf{ET}_{0-2} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times 10\right) + \\ \left(\mathsf{EF}_{2-6} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{2-6}(4 \, \mathsf{yr}) \times \mathsf{ET}_{2-6} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times 3\right) + \\ \left(\mathsf{EF}_{6-16} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{6-16}(10 \, \mathsf{yr}) \times \mathsf{ET}_{6-16} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times 3\right) + \\ \left(\mathsf{EF}_{16-26} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{16-26}(10 \, \mathsf{yr}) \times \mathsf{ET}_{16-26} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times 1\right) \right] \end{split}$$


Mutagenic Soil Dermal


Mutagenic Soil Total


Vinyl Chloride Soil Ingestion


Vinyl Chloride Soil Inhalation

Vinyl Chloride Soil Dermal

Vinyl Chloride Soil Total

Trichloroethylene Soil Ingestion

$$\begin{split} \text{PRG}_{\text{rec-sol-ingtce}} & \left(\frac{\text{mg}}{\text{kg}}\right) = \frac{\text{TR} \times \text{AT}_{\text{rec}} \left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)}{\text{CSF}_{0} \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{RBA} \times \begin{pmatrix} \left(\text{CAF}_{0}(0.804) \times \text{IFS}_{\text{rec-adj}} \left(\frac{7,875 \text{ mg}}{\text{kg}}\right)\right) + \\ \left(\text{MAF}_{0}(0.202) \times \text{IFSM}_{\text{rec-adj}} \left(\frac{35,750 \text{ mg}}{\text{kg}}\right)\right) \end{pmatrix} \end{split}$$

$$\end{split}$$

$$\begin{aligned} \text{where:} \\ \text{IFS}_{\text{rec-adj}} \left(\frac{7,875 \text{ mg}}{\text{kg}}\right) = \left[\frac{\text{EF}_{\text{rec-c}} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-c}}(6 \text{ yr}) \times \text{IRS}_{\text{rec-a}} \left(\frac{200 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{rec-a}}(100 \text{ mg})} + \\ \frac{\text{EF}_{\text{rec-a}} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-a}}(20 \text{ yr}) \times \text{IRS}_{\text{rec-a}} \left(\frac{100 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{rec-a}}(80 \text{ kg})} + \\ \frac{\text{EF}_{2-6} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{IRS}_{2-6} \left(\frac{200 \text{ mg}}{\text{day}}\right) \times 10}{\text{BW}_{2-6}(15 \text{ kg})} + \\ \frac{\text{EF}_{2-6} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{IRS}_{2-6} \left(\frac{200 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{2-6}(15 \text{ kg})} + \\ \frac{\text{EF}_{2-6} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{IRS}_{2-6} \left(\frac{100 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{2-6}(15 \text{ kg})} + \\ \frac{\text{EF}_{16-26} \left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \text{ yr}) \times \text{IRS}_{16-26} \left(\frac{100 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{6-16}(80 \text{ kg})} + \\ \end{array}$$

Trichloroethylene Soil Inhalation

$$\begin{split} \mathsf{PRG}_{\mathsf{rec-sol-inhtce}} \left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{rec}} \left(\frac{365 \, \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \, \mathsf{yrs})\right)}{\mathsf{IUR} \left(\frac{\mu \mathsf{g}}{\mathsf{m}^3}\right)^{-1} \times \left(\frac{1000 \, \mu \mathsf{g}}{\mathsf{mg}}\right) \times \left(\frac{1}{\mathsf{VF}_{\mathsf{S}}} \left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)^{+} \frac{1}{\mathsf{PEF}} \left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)\right) \times \\ & \left[\begin{array}{c} \left(\mathsf{EF}_{\mathsf{rec}} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \, \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \mathsf{CAF}_{\mathsf{i}}(0.756)\right) + \\ \left(\mathsf{EF}_{0-2} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{0-2}(2 \, \mathsf{yr}) \times \mathsf{ET}_{0-2} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 10\right) + \\ \left(\mathsf{EF}_{2-6} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{2-6}(4 \, \mathsf{yr}) \times \mathsf{ET}_{2-6} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ \left(\mathsf{EF}_{6-16} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{6-16}(10 \, \mathsf{yr}) \times \mathsf{ET}_{6-16} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 3\right) + \\ \left(\mathsf{EF}_{16-26} \left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{16-26}(10 \, \mathsf{yr}) \times \mathsf{ET}_{16-26} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \mathsf{MAF}_{\mathsf{i}}(0.244) \times 1\right) \right] \end{split}$$

Trichloroethylene Soil Dermal

$$\begin{split} \text{FET}_{\text{event-rec-real}} \left(\frac{1 \text{ hrs}}{\text{event}}\right) &\leq t^*(\text{ hrs}), \text{ then:} \\ & \text{PRG}_{\text{rec-val-derive}} \left(\frac{\mu_{D}^0}{\mu_{D}^0}\right) &= \frac{D\text{Acce-voes}\left(\frac{\mu_{D}^0}{\text{event}}\right) \times \left(\frac{1000 \text{ cm}^3}{1}\right)}{\pi} \right) \\ & \text{or:} \\ & \text{or:} \\ \\ \text{J} = F\text{A} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \sqrt{\frac{6 \times \text{Leven}\left(\frac{\text{wrs}}{\text{event}}\right) \times \text{Tevent-rec-naig}\left(\frac{1 \text{ hrs}}{\text{event}}\right)}{\pi} \right)}{\pi} \\ & \text{or:} \\ \\ \text{FET}_{\text{event-rec-real}}\left(\frac{1 \text{ hrs}}{\text{event}}\right) \geq t^*(\text{ hrs}), \text{ then:} \\ \\ \text{PRG}_{\text{rec-val-derive}}\left(\frac{\mu_{D}^0}{\mu_{D}^0}\right) &= \frac{D\text{Acce-over}\left(\frac{1 \text{ hrs}}{\text{event}}\right) \times \left(\frac{1000 \text{ cm}^3}{1}\right)}{1 + 8} \left(\frac{1000 \text{ cm}^3}{1}\right) \\ & \text{where:} \\ \text{FT}_{\text{event-rec-naid}}\left(\frac{1 \text{ hrs}}{1 + 8}\right) &= \frac{\left(\frac{(\text{ED}_{0-2}(2\text{ yr}) \times \text{FT}_{\text{event-rec-naid}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) + \left(\text{ED}_{2-6}(4\text{ yr}) \times \text{FT}_{\text{event-rec-16-0}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) \\ & \text{where:} \\ \text{ET}_{\text{event-rec-naid}}\left(\frac{1 \text{ hrs}}{1 + 8}\right) &= \frac{\left(\frac{(\text{ED}_{0-2}(2\text{ yr}) \times \text{FT}_{\text{event-rec-naid}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) + \left(\text{ED}_{2-6}(4\text{ yr}) \times \text{ET}_{\text{event-rec-16-0}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) \\ & \text{and:} \\ \text{DA}_{\text{Exe-event}}\left(\frac{1 \text{ hrs}}{1 + 8}\right) &= \frac{\left(\frac{(\text{ED}_{0-2}(2\text{ yr}) \times \text{FT}_{\text{event-rec-16-0}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) + \left(\text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{\text{event-rec-16-0}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) \\ & \text{and:} \\ \text{DPW}_{\text{fec-event}}\left(\frac{1 \text{ hrs}}{1 + 8}\right) &= \frac{\left(\frac{(\text{ED}_{0-2}(2\text{ yr}) \times \text{ET}_{\text{event-rec-16-0}}\left(\frac{1 \text{ hrs}}{1 + 8}\right) + (\text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{\text{event-rec-16-0}}\left(\frac{1 \text{ hrs}}{1 + 8}\right)\right) \\ & \text{where:} \\ \text{DPW}_{\text{fec-event}}\left(\frac{335,655 \text{ cm}^2 - \text{event}}{1 + 8}\right) &= \frac{\left(\frac{\text{ET}_{0-16}\left(\frac{45 \text{ days}}{3}\right) \times \text{ED}_{\text{rec-0}}\left(5 \text{ yr} \times \text{ET}_{\text{event}}\left(\frac{1 \text{ event}}{1 + 8}\right) \times \text{SA}_{\text{ec}}\left(\frac{1 \text{ so}}{1 + 8}\right)\right)}{\left(\text{MA}_{\text{Fo}}\left(0.202 \times \text{DFW}_{\text{He}}\left(\frac{1 \text{ so}}{1 + 8}\right) \times \text{SA}_{\text{ec}}\left(\frac{1 \text{ so}}{1 + 8}\right)}{\frac{1 + 8}\right)} \\ \\ \text{where:} \\ \text{DPW}_{\text{fec-event}}\left(\frac{335,655 \text{ cm}^2 - \text{event}}{1 + 8}\right) &= \frac{1}{\left(\frac{\text{ET}_{0-16}\left(\frac{1 \text{ so}}{3}\right) \times \text{ED}_{\text{ec}}\left(\frac{1 \text{ so}}{3}\right) \times \text{SA}_$$

Trichloroethylene Soil Total

$$PRG_{rec-sol-tottce}\left(\frac{mg}{kg}\right) = \frac{1}{\frac{1}{PRG_{rec-sol-ingtce}} + \frac{1}{PRG_{rec-sol-inhtce}} + \frac{1}{PRG_{rec-sol-dertce}}}$$

Supporting Child Soil

$$\begin{split} & \mathsf{ED}_{\mathsf{rec-c}}(6\ \mathsf{yr}) = \ \mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \\ & \mathsf{BW}_{\mathsf{rec-c}}(15\ \mathsf{kg}) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{BW}_{0-2}(15\ \mathsf{kg}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{BW}_{2-6}(15\ \mathsf{kg})}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{EF}_{2-6}\left(\frac{15\ \mathsf{kg}}{\mathsf{yr}}\right)} \\ & \mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{EF}_{0-2}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{EF}_{2-6}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{ET}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{ET}_{0-2}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{ET}_{2-6}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{0.2\ \mathsf{mg}}{\mathsf{cm}^2}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{AF}_{0-2}\left(\frac{0.2\ \mathsf{mg}}{\mathsf{cm}^2}\right) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{AF}_{2-6}\left(\frac{0.2\ \mathsf{mg}}{\mathsf{cm}^2}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{2.373\ \mathsf{cm}^2}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{AF}_{0-2}\left(\frac{2.373\ \mathsf{cm}^2}{\mathsf{day}}\right) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{SA}_{2-6}\left(\frac{2.373\ \mathsf{cm}^2}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{AF}_{0-2}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{SA}_{2-6}\left(\frac{2.373\ \mathsf{cm}^2}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{AF}_{0-2}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{AF}_{2-6}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{ED}_{\mathsf{e}-2}(4\ \mathsf{yr}) \times \mathsf{ED}_{\mathsf{e}-2}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) \\ & \mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{ED}_{2-6}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) \\ & \mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{ED}_{2-6}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) \\ & \mathsf{ED}_{\mathsf{e}-2}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{\mathsf{e}-2}\left(\frac{2.00\ \mathsf{mg}}{\mathsf{day}}\right) \\ & \mathsf{ED}_{\mathsf{e}-2}\left(\frac$$

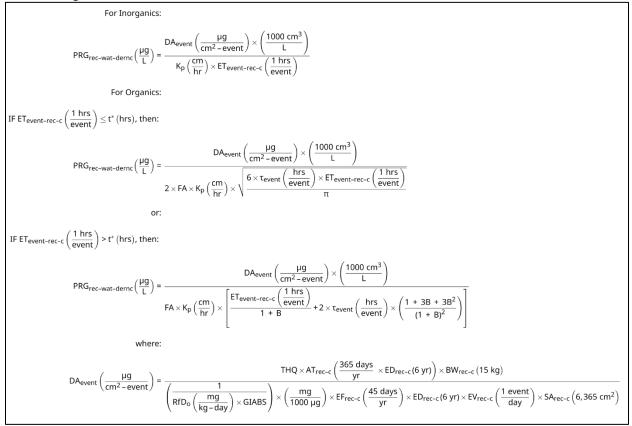
Supporting Adult Soil

$$\begin{split} & \text{ED}_{\text{rec-a}}\left(20 \text{ yr}\right) = \text{ED}_{6-16}\left(10 \text{ yr}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{BW}_{16-26}\left(80 \text{ kg}\right)} \\ & \text{BW}_{\text{rec-a}}\left(80 \text{ kg}\right) = \frac{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{BW}_{6-16}\left(80 \text{ kg}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{EW}_{16-26}\left(80 \text{ kg}\right)}{\text{ED}_{6-16}\left(10 \text{ yr}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{EF}_{16-26}\left(\frac{75 \text{ days}}{\text{yr}}\right)} \\ & \text{EF}_{\text{rec-a}}\left(\frac{75 \text{ days}}{\text{yr}}\right) = \frac{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{EF}_{6-16}\left(\frac{75 \text{ days}}{\text{yr}}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{EF}_{16-26}\left(\frac{75 \text{ days}}{\text{yr}}\right)}{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{ET}_{6-16}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{ET}_{16-26}\left(\frac{1 \text{ hrs}}{\text{day}}\right)} \\ & \text{ET}_{\text{rec-a}}\left(\frac{1 \text{ hrs}}{\text{day}}\right) = \frac{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{ET}_{6-16}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{ET}_{16-26}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right)}{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{ET}_{16-26}\left(10 \text{ yr}\right) \times \text{AF}_{16-26}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right)} \\ & \text{AF}_{\text{rec-a}}\left(\frac{6.032 \text{ cm}^2}{\text{cm}^2}\right) = \frac{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{AF}_{6-16}\left(\frac{6.032 \text{ cm}^2}{\text{day}}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{AF}_{16-26}\left(\frac{6.032 \text{ cm}^2}{\text{day}}\right)}{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{SA}_{16-26}\left(\frac{6.032 \text{ cm}^2}{\text{day}}\right)} \\ & \text{AF}_{\text{rec-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right) = \frac{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{SA}_{6-16}\left(\frac{6.032 \text{ cm}^2}{\text{day}}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{SA}_{16-26}\left(\frac{6.032 \text{ cm}^2}{\text{day}}\right)}{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{IRS}_{16-26}\left(\frac{6.032 \text{ cm}^2}{\text{day}}\right)} \\ & \text{IRS}_{\text{rec-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right) = \frac{\text{ED}_{6-16}\left(10 \text{ yr}\right) \times \text{IRS}_{6-16}\left(\frac{100 \text{ mg}}{\text{day}}\right) + \text{ED}_{16-26}\left(10 \text{ yr}\right) \times \text{IRS}_{16-26}\left(\frac{100 \text{ mg}}{\text{day}}\right)} \\ \end{array}$$

Supporting Age-adjusted Soil

$$ED_{rec}(26 \text{ yr}) = ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})$$

$$= \frac{\left(ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{75 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{75 \text{ days}}{\text{yr}}\right) + ED_{6-16}(10 \text{ yr}) \times EF_{6-16}\left(\frac{75 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{75 \text{ days}}{\text{yr}}\right) \right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) \times EF_{16-26}\left(\frac{16 \text{ hrs}}{10 \text{ yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{16 \text{ hrs}}{10 \text{ yr}}\right)}$$


$$= \frac{\left(ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{1 \text{ day}}\right) + ED_{16-26}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr}$$

Recreator Surface Water PRG Equations

Noncarcinogenic Child Surface Water Ingestion

$$PRG_{rec-wat-ingnc}\left(\frac{\mu g}{L}\right) = \frac{THQ \times AT_{rec-c}\left(\frac{365 \text{ days}}{yr} \times ED_{rec-c}(6 \text{ yr})\right) \times BW_{rec-c}(15 \text{ kg})}{\left(\frac{1}{RfD_{o}\left(\frac{mg}{kg-day}\right)}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{rec-c}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times EV_{rec-c}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-rec-c}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \text{ L}}{hr}\right)}$$

Noncarcinogenic Child Surface Water Dermal

Noncarcinogenic Child Surface Water Total

$$PRG_{rec-wat-totnc}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{rec-wat-ingnc}} + \frac{1}{PRG_{rec-wat-dernc}}}$$

Noncarcinogenic Adult Surface Water Ingestion

$$PRG_{rec-wat-ingna}\left(\frac{\mu g}{L}\right) = \frac{THQ \times AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right) \times BW_{rec-a}(80 \text{ kg})}{\left(\frac{1}{RfD_o}\left(\frac{mg}{kg-day}\right)\right) \times \left(\frac{mg}{1000 \text{ }\mu g}\right) \times EF_{rec-a}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times EV_{rec-a}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{rec-a}\left(\frac{0.11 \text{ L}}{hr}\right)}$$

Noncarcinogenic Adult Surface Water Dermal

For Inorganics:

$$PRG_{rec-wat-dema}\left(\frac{\mu g}{L}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) \times \left(\frac{1000 \text{ cm}^{3}}{L}\right)}{K_{p}\left(\frac{cm}{hr}\right) \times ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{L}\right)}$$
For Organics:

$$IF ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{event}\right) \leq t^{*}(\text{ hrs}), \text{ then:}$$

$$PRG_{rec-wat-dema}\left(\frac{\mu g}{L}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) \times \left(\frac{1000 \text{ cm}^{3}}{L}\right)}{2 \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times t_{event}\left(\frac{hrs}{event}\right) \times ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{event}\right)}{\pi}}$$
or:

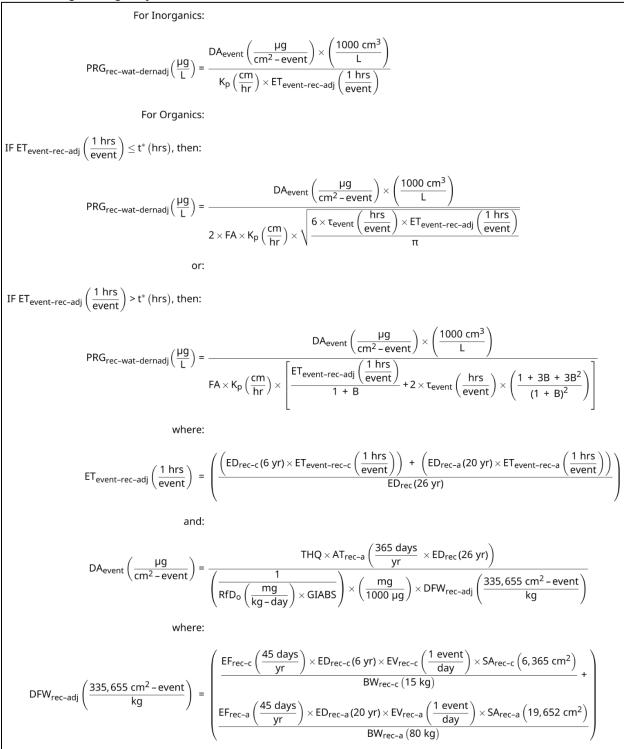
$$IF ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{event}\right) > t^{*}(\text{ hrs}), \text{ then:}$$

$$PRG_{rec-wat-dema}\left(\frac{\mu g}{L}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) \times \left(\frac{1000 \text{ cm}^{3}}{\pi}\right)}{r}$$
or:

$$IF ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{event}\right) > t^{*}(\text{ hrs}), \text{ then:}$$

$$PRG_{rec-wat-dema}\left(\frac{\mu g}{L}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) \times \left(\frac{1000 \text{ cm}^{3}}{L}\right)}{r}$$
where:

$$DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) = \frac{THQ \times AT_{rec-a}\left(\frac{3655 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr}) \times EV_{rec-a}\left(\frac{1 \text{ event}}{d \text{ day}}\right) \times SA_{rec-a}\left(19,652 \text{ cm}^{2}\right)}$$

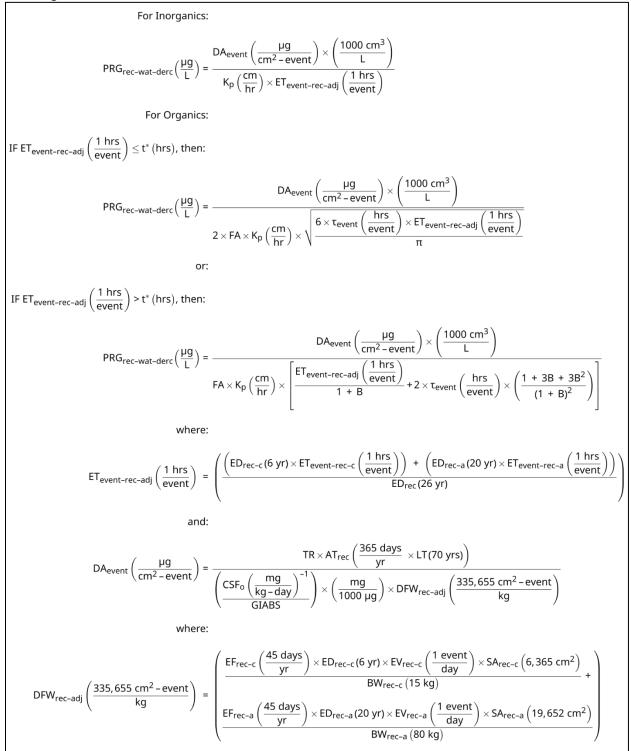

Noncarcinogenic Adult Surface Water Total

$$PRG_{rec-wat-totna}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{rec-wat-ingna}} + \frac{1}{PRG_{rec-wat-derna}}}$$

Noncarcinogenic Age-adjusted Surface Water Ingestion

$$PRG_{rec-wat-ingnadj}\left(\frac{\mu g}{L}\right) = \frac{THQ \times AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right)}{\left(\frac{1}{RfD_{0}\left(\frac{mg}{kg-day}\right)}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFW_{rec-adj}\left(\frac{3.4 \ L}{kg}\right)}$$
where:
$$IFW_{rec-adj}\left(\frac{3.4 \ L}{kg}\right) = \left[\frac{EF_{rec-c}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-c}(6 \ yr) \times EV_{rec-c}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \ L}{hr}\right)}{BW_{rec-a}(15 \ kg)} + \frac{EF_{rec-a}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-a}(20 \ yr) \times EV_{rec-a}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-a}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-a}\left(\frac{0.11 \ L}{hr}\right)}{BW_{rec-a}(80 \ kg)}\right]$$

Noncarcinogenic Age-adjusted Surface Water Dermal

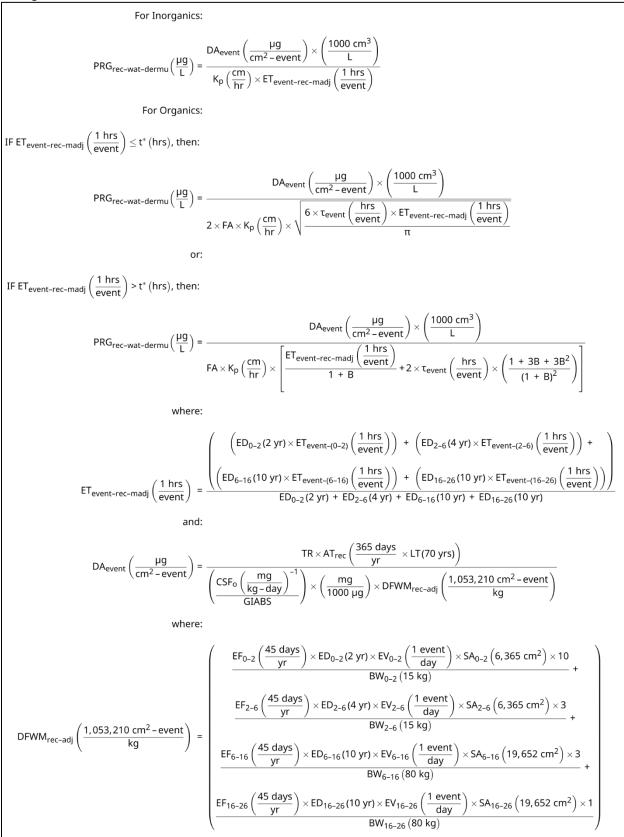

Noncarcinogenic Age-adjusted Surface Water Total

$$PRG_{rec-wat-totnadj}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{rec-wat-ingnadj}} + \frac{1}{PRG_{rec-wat-dernadj}}}$$

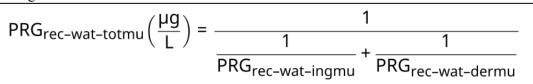
Carcinogenic Surface Water Ingestion

$$PRG_{rec-wat-ingc}\left(\frac{\mu g}{L}\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{0}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFW_{rec-adj}\left(\frac{3.4 \ L}{kg}\right)}$$
where:
$$IFW_{rec-adj}\left(\frac{3.4 \ L}{kg}\right) = \begin{bmatrix}\frac{F_{rec-c}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \ yr) \times EV_{rec-c}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \ L}{hr}\right)}{BW_{rec-c}(15 \ kg)} + \begin{bmatrix}\frac{F_{rec-a}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-a}(20 \ yr) \times EV_{rec-a}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-a}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-a}\left(\frac{0.11 \ L}{hr}\right)}{BW_{rec-a}(80 \ kg)}\end{bmatrix}$$

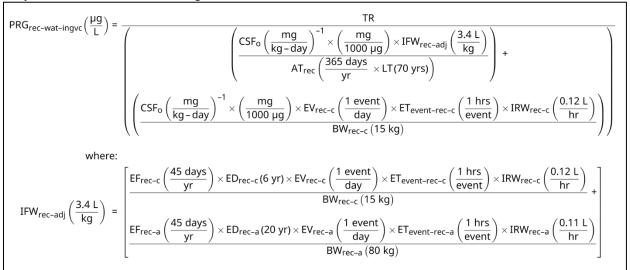
Carcinogenic Surface Water Dermal

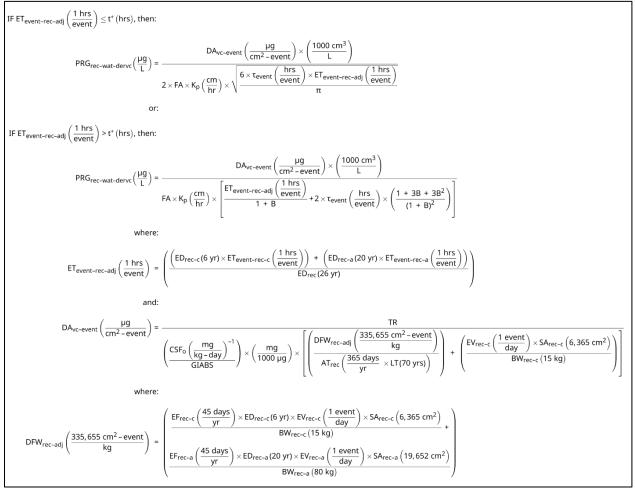

Carcinogenic Surface Water Total

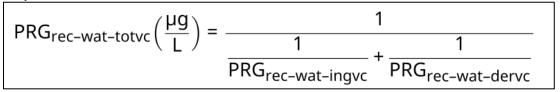
$$PRG_{rec-wat-totc}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{rec-wat-ingc}} + \frac{1}{PRG_{rec-wat-derc}}}$$


Mutagenic Surface Water Ingestion

$$PRG_{rec-wat-ingmu}\left(\frac{\mu g}{L}\right) = \frac{TR \times AT_{rec}\left(\frac{365 \text{ days}}{\text{yr}} \times LT(70 \text{ yrs})\right)}{CSF_{0}\left(\frac{mg}{\text{kg}-\text{day}}\right)^{-1} \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFWM_{rec-adj}\left(\frac{14 \ L}{\text{kg}}\right)}$$
where:
$$IFWM_{rec-adj}\left(\frac{14 \ L}{\text{kg}}\right) = \begin{bmatrix} \frac{EF_{0-2}\left(\frac{45 \ \text{days}}{\text{yr}}\right) \times ED_{0-2}(2 \ \text{yr}) \times EV_{0-2}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times ET_{event-(0-2)}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times IRW_{0-2}\left(\frac{0.12 \ L}{\text{hr}}\right) \times 10}{BW_{0-2}(15 \ \text{kg})} + \frac{EF_{2-6}\left(\frac{45 \ \text{days}}{\text{yr}}\right) \times ED_{2-6}(4 \ \text{yr}) \times EV_{2-6}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times ET_{event-(2-6)}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times IRW_{2-6}\left(\frac{0.12 \ L}{\text{hr}}\right) \times 3}{BW_{2-6}(15 \ \text{kg})} + \frac{EF_{6-16}\left(\frac{45 \ \text{days}}{\text{yr}}\right) \times ED_{6-16}(10 \ \text{yr}) \times EV_{6-16}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times ET_{event-(6-16)}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times IRW_{6-16}\left(\frac{0.124 \ L}{\text{hr}}\right) \times 3}{BW_{6-16}(80 \ \text{kg})} + \frac{EF_{16-26}\left(\frac{45 \ \text{days}}{\text{yr}}\right) \times ED_{16-26}(10 \ \text{yr}) \times EV_{16-26}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times ET_{event-(16-26)}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times IRW_{16-26}\left(\frac{0.098 \ L}{\text{hr}}\right) \times 1}{BW_{16-26}(80 \ \text{kg})}$$


Mutagenic Surface Water Dermal


Mutagenic Surface Water Total


Vinyl Chloride Surface Water Ingestion

Vinyl Chloride Surface Water Dermal

Vinyl Chloride Surface Water Total

Trichloroethylene Surface Water Ingestion

$$\begin{aligned} \mathsf{PRG}_{\mathsf{rec-wat-ingtce}} \left(\frac{\mu g}{L}\right) &= \frac{\mathsf{TR} \times \mathsf{AT}_{\mathsf{rec}} \left(\frac{365 \, \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \, \mathsf{yrs})\right)}{\mathsf{CSF}_0 \left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)^{-1} \times \left(\frac{\mathsf{mg}}{1000 \, \mu g}\right) \times \left(\begin{pmatrix} (\mathsf{AF}_0(0.804) \times \mathsf{IFW}_{\mathsf{rec-adj}} \left(\frac{3.4 \, \mathsf{L}}{\mathsf{kg}}\right) \right) + \\ \left(\mathsf{MAF}_0(0.202) \times \mathsf{IFWM}_{\mathsf{rec-adj}} \left(\frac{14 \, \mathsf{L}}{\mathsf{kg}}\right) \right) + \\ \\ \mathsf{Where:} \end{aligned}$$

$$\mathsf{IFW}_{\mathsf{rec-adj}} \left(\frac{3.4 \, \mathsf{L}}{\mathsf{kg}}\right) &= \begin{bmatrix} \mathsf{EF}_{\mathsf{rec}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(\mathsf{6} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}} - \mathsf{rec-c} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{rec-c}} \left(\frac{0.12 \, \mathsf{L}}{\mathsf{hr}}\right) + \\ \\ &= \underbrace{\mathsf{EF}_{\mathsf{rec}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(\mathsf{3} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-a}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{rec-a}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{rec-a}} \left(\frac{0.11 \, \mathsf{L}}{\mathsf{hr}}\right) \\ \\ &= \underbrace{\mathsf{H}_{\mathsf{rec}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(\mathsf{20} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-a}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{ec-a}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{rec-a}} \left(\frac{0.12 \, \mathsf{L}}{\mathsf{hr}}\right) + \\ \\ &= \underbrace{\mathsf{H}_{\mathsf{rec}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(\mathsf{20} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-a}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{ec-a}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{0-2}} \left(\frac{0.12 \, \mathsf{L}}{\mathsf{hr}}\right) \times \mathsf{10} \\ \\ &= \underbrace{\mathsf{H}_{\mathsf{0-2}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{0-2}}(\mathsf{4} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{0-2}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{e-a}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{0-2}} \left(\frac{0.12 \, \mathsf{L}}{\mathsf{hr}}\right) \times \mathsf{10} \\ \\ &= \underbrace{\mathsf{H}_{\mathsf{0-4}} \left(\frac{1 \, \mathsf{H}}{\mathsf{hr}}\right) = \underbrace{\mathsf{E}_{\mathsf{1-6}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{0-2}}(\mathsf{1} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{0-2}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{(0-16}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{0-16}} \left(\frac{0.12 \, \mathsf{L}}{\mathsf{hr}}\right) \times \mathsf{1} \\ \\ &= \underbrace{\mathsf{E}_{\mathsf{1-6}} \left(\frac{45 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{0-16}}(\mathsf{10} \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{0-16}} \left(\frac{1 \, \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{(0-16}} \left(\frac{1 \, \mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{IRW}_{\mathsf{0-16}$$

٦

Trichloroethylene Surface Water Dermal

$$\begin{split} \text{FE}_{\text{event-rec-ens}} \left(\frac{1 \text{ Inrs}}{\text{ event}}\right) \leq t^*(\text{ Inrs}), \text{ then:} \\ & \text{PRG}_{\text{rec-event}} \left(\frac{\mu_{D}}{\mu_{D}}\right) = \frac{DA_{\text{Ce-event}}\left(\frac{\mu_{D}}{\text{ event}}\right) \times \left(\frac{1000 \text{ cm}^{2}}{1}\right)}{\pi} \\ & \text{or:} \\ & \text{or:} \\ \\ & \text{FE}_{\text{Tevent-rec-mag}}\left(\frac{1 \text{ Inrs}}{\text{ event}}\right) \times t^*(\text{ Inrs}), \text{ then:} \\ & \text{PRG}_{\text{rec-event}} \left(\frac{\mu_{D}}{\mu_{\text{rec}}}\right) \leq \frac{DA_{\text{Ce-event}}\left(\frac{\mu_{D}}{\text{ event}}\right) \times \left(\frac{1000 \text{ cm}^{2}}{\pi}\right)}{\pi} \\ & \text{PRG}_{\text{rec-event}}\left(\frac{\mu_{D}}{\text{ event}}\right) \times \left[\frac{DA_{\text{Ce-event}}\left(\frac{\mu_{D}}{\text{ event}}\right) \times \left(\frac{1000 \text{ cm}^{2}}{1 + 8}\right)}{1 + 8} + 2 \times \text{Tevent}\left(\frac{\ln \pi}{\text{ event}}\right) \times \left(\frac{1 + 38 + 38^{2}}{1 + 8}\right)}{1 + 8}\right)} \right] \\ & \text{where:} \\ & \text{FTevent-rec-mag}\left(\frac{1 \text{ Inrs}}{1 + 8}\right) = \frac{\left(\left(\text{ED}_{22}(2\,\text{ yr}) \times \text{ETevent-ec-and}\left(\frac{1 \text{ Inrs}}{1 + 8}\right)\right) + \left(\text{ED}_{2-6}(4\,\text{ yr}) \times \text{ETevent-(2-6)}\left(\frac{1 \text{ Inrs}}{1 + 8}\right)\right)}\right) \\ & \text{and:} \\ & \text{DA_{\text{tce-event}}}\left(\frac{1 \text{ Inrs}}{\text{ event}}\right) + \left(\frac{1 \text{ Cost}}{(\frac{1000 \text{ cm}^{2}}{1 + 8}\right)} + \left(\frac{1 \text{ Cost}}{(\frac{1000 \text{ cm}^{2}}{1 + 8}\right)} \right) + \left(\frac{1 \text{ ED}_{2-6}(4\,\text{ yr}) \times \text{ETevent-(2-6)}\left(\frac{1 \text{ Inrs}}{1 + 8}\right)}{(1 + 8 + 38^{2})}\right)\right) \\ & \text{ where:} \\ & \text{DA_{\text{tce-event}}}\left(\frac{1 \text{ Inrs}}{(\frac{1 \text{ Inrs}}{1 + 8}\right)} + \left(\frac{1 \text{ Cost}}{(\frac{1000 \text{ cm}^{2}}{1 + 8}\right)} + \left(\frac{1 \text{ ED}_{2-6}(4\,\text{ yr}) \times \text{ETevent-(2-6)}\left(\frac{1 \text{ Inrs}}{1 + 8}\right)} + \left(\frac{1 \text{ Post}}{(\frac{1000 \text{ cm}^{2}}{1 + 8}\right)} + \left(\frac{1 \text{ Cost}}{(\frac{1000 \text{ cm}^{2}}{1 + 9}\right)} + \left(\frac{1 \text{ Cost}}{(\frac{1000 \text{ cm}^{2}}{1$$

Trichloroethylene Surface Water Total

$$PRG_{rec-wat-tottce}\left(\frac{\mu g}{L}\right) = \frac{1}{\frac{1}{PRG_{rec-wat-ingtce}} + \frac{1}{PRG_{rec-wat-dertce}}}$$

Supporting Child Surface Water

$$\begin{split} & \mathsf{ED}_{\mathsf{rec-c}}(6\ \mathsf{yr}) = \ \mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \ \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \\ & \mathsf{BW}_{\mathsf{rec-c}}(15\ \mathsf{kg}) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{BW}_{0-2}(15\ \mathsf{kg}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{BW}_{2-6}(15\ \mathsf{kg})}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{EF}_{\mathsf{rec-c}}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{EF}_{0-2}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{EF}_{2-6}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{EF}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{event-rec}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{event-(2-6)}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{EV}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{event}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{EV}_{0-2}\left(\frac{1\ \mathsf{event}}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{EV}_{2-6}\left(\frac{1\ \mathsf{event}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{SA}_{\mathsf{rec-c}}\left(6,365\ \mathsf{cm}^2\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{SA}_{0-2}\left(6,365\ \mathsf{cm}^2\right) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{SA}_{2-6}\left(6,365\ \mathsf{cm}^2\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ & \mathsf{IRW}_{\mathsf{rec-c}}\left(\frac{0.12\ \mathsf{L}}{\mathsf{hr}}\right) = \frac{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) \times \mathsf{IRW}_{0-2}\left(\frac{0.12\ \mathsf{L}}{\mathsf{hr}}\right) + \mathsf{ED}_{2-6}(4\ \mathsf{yr}) \times \mathsf{IRW}_{2-6}\left(\frac{0.12\ \mathsf{L}}{\mathsf{hr}}\right)}{\mathsf{ED}_{0-2}(2\ \mathsf{yr}) + \mathsf{ED}_{2-6}(4\ \mathsf{yr})} \\ \end{array}$$

Supporting Adult Surface Water

$$\begin{split} & \text{ED}_{\text{rec-a}}(20 \text{ yr}) = \text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \\ & \text{BW}_{\text{rec-a}}(80 \text{ kg}) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{BW}_{6-16}(80 \text{ kg}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{BW}_{16-26}(80 \text{ kg})}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{45 \text{ days}}{\text{yr}}\right)} \\ & \text{EF}_{\text{rec-a}}\left(\frac{45 \text{ days}}{\text{yr}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EF}_{6-16}\left(\frac{45 \text{ days}}{\text{yr}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{45 \text{ days}}{\text{yr}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EF}_{16-26}\left(\frac{45 \text{ days}}{\text{yr}}\right)} \\ & \text{ET}_{\text{event-rec-a}}\left(\frac{1 \text{ hrs}}{\text{event}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ET}_{\text{event-(6-16)}}\left(\frac{1 \text{ hrs}}{\text{event}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{ET}_{\text{event-(16-26)}}\left(\frac{1 \text{ hrs}}{\text{event}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EV}_{16-26}\left(\frac{1 \text{ event}}{\text{day}}\right)} \\ & \text{EV}_{\text{rec-a}}\left(\frac{1 \text{ event}}{\text{day}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EV}_{6-16}\left(\frac{1 \text{ event}}{\text{day}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{EV}_{16-26}\left(\frac{1 \text{ event}}{\text{day}}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{EV}_{16-26}\left(10 \text{ yr}\right) \times \text{SA}_{16-26}\left(\frac{1 \text{ event}}{\text{day}}\right)} \\ & \text{SA}_{\text{rec-a}}\left(19,652 \text{ cm}^2\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{SA}_{6-16}\left(\frac{19,652 \text{ cm}^2}{\text{hr}^2}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{SA}_{16-26}\left(\frac{19,652 \text{ cm}^2}{\text{Ho}^2}\right)}{\text{ED}_{6-16}(10 \text{ yr}) \times \text{ED}_{16-26}(10 \text{ yr}) \times \text{SA}_{16-26}\left(\frac{19,652 \text{ cm}^2}{\text{Ho}^2}\right)} \\ & \text{IRW}_{\text{rec-a}}\left(\frac{0.11 \text{ L}}{\text{hr}}\right) = \frac{\text{ED}_{6-16}(10 \text{ yr}) \times \text{IRW}_{6-16}\left(\frac{0.124 \text{ L}}{\text{hr}}\right) + \text{ED}_{16-26}(10 \text{ yr}) \times \text{IRW}_{16-26}\left(\frac{0.098 \text{ L}}{\text{hr}}\right)} \\ \end{array}$$

Supporting Age-adjusted Surface Water

$$ED_{rec}(26 \text{ yr}) = ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})$$

$$= \frac{\left(ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{45 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{45 \text{ days}}{\text{yr}}\right) + \left(\frac{10 \text{ yr}}{\text{yr}} \times EF_{6-16}\left(\frac{45 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{45 \text{ days}}{\text{yr}}\right)\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) \times EF_{16-26}\left(\frac{45 \text{ days}}{\text{yr}}\right)\right)}$$

Farmer Direct Consumption of Agricultural Products PRG Equations

Noncarcinogenic Produce Ingestion

$$\begin{aligned} \mathsf{PRG}_{\mathsf{far-prod-ingn}}\!\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) &= \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{far-c}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{far-c}}(\mathsf{6} \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{far-c}}\left(15 \ \mathsf{kg}\right)}{\left(\frac{1}{\mathsf{RfD}_{\mathsf{o}}}\left(\frac{\mathsf{mg}}{\mathsf{kg}} - \mathsf{day}\right)\right)} \right) &\times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{far-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(\mathsf{6} \ \mathsf{yr}) \times \\ & \mathsf{CF}_{\mathsf{produce}}(\mathsf{1}) \times \left(\mathsf{IRF}_{\mathsf{far-c}}\left(\frac{\mathsf{68},\mathsf{100} \ \mathsf{mg}}{\mathsf{day}}\right) + \mathsf{IRV}_{\mathsf{far-c}}\left(\frac{\mathsf{41},\mathsf{700} \ \mathsf{mg}}{\mathsf{day}}\right)\right) \end{aligned}$$

Carcinogenic Produce Ingestion

$$PRG_{far-prod-ingc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{far}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{0}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times CF_{produce}(1) \times \left(IFF_{far-adj}\left(\frac{35,833,000 \text{ mg}}{kg}\right) + IFV_{far-adj}\left(\frac{24,535,875 \text{ mg}}{kg}\right)\right)}$$
where:
$$IFF_{far-adj}\left(\frac{35,833,000 \text{ mg}}{kg}\right) = \left[\frac{\frac{EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRF_{far-c}\left(\frac{68,100 \text{ mg}}{day}\right)}{BW_{far-c}(15 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRF_{far-a}\left(\frac{176,800 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})}\right]$$
and:
$$IFV_{far-adj}\left(\frac{24,535,875 \text{ mg}}{kg}\right) = \left[\frac{\frac{EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRV_{far-a}\left(\frac{176,800 \text{ mg}}{day}\right)}{BW_{far-a}(15 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRV_{far-a}\left(\frac{176,800 \text{ mg}}{day}\right)}{BW_{far-a}(15 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRV_{far-a}\left(\frac{176,800 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRV_{far-a}\left(\frac{176,800 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRV_{far-a}\left(\frac{125,700 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRV_{far-a}\left(\frac{125,700 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})}$$

Noncarcinogenic Dairy Ingestion

$$\mathsf{PRG}_{\mathsf{far-dairy-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{far-c}}\left(\frac{365 \text{ days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{far-c}}(6 \text{ yr})\right) \times \mathsf{BW}_{\mathsf{far-c}}\left(15 \text{ kg}\right)}{\left(\frac{1}{\mathsf{RfD}_{\mathsf{o}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)}\right) \times \left(\frac{10^{-6} \text{ kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{far-c}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6 \text{ yr}) \times \mathsf{CF}_{\mathsf{dairy}}(1) \times \mathsf{IRD}_{\mathsf{far-c}}\left(\frac{349,500 \text{ mg}}{\mathsf{day}}\right)}$$

Carcinogenic Dairy Ingestion

$$PRG_{far-dairy-ingc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{far}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}{CSF_{o}\left(\frac{mg}{kg-day}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times CF_{dairy}(1) \times IFD_{far-adj}\left(\frac{115,213,000 \text{ mg}}{kg}\right)}$$
where:
$$IFD_{far-adj}\left(\frac{115,213,000 \text{ mg}}{kg}\right) = \begin{bmatrix}\frac{EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRD_{far-c}\left(\frac{349,500 \text{ mg}}{day}\right)}{BW_{far-c}(15 \text{ kg})} + \frac{1}{BW_{far-a}(34 \text{ yr}) \times IRD_{far-a}\left(\frac{445,600 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})}\end{bmatrix}$$

Noncarcinogenic Beef Ingestion

$$\mathsf{PRG}_{\mathsf{far-beef-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{THQ} \times \mathsf{AT}_{\mathsf{far-c}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{far-c}}(6 \ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{far-c}}\left(15 \ \mathsf{kg}\right)}{\left(\frac{1}{\mathsf{RfD}_o\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right)}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{far-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6 \ \mathsf{yr}) \times \mathsf{CF}_{\mathsf{beef}}(1) \times \mathsf{IRB}_{\mathsf{far-c}}\left(\frac{40,100 \ \mathsf{mg}}{\mathsf{day}}\right)}$$

Carcinogenic Beef Ingestion

$$PRG_{far-beef-ingc}\left(\frac{mg}{kg}\right) = \frac{TR \times AT_{far}\left(\frac{365 \text{ days}}{\text{yr}} \times LT(70 \text{ yrs})\right)}{CSF_{o}\left(\frac{mg}{\text{kg}-\text{day}}\right)^{-1} \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times CF_{beef}(1) \times IFB_{far-adj}\left(\frac{32,091,500 \text{ mg}}{\text{kg}}\right)}$$
where:
$$IFB_{far-adj}\left(\frac{32,091,500 \text{ mg}}{\text{kg}}\right) = \left[\frac{\frac{EF_{far-c}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{far-c}\left(6 \text{ yr}\right) \times IRB_{far-c}\left(\frac{40,100 \text{ mg}}{\text{day}}\right)}{BW_{far-c}\left(15 \text{ kg}\right)} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{far-a}\left(34 \text{ yr}\right) \times IRB_{far-a}\left(\frac{178,000 \text{ mg}}{\text{day}}\right)}{BW_{far-a}\left(80 \text{ kg}\right)}\right]$$

Farmer Direct Consumption of Agricultural Products - Back-calculated to Water PRG Equations

Noncarcinogenic Produce Ingestion Water

$$\mathsf{PRG}_{\mathsf{far-wat-ingpn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-prod-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\left(\mathsf{Irr}_{\mathsf{rup}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathsf{Irr}_{\mathsf{res}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathsf{Irr}_{\mathsf{dep}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)\right)}$$

where:

$$Irr_{rup}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times BV_{wet} \times \left[1 - exp\left(\left(\frac{\lambda_{B}}{day}\right) \times t_{b} \ (days)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)}$$

and:

$$Irr_{res}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times MLF_{produce} \times \left[1 - exp\left(\left(\frac{\lambda_{B}}{day}\right) \times t_{b} \ (days)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)}$$

and:

$$Irr_{dep}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times I_{f} \times T \times \left[1 - exp\left(\left(\frac{\lambda_{E}}{day}\right) \times t_{v} \ (days)\right)\right]}{Y_{v}\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{E}}{day}\right)}$$

Carcinogenic Produce Ingestion Water

$$\begin{split} \mathsf{PRG}_{\mathsf{far-wat-ingpc}} & \left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-prod-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\left(\mathsf{Irr}_{\mathsf{rup}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathsf{Irr}_{\mathsf{res}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathsf{Irr}_{\mathsf{dep}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)\right)} \\ & \text{where:} \\ & \mathsf{Irr}_{\mathsf{rup}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2 - \mathsf{day}}\right) \times \mathsf{F} \times \mathsf{BV}_{\mathsf{wet}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}} \; (\mathsf{days})\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \\ & \text{and:} \\ & \mathsf{Irr}_{\mathsf{res}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2 - \mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{produce}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}} \; (\mathsf{days})\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \\ & \text{and:} \\ & \mathsf{and:} \end{split}$$

$$Irr_{dep}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times I_{f} \times T \times \left[1 - exp\left(\left(\frac{\lambda_{E}}{day}\right) \times t_{v} \ (days)\right)\right]}{Y_{v}\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{E}}{day}\right)}$$

Noncarcinogenic Dairy Ingestion Water

$$\mathsf{PRG}_{\mathsf{far-wat-ingdn}}\left(\frac{\mathsf{mg}}{\mathsf{L}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-dairy-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-dairy}}\left(\frac{\mathsf{92}\;\mathsf{L}}{\mathsf{day}}\right)}$$

Carcinogenic Dairy Ingestion Water

$$\mathsf{PRG}_{\mathsf{far-wat-ingdc}}\left(\frac{\mathsf{mg}}{\mathsf{L}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-dairy-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-dairy}}\left(\frac{\mathsf{92}\;\mathsf{L}}{\mathsf{day}}\right)}$$

Noncarcinogenic Beef Ingestion Water

$$\mathsf{PRG}_{\mathsf{far-wat-ingbn}}\left(\frac{\mathsf{mg}}{\mathsf{L}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-beef-ingn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{\mathsf{beef}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-beef}}\left(\frac{\mathsf{53}}{\mathsf{day}}\right)}$$

Carcinogenic Beef Ingestion Water

$$\mathsf{PRG}_{\mathsf{far-wat-ingbc}}\left(\frac{\mathsf{mg}}{\mathsf{L}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-beef-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{\mathsf{beef}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-beef}}\left(\frac{\mathsf{53 L}}{\mathsf{day}}\right)}$$

٦

Farmer Direct Consumption of Agricultural Products - Back-calculated to Soil PRG Equations

Noncarcinogenic Produce Ingestion Soil

$$PRG_{far-sol-ingpn}\left(\frac{mg}{kg}\right) = \frac{PRG_{far-prod-ingn}\left(\frac{mg}{kg}\right)}{(R_{upv} + R_{es})}$$
where:

$$R_{upv} = BV_{wet}; R_{es} = MLF_{produce}(0.0135)$$

Carcinogenic Produce Ingestion Soil

$$PRG_{far-sol-ingpc}\left(\frac{mg}{kg}\right) = \frac{PRG_{far-prod-ingc}\left(\frac{mg}{kg}\right)}{(R_{upv} + R_{es})}$$
where:
$$R_{upv} = BV_{wet} ; R_{es} = MLF_{produce}(0.0135)$$

Noncarcinogenic Dairy Ingestion Soil

$$\begin{split} \mathsf{PRG}_{far-sol-ingdn}\!\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) &= \frac{\mathsf{PRG}_{far-dairy-ingn}\!\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{dairy}\!\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\begin{array}{c} \left(\mathsf{Q}_{p-dairy}\!\left(\frac{20.3\ \mathsf{kg}}{\mathsf{day}}\right) \times f_{p-dairy}(1) \times f_{s-dairy}(1) \times (\mathsf{Rupp} + \mathsf{Res})\right) + \right]}{\left(\mathsf{Q}_{s-dairy}\!\left(\frac{0.4\ \mathsf{kg}}{\mathsf{day}}\right) \times f_{p-dairy}(1)\right)} \\ \end{split}$$
 where:
$$\mathsf{R}_{upp} = \mathsf{BV}_{dry} \ ; \ \mathsf{Res} = \mathsf{MLF}_{pasture}(0.25) \end{split}$$

Carcinogenic Dairy Ingestion Soil

$$\begin{split} \mathsf{PRG}_{\mathsf{far-sol-ingdc}} & \left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{PRG}_{\mathsf{far-dairy-ingc}} \left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{\mathsf{dairy}} \left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\begin{array}{c} \left(\mathsf{Q}_{\mathsf{p-dairy}} \left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p-dairy}}(1) \times \mathsf{f}_{\mathsf{s-dairy}}(1) \times (\mathsf{R_{upp}} + \mathsf{R_{es}})\right) + \right]} \\ & \left(\mathsf{Q}_{\mathsf{s-dairy}} \left(\frac{0.4 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p-dairy}}(1)\right) \\ & \text{where:} \\ & \mathsf{R_{upp}} = \mathsf{BV}_{\mathsf{dry}} \ ; \ \mathsf{R_{es}} = \mathsf{MLF}_{\mathsf{pasture}}(0.25) \end{split} \end{split}$$

Noncarcinogenic Beef Ingestion Soil

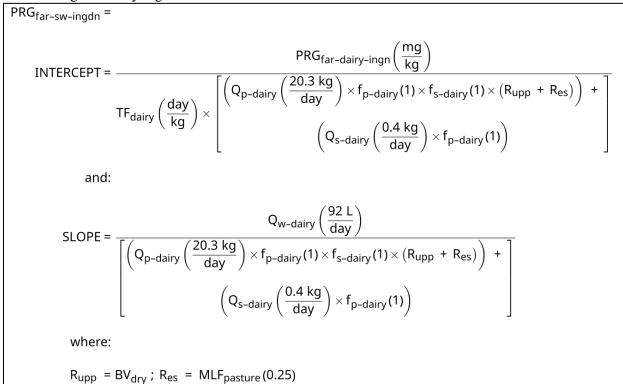
$$\begin{split} \mathsf{PRG}_{far-sol-ingbn}\!\left(\frac{mg}{kg}\right) &= \frac{\mathsf{PRG}_{far-beef-ingn}\!\left(\frac{mg}{kg}\right)}{\mathsf{TF}_{beef}\!\left(\frac{day}{kg}\right) \times \left[\begin{array}{c} \left(\mathsf{Q}_{p-beef}\!\left(\frac{11.77\ kg}{day}\right) \times f_{p-beef}(1) \times f_{s-beef}(1) \times \left(\mathsf{R}_{upp} + \ \mathsf{R}_{es}\right)\right) + \right] \\ & \left(\mathsf{Q}_{s-beef}\!\left(\frac{0.5\ kg}{day}\right) \times f_{p-beef}(1)\right) \end{split} \\ \end{split}$$
 where:

 $R_{upp} = BV_{dry}$; $R_{es} = MLF_{pasture}$ (0.25)

Carcinogenic Beef Ingestion Soil

$$\begin{split} \mathsf{PRG}_{far-sol-ingbc}\!\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) &= \frac{\mathsf{PRG}_{far-beef-ingc}\!\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{beef}\!\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\begin{array}{c} \left(\mathsf{Q}_{p-beef}\!\left(\frac{11.77\ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{p-beef}(1) \times \mathsf{f}_{s-beef}(1) \times (\mathsf{Rupp} + \mathsf{Res})\right) + \right]} \\ \left(\mathsf{Q}_{s-beef}\!\left(\frac{0.5\ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{p-beef}(1)\right) \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split} \\ \end{split}$$

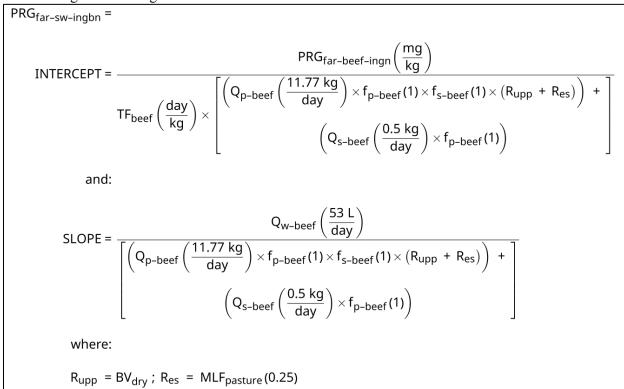
<u>Farmer Direct Consumption of Agricultural Products - Back-calculated to Soil and Water PRG</u> <u>Equations</u>

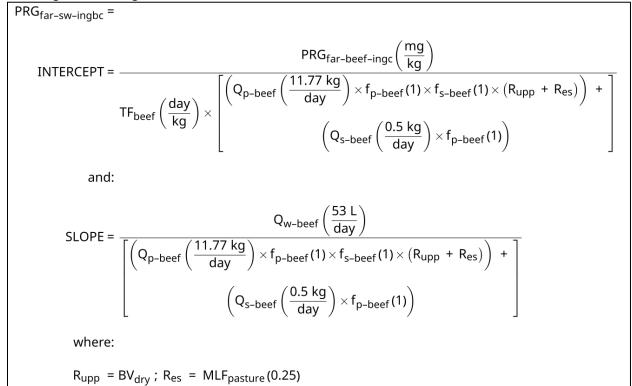

Noncarcinogenic Produce Ingestion Combined Soil and Water

$$\begin{split} & \mathsf{PRG}_{far-sw-ingpn} = \\ & \mathsf{INTERCEPT} = \frac{\mathsf{PRG}_{far-prod-ingn}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{(\mathsf{Rupv} + \mathsf{Res})} \\ & \mathsf{and:} \\ & \mathsf{SLOPE} = \frac{\left(\mathrm{Irr}_{rup}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathrm{Irr}_{res}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathrm{Irr}_{dep}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)\right)}{(\mathsf{Rupv} + \mathsf{Res})} \\ & \mathsf{where:} \\ & \mathsf{Rupv} = \mathsf{BV}_{wet} ; \mathsf{Res} = \mathsf{MLF}_{produce}(0.0135) \\ & \mathsf{and:} \\ & \mathsf{Irr}_{rup}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathrm{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2 - \mathsf{day}}\right) \times \mathsf{F} \times \mathsf{BV}_{wet} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}} \; (\mathsf{days})\right)\right)\right] \\ & \mathsf{and:} \\ & \mathsf{Irr}_{res}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathrm{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2 - \mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{produce}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}} \; (\mathsf{days})\right)\right)\right] \\ & \mathsf{and:} \\ & \mathsf{Irr}_{res}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathrm{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2 - \mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{produce}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}} \; (\mathsf{days})\right)\right)\right] \\ & \mathsf{and:} \\ & \mathsf{Irr}_{rdep}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathrm{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2 - \mathsf{day}}\right) \times \mathsf{F} \times \mathsf{If} \times \mathsf{T} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}} \; (\mathsf{days})\right)\right)\right] \\ & \mathsf{Y}_{\mathsf{v}}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \end{split}$$

Carcinogenic Produce Ingestion Combined Soil and Water

$$\begin{split} & \text{PRG}_{\text{far-sw-ingpc}} = \\ & \text{INTERCEPT} = \frac{\text{PRG}_{\text{far-prod-ingc}}\left(\frac{\text{mg}}{\text{kg}}\right)}{(\text{Rupv} + \text{Res})} \\ & \text{and:} \\ & \text{SLOPE} = \frac{\left(\text{Irr}_{\text{rup}}\left(\frac{\text{L}}{\text{kg}}\right) + \text{Irr}_{\text{res}}\left(\frac{\text{L}}{\text{kg}}\right) + \text{Irr}_{\text{dep}}\left(\frac{\text{L}}{\text{kg}}\right)\right)}{(\text{Rupv} + \text{Res})} \\ & \text{where:} \\ & \text{Rupv} = \text{BV}_{\text{wet}}; \text{ Res} = \text{MLF}_{\text{produce}}(0.0135) \\ & \text{and:} \\ & \text{Irr}_{\text{rup}}\left(\frac{\text{L}}{\text{kg}}\right) = \frac{\text{Ir}\left(\frac{\text{L}}{\text{m}^2 - \text{day}}\right) \times \text{F} \times \text{BV}_{\text{wet}} \times \left[1 - \exp\left(\left(\frac{\lambda_{\text{B}}}{\text{day}}\right) \times \text{t}_{\text{b}} \text{ (days)}\right)\right)\right]}{\text{P}\left(\frac{\text{kg}}{\text{m}^2}\right) \times \left(\frac{\lambda_{\text{B}}}{\text{day}}\right)} \\ & \text{and:} \\ & \text{Irr}_{\text{res}}\left(\frac{\text{L}}{\text{kg}}\right) = \frac{\text{Ir}\left(\frac{\text{L}}{\text{m}^2 - \text{day}}\right) \times \text{F} \times \text{MLF}_{\text{produce}} \times \left[1 - \exp\left(\left(\frac{\lambda_{\text{B}}}{\text{day}}\right) \times \text{t}_{\text{b}} \text{ (days)}\right)\right)\right]}{\text{P}\left(\frac{\text{kg}}{\text{m}^2}\right) \times \left(\frac{\lambda_{\text{B}}}{\text{day}}\right)} \\ & \text{and:} \\ & \text{Irr}_{\text{res}}\left(\frac{\text{L}}{\text{kg}}\right) = \frac{\text{Ir}\left(\frac{\text{L}}{\text{m}^2 - \text{day}}\right) \times \text{F} \times \text{Ir}_{\text{f}} \times \text{T} \times \left[1 - \exp\left(\left(\frac{\lambda_{\text{B}}}{\text{day}}\right) \times \text{t}_{\text{b}} \text{ (days)}\right)\right)\right]}{\text{P}\left(\frac{\text{kg}}{\text{m}^2}\right) \times \left(\frac{\lambda_{\text{B}}}{\text{day}}\right)} \\ & \text{and:} \\ & \text{Irr}_{\text{rep}}\left(\frac{\text{L}}{\text{kg}}\right) = \frac{\text{Ir}\left(\frac{\text{L}}{\text{m}^2 - \text{day}}\right) \times \text{F} \times \text{Ir}_{\text{f}} \times \text{T} \times \left[1 - \exp\left(\left(\frac{\lambda_{\text{B}}}{\text{day}}\right) \times \text{t}_{\text{v}} \text{ (days)}\right)\right)\right]}{\text{V}_{\text{v}}\left(\frac{\text{kg}}{\text{m}^2}\right) \times \left(\frac{\lambda_{\text{B}}}{\text{day}}\right)} \\ \end{array}$$


Noncarcinogenic Dairy Ingestion Combined Soil and Water


Carcinogenic Dairy Ingestion Combined Soil and Water

$$\begin{split} \mathsf{PRG}_{\mathsf{far-sw-ingdc}} &= \\ & \mathsf{INTERCEPT} = \frac{\mathsf{PRG}_{\mathsf{far-dairy-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right)}{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\begin{pmatrix} \mathsf{Q}_{\mathsf{p-dairy}}\left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p-dairy}}(1) \times \mathsf{f}_{\mathsf{s-dairy}}(1) \times (\mathsf{Rupp} + \mathsf{Res}) \end{pmatrix} + \right]} \\ & \quad \left(\mathsf{Q}_{\mathsf{s-dairy}}\left(\frac{0.4 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p-dairy}}(1) \right) \\ & \text{and:} \\ \\ & \mathsf{SLOPE} = \frac{\mathsf{Q}_{\mathsf{w-dairy}}\left(\frac{92 \ \mathsf{L}}{\mathsf{day}}\right)}{\left[\left(\mathsf{Q}_{\mathsf{p-dairy}}\left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p-dairy}}(1) \times \mathsf{f}_{\mathsf{s-dairy}}(1) \times (\mathsf{Rupp} + \mathsf{Res}) \right) + \right]} \\ & \quad \left(\mathsf{Q}_{\mathsf{s-dairy}}\left(\frac{92 \ \mathsf{L}}{\mathsf{day}}\right) \\ & \quad \mathsf{where:} \\ \\ & \mathsf{Rupp} = \mathsf{BV}_{\mathsf{dry}} \ ; \ \mathsf{Res} = \mathsf{MLF}_{\mathsf{pasture}}(0.25) \end{split}$$

Noncarcinogenic Beef Ingestion Combined Soil and Water

Carcinogenic Beef Ingestion Combined Soil and Water

Soil to Groundwater PRG Equations

Method 1 for SSL Determination

$$\begin{split} & \text{SSL}\left(\frac{mg}{kg}\right) = \ \text{C}_{water}\left(\frac{mg}{L}\right) \times \left[\text{K}_{d}\left(\frac{L}{kg}\right) + \left(\frac{\theta_{w}\left(\frac{0.3 \ \text{L}_{water}}{L_{\text{Soil}}}\right) + \theta_{a}\left(\frac{0.13 \ \text{L}_{air}}{L_{\text{Soil}}}\right) \times \text{H}'}{\rho_{b}\left(\frac{1.5 \ \text{kg}}{L}\right)}\right) \right] \\ & \text{where:} \\ & \text{C}_{water}\left(\frac{mg}{L}\right) = \ \text{SL}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1,000 \ \mu g}\right) \times \text{DAF} \\ & \text{where:} \\ & \text{SL}\left(\frac{\mu g}{L}\right) = \ \text{MCL}\left(\frac{\mu g}{L}\right); \ \text{RSL}\left(\frac{\mu g}{L}\right); \ \text{RML}\left(\frac{\mu g}{L}\right); \ \text{or} \ \text{PRG}\left(\frac{\mu g}{L}\right) \\ & \theta_{a}\left(\frac{0.13 \ \text{L}_{air}}{L_{\text{soil}}}\right) = n\left(\frac{0.43 \ \text{Lpore}}{L_{\text{soil}}}\right) - \theta_{w}\left(\frac{0.3 \ \text{Lwater}}{L_{\text{soil}}}\right); \ n\left(\frac{0.43 \ \text{Lpore}}{L_{\text{soil}}}\right) = 1 - \frac{\rho_{b}\left(\frac{1.5 \ \text{kg}}{L}\right)}{\rho_{s}\left(\frac{2.65 \ \text{kg}}{L}\right)} \\ & \text{and:} \\ & \text{K}_{d}\left(\frac{L}{kg}\right) = f_{oc}\left(\frac{0.002 \ \text{g-carbon}}{g - \text{soil}}\right) \times \text{K}_{oc}\left(\frac{L}{kg}\right), \text{ for organic compounds;} \\ & \text{K}_{d}\left(\frac{L}{kg}\right) \text{ values for inorganic compounds are listed in the user guide.} \end{split}$$

Method 2 for SSL Determination

$$SSL\left(\frac{mg}{kg}\right) = \frac{C_{water}\left(\frac{mg}{L}\right) \times I\left(\frac{0.18 \text{ m}}{\text{yr}}\right) \times ED(70 \text{ yr})}{\rho_{b}\left(\frac{1.5 \text{ kg}}{L}\right) \times d_{s}\left(\frac{mg}{kg}\right)}$$
where:

$$C_{water}\left(\frac{mg}{L}\right) = SL\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times DAF$$
where:

$$SL\left(\frac{\mu g}{L}\right) = MCL\left(\frac{\mu g}{L}\right); RSL\left(\frac{\mu g}{L}\right); RML\left(\frac{\mu g}{L}\right); \text{ or } PRG\left(\frac{\mu g}{L}\right)$$

APPENDIX C. TABLES OF VARIABLES USED IN CHEMICAL CDI AND RISK EQUATIONS

APPENDIX C. TABLES OF VARIABLES USED IN CHEMICAL AND RISK EQUATIONS

Symbol	Definition (units)	Default	Reference
			EPA Superfund
RfD _o	Chronic Oral Reference Dose (mg/kg-day)	Contaminant-specific	hierarchy
	Chronic Inhalation Reference Concentration		EPA Superfund
RfC	(mg/m^3)	Contaminant-specific	hierarchy
			EPA Superfund
CSFo	Chronic Oral Slope Factor (mg/kg-day) ⁻¹	Contaminant-specific	hierarchy
			EPA Superfund
IUR	Chronic Inhalation Unit Risk (µg/m ³) ⁻¹	Contaminant-specific	hierarchy

Table C-1. Toxicity Values

Table C-2. Miscellaneous Variables

Symbol	Definition (units)	Default	Reference
C _{soil}	Concentration of contaminant in soil (mg/kg)	User-input	Entered by user
C _{g-water}	Concentration of contaminant in groundwater $(\mu g/L)$	User-input	Entered by user
C _{s-water}	Concentration of contaminant in surface water $(\mu g/L)$	User-input	Entered by user
Cair	Concentration of contaminant in air $(\mu g/m^3)$	User-input	Entered by user
C _{fish}	Concentration of contaminant in fish (mg/kg)	User-input	Entered by user
Cproduce	Concentration of contaminant in produce (mg/kg)	User-input	Entered by user
C _{dairy}	Concentration of contaminant in dairy (mg/kg)	User-input	Entered by user
Cbeef	Concentration of contaminant in beef (mg/kg)	User-input	Entered by user
LT	Lifetime (years)	70	U.S. EPA 2014 (Attachment 1)
K	Andelman Volatilization Factor (L/m ³)	0.5	U.S. EPA 1991b (pg. 20)
K _p	permeability constant (cm/hr)	Chemical-specific	
t*	Time to reach steady-state (hours)	Chemical-specific	U.S. EPA 2004 (Page 3-4)
τ_{event}	Lag time per event (hours/event)	Chemical-specific	U.S. EPA 2004 (Page 3-4)
В	Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability coefficient across the viable epidermis (unitless)	Chemical-specific	U.S. EPA 2004 (Page 3-4)
FA	Fraction absorbed water (unitless)	Chemical-specific	U.S. EPA 2004 (Page 3-4)
ABS _d	Fraction of contaminant absorbed dermally from soil (unitless)	Chemical-specific	U.S. EPA 2004 (Exhibit 3-4)
GIABS	Fraction of contaminant absorbed in gastrointestinal tract (unitless) Note: if the GIABS is >50% then it is set to 100% for the calculation of dermal toxicity values.	Chemical-specific	U.S. EPA 2004 (Exhibit 4-1)
Η'	Dimensionless Henry's Law Constant	Contaminant-specific	Hierarchy selection in Section 2.4.2
$\Delta H_{v,b}$	Enthalpy of vaporization at the normal boiling point (cal/mol)	Contaminant-specific	Hierarchy selection in Section 2.4.2

Symbol	Definition (units)	Default	Reference
$\Delta H_{v,gw}$	Enthalpy of vaporization at temperature of groundwater (cal/mol)	Contaminant-specific	Determined in this calculator
Tw	Groundwater Temperatures (Kelvin)	Site-specific	Site-specific
Tc	Critical Temperatures (Kelvin)	Contaminant-specific	Hierarchy selection in Section 2.4.2
T _b	Normal Boiling Point (Kelvin)	Contaminant-specific	Hierarchy selection in Section 2.4.2
n	$ \begin{array}{l} \mbox{If } (T_b/T_c < 0.57) \\ \mbox{If } (T_b/T_c > 0.71) \\ \mbox{If } (0.57 < T_b/T_c \le 0.71) \\ \end{array} $	$ \begin{array}{c} n = 0.3 \\ n = 0.41 \\ n = (0.74 \text{ x } T_{\text{b}}/T_{\text{c}} - 0.116) \end{array} $	U.S. EPA VISL 2014

Table C-2. Miscellaneous Variables

 Table C-3. Resident Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{res-sol-ingnc}	Resident Child Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{res-sol-dernc}	Resident Child Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{res-sol-inhnc}	Resident Child Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation	Child, Adult and Age-	calculator
	(mg/m^3)	adjusted Specific	
CDI _{res-sol-ingna}	Resident Adult Soil	Contaminant-specific	Determined in this
-	Noncarcinogenic Ingestion (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{res-sol-derna}	Resident Adult Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{res-sol-inhna}	Resident Adult Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation	Child, Adult and Age-	calculator
	(mg/m^3)	adjusted Specific	
CDI _{res-sol-ingnadj}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{res-sol-dernadj}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this
0	Noncarcinogenic Dermal (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{res-sol-inhnadj}	Resident Age-adjusted Soil	Contaminant-specific	Determined in this
U U	Noncarcinogenic Inhalation	Child, Adult and Age-	calculator
	(mg/m^3)	adjusted Specific	
CDI _{res-sol-ingc}	Resident Soil Carcinogenic	Contaminant-specific	Determined in this
	Ingestion (mg/kg-day)	_	calculator
CDI _{res-sol-derc}	Resident Soil Carcinogenic Dermal	Contaminant-specific	Determined in this
	(mg/kg-day)		calculator

Symbol	Definition (units)	Default	Reference
CDI _{res-sol-inhc}	Resident Soil Carcinogenic Inhalation (µg/m ³)	Contaminant-specific	Determined in this calculator
CDI _{res-sol-ingmu}	Resident Soil Mutagenic Ingestion (mg/kg-day)	Mutagen-specific	Determined in this calculator
CDI _{res-sol-dermu}	Resident Soil Mutagenic Dermal (mg/kg-day)	Mutagen-specific	Determined in this calculator
$CDI_{res-sol-inhmu}$	Resident Soil Mutagenic Inhalation $(\mu g/m^3)$	Mutagen-specific	Determined in this calculator
CDI _{res-sol-ingvc}	Resident Soil Carcinogenic Vinyl Chloride Ingestion (mg/kg-day)	Vinyl Chloride-specific	Determined in this calculator
CDI _{res-sol-dervc}	Resident Soil Carcinogenic Vinyl Chloride Dermal (mg/kg-day)	Vinyl Chloride-specific	Determined in this calculator
CDI _{res-sol-inhvc}	Resident Soil Carcinogenic Vinyl Chloride Inhalation (µg/m ³)	Vinyl Chloride-specific	Determined in this calculator
CDI _{res-sol-ingtce}	Resident Soil Carcinogenic and Mutagenic Trichloroethylene Ingestion (mg/kg-day)	Trichloroethylene-specific	Determined in this calculator
CDI _{res-sol-dertce}	Resident Soil Carcinogenic and Mutagenic Trichloroethylene Dermal (mg/kg-day)	Trichloroethylene-specific	Determined in this calculator
CDI _{res-sol-inhtce}	Resident Soil Carcinogenic and Mutagenic Trichloroethylene Inhalation (µg/m ³)	Trichloroethylene-specific	Determined in this calculator
BW _{res-a}	Body Weight - adult (kg)	80	U.S. EPA 2014 (Attachment 1)
BW _{res-c}	Body Weight - child (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
BW ₁₆₋₂₆	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{res}	Exposure Duration - adult + child (years)	26	U.S. EPA 2014 (Attachment 1)
ED _{res-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014 (Attachment 1)
ED _{res-c}	Exposure Duration - child (years)	6	U.S. EPA 2014 (Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years (years)	2	U.S. EPA 2014 (Attachment 1)

Symbol	Definition (units)	Default	Reference
ED ₂₋₆	Exposure Duration - 2-6 Years	4	U.S. EPA 2014
	(years)		(Attachment 1)
ED ₆₋₁₆	Exposure Duration - 6-16 Years	10	U.S. EPA 2014
	(years)		(Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years	10	U.S. EPA 2014
	(years)		(Attachment 1)
EF _{res}	Exposure Frequency - adult + child	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF _{res-a}	Exposure Frequency - adult	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF _{res-c}	Exposure Frequency - child	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF ₀₋₂	Exposure Frequency - 0-2 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF ₂₋₆	Exposure Frequency - 2-6 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years	350	U.S. EPA 2014
	(days/year)		(Attachment 1)
ET _{res-a}	Resident Exposure Time - adult	24	The whole day
	(hours/day)		
ET _{res-c}	Resident Exposure Time - child	24	The whole day
	(hours/day)		
ET _{res}	Resident Exposure Time	24	The whole day
	(hours/day)		
ET ₀₋₂	Exposure Time - age segment 0-2	24	The whole day
	(hours/day)		
ET ₂₋₆	Exposure Time - age segment 2-6	24	The whole day
	(hours/day)		
ET ₆₋₁₆	Exposure Time - age segment 6-16	24	The whole day
	(hours/day)		
ET ₁₆₋₂₆	Exposure Time - age segment 16-26	24	The whole day
	(hours/day)		
IRS _{res-c}	Ingestion Rate - Child (mg/day)	200	U.S. EPA 2014
			(Attachment 1)
IRS _{res-a}	Ingestion Rate - Adult (mg/day)	100	U.S. EPA 2014
			(Attachment 1)
IRS ₀₋₂	Ingestion Rate - 0-2 years (mg/day)	200	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
IRS ₂₋₆	Ingestion Rate - 2-6 years (mg/day)	200	U.S. EPA 2014 (Attachment 1)
IRS ₆₋₁₆	Ingestion Rate - 6-16 years (mg/day)	100	U.S. EPA 2014 (Attachment 1)
IRS ₁₆₋₂₆	Ingestion Rate - 16-26 years (mg/day)	100	U.S. EPA 2014 (Attachment 1)
IFS _{res-adj}	Ingestion Rate - Age-adjusted (mg/kg)	36,750	Calculated using the age- adjusted intake factors equation
IFSM _{res-adj}	Mutagenic Ingestion Rate - Age- adjusted (mg/kg)	166,833	Calculated using the mutagenic age-adjusted intake factors equation
AF _{res-c}	Adherence factor-child (mg/cm ²)	0.2	U.S. EPA 2014 (Attachment 1)
AF _{res-a}	Adherence factor-adult (mg/cm ²)	0.07	U.S. EPA 2014 (Attachment 1)
AF ₀₋₂	Adherence factor 0-2 years (mg/cm ²)	0.2	U.S. EPA 2014 (Attachment 1)
AF ₂₋₆	Adherence factor 2-6 years (mg/cm ²)	0.2	U.S. EPA 2014 (Attachment 1)
AF ₆₋₁₆	Adherence factor 6-16 years (mg/cm ²)	0.07	U.S. EPA 2014 (Attachment 1)
AF ₁₆₋₂₆	Adherence factor 16-26 years (mg/cm ²)	0.07	U.S. EPA 2014 (Attachment 1)
DFS _{res-adj}	Dermal contact factor- age-adjusted (mg/kg)	103,390	Calculated using the age- adjusted intake factors equation
DFSM _{res-adj}	Mutagenic dermal contact factor- age-adjusted (mg/kg)	428,260	Calculated using the mutagenic age-adjusted intake factors equation
SA _{res-c}	Surface area - child (cm ²)	2373	U.S. EPA 2014 (Attachment 1)
SA _{res-a}	Surface area - adult (cm ²)	6032	U.S. EPA 2014 (Attachment 1)
SA ₀₋₂	Surface area 0-2 years (cm ²)	2373	U.S. EPA 2014 (Attachment 1)
SA ₂₋₆	Surface area 2-6 years (cm ²)	2373	U.S. EPA 2014 (Attachment 1)
SA6-16	Surface area 6-16 years (cm ²)	6032	U.S. EPA 2014 (Attachment 1)
SA16-26	Surface area 16-26 (cm ²)	6032	U.S. EPA 2014 (Attachment 1)
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)

Symbol	Definition (units)	Default	Reference
AT _{res-c}	Averaging time – child (days/year)	365 x ED _{res-c}	U.S. EPA 2014 (Attachment 1)
AT _{res-a}	Averaging time - adult (days/year)	365 x ED _{res}	U.S. EPA 2014 (Attachment 1)

Table C-3. Resident Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{com-sol-ingn}	Composite Worker Soil Noncarcinogenic Ingestion (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-dern}	Composite Worker Soil Noncarcinogenic Dermal (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-inhn}	Composite Worker Soil Noncarcinogenic Inhalation (mg/m ³)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-totn}	Composite Worker Soil Carcinogenic Ingestion (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-ingc}	Composite Worker Soil Carcinogenic Dermal (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-derc}	Composite Worker Soil Carcinogenic Inhalation (µg/m ³)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-inhc}	Composite Worker Soil Noncarcinogenic Ingestion (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{com-sol-totc}	Composite Worker Soil Noncarcinogenic Dermal (mg/kg- day)	Contaminant-specific	Determined in this calculator
BW _{com}	Body Weight (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{com}	Exposure Duration (years)	25	U.S. EPA 2014 (Attachment 1)
EF _{com}	Exposure Frequency (days/year)	250	U.S. EPA 2014 (Attachment 1)
ET _{com}	Exposure Time (hours/day)	8	U.S. EPA 2014 (Attachment 1)
IRS _{com}	Ingestion Rate (mg/day)	100	U.S. EPA 2014 (Attachment 1)
AF _{com}	Adherence factor (mg/cm ²)	0.12	U.S. EPA 2014 (Attachment 1)
SA _{com}	Surface area (cm ²)	3527	U.S. EPA 2014 (Attachment 1)
AT _{com}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{com-a}	Averaging time (days/year)	365 x ED _{com}	U.S. EPA 2014 (Attachment 1)

Table C-4. Composite Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{out-sol-ingn}	Outdoor Worker Soil Noncarcinogenic Ingestion (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{out-sol-dern}	Outdoor Worker Soil Noncarcinogenic Dermal (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{out-sol-inhn}	Outdoor Worker Soil Noncarcinogenic Inhalation (mg/m ³)	Contaminant-specific	Determined in this calculator
CDI _{out-sol-ingc}	Outdoor Worker Soil Carcinogenic Ingestion (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDI _{out-sol-derc}	Outdoor Worker Soil Carcinogenic Dermal (mg/kg-day)	Contaminant-specific	Determined in this calculator
BW _{out}	Body Weight (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{out}	Exposure Duration (years)	25	U.S. EPA 2014 (Attachment 1)
EFout	Exposure Frequency (days/year)	225	U.S. EPA 2014 (Attachment 1)
ET _{out}	Exposure Time (hours/day)	8	U.S. EPA 2014 (Attachment 1)
IRS _{out}	Ingestion Rate (mg/day)	100	U.S. EPA 2014 (Attachment 1)
AFout	Adherence factor (mg/cm ²)	0.12	U.S. EPA 2014 (Attachment 1)
SA _{out}	Surface area (cm ²)	3527	U.S. EPA 2014 (Attachment 1)
AT _{out}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{out-a}	Averaging time (days/year)	365 x ED _{out}	U.S. EPA 2014 (Attachment 1)

Table C-5. Outdoor Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{ind-sol-ingn}	Indoor Worker Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (mg/kg-		calculator
	day)		
CDI _{ind-sol-inhn}	Indoor Worker Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation		calculator
	(mg/m^3)		
CDI _{ind-sol-ingc}	Indoor Worker Soil Carcinogenic	Contaminant-specific	Determined in this
	Ingestion (mg/kg-day)		calculator
CDI _{ind-sol-inhc}	Indoor Worker Soil Carcinogenic	Contaminant-specific	Determined in this
	Inhalation ($\mu g/m^3$)		calculator
BW_{ind}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{ind}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EF _{ind}	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{ind}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
IRS _{ind}	Soil Ingestion Rate (mg/day)	50	U.S. EPA 2014
			(Attachment 1)
AT _{ind}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{ind-a}	Averaging time (days/year)	365 x ED _{ind}	U.S. EPA 2014
			(Attachment 1)

Table C-6. Indoor Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
$CDI_{con-sol-ingn}$	Construction Worker Soil Noncarcinogenic Ingestion (mg/kg- day)	Contaminant-specific	Determined in this calculator
$CDI_{con-sol-dern}$	Construction Worker Soil Noncarcinogenic Dermal (mg/kg- day)	Contaminant-specific	Determined in this calculator
$CDI_{con-sol-inhn}$	Construction Worker Soil Noncarcinogenic Inhalation (mg/m ³)	Contaminant-specific	Determined in this calculator
$CDI_{con-sol-ingc}$	Construction Worker Soil Carcinogenic Ingestion (mg/kg-day)	Contaminant-specific	Determined in this calculator
$\mathrm{CDI}_{\mathrm{con-sol-derc}}$	Construction Worker Soil Carcinogenic Dermal (mg/kg-day)	Contaminant-specific	Determined in this calculator
$\mathrm{CDI}_{\mathrm{con-sol-inhc}}$	Construction Worker Soil Carcinogenic Inhalation (µg/m ³)	Contaminant-specific	Determined in this calculator
BW _{con}	Body Weight (kg)	80	U.S. EPA 2014 (Attachment 1)
ED_{con}	Exposure Duration (years)	1	U.S. EPA 2014 (Attachment 1)
EW _{con}	Exposure (weeks/year)	50	Based on 50 weeks per year (reasonable work season)
DW _{con}	Exposure (days/week)	5	Based on 5 days per week for 50 weeks
EF _{con}	Exposure Frequency (days/year)	EW x DW	Based on 5 days per week for 50 weeks
ET_{con}	Exposure Time (hours/day)	8	U.S. EPA 2014 (Attachment 1)
IRS _{con}	Ingestion Rate (mg/day)	330	U.S. EPA 2002 (Exhibit 1-2)
AF _{con}	Adherence factor (mg/cm ²)	0.3	U.S. EPA 2002 (Exhibit 1-2)
SA _{con}	Surface area (cm ²)	3527	U.S. EPA 2014 (Attachment 1)
AT_{con}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{con-a}	Averaging time (days/year)	365 x ED _{con}	U.S. EPA 2014 (Attachment 1)

Table C-7. Construction Worker Soil Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{exc-sol-ingn}	Excavation Worker Soil Noncarcinogenic Ingestion (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{exc-sol-dern}	Excavation Worker Soil Noncarcinogenic Dermal (mg/kg- day)	Contaminant-specific	Determined in this calculator
CDI _{exc-sol-inhn}	Excavation Worker Soil Noncarcinogenic Inhalation (mg/m ³)	Contaminant-specific	Determined in this calculator
CDI _{exc-sol-ingc}	Excavation Worker Soil Carcinogenic Ingestion (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDI _{exc-sol-derc}	Excavation Worker Soil Carcinogenic Dermal (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDI _{exc-sol-inhc}	Excavation Worker Soil Carcinogenic Inhalation (µg/m ³)	Contaminant-specific	Determined in this calculator
BW _{ew}	Body Weight (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{ew}	Exposure Duration (years)	1	U.S. EPA 2014 (Attachment 1)
EF _{ew}	Exposure Frequency (days/year)	20	Based on 5 days per week for 4 weeks
ET _{ew}	Exposure Time (hours/day)	8	U.S. EPA 2014 (Attachment 1)
IRS _{ew}	Ingestion Rate (mg/day)	330	U.S. EPA 2002 (Exhibit 1-2)
AF _{ew}	Adherence factor (mg/cm ²)	0.3	U.S. EPA 2002 (Exhibit 1-2)
SA _{ew}	Surface area (cm ²)	3527	U.S. EPA 2014 (Attachment 1)
AT _{ew}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{ew-a}	Averaging time (days/year)	365 x ED _{exc}	U.S. EPA 2014 (Attachment 1)

 Table C-8. Excavation Worker Soil Land Use Equation Variables

 Table C-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{rec-sol-ingnc}	Recreator Child Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{rec-sol-dernc}	Recreator Child Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{rec-sol-inhn}	Recreator Child Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation	Child, Adult and Age-	calculator
	(mg/m^3)	adjusted Specific	
CDI _{rec-sol-ingna}	Recreator Adult Soil	Contaminant-specific	Determined in this
-	Noncarcinogenic Ingestion (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	

Symbol	Definition (units)	Default	Reference
CDI _{rec-sol-derna}	Recreator Adult Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{rec-sol-inhna}	Recreator Adult Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation	Child, Adult and Age-	calculator
	(mg/m^3)	adjusted Specific	
CDI _{rec-sol-ingnadj}	Recreator Age-adjusted Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (mg/kg-	Child, Adult and Age-	calculator
	day)	adjusted Specific	
CDI _{rec-sol-dernadj}	Recreator Age-adjusted Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (mg/kg-	Child, Adult and Age-	calculator
~~~	day)	adjusted Specific	
$\mathrm{CDI}_{\mathrm{rec-sol-inhnadj}}$	Recreator Age-adjusted Soil	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation	Child, Adult and Age-	calculator
	$(mg/m^3)$	adjusted	
CDI _{rec-sol-ingc}	Recreator Soil Carcinogenic	Contaminant-specific	Determined in this
	Ingestion (mg/kg-day)		calculator
CDI _{rec-sol-derc}	Recreator Soil Carcinogenic Dermal	Contaminant-specific	Determined in this
	(mg/kg-day)		calculator
CDI _{rec-sol-inhc}	Recreator Soil Carcinogenic	Contaminant-specific	Determined in this
	Inhalation (µg/m ³ )		calculator
CDI _{rec-sol-ingmu}	Recreator Soil Mutagenic Ingestion	Mutagen-specific	Determined in this
	(mg/kg-day)		calculator
$\mathrm{CDI}_{\mathrm{rec-sol-dermu}}$	Recreator Soil Mutagenic Dermal	Mutagen-specific	Determined in this
	(mg/kg-day)		calculator
CDI _{rec-sol-inhmu}	Recreator Soil Mutagenic Inhalation	Mutagen-specific	Determined in this
~ ~ ~ ~	$(\mu g/m^3)$		calculator
CDI _{rec-sol-ingvc}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this
CDI	Chloride Ingestion (mg/kg)		calculator
CDI _{rec-sol-dervc}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this
CDI	Chloride Dermal (mg/kg-day)	$V' = 1 C [1] \cdot 1 - C$	calculator
CDI _{rec-sol-inhvc}	Recreator Soil Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this calculator
CDI	Chloride Inhalation ( $\mu g/m^3$ )	Tuishlana thalana an aifia	Determined in this
CDI _{rec-sol-ingtce}	Recreator Soil Carcinogenic and Mutagenic Trichloroethylene	Trichloroethylene-specific	calculator
	Ingestion (mg/kg-day)		Calculator
CDI _{rec-sol-dertce}	Recreator Soil Carcinogenic and	Trichloroethylene-specific	Determined in this
CD1rec-sol-dertce	Mutagenic Trichloroethylene	r nemoroeuryrene-specific	calculator
	Dermal (mg/kg-day)		calculator
CDI _{rec-sol-inhtce}	Recreator Soil Carcinogenic and	Trichloroethylene-specific	Determined in this
Urrec-sol-inhtce	Mutagenic Trichloroethylene	ritemore any tene-specific	calculator
	Inhalation ( $\mu g/m^3$ )		
BW _{rec-a}	Body Weight - adult (kg)	80	U.S. EPA 2014
			(Attachment 1)
BW _{rec-c}	Body Weight - child (kg)	15	U.S. EPA 2014
	,	-	(Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014
V 2	, , , , , , , , , , , , , , , , , , , ,		(Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014
	,	-	(Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014
0.10	, , , , , , , , , , , , , , , , , , , ,		(Attachment 1)

 Table C-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
BW ₁₆₋₂₆	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{rec}	Exposure Duration - adult + child	26	U.S. EPA 2014
	(years)		(Attachment 1)
ED _{rec-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014
			(Attachment 1)
ED _{rec-c}	Exposure Duration - child (years)	6	U.S. EPA 2014
			(Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years	2	U.S. EPA 2014
	(years)		(Attachment 1)
ED ₂₋₆	Exposure Duration - 2-6 Years	4	U.S. EPA 2014
	(years)		(Attachment 1)
ED ₆₋₁₆	Exposure Duration - 6-16 Years	10	U.S. EPA 2014
	(years)		(Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years	10	U.S. EPA 2014
	(years)		(Attachment 1)
EF _{rec}	Exposure Frequency - adult + child	75	Reasonable Estimate
	(days/year)		
EF _{rec-a}	Exposure Frequency - adult	75	Reasonable Estimate
	(days/year)		
EF _{rec-c}	Exposure Frequency - child	75	Reasonable Estimate
	(days/year)		
EF ₀₋₂	Exposure Frequency - 0-2 Years	75	Reasonable Estimate
	(days/year)		
EF ₂₋₆	Exposure Frequency - 2-6 Years	75	Reasonable Estimate
	(days/year)		
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	75	Reasonable Estimate
	(days/year)		
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years	75	Reasonable Estimate
	(days/year)		
ET _{rec}	Exposure Time (hours/day)	1	Reasonable Estimate
ET _{rec-c}	Exposure time - child (hours/day)	1	Reasonable Estimate
ET _{rec-a}	Exposure time - adult (hours/day)	1	Reasonable Estimate
ET ₀₋₂	Exposure time 0-2 years (hours/day)	1	Reasonable Estimate
ET ₂₋₆	Exposure time 2-6 years (hours/day)	1	Reasonable Estimate
ET ₆₋₁₆	Exposure time 6-16 years	1	Reasonable Estimate
	(hours/day)		
ET ₁₆₋₂₆	Exposure time 16-26 years	1	Reasonable Estimate
	(hours/day)		
IRS _{rec-c}	Ingestion Rate - Child (mg/day)	200	U.S. EPA 2014
100 0			(Attachment 1)
IRS _{rec-a}	Ingestion Rate - Adult (mg/day)	100	U.S. EPA 2014
100 0	6 (6)		(Attachment 1)
IRS ₀₋₂	Ingestion Rate - 0-2 years (mg/day)	200	U.S. EPA 2014
~ -			(Attachment 1)
IRS ₂₋₆	Ingestion Rate - 2-6 years (mg/day)	200	U.S. EPA 2014
20			(Attachment 1)
IRS ₆₋₁₆	Ingestion Rate - 6-16 years	100	U.S. EPA 2014
	(mg/day)		(Attachment 1)
IRS ₁₆₋₂₆	Ingestion Rate - 16-26 years	100	U.S. EPA 2014
10-20	(mg/day)	100	(Attachment 1)

 Table C-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
IFS _{rec-adj}	Ingestion Rate - Age-adjusted (mg/kg)	7,875	Calculated using the age- adjusted intake factors equation
IFSM _{rec-adj}	Mutagenic Ingestion Rate - Age- adjusted (mg/kg)	35,750	Calculated using the mutagenic age-adjusted intake factors equation
AF _{rec-c}	Adherence factor-child (mg/cm ² )	0.2	U.S. EPA 2014 (Attachment 1)
AF _{rec-a}	Adherence factor-adult (mg/cm ² )	0.07	U.S. EPA 2014 (Attachment 1)
AF ₀₋₂	Adherence factor 0-2 years (mg/cm ² )	0.2	U.S. EPA 2014 (Attachment 1)
AF ₂₋₆	Adherence factor 2-6 years (mg/cm ² )	0.2	U.S. EPA 2014 (Attachment 1)
AF ₆₋₁₆	Adherence factor 6-16 years (mg/cm ² )	0.07	U.S. EPA 2014 (Attachment 1)
AF16-26	Adherence factor 16-26 years (mg/cm ² )	0.07	U.S. EPA 2014 (Attachment 1)
DFS _{rec-adj}	Dermal contact factor- age-adjusted (mg/kg)	22,155	Calculated using the age- adjusted intake factors equation
DFSM _{rec-adj}	Mutagenic dermal contact factor- age-adjusted (mg/kg)	91,770	Calculated using the mutagenic age-adjusted intake factors equation
SA _{rec-c}	Surface area - child (cm ² )	2373	U.S. EPA 2014 (Attachment 1)
SA _{rec-a}	Surface area - adult (cm ² )	6032	U.S. EPA 2014 (Attachment 1)
SA ₀₋₂	Surface area 0-2 years (cm ² )	2373	U.S. EPA 2014 (Attachment 1)
SA ₂₋₆	Surface area 2-6 years (cm ² )	2373	U.S. EPA 2014 (Attachment 1)
SA ₆₋₁₆	Surface area 6-16 years (cm ² )	6032	U.S. EPA 2014 (Attachment 1)
SA ₁₆₋₂₆	Surface area 16-26 (cm ² )	6032	U.S. EPA 2014 (Attachment 1)
AT _{rec}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{rec-c}	Averaging time - child (days/year)	365 x ED _{rec-c}	U.S. EPA 2014 (Attachment 1)
AT _{rec-a}	Averaging time - adult (days/year)	365 x ED _{rec}	U.S. EPA 2014 (Attachment 1)

 Table C-9. Recreator Soil/Sediment Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{rec-wat-ingnc}	Recreator Child Surface Water	Contaminant-	Determined in this
	Noncarcinogenic Ingestion (mg/kg-	specific Child,	calculator
	day)	Adult and Age-	
		adjusted Specific	

Symbol	Definition (units)	Default	Reference
CDI _{rec-wat-dernc}	Recreator Child Surface Water Noncarcinogenic Dermal (mg/kg-day)	Contaminant- specific Child, Adult and Age- adjusted Specific	Determined in this calculator
CDI _{rec-wat-ingna}	Recreator Adult Surface Water Noncarcinogenic Ingestion (mg/kg- day)	Contaminant- specific Child, Adult and Age- adjusted Specific	Determined in this calculator
CDI _{rec-wat-derna}	Recreator Adult Surface Water Noncarcinogenic Dermal (mg/kg-day)	Contaminant- specific Child, Adult and Age- adjusted Specific	Determined in this calculator
CDI _{rec-wat-} ingnadj	Recreator Age-adjusted Surface Water Noncarcinogenic Ingestion (mg/kg- day)	Contaminant- specific Child, Adult and Age- adjusted Specific	Determined in this calculator
CDI _{rec-wat-} dernadj	Recreator Age-adjusted Surface Water Noncarcinogenic Dermal (mg/kg-day)	Contaminant- specific Child, Adult and Age- adjusted Specific	Determined in this calculator
CDIrec-wat- ingc	Recreator Surface Water Carcinogenic Ingestion (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDIrec-wat- derc	Recreator Surface Water Carcinogenic Dermal (mg/kg-day)	Contaminant-specific	Determined in this calculator
CDIrec-wat- ingmu	Recreator Surface Water Mutagenic Ingestion (mg/kg-day)	Mutagen-specific	Determined in this calculator
CDIrec-wat- dermu	Recreator Surface Water Mutagenic Dermal (mg/kg-day)	Mutagen-specific	Determined in this calculator
CDIrec-wat- ingvc	Recreator Surface Water Carcinogenic Vinyl Chloride Ingestion (mg/kg-day)	Vinyl Chloride-specific	Determined in this calculator
CDIrec-wat- dervc	Recreator Surface Water Carcinogenic Vinyl Chloride Dermal (mg/kg-day)	Vinyl Chloride-specific	Determined in this calculator
CDIrec-wat- ingtce	Recreator Surface Water Carcinogenic and Mutagenic Trichloroethylene Ingestion (mg/kg-day)	Trichloroethylene- specific	Determined in this calculator
CDIrec-wat- dertce	Recreator Surface Water Carcinogenic and Mutagenic Trichloroethylene Dermal (mg/kg-day)	Trichloroethylene- specific	Determined in this calculator
BW _{rec-a}	Body Weight - adult (kg)	80	U.S. EPA 2014 (Attachment 1)
BW _{rec-c}	Body Weight - child (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014 (Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014 (Attachment 1)

Table C-10	. Recreator Surface	• Water Land	Use Equation	Variables
	itter cator Surface	mater Lana	Use Equation	v al labies

Symbol	Definition (units)	Default	Reference
BW16-26	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014 (Attachment 1)
ED _{rec-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014 (Attachment 1)
ED _{rec-c}	Exposure Duration - child (years)	6	U.S. EPA 2014 (Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years (years)	2	U.S. EPA 2014 (Attachment 1)
ED ₂₋₆	Exposure Duration - 2-6 Years (years)	4	U.S. EPA 2014 (Attachment 1)
ED ₆₋₁₆	Exposure Duration - 6-16 Years (years)	10	U.S. EPA 2014 (Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years (years)	10	U.S. EPA 2014 (Attachment 1)
EF _{rec-a}	Exposure Frequency - adult (days/year)	45	Region 4 Bulletin
EF _{rec-c}	Exposure Frequency - child (days/year)	45	Region 4 Bulletin
EF ₀₋₂	Exposure Frequency - 0-2 Years (days/year)	45	Region 4 Bulletin
EF ₂₋₆	Exposure Frequency - 2-6 Years (days/year)	45	Region 4 Bulletin
EF ₆₋₁₆	Exposure Frequency - 6-16 Years (days/year)	45	Region 4 Bulletin
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years (days/year)	45	Region 4 Bulletin
ET _{event-rec-c}	Exposure Time - child (hours/event)	1	Reasonable Estimate
ET _{event-rec-a}	Exposure Time - adult (hours/event)	1	Reasonable Estimate
ET _{event-rec} (0-2)	Exposure Time (hours/event)	1	Reasonable Estimate
ET _{event-rec} (2-6)	Exposure Time (hours/event)	1	Reasonable Estimate
ET _{event-rec (6-16)}	Exposure Time (hours/event)	1	Reasonable Estimate
ET _{event-rec} (16- 26)	Exposure Time (hours/event)	1	Reasonable Estimate
EV _{rec-c}	Events - child (events/day)	1	Reasonable Estimate
EV _{rec-a}	Events - adult (events/day)	1	Reasonable Estimate
EV ₀₋₂	Events (events/day)	1	Reasonable Estimate
EV ₂₋₆	Events (events/day)	1	Reasonable Estimate
EV ₂₋₀ EV ₆₋₁₆	Events (events/day)	1	Reasonable Estimate
EV 16-16	Events (events/day)	1	Reasonable Estimate
IRW _{rec-c}	Ingestion Rate - Child (L/hour)	0.12	Table 3.5 in EFH 2011
IRW _{rec-a}	Ingestion Rate - Adult (L/hour)	0.11	Time weighted average was calculated based on the upper percentile from <u>Table</u> <u>3.7 of EFH 2019</u>
IRW ₀₋₂	Ingestion Rate - 0-2 years (L/hour)	0.12	Table 3.5 in <u>EFH 2011</u>

Table C-10. Recreator Surface Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
IRW ₂₋₆	Ingestion Rate - 2-6 years (L/hour)	0.12	Table 3.5 in <u>EFH 2011</u>
IRW ₆₋₁₆	Ingestion Rate - 6-16 years (L/hour)	0.124	Time weighted average was calculated based on the upper percentile from <u>Table</u> <u>3.7 of EFH 2019</u>
IRW ₁₆₋₂₆	Ingestion Rate - 16-26 years (L/hour)	0.0985	Time weighted average was calculated based on the upper percentile from <u>Table</u> <u>3.7 of EFH 2019</u>
IFW _{rec-adj}	Ingestion Rate - Age-adjusted (L/kg)	3.4	Calculated using the age- adjusted intake factors equation
IFWM _{rec-adj}	Mutagenic Ingestion Rate - Age- adjusted (L/kg)	14	Calculated using the mutagenic age-adjusted intake factors equation
SA _{rec-c}	Surface area - child (cm ² )	6365	U.S. EPA 2014 (Attachment 1)
SA _{rec-a}	Surface area - adult (cm ² )	19,652	U.S. EPA 2014 (Attachment 1)
SA ₀₋₂	Surface area 0-2 years (cm ² )	6365	U.S. EPA 2014 (Attachment 1)
SA ₂₋₆	Surface area 2-6 years (cm ² )	6365	U.S. EPA 2014 (Attachment 1)
SA ₆₋₁₆	Surface area 6-16 years (cm ² )	19,652	U.S. EPA 2014 (Attachment 1)
SA ₁₆₋₂₆	Surface area 16-26 (cm ² )	19,652	U.S. EPA 2014 (Attachment 1)
DFW _{rec-adj}	Dermal contact factor- age-adjusted (cm ² -event/kg)	335,655	Calculated using the age- adjusted intake factors equation
DFWM _{rec-adj}	Mutagenic dermal contact factor- age- adjusted (cm ² -event/kg)	1,053,210	Calculated using the mutagenic age-adjusted intake factors equation
AT _{rec}	Averaging time (days/year)	365 x LT	U.S. EPA 2014 (Attachment 1)
AT _{rec-c}	Averaging time (days/year)	365 x ED _{rec-c}	U.S. EPA 2014 (Attachment 1)
AT _{rec-a}	Averaging time (days/year)	365 x ED _{rec-a}	U.S. EPA 2014 (Attachment 1)

Table C-10. Recreator Surface Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{res-wat-ingnc}		Contaminant-specific	Determined in this
-	Resident Child Tap Water (Groundwater)	Child, Adult and Age-	calculator
	Noncarcinogenic Ingestion (mg/kg-day)	adjusted Specific	
CDI _{res-wat-dernc}		Contaminant-specific	Determined in this
	Resident Child Tap Water (Groundwater)	Child, Adult and Age-	calculator
	Noncarcinogenic Dermal (mg/kg-day)	adjusted Specific	
CDI _{res-wat-inhn}		Contaminant-specific	Determined in this
	Resident Child Tap Water (Groundwater)	Child, Adult and Age-	calculator
	Noncarcinogenic Inhalation (mg/m ³ )	adjusted Specific	
CDI _{res-wat-ingna}		Contaminant-specific	Determined in this
6	Resident Adult Tap Water (Groundwater)	Child, Adult and Age-	calculator
	Noncarcinogenic Ingestion (mg/kg-day)	adjusted Specific	
CDI _{res-wat-derna}		Contaminant-specific	Determined in this
	Resident Adult Tap Water (Groundwater)	Child, Adult and Age-	calculator
	Noncarcinogenic Dermal (mg/kg-day)	adjusted Specific	
CDI _{res-wat-inhna}	(ing) ing uuy)	Contaminant-specific	Determined in this
CD Hes-wat-minia	Resident Adult Tap Water (Groundwater)	Child, Adult and Age-	calculator
	Noncarcinogenic Inhalation (mg/m ³ )	adjusted Specific	culculator
CDI _{res-wat-ingnadj}	Resident Age-adjusted Tap Water	Contaminant-specific	Determined in this
CD1res-wat-ingnadj	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
	Ingestion (mg/kg-day)	adjusted Specific	calculator
CDI _{res-wat-dernadj}	Resident Age-adjusted Tap Water	Contaminant-specific	Determined in this
CD1res-wat-dernadj	(Groundwater) Noncarcinogenic Dermal	Child, Adult and Age-	calculator
		adjusted Specific	calculator
CDI	(mg/kg-day)		Determined in this
CDI _{res-wat-inhnadj}	Resident Age-adjusted Tap Water	Contaminant-specific	
	(Groundwater) Noncarcinogenic	Child, Adult and Age-	calculator
CDI	Inhalation (mg/m ³ )	adjusted Specific	Determined in this
CDI _{res-wat-ingc}	Recreator Tap Water (Groundwater)	Contaminant-specific	calculator
CDI	Carcinogenic Ingestion (mg/kg-day)		
CDI _{res-wat-derc}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Carcinogenic Dermal (mg/kg-day)		calculator
CDI _{res-wat-inhc}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Carcinogenic Inhalation (µg/m ³ )		calculator
CDI _{res-wat-ingmu}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
	Mutagenic Ingestion (mg/kg-day)		calculator
CDI _{res-wat-}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
dermu	Mutagenic Dermal (mg/kg-day)		calculator
CDI _{res-wat-inhmu}	Resident Tap Water (Groundwater)	Mutagen-specific	Determined in this
ies out mining	Mutagenic Inhalation ( $\mu g/m^3$ )		calculator
CDI _{res-wat-ingvc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
	Carcinogenic Vinyl Chloride Ingestion	, myr emoride speerife	calculator
	(mg/kg-day)		eurealutor
CDI _{res-wat-dervc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
✓ ✓ res-wat-dervc	Carcinogenic Vinyl Chloride Dermal	, myr emoriae-speeiffe	calculator
	(mg/kg-day)		
CDI _{res-wat-inhvc}	Resident Tap Water (Groundwater)	Vinyl Chloride-specific	Determined in this
U1res-wat-inhvc	Carcinogenic Vinyl Chloride Inhalation	v myr Chloride-specific	calculator
	<b>c</b> .		calculator
CDI	(μg/m ³ ) Resident Tap Water (Groundwater)	Trichlore etherlage	Determined in this
CDI _{res-wat-ingtce}		Trichloroethylene-	
	Carcinogenic and Mutagenic	specific	calculator
	Trichloroethylene Ingestion (mg/kg-day)		

Table C-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{res-wat-dertce}	Resident Tap Water (Groundwater)	Trichloroethylene-	Determined in this
	Carcinogenic and Mutagenic	specific	calculator
	Trichloroethylene Dermal (mg/kg-day)		
BW _{res-a}	Body Weight - adult (kg)	80	U.S. EPA 2014
			(Attachment 1)
BW _{res-c}	Body Weight - child (kg)	15	U.S. EPA 2014
			(Attachment 1)
BW ₀₋₂	Body Weight - 0-2 Years (kg)	15	U.S. EPA 2014
			(Attachment 1)
BW ₂₋₆	Body Weight - 2-6 Years (kg)	15	U.S. EPA 2014
			(Attachment 1)
BW ₆₋₁₆	Body Weight - 6-16 Years (kg)	80	U.S. EPA 2014
			(Attachment 1)
BW ₁₆₋₂₆	Body Weight - 16-26 Years (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{res}	Exposure Duration - adult + child (years)	26	U.S. EPA 2014
100			(Attachment 1)
ED _{res-a}	Exposure Duration - adult (years)	20	U.S. EPA 2014
ics u			(Attachment 1)
ED _{res-c}	Exposure Duration - child (years)	6	U.S. EPA 2014
22105-0		•	(Attachment 1)
ED ₀₋₂	Exposure Duration - 0-2 Years (years)	2	U.S. EPA 2014
2200-2		-	(Attachment 1)
ED ₂₋₆	Exposure Duration - 2-6 Years (years)	4	U.S. EPA 2014
22-0	Exposure Duration 2 o Tears (Jears)		(Attachment 1)
ED ₆₋₁₆	Exposure Duration - 6-16 Years (years)	10	U.S. EPA 2014
<b>LD</b> 0-10		10	(Attachment 1)
ED ₁₆₋₂₆	Exposure Duration - 16-26 Years (years)	10	U.S. EPA 2014
10-20	Exposure Duration 10 20 Teats (Jeats)	10	(Attachment 1)
EF _{res}	Exposure Frequency - adult + child	350	U.S. EPA 2014
LITIES	(days/year)	550	(Attachment 1)
EF _{res-a}	Exposure Frequency - adult (days/year)	350	U.S. EPA 2014
LI res-a	Exposure rrequency addit (days, year)	550	(Attachment 1)
EF _{res-c}	Exposure Frequency - child (days/year)	350	U.S. EPA 2014
LI res-c	Exposure rrequency ennu (duys, year)	550	(Attachment 1)
EF ₀₋₂	Exposure Frequency - 0-2 Years	350	U.S. EPA 2014
L/I U-2	(days/year)	550	(Attachment 1)
EF ₂₋₆	Exposure Frequency - 2-6 Years	350	U.S. EPA 2014
L/I 2-0	(days/year)	550	(Attachment 1)
EF ₆₋₁₆	Exposure Frequency - 6-16 Years	350	U.S. EPA 2014
LI 0-10	(days/year)	550	(Attachment 1)
EF ₁₆₋₂₆	Exposure Frequency - 16-26 Years	350	U.S. EPA 2014
L/I 10-20	(days/year)	550	(Attachment 1)
ET _{res}	Exposure Time (hours/day)	24	The whole day
L I res	Exposure Time (nours/day)	27 	The whole day
ET _{event-res-c}	Exposure Time - child (hours/event)	0.54	U.S. EPA 2014
L I event-res-c		U.J.T	(Attachment 1)
ET _{event-res-a}	Exposure Time - adult (hours/event)	0.71	U.S. EPA 2014
L' I event-res-a	Exposure rime - aduit (nours/event)	0.71	(Attachment 1)

Table C-11. Resident T	ap Water Land Use	Equation Variables

Symbol	Definition (units)	Default	Reference
ET _{event-res (0-2)}	Exposure Time (hours/event)	0.54	U.S. EPA 2014
(* -)			(Attachment 1)
ET _{event-res (2-6)}	Exposure Time (hours/event)	0.54	U.S. EPA 2014
event res (2-0)	1 ( )		(Attachment 1)
ET _{event-res} (6-16)	Exposure Time (hours/event)	0.71	U.S. EPA 2014
L I event-res (6-16)	Exposure Time (nours/event)	0.71	(Attachment 1)
ET _{event-res} (16-26)	Exposure Time (hours/event)	0.71	U.S. EPA 2014
L I event-res (16-26)	Exposure Time (nours/event)	0.71	(Attachment 1)
EV	Events - child (events/day)	1	U.S. EPA 2004
EV _{res-c}	Events - child (events/day)	1	
<b>D1</b> 7		1	Exhibit 3-2
EV _{res-a}	Events - adult (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
EV ₀₋₂	Events (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
EV ₂₋₆	Events (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
EV ₆₋₁₆	Events (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
EV ₁₆₋₂₆	Events (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
IRW _{res-c}	Ingestion Rate - Child (L/day)	0.78	U.S. EPA 2014
110.00105-0		0170	(Attachment 1)
IRW _{res-a}	Ingestion Rate - Adult (L/day)	2.5	U.S. EPA 2014
IIX vv res-a	ingestion Rate - Addit (L/day)	2.5	(Attachment 1)
IRW ₀₋₂	Ingestion Rate - 0-2 years (L/day)	0.78	U.S. EPA 2014
IK vv 0-2	ingestion Rate - 0-2 years (L/day)	0.78	(Attachment 1)
IDW	Leasting Data 2 (array (L/las))	0.79	U.S. EPA 2014
IRW ₂₋₆	Ingestion Rate - 2-6 years (L/day)	0.78	
ID11/		2.5	(Attachment 1)
IRW ₆₋₁₆	Ingestion Rate - 6-16 years (L/day)	2.5	U.S. EPA 2014
			(Attachment 1)
IRW16-26	Ingestion Rate - 16-26 years (L/day)	2.5	U.S. EPA 2014
			(Attachment 1)
IFW _{res-adj}	Ingestion Rate - Age-adjusted (L/kg)	327.95	Calculated using the
			age-adjusted intake
			factors equation
IFWM _{res-adj}	Mutagenic Ingestion Rate - Age-adjusted	1019.9	Calculated using the
	(L/kg)		mutagenic age-
			adjusted intake
			factors equation
SA _{res-c}	Surface area - child (cm ² )	6365	U.S. EPA 2014
			(Attachment 1)
SA _{res-a}	Surface area - adult (cm ² )	19,652	U.S. EPA 2014
			(Attachment 1)
SA ₀₋₂	Surface area 0-2 years (cm ² )	6365	U.S. EPA 2014
02	· · · · · · · · · · · · · · · · · · ·		(Attachment 1)
SA ₂₋₆	Surface area 2-6 years (cm ² )	6365	U.S. EPA 2014
S1 12-0	Surface area 2 o years (entry)	0.505	(Attachment 1)
SA ₆₋₁₆	Surface area 6-16 years (cm ² )	19,652	U.S. EPA 2014
5746-16	Surface area 0-10 years (CIII )	19,032	(Attachment 1)
			(Attachment I)

Table C-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
SA ₁₆₋₂₆	Surface area 16-26 (cm ² )	19,652	U.S. EPA 2014
			(Attachment 1)
DFW _{res-adj}	Dermal contact factor- age-adjusted	2,610,650	Calculated using the
	(L/kg)		age-adjusted intake
			factors equation
DFWM _{res-adj}	Mutagenic dermal contact factor- age-	8,191,633	Calculated using the
	adjusted (L/kg)		mutagenic age-
			adjusted intake
			factors equation
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{res-c}	Averaging time - child (days/year)	365 x ED _{res-c}	U.S. EPA 2014
			(Attachment 1)
AT _{res-a}	Averaging time - adult (days/year)	365 x ED _{res}	U.S. EPA 2014
			(Attachment 1)

Table C-11. Resident Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{ind-wat-ingn}	Indoor Worker Tap Water Air	Contaminant-specific	Determined in this
	Noncarcinogenic Ingestion (mg/kg-day)		calculator
CDI _{ind-wat-dern}	Indoor Worker Tap Water	Contaminant-specific	Determined in this
	Noncarcinogenic Dermal (mg/kg-day)	_	calculator
CDI _{ind-wat-inhn}	Indoor Worker Tap Water	Contaminant-specific	Determined in this
	Noncarcinogenic Inhalation (mg/m ³ )	_	calculator
CDI _{ind-wat-ingc}	Indoor Worker Tap Water Air	Contaminant-specific	Determined in this
Ū.	Carcinogenic Ingestion (mg/kg-day)	_	calculator
CDI _{ind-wat-derc}	Indoor Worker Tap Water Carcinogenic	Contaminant-specific	Determined in this
	Dermal ( $\mu g/m^3$ )	_	calculator
CDI _{ind-wat-inhc}	Indoor Worker Tap Water Carcinogenic	Contaminant-specific	Determined in this
	Inhalation ( $\mu g/m^3$ )		calculator
BW _{ind}	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
ED _{ind}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EFind	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{ind}	Exposure Time (hours/event)	8	U.S. EPA 2014
			(Attachment 1)
ET _{event-iw}	Exposure Time Shower (hours/event)	0.71	U.S. EPA 2014
			(Attachment 1)
EV _{ind}	Events (events/day)	1	U.S. EPA 2004
			Exhibit 3-2
<b>IRW</b> _{ind}	Ingestion Rate (L/day)	1.25	U.S. EPA 2014 (FAQ
			13)
SA _{ind}	Surface area (cm ² )	19,652	U.S. EPA 2014
			(Attachment 1)
AT _{ind}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{ind-a}	Averaging time (days/year)	365 x ED _{ind}	U.S. EPA 2014
			(Attachment 1)

 Table C-12. Indoor Worker Tap Water Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{res-air-inhn}	Resident Air Noncarcinogenic	Contaminant-specific	Determined in this
	$(mg/m^3)$		calculator
CDI _{res-air-inhc}	Resident Air Carcinogenic (µg/m ³ )	Contaminant-specific	Determined in this
			calculator
CDI _{res-air-inhmu}	Resident Air Mutagenic (µg/m ³ )	Mutagen-specific	Determined in this
			calculator
CDI _{res-air-inhvc}	Resident Air Carcinogenic Vinyl	Vinyl Chloride-specific	Determined in this
	Chloride ( $\mu g/m^3$ )		calculator
CDI _{res-air-inhtce}	Resident Air Carcinogenic and	Trichloroethylene-specific	Determined in this
	Mutagenic Trichloroethylene (µg/m ³ )		calculator
ED _{res}	Exposure Duration (years)	26	U.S. EPA 2014
			(Attachment 1)
ED ₀₋₂	Exposure Duration 0-2 years (years)	2	U.S. EPA 2014
			(Attachment 1)
ED ₂₋₆	Exposure Duration 2-6 years (years)	4	U.S. EPA 2014
			(Attachment 1)
ED ₆₋₁₆	Exposure Duration 6-16 years (years)	10	U.S. EPA 2014
			(Attachment 1)
ED ₁₆₋₂₆	Exposure Duration 16-26 years (years)	10	U.S. EPA 2014
			(Attachment 1)
EF _{res}	Exposure Frequency (days/year)	350	U.S. EPA 2014
			(Attachment 1)
ET _{res}	Exposure Time (hours/day)	24	The whole day
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{res-a}	Averaging time (days/year)	365 x ED _{res}	U.S. EPA 2014
			(Attachment 1)

Table C-13. Resident Air Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{com-air-inhn}	Composite Worker Air	Contaminant-specific	Determined in this
	Noncarcinogenic (mg/m ³ )		calculator
CDI _{com-air-inhc}	Composite Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{com}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EF _{com}	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{com}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{com}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{com-a}	Averaging time (days/year)	365 x ED _{com}	U.S. EPA 2014
			(Attachment 1)

 Table C-14. Composite Worker Air Land Use Equation Variables

Table C-15. Outdoor Worker Air Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{out-air-inhn}	Outdoor Worker Air Noncarcinogenic	Contaminant-specific	Determined in this
	$(mg/m^3)$		calculator
CDI _{out-air-inhc}	Outdoor Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{out}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EFout	Exposure Frequency (days/year)	225	U.S. EPA 2014
			(Attachment 1)
ET _{out}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{out}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{out-a}	Averaging time (days/year)	365 x ED _{out}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
CDI _{ind-air-inhn}	Indoor Worker Air Noncarcinogenic	Contaminant-specific	Determined in this
	$(mg/m^3)$		calculator
CDI _{ind-air-inhc}	Indoor Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{ind}	Exposure Duration (years)	25	U.S. EPA 2014
			(Attachment 1)
EF _{ind}	Exposure Frequency (days/year)	250	U.S. EPA 2014
			(Attachment 1)
ET _{ind}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{ind}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{ind-a}	Averaging time (days/year)	365 x ED _{ind}	U.S. EPA 2014
			(Attachment 1)

Table C-16. Indoor Worker Air Land Use Equation Variables

Table C-17. Construction Worker Air Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{con-air-inhn}	Construction Worker Air	Contaminant-specific	Determined in this
	Noncarcinogenic (mg/m ³ )		calculator
CDI _{con-air-inhc}	Construction Worker Air	Contaminant-specific	Determined in this
	Carcinogenic (µg/m ³ )		calculator
ED _{con}	Exposure Duration (years)	1	U.S. EPA 2014
			(Attachment 1)
EW _{con}	Exposure (weeks/year)	50	Based on 50 weeks per
			year (reasonable work
			season)
DW _{con}	Exposure (days/week)	5	Based on 5 days per
			week for 50 weeks
EFcon	Exposure Frequency (days/year)	EW x DW	Based on 5 days per
			week for 50 weeks
ET _{con}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
AT _{con}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{con-a}	Averaging time (days/year)	365 x ED _{con}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
CDI _{con-air-inhn}	Excavation Worker Air	Contaminant-specific	Determined in this
	Noncarcinogenic (mg/m ³ )		calculator
CDI _{con-air-inhc}	Excavation Worker Air Carcinogenic	Contaminant-specific	Determined in this
	$(\mu g/m^3)$		calculator
ED _{ew}	Exposure Duration (years)	1	U.S. EPA 2014
			(Attachment 1)
EF _{ew}	Exposure Frequency (days/year)	20	Based on 5 days per
			week for 4 weeks
ET _{ew}	Exposure Time (hours/day)	8	U.S. EPA 2014
			(Attachment 1)
$AT_{ew}$	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{exc-a}	Averaging time (days/year)	365 x ED _{ew}	U.S. EPA 2014
			(Attachment 1)

 Table C-18. Excavation Worker Air Land Use Equation Variables

Table C-19. Resident Fish Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{res-fsh-ingn}	Resident Fish Noncarcinogenic	Contaminant-specific	Determined in this
	(mg/kg-day)		calculator
CDI _{res-fsh-ingc}	Resident Fish Carcinogenic (mg/kg-	Contaminant-specific	Determined in this
	day)		calculator
CDI _{res-fshw-ingn}	Resident Surface Water Fish	Contaminant-specific	Determined in this
	Noncarcinogenic (mg/kg-day)		calculator
CDI _{res-fshw-ingc}	Resident Surface Water Fish	Contaminant-specific	Determined in this
	Carcinogenic (mg/kg-day)		calculator
BWa	Body Weight (kg)	80	U.S. EPA 2014
			(Attachment 1)
$\mathrm{ED}_{\mathrm{fish}}$	Exposure Duration (years)	26	U.S. EPA 2014
			(Attachment 1)
EF _{fish}	Exposure Frequency (days/year)	350	U.S. EPA 2014
			(Attachment 1)
IRFa	Fish Ingestion Rate (g/day)	54	U.S. EPA 2014
			(Attachment 1)
AT _{res}	Averaging time (days/year)	365 x LT	U.S. EPA 2014
			(Attachment 1)
AT _{res-a}	Averaging time (days/year)	365 x ED _{res}	U.S. EPA 2014
			(Attachment 1)

Symbol	Definition (units)	Default	Reference
CDI _{far-prod-ingn}	Agriculture Produce Noncarcinogenic	Contaminant-specific	Determined in this
ini prod ingn	Ingestion (mg/kg-day)	1	calculator
CDI _{far-prod-ingc}	Agriculture Produce Carcinogenic	Contaminant-specific	Determined in this
iai pioù iligo	Ingestion (mg/kg-day)	1	calculator
CDI _{far-wat-ingpn}	Agriculture Produce Noncarcinogenic	Contaminant-specific	Determined in this
iai wat ingpit	Back-calculated Concentration in Water	1	calculator
	Ingestion (mg/kg-day)		
CDI _{far-wat-ingpc}	Agriculture Produce Carcinogenic Back-	Contaminant-specific	Determined in this
iai iiai iigpo	calculated Concentration in Water	1	calculator
	Ingestion (mg/kg-day)		
CDI _{far-sol-ingpn}	Agriculture Produce Noncarcinogenic	Contaminant-specific	Determined in this
iai soi ingpi	Back-calculated Concentration in Soil	1	calculator
	Ingestion (mg/kg-day)		
CDI _{far-sol-ingpc}	Agriculture Produce Carcinogenic Back-	Contaminant-specific	Determined in this
C D That-sol-higpe	calculated Concentration in Soil Ingestion	e entreminente op eentre	calculator
	(mg/kg-day)		Culculator
CDI _{far-sw-ingpn}	Agriculture Produce Noncarcinogenic	Contaminant-specific	Determined in this
	Back-calculated Concentration in Soil and	containmant speetite	calculator
	Water Ingestion (mg/kg-day)		Culculator
CDI _{far-sw-ingpc}	Agriculture Produce Carcinogenic Back-	Contaminant-specific	Determined in this
CD Hai-sw-ingpc	calculated Concentration in Soil and	containmant speetite	calculator
	Water Ingestion (mg/kg-day)		Culculator
CDI _{far-dairy-ingn}	Agriculture Dairy Noncarcinogenic	Contaminant-specific	Determined in this
CD Hai-dairy-ingh	Ingestion (mg/kg-day)	containmant speetite	calculator
CDI _{far-dairy-ingc}	Agriculture Dairy Carcinogenic Ingestion	Contaminant-specific	Determined in this
CD Hai-daily-linge	(mg/kg-day)	containmant speetite	calculator
CDI _{far-wat-ingdn}	Agriculture Dairy Noncarcinogenic Back-	Contaminant-specific	Determined in this
	calculated Concentration in Water	containmant speetite	calculator
	Ingestion (mg/kg-day)		
CDI _{far-wat-ingdc}	Agriculture Dairy Carcinogenic Back-	Contaminant-specific	Determined in this
	calculated Concentration in Water	e entreminente specifie	calculator
	Ingestion (mg/kg-day)		
CDI _{far-sol-ingdn}	Agriculture Dairy Noncarcinogenic Back-	Contaminant-specific	Determined in this
	calculated Concentration in Soil Ingestion		calculator
	(mg/kg-day)		
CDI _{far-sol-ingdc}	Agriculture Dairy Carcinogenic Back-	Contaminant-specific	Determined in this
C D That-sol-ingue	calculated Concentration in Soil Ingestion	e entreminente specifie	calculator
	(mg/kg-day)		
CDI _{far-sw-ingdn}	Agriculture Dairy Noncarcinogenic Back-	Contaminant-specific	Determined in this
Ini Sw Ingun	calculated Concentration in Soil and		calculator
	Water Ingestion (mg/kg-day)		
CDI _{far-sw-ingdc}	Agriculture Dairy Carcinogenic Back-	Contaminant-specific	Determined in this
iai sw ingde	calculated Concentration in Soil and	1	calculator
	Water Ingestion (mg/kg-day)		
CDI _{far-beef-ingn}	Agriculture Beef Noncarcinogenic	Contaminant-specific	Determined in this
iui occi-ingii	Ingestion (mg/kg-day)		calculator
		Contouring and an esific	Determined in this
CDI far heef ingo	Agriculture Beef Carcinogenic Ingestion	Contaminant-specific	
CDI _{far-beef-ingc}	Agriculture Beef Carcinogenic Ingestion (mg/kg-day)	Contaminant-specific	
ũ	(mg/kg-day)		calculator
CDI _{far-beef-ingc} CDI _{far-wat-ingbn}		Contaminant-specific	

Table C-20. Farmer Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
CDI _{far-wat-ingbc}	Agriculture Beef Carcinogenic Back-	Contaminant-specific	Determined in this
Ũ	calculated Concentration in Water	-	calculator
	Ingestion (mg/kg-day)		
CDI _{far-sol-ingbn}	Agriculture Beef Noncarcinogenic Back-	Contaminant-specific	Determined in this
	calculated Concentration in Soil Ingestion	1	calculator
	(mg/kg-day)		
CDI _{far-sol-ingbc}	Agriculture Beef Carcinogenic Back-	Contaminant-specific	Determined in this
C D That-sol-ingoc	calculated Concentration in Soil Ingestion		calculator
	(mg/kg-day)		
CDI _{far-sw-ingbn}	Agriculture Beef Noncarcinogenic Back-	Contaminant-specific	Determined in this
CD Thar-sw-ingon	calculated Concentration in Soil and	containinunt speeme	calculator
	Water Ingestion (mg/kg-day)		calculator
CDL	Agriculture Beef Carcinogenic Back-	Contaminant-specific	Determined in this
CDI _{far-sw-ingbc}	calculated Concentration in Soil and	Containinant-specific	calculator
			calculator
CDI	Water Ingestion (mg/kg-day)		
CDI _{far} -prod-ingn	Agriculture Produce Noncarcinogenic	Contaminant-specific	Determined in this
	Ingestion (mg/kg-day)		calculator
$\mathrm{BW}_{\mathrm{far-a}}$	Body Weight - adult (kg)	80	U.S. EPA 2014
			(Attachment 1)
$BW_{far-c}$	Body Weight - child (kg)	15	U.S. EPA 2014
			(Attachment 1)
$ED_{far}$	Exposure Duration - adult (years)	40	U.S. EPA 1991a (pg.
			15)
ED _{far-c}	Exposure Duration - adult (years)	6	U.S. EPA 1991a (pg.
			15)
ED _{far-a}	Exposure Duration - adult (years)	34	U.S. EPA 1991a (pg.
			15)
EF _{far}	Exposure Frequency (days/year)	350	U.S. EPA 2014
III			(Attachment 1)
AT _{far}	Averaging Time (days/year)	365 x LT	U.S. EPA 2014
	riveruging rime (uuju, jeur)	505 A E1	(Attachment 1)
AT _{far-c}	Averaging Time (days/year)	365 x ED _{far-c}	U.S. EPA 2014
A I far-c	Averaging Time (days/year)	JUJ A LD far-c	(Attachment 1)
IRF _{far-c}	Produce Ingestion Rate - Fruit - Child	68.1×10 ³	U.S. EPA 2011 (Table
IIII far-c	(mg/day)	08.1~10	13-5). U.S. EPA 1998
	(ing/day)		/
IDE		17(0.103	(Table C-1-2)
IRF _{far-a}	Produce Ingestion Rate - Fruit - Adult	176.8×10 ³	U.S. EPA 2011 (Table
	(mg/day)		13-5). U.S. EPA 1998
			(Table C-1-2)
$\mathrm{IFF}_{\mathrm{far-adj}}$	Produce Ingestion Rate - Fruit - Age-	35,833,000	Calculated using the
	adjusted (mg/kg)		age adjusted intake
		-	factors equation
IRV _{far-c}	Produce Ingestion Rate - Vegetables -	$41.7 \times 10^{3}$	U.S. EPA 2011 (Table
	Child (mg/day)		13-10). U.S. EPA
			1998 (Table C-1-2)
IRV _{far-a}	Produce Ingestion Rate - Vegetables -	125.7×10 ³	U.S. EPA 2011 (Table
	Adult (mg/day)		13-10). U.S. EPA
			1998 (Table C-1-2)
IFV _{far-adj}	Produce Ingestion Rate - Vegetables -	24,535,875	Calculated using the
· iai-auj	Age-adjusted (mg/kg)	= .,,	age adjusted intake
			factors equation
		I	racions equation

Table C-20. Farmer Land Use Equation Variables

Symbol	Definition (units)	Default	Reference
IRD _{far-c}	Dairy Ingestion Rate - Child (mg/day)	349.5×10 ³	U.S. EPA 2011 (Table 13-25). U.S. EPA 1998 (Table C-1-3)
IRD _{far-a}	Dairy Ingestion Rate - Adult (mg/day)	445.6×10 ³	U.S. EPA 2011 (Table 13-25). U.S. EPA 1998 (Table C-1-3)
IFD _{far-adj}	Dairy Ingestion Rate - Age-adjusted (mg/kg)	115,213,000	Calculated using the age adjusted intake factors equation
IRB _{far-c}	Beef Ingestion Rate - Child (mg/day)	40.1×10 ³	U.S. EPA 2011 (Table 13-33). U.S. EPA 1998 (Table C-1-3)
IRB _{far-a}	Beef Ingestion Rate - Adult (mg/day)	178×10 ³	U.S. EPA 2011 (Table 13-33). U.S. EPA 1998 (Table C-1-3)
$\mathrm{IFB}_{\mathrm{far-adj}}$	Beef Ingestion Rate - Age-adjusted (mg/kg)	30,091,500	Calculated using the age adjusted intake factors equation
Irr _{rup}	Root uptake from irrigation multiplier (L/kg)	Contaminant-specific	Calculated
Irr _{res}	Resuspension from irrigation multiplier (L/kg)	Contaminant-specific	Calculated
Irr _{dep}	Aerial deposition from irrigation multiplier (L/kg)	Contaminant-specific	Calculated
R _{upp}	Dry root uptake for pasture multiplier (unitless)	=BV _{dry}	
R _{upv}	Wet root uptake for vegetables multiplier (unitless)	=BV _{wet}	
Q _{p-beef}	Beef Fodder Intake Rate (kg/day)	11.77	U.S. EPA 2005 (pg. B- 138), U.S. EPA 1997b.
$Q_{p\text{-dairy}}$	Dairy Fodder Intake Rate (kg/day)	20.3	U.S. EPA 2005 (pg. B- 145), U.S. EPA 1997b.
Q _{w-dairy}	Dairy Water Intake Rate (kg/day)	92	U.S. EPA 1999a (pg. 10-23).
Q _{w-beef}	Beef Water Intake Rate (kg/day)	53	U.S. EPA 1999a (pg. 10-23).
Qs-dairy	Dairy Soil Intake Rate (kg/day)	0.4	U.S. EPA 2005 (pg. B- 146), U.S. EPA 1997b.
Q _{s-beef}	Beef Soil Intake Rate (kg/day)	0.5	U.S. EPA 2005 (pg. B- 139), U.S. EPA 1997b.
$f_{p\text{-beef}}$	Fraction of Time Animal is On-Site (unitless)	1	Maximum value used (100%)
$\mathbf{f}_{p-dairy}$	Fraction of Time Animal is On-Site (unitless)	1	Maximum value used (100%)
$f_{s\text{-beef}}$	Fraction of Animal's Food from Site when On-Site (unitless)	1	Maximum value used (100%)
$f_{s\text{-dairy}}$	Fraction of Animal's Food from Site when On-Site (unitless)	1	Maximum value used (100%)
TF _{dairy}	Dairy Transfer Factor (day/kg)	Contaminant-specific	Hierarchy selection in Section 2.4.2
TF _{beef}	Beef Transfer Factor (day/kg)	Contaminant-specific	Hierarchy selection in Section 2.4.2

Symbol	Definition (units)	Default	Reference
BCF	Fish Bioconcentration Factor (L/kg)	Contaminant-specific	
CF _{far-produce}	Fraction of Produce Consumed that is Contaminated	1	U.S. EPA 1998
CF _{far-dairy}	Fraction of Dairy Consumed that is Contaminated	1	U.S. EPA 1998
CF _{far-beef}	Fraction of Beef Consumed that is Contaminated	1	U.S. EPA 1998
Ir	Irrigation rate (L/m ² -day)	3.62	Personal communication with agricultural extension agent
F	Irrigation period (unitless)	0.25 (based on 3 months per year)	Personal communication with agricultural extension agent
$\lambda_{\rm B}$	Effective rate for removal (1/day)	$\lambda_{ m i}+\lambda_{ m HL}$	NCRP 1996
$\lambda_{\rm E}$	Decay for removal on produce (1/day)	$\lambda_i + (0.693/t_w)$	NCRP 1996
$\lambda_{ m HL}$	Soil leaching rate (1/day)	0.000027	NCRP 1996
λί	Decay (1/day)	0.693/T _R - radionuclides, 0 - non- radionuclides	NCRP 1996
t _w	Weathering half -life (day)	14	NCRP 1996
T _R	Half-life (days)	Contaminant-specific	
MLF _{pasture}	Pasture plant mass loading factor (unitless)	0.25	Hinton, T. G. 1992
MLF _{produce}	Produce plant mass loading factor (unitless)	0.26 x 0.052 = 0.0135	Hinton, 1992. U.S. EPA SSG 1996 table G-1. Dry weight to wet weight conversion equation from section 4.10.9
t _b	Long term deposition and buildup (day)	10,950	NCRP 1996
t _v	Above ground exposure time (day)	60	NCRP 1996
If	Interception fraction (unitless)	0.42	Miller, C. W. 1980
Y _v	Plant yield (wet) (kg/m ² )	2	NCRP 1996
P	Area density for root zone (kg/m ² )	240	Hoffman, F. O., R. H. Gardner, and K. F. Eckerman. 1982; Peterson, H. T., Jr. 1983; McKone, T. E. 1994
Т	Translocation factor (unitless)	1	NCRP 1996
R _{es}	Soil resuspension multiplier	= MLF (produce or pasture)	Hinton, T.G. 1992

Symbol	Definition (units)	Default	Reference
C _w	Target soil leachate concentration	Nonzero MCL or RSL ×	U.S. EPA. 2002
	(pCi/L)	DAF	Equation 4-14
DAF	Dilution attenuation factor (unitless)	20 (or site-specific)	U.S. EPA. 2002
			Equation 4-11
ED _{gw}	Exposure duration	70	U.S. EPA. 2002
			Equation 4-14
Ι	Infiltration Rate (m/year)	0.18	U.S. EPA. 2002
			Equation 4-11
L	Source length parallel to ground water	Site-specific	U.S. EPA. 2002
	flow (m)		Equation 4-11
i	Hydraulic gradient (m/m)	Site-specific	U.S. EPA. 2002
			Equation 4-11
K	Aquifer hydraulic conductivity	Site-specific	U.S. EPA. 2002
	(m/year)		Equation 4-11
$\theta_{\rm w}$	Water-filled soil porosity (L _{water} /L _{soil} )	0.3	U.S. EPA. 2002
			Equation 4-10
$\theta_a$	Air-filled soil porosity (Lair/Lsoil)	$=$ n- $\theta_{\rm w}$	U.S. EPA. 2002
			Equation 4-10
n	Total soil porosity (L _{pore} /L _{soil} )	$= 1 - (\rho_b / \rho_s)$	U.S. EPA. 2002
			Equation 4-10
$\rho_s$	Soil particle density (kg/L)	2.65	U.S. EPA. 2002
			Equation 4-10
ρ _b	Dry soil bulk density (kg/L)	1.5	U.S. EPA. 2002
			Equation 4-10
K _d	Soil-water partition coefficient (L/kg)	$= K_{oc} * f_{oc}$ for organics	U.S. EPA. 2002
			Equation 4-10
da	Aquifer thickness (m)	Site-specific	U.S. EPA. 2002
			Equation 4-10
ds	Depth of source (m)	Site-specific	U.S. EPA. 2002
			Equation 4-10
d	Mixing zone depth (m)	Site-specific	U.S. EPA. 2002
			Equation 4-12

Table C-21.	Soil to	Groundwater	SSL Factor	Variables
		Groundmater		, an impres

Symbol	Definition (units)	Default	Reference
PEFwind	Particulate Emission Factor -	1.36 × 109 (region-	U.S. EPA 2002
	Minneapolis (m ³ /kg)	specific)	Exhibit D-2
Q/C _{wind}	Inverse of the Mean Concentration at	93.77 (region-specific)	U.S. EPA 2002
	the Center of a 0.5-Acre-Square		Exhibit D-2
	Source $(g/m^2$ -s per kg/m ³ )		
V	Fraction of Vegetative Cover	0.5	U.S. EPA. 2002
	(unitless)		Equation 4-5
U _m	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA. 2002
			Equation 4-5
Ut	Equivalent Threshold Value of Wind	11.32	U.S. EPA. 2002
	Speed at 7m (m/s)		Equation 4-5
F(x)	Function Dependent on U _m /U _t	0.194	U.S. EPA. 2002
	(unitless)		Equation 4-5
А	Dispersion constant unitless	PEF and region-specific	U.S. EPA 2002 (pg.
			D-2)
As	Areal extent of the site or	0.5 (range 0.5 to 500)	U.S. EPA 2002 (pg.
	contamination (acres)		D-2)
В	Dispersion constant unitless	PEF and region-specific	U.S. EPA 2002 (pg.
			D-2)
С	Dispersion constant unitless	PEF and region-specific	U.S. EPA 2002 (pg.
			D-2)

Table C-22. Wind Particulate Emission Factor Equation Variables

Symbol	Definition (units)	Default	Reference
PEFsc	Particulate Emission Factor -	Contaminant-specific	U.S. EPA 2002
	subchronic (m ³ /kg)		Equation 5-5
Q/C _{sr}	Inverse of the ratio of the 1-h	23.02 (for 0.5-acre site)	U.S. EPA 2002
	geometric mean concentration to the		Equation 5-5
	emission flux along a straight road		
	segment bisecting a square site (g/m ² -s		
	per kg/m ³ )		
FD	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation 5-5
Т	Total time over which construction	7,200,000	U.S. EPA 2002
	occurs (s)		Equation 5-5
A _R	Surface area of contaminated road	$A_R = L_R \times W_R \times 0.092903$	U.S. EPA. 2002
	segment (m ² )	$m^2/ft^2$ )	Equation 5-5
L _R	Length of road segment (ft)	Site-specific	U.S. EPA. 2002
			Equation 5-5
W _R	Width of road segment (ft)	20	U.S. EPA. 2002
			Equation E-18
W	Mean vehicle weight (tons)	(Number of cars x	U.S. EPA. 2002
		tons/car + number of	Equation 5-5
		trucks x tons/truck) / total	
		vehicles)	
р	Number of days with at least 0.01	Site-specific	U.S. EPA. 2002
	inches of precipitation (days/year)		Equation 5-5
∑VKT	Sum of fleet vehicle kilometers	$\sum VKT = total vehicles x$	U.S. EPA 2002
	traveled during the exposure duration	distance (km/day) x	Equation 5-5
	(km)	frequency (weeks/year) x	
		(days/year)	
А	Dispersion constant unitless	12.9351	U.S. EPA 2002
			Equation 5-6
As	Areal extent of site surface soil	0.5 (range 0.5 to 500)	U.S. EPA 2002
	contamination (acres)		Equation 5-6
В	Dispersion constant unitless	5.7383	U.S. EPA. 2002
			Equation 5-6
С	Dispersion constant unitless	71.7711	U.S. EPA 2002
			Equation 5-6
t _c	Total time over which construction	8400	U.S. EPA. 2002
	occurs (hrs)		Equation 5-5

Table C-23. Mechanical Particulate Emission Factor Variables from Vehicle Traffic

### Table C-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
PEF'sc	Particulate Emission Factor -	Contaminant-specific	U.S. EPA 2002
	subchronic (m ³ /kg)		Equation E-26
Q/C _{sa}	Inverse of the ratio of the 1-h	Site-specific	U.S. EPA 2002
	geometric mean air concentration and		Equation E-15
	the emission flux at the center of the		

Symbol	Definition (units)	Default	Reference
	square emission source (g/m ² -s per		
	kg/m ³ )		
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation 5-5
Т	Total time over which construction	7,200,000	U.S. EPA 2002
	occurs (s)		Equation 5-5
Ac	Areal extent of site surface soil	(range 0.5 to 500)	U.S. EPA. 2002
	contamination (acres)		Equation E-15
J' _T	Total time-averaged PM10 unit	Site-specific	U.S. EPA. 2002
	emission flux for construction		Equation E-25
	activities other than traffic on unpaved		
- DC	roads (g/m ² -s)		
$M^{PC}_{\ wind}$	Unit mass emitted from wind erosion	Site-specific	U.S. EPA. 2002
	(g)		Equation E-20
V	Fraction of Vegetative Cover	0	U.S. EPA. 2002
	(unitless)		Equation E-20
$U_m$	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA 2002
			Equation E-20
Ut	Equivalent Threshold Value of Wind	11.32	U.S. EPA 2002
	Speed at 7m (m/s)		Equation E-20
F(x)	Function Dependent on U _m /U _t	0.194	U.S. EPA 2002
	(unitless)		Equation E-20
$A_{surf}$	Areal extent of site surface soil	(range 0.5 to 500)	U.S. EPA 2002
	contamination (m ² )		Equation E-20
ED	Exposure duration (years)	Site-specific	U.S. EPA 2002
			Equation E-20
M _{excav}	Unit mass emitted from excavation	Site-specific	U.S. EPA 2002
	soil dumping (g)		Equation E-21
0.35	PM10 particle size multiplier	0.35	U.S. EPA 2002
	(unitless)	1.50	Equation E-21
U _m	Mean annual wind speed during	4.69	U.S. EPA 2002
	construction (m/s)		Equation E-21
M _{m-excav}	Gravimetric soil moisture content (%)	12 (mean value for	U.S. EPA 2002
		municipal landfill cover)	Equation E-21
$\rho_{soil}$	In situ soil density (includes water)	1.68	U.S. EPA 2002
	(mg/m ³ )		Equation E-21
A _{excav}	Areal extent of excavation (m ² )	(range 0.5 to 500)	U.S. EPA 2002
1		<u> </u>	Equation E-21
d _{excav}	Average depth of excavation (m)	Site-specific	U.S. EPA 2002
			Equation E-21
N _{A-dump}	Number of times soil is dumped	2	U.S. EPA 2002
	(unitless)	<u> </u>	Equation E-21
$M_{doz}$	Unit mass emitted from dozing	Site-specific	U.S. EPA 2002
0.75	operations (g)	0.75	Equation E-22
0.75	PM10 scaling factor (unitless)	0.75	U.S. EPA 2002
			Equation E-22
Sdoz	Soil silt content (%)	6.9	U.S. EPA 2002
			Equation E-22

Table C-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
M _{m-doz}	Gravimetric soil moisture content (%)	7.9 (mean value for	U.S. EPA 2002
		overburden)	Equation E-22
$\sum VKT_{doz}$	Sum of dozing kilometers traveled	Site-specific	U.S. EPA 2002
_	(km)	1	Equation E-22
S _{doz}	Average dozing speed (kph)	11.4 (mean value for	U.S. EPA 2002
		graders)	Equation E-22
N _{A-doz}	Number of times site is dozed	Site-specific	U.S. EPA 2002
	(unitless)	1	Equation E-22
B _d	Dozer blade length (m)	Site-specific	U.S. EPA 2002 Page
		1	E-28
M _{grade}	Unit mass emitted from grading	Site-specific	U.S. EPA 2002
c	operations (g)	-	Equation E-23
0.60	PM10 scaling factor (unitless)	0.60	U.S. EPA 2002
			Equation E-23
$\sum VKT_{grade}$	Sum of grading kilometers traveled	Site-specific	U.S. EPA 2002
	(km)	1	Equation E-23
S _{grade}	Average grading speed (kph)	11.4 (mean value for	U.S. EPA 2002
6		graders)	Equation E-23
N _{A-grade}	Number of times site is graded	Site-specific	U.S. EPA 2002
	(unitless)	1	Equation E-23
Bg	Grader blade length (m)	Site-specific	U.S. EPA 2002 Page
0		1	E-28
M _{till}	Unit mass emitted from tilling	Site-specific	U.S. EPA 2002
	operations (g)	1	Equation E-24
Still	Soil silt content (%)	18	U.S. EPA 2002
			Equation E-24
A _{c-till}	Areal extent of tilling (acres)	Site-specific	U.S. EPA 2002
		1	Equation E-24
Ac-grade	Areal extent of grading (acres)	Site-specific	Necessary to solve
5		1	$\sum VKT_{grade}$ in U.S.
			EPA 2002 Equation E-
			23
Ac-doz	Areal extent of dozing (acres)	Site-specific	Necessary to solve
			$\sum VKT_{doz}$ in U.S. EPA
			2002 Equation E-22
N _{A-till}	Number of times soil is tilled	2	U.S. EPA 2002
	(unitless)		Equation E-24
А	Dispersion constant unitless	2.4538	U.S. EPA 2002
			Equation E-15
As	Areal extent of site surface soil	0.5 (range 0.5 to 500)	U.S. EPA 2002
	contamination (acres)		Equation 5-6
В	Dispersion constant unitless	17.5660	U.S. EPA 2002
			Equation E-15
С	Dispersion constant unitless	189.0426	U.S. EPA 2002
	-		Equation E-15
t _c	Total time over which construction	8400	U.S. EPA. 2002
	occurs (hrs)		Equation 5-5

Table C-24. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
VF _{ulim}	Unlimited Source Volatilization	Contaminant-specific	U.S. EPA. 2002
	Factor - Minneapolis (m ³ /kg)		Equation 4-8
Q/C _{vol}	Inverse of the Mean Concentration at	68.81	U.S. EPA. 2002
	the Center of a 0.5-Acre-Square		Equation 4-8
	Source $(g/m^2$ -s per kg/m ³ )		
D _A	Apparent Diffusivity (cm ² /s)	Contaminant-specific	U.S. EPA. 2002
			Equation 4-8
Т	Exposure interval (s)	819,936,000	U.S. EPA. 2002
			Equation 4-8
$\rho_b$	Dry soil bulk density (g/cm ³ )	1.5	U.S. EPA. 2002
			Equation 4-8
$\theta_a$	Air-filled soil porosity (Lair/Lsoil)	0.28	U.S. EPA. 2002
			Equation 4-8
n	Total soil porosity (L _{pore} /L _{soil} )	0.43	U.S. EPA. 2002
			Equation 4-8
$\theta_{\rm w}$	Water-filled soil porosity (L _{water} /L _{soil} )	0.15	U.S. EPA. 2002
			Equation 4-8
ρs	Soil particle density (g/c m ³ )	2.65	U.S. EPA. 2002
			Equation 4-8
D _{ia}	Diffusivity in air (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
$D_{\rm w}$	Diffusivity in water (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
K _d	Soil-water partition coefficient	Contaminant-specific	U.S. EPA. 2002
	$(K_{oc} \times f_{oc})$		Equation 4-8
K _{oc}	Soil organic carbon-water partition	Contaminant-specific	EPI Suite
	coefficient		
$f_{oc}$	Organic carbon content of soil (g/g)	0.006	U.S. EPA. 2002
			Equation 4-8
As	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	11.911	U.S. EPA 2002
			Exhibit D-3
В	Dispersion Constant	18.4385	U.S. EPA 2002
	-		Exhibit D-3
С	Dispersion Constant	209.7845	U.S. EPA 2002
			Exhibit D-3

Table C-25. Volatilization Factor Equation Variables

Symbol	Definition (units)	Default	Reference
VF _{mlim}	Mass Limit Volatilization Factor -	Contaminant-specific	U.S. EPA. 2002
	Minneapolis (m ³ /kg)		Equation 4-8
Q/C _{vol}	Inverse of the Mean Concentration at	68.81	U.S. EPA. 2002
	the Center of a 0.5-Acre-Square		Equation 4-8
	Source $(g/m^2$ -s per kg/m ³ )		
Ds	Average Source Depth (m)	Site-specific	U.S. EPA. 2002
			Equation 4-13
Т	Exposure interval (years)	26	U.S. EPA. 2002
			Equation 4-8
ρь	Dry soil bulk density (g/cm ³ )	1.5	U.S. EPA. 2002
			Equation 4-8
As	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	11.911	U.S. EPA 2002
			Exhibit D-3
В	Dispersion Constant	18.4385	U.S. EPA 2002
			Exhibit D-3
С	Dispersion Constant	209.7845	U.S. EPA 2002
			Exhibit D-3

 Table C-26. Mass Limit Volatilization Factor Equation Variables

Symbol	Definition (units)	Default	Reference
VF _{ulim-sc}	Volatilization Factor - Minneapolis	Contaminant-specific	U.S. EPA. 2002
	(m ³ /kg)		Equation 5-14
Q/C _{sa}	Inverse of the ratio of the 1-h	14.31 (for 0.5 acre site)	U.S. EPA. 2002
	geometric mean air concentration to		Equation 5-14
	the volatilization flux at the center of a		
	square source (g/m ² -s per kg/m ³ )		
D _A	Apparent Diffusivity (cm ² /s)	Contaminant-specific	U.S. EPA. 2002
			Equation 5-15
Т	Exposure interval (s)	30,240,000	U.S. EPA. 2002
			Equation 5-17
ρ _b	Dry soil bulk density (g/cm ³ )	1.5	U.S. EPA. 2002
			Equation 5-14
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA. 2002
			Equation 5-14
$\theta_a$	Air-filled soil porosity (Lair/Lsoil)	0.28	U.S. EPA. 2002
			Equation 5-14
n	Total soil porosity (L _{pore} /L _{soil} )	0.43	U.S. EPA. 2002
			Equation 5-14
$\theta_{\rm w}$	Water-filled soil porosity (Lwater/Lsoil)	0.15	U.S. EPA. 2002
			Equation 5-14
$\rho_s$	Soil particle density (g/cm ³ )	2.65	U.S. EPA. 2002
			Equation 5-14
D _{ia}	Diffusivity in air (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
D _{iw}	Diffusivity in water (cm ² /s)	Contaminant-specific	U.S. EPA. 2001
K _d	Soil-water partition coefficient	Contaminant-specific	U.S. EPA. 2002
	$(K_{oc} \times f_{oc})$		Equation 4-8
K _{oc}	Soil organic carbon-water partition	Contaminant-specific	EPI Suite
	coefficient		
foc	Organic carbon content of soil (g/g)	0.006	U.S. EPA. 2002
			Equation 4-8
Ac	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	2.4538	U.S. EPA 2002
			Exhibit 5-15
В	Dispersion Constant	17.5560	U.S. EPA 2002
			Exhibit 5-15
С	Dispersion Constant	189.0426	U.S. EPA 2002
			Exhibit 5-15
t _c	Total time over which construction	8400	U.S. EPA. 2002
	occurs (hrs)		Equation 5-5

Table C-27. Subchronic Volatilization Factor Equation Variables

Symbol	Definition (units)	Default	Reference
VF _{mlim-sc}	Volatilization Factor - Minneapolis	Contaminant-specific	U.S. EPA. 2002
	$(m^{3}/kg)$		Equation 5-14
Q/C _{sa}	Inverse of the ratio of the 1-h	14.31 (for 0.5 acre site)	U.S. EPA. 2002
	geometric mean air concentration to		Equation 5-14
	the volatilization flux at the center of a		
	square source (g/m ² -s per kg/m ³ )		
ds	Average source depth (m)	Site-specific	U.S. EPA. 2002
			Equation 5-17
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA. 2002
			Equation 5-14
Т	Exposure interval (s)	30,240,000	U.S. EPA. 2002
			Equation 5-17
$\rho_b$	Dry soil bulk density (g/cm ³ )	1.5	U.S. EPA. 2002
			Equation 5-14
Ac	Areal extent of the site contamination	0.5 (range 0.5 to 500)	U.S. EPA. 2002
	(acres)		Equation 4-8
А	Dispersion Constant	2.4538	U.S. EPA 2002
			Exhibit 5-15
В	Dispersion Constant	17.5560	U.S. EPA 2002
			Exhibit 5-15
С	Dispersion Constant	189.0426	U.S. EPA 2002
			Exhibit 5-15
t _c	Total time over which construction	8400	U.S. EPA. 2002
	occurs (hours)		Equation 5-5

 Table C-28. Subchronic Mass Limit Volatilization Factor Equation Variables

# APPENDIX D. CHEMICAL CDI AND RISK EQUATIONS

#### APPENDIX D. CHEMICAL AND RISK CDI EQUATIONS

#### **Resident Soil CDI Equations**

Noncarcinogenic Child Soil Ingestion (CDI)

$$\mathsf{CDI}_{\mathsf{res-sol-ingnc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) = \frac{\mathsf{C}_{\mathsf{soil}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{RBA} \times \mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{res-c}}\left(\frac{200 \ \mathsf{mg}}{\mathsf{day}}\right)}{\mathsf{AT}_{\mathsf{res-c}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr}) \times \mathsf{BW}_{\mathsf{res-c}}(15 \ \mathsf{kg})}$$

Noncarcinogenic Child Soil Inhalation (CDI)

$$CDI_{res-sol-inhnc}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times ET_{res-c}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{res-c}\left(\frac{365 \text{ days}}{yr} \times ED_{res-c}(6 \text{ yr})\right)}$$

#### Noncarcinogenic Child Soil Dermal (CDI)

$$CDI_{res-sol-dernc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}\left(6 \ yr\right) \times SA_{res-c}\left(\frac{2,373 \ cm^2}{day}\right) \times AF_{res-c}\left(\frac{0.2 \ mg}{cm^2}\right) \times ABS_d}{AT_{res-c}\left(\frac{365 \ days}{yr}\right) \times ED_{res-c}\left(6 \ yr\right) \times BW_{res-c}\left(15 \ kg\right)}$$

Noncarcinogenic Adult Soil Ingestion (CDI)

$$CDI_{res-sol-ingna}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times IRS_{res-a}\left(\frac{100 \text{ mg}}{day}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right) \times BW_{res-a}(80 \text{ kg})}$$

_____

Noncarcinogenic Adult Soil Inhalation (CDI)

$$CDI_{res-sol-inhna}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res-a}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}$$

### Noncarcinogenic Adult Soil Dermal (CDI)

$$CDI_{res-sol-derna}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times SA_{res-a}\left(\frac{6,032 \text{ cm}^2}{day}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{cm^2}\right) \times ABS_d}{AT_{res-a}\left(\frac{365 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times SA_{res-a}\left(\frac{6,032 \text{ cm}^2}{day}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{cm^2}\right) \times ABS_d}$$

Noncarcinogenic Age-adjusted Soil Ingestion (CDI)

$$CDI_{res-sol-ingnadj}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}$$
where:
$$IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times IRS_{res-c}\left(\frac{200 \text{ mg}}{day}\right)}{BW_{res-c}(15 \text{ kg})} + \frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times IRS_{res-a}\left(\frac{100 \text{ mg}}{day}\right)}{BW_{res-a}(80 \text{ kg})}\right]$$

Noncarcinogenic Age-adjusted Soil Inhalation (CDI)

$$CDI_{res-sol-inhnadj}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+} \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}$$

Noncarcinogenic Age-adjusted Soil Dermal (CDI)

$$\begin{split} \text{CDI}_{\text{res-sol-dernadj}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{C}_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{DFS}_{\text{res-adj}}\left(\frac{103,390 \text{ mg}}{\text{kg}}\right) \times \text{ABS}_{\text{d}}}{\text{AT}_{\text{res-a}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{ED}_{\text{res}}(26 \text{ yr})\right)} \\ & \text{where:} \\ \\ \text{DFS}_{\text{res-adj}}\left(\frac{103,390 \text{ mg}}{\text{kg}}\right) = \left[\frac{\text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{SA}_{\text{res-c}}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times \text{AF}_{\text{res-c}}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right)}{\text{BW}_{\text{res-c}}(15 \text{ kg})} + \left[\frac{\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{SA}_{\text{res-a}}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) \times \text{AF}_{\text{res-a}}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right)}{\text{BW}_{\text{res-a}}(80 \text{ kg})}\right] \end{split}$$

Carcinogenic Soil Ingestion (CDI)

$$CDI_{res-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$
where:  

$$IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right) = \begin{bmatrix}\frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times IRS_{res-c}\left(\frac{200 \text{ mg}}{day}\right)}{BW_{res-c}(15 \text{ kg})} + \frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times IRS_{res-a}\left(\frac{100 \text{ mg}}{day}\right)}{BW_{res-a}(80 \text{ kg})} \end{bmatrix}$$

Carcinogenic Soil Inhalation (CDI)

$$CDI_{res-sol-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

### Carcinogenic Soil Dermal (CDI)

$$CDI_{res-sol-derc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) \times ABS_{d}}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$
where:  

$$DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times SA_{res-c}\left(\frac{2,373 \text{ cm}^{2}}{day}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{cm^{2}}\right)}{BW_{res-c}(15 \text{ kg})} + \left[\frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times SA_{res-a}\left(\frac{6,032 \text{ cm}^{2}}{day}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{cm^{2}}\right)}{BW_{res-a}(80 \text{ kg})}\right]$$

Mutagenic Soil Ingestion (CDI)

$$\begin{split} \text{CDI}_{\text{res-sol-ingmu}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{C}_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \text{RBA} \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{IFSM}_{\text{res-adj}}\left(\frac{166,833.3 \text{ mg}}{\text{kg}}\right)}{\text{AT}_{\text{res}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)} \\ & \text{where:} \\ \\ \text{IFSM}_{\text{res-adj}}\left(\frac{166,833.3 \text{ mg}}{\text{kg}}\right) = \left[ \frac{\frac{\text{EF}_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \text{ yr}) \times \text{IRS}_{0-2}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 10}{\text{BW}_{0-2}(15 \text{ kg})} + \left[ \frac{\frac{\text{EF}_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{IRS}_{2-6}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{2-6}(15 \text{ kg})} + \left[ \frac{\frac{\text{EF}_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{IRS}_{2-6}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{2-6}(15 \text{ kg})} + \left[ \frac{\text{EF}_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{6-16}(10 \text{ yr}) \times \text{IRS}_{6-16}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 3}{\text{BW}_{6-16}(80 \text{ kg})} + \left[ \frac{\text{EF}_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \text{ yr}) \times \text{IRS}_{16-26}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 1}{\text{BW}_{16-26}(80 \text{ kg})} \right] \right] \end{aligned}$$

Mutagenic Soil Inhalation (CDI)

$$C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right) \times \left[\left(EF_{0-2}\left(\frac{350 \ days}{yr}\right) \times ED_{0-2}(2 \ yr) \times ET_{0-2}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 10\right) + \left(EF_{2-6}\left(\frac{350 \ days}{yr}\right) \times ED_{2-6}(4 \ yr) \times ET_{2-6}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 3\right) + \left(EF_{6-16}\left(\frac{350 \ days}{yr}\right) \times ED_{6-16}(10 \ yr) \times ET_{6-16}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 3\right) + \left(EF_{16-26}\left(\frac{350 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times ET_{16-26}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 1\right)\right) + \left(EF_{16-26}\left(\frac{350 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times ET_{16-26}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 1\right)\right) + \left(ET_{16-26}\left(\frac{350 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times ET_{16-26}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 1\right)\right)$$

### Mutagenic Soil Dermal (CDI)

$$CDI_{res-sol-dermu}\left(\frac{mg}{kg-day}\right) = \frac{C_{soll}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times DFSM_{res-adj}\left(\frac{428,260 mg}{kg}\right) \times ABS_{d}}{AT_{res}\left(\frac{365 days}{yr} \times LT(70 yrs)\right)}$$
where:
$$DFSM_{res-adj}\left(\frac{428,260 mg}{kg}\right) = \left[\frac{\frac{EF_{0-2}\left(\frac{350 days}{yr}\right) \times ED_{0-2}(2 yr) \times SA_{0-2}\left(\frac{2,373 cm^{2}}{day}\right) \times AF_{0-2}\left(\frac{0.2 mg}{cm^{2}}\right) \times 10}{BW_{0-2}(15 kg)} + \frac{EF_{2-6}\left(\frac{350 days}{yr}\right) \times ED_{2-6}(4 yr) \times SA_{2-6}\left(\frac{2,373 cm^{2}}{day}\right) \times AF_{2-6}\left(\frac{0.2 mg}{cm^{2}}\right) \times 3}{BW_{2-6}(15 kg)} + \frac{EF_{6-16}\left(\frac{350 days}{yr}\right) \times ED_{6-16}(10 yr) \times SA_{6-16}\left(\frac{6,032 cm^{2}}{day}\right) \times AF_{2-6}\left(\frac{0.07 mg}{cm^{2}}\right) \times 3}{BW_{6-16}(80 kg)} + \frac{EF_{16-26}\left(\frac{350 days}{yr}\right) \times ED_{16-26}(10 yr) \times SA_{16-26}\left(\frac{6,032 cm^{2}}{day}\right) \times AF_{16-26}\left(\frac{0.07 mg}{cm^{2}}\right) \times 1}{BW_{16-26}(80 kg)}$$

Vinyl Chloride Soil Ingestion (CDI)

$$CDI_{res-sol-ingvc}\left(\frac{mg}{kg-day}\right) = C_{soil}\left(\frac{mg}{kg}\right) \times \begin{pmatrix} \left(\frac{IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}\right) + \begin{pmatrix} \left(\frac{IRS_{res-c}\left(\frac{200 \text{ mg}}{day}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA}{BW_{res-c}(15 \text{ kg})}\right) \\ \end{pmatrix}$$
where:
$$IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{kg}\right) = \begin{bmatrix} \frac{EF_{res-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-c}(6 \text{ yr}) \times IRS_{res-c}\left(\frac{200 \text{ mg}}{day}\right)}{BW_{res-c}(15 \text{ kg})} + \\ \frac{EF_{res-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res-a}(20 \text{ yr}) \times IRS_{res-a}\left(\frac{100 \text{ mg}}{day}\right)}{BW_{res-a}(80 \text{ kg})} \end{bmatrix}$$

## Vinyl Chloride Soil Inhalation (CDI)

$$C_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{1000 \ \mu\text{g}}{\text{mg}}\right) \times \left(\frac{1}{\text{VF}_{\text{s}}}\left(\frac{\text{m}^{3}}{\text{kg}}\right)^{+} + \frac{1}{\text{PEF}}\left(\frac{\text{m}^{3}}{\text{kg}}\right)\right) \times \\ = \left[ \begin{array}{c} \left(\text{EF}_{0-2}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \ \text{yr}) \times \text{ET}_{0-2}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times 10\right)^{+} \\ \left(\text{EF}_{2-6}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \ \text{yr}) \times \text{ET}_{2-6}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times 3\right)^{+} \\ \left(\text{EF}_{6-16}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{6-16}(10 \ \text{yr}) \times \text{ET}_{6-16}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times 3\right)^{+} \\ \left(\text{EF}_{16-26}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \ \text{yr}) \times \text{ET}_{16-26}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times 1\right) \right] \\ \end{array}$$

Vinyl Chloride Soil Dermal (CDI)

$$CDI_{res-sol-dervc}\left(\frac{mg}{kg-day}\right) = C_{soil}\left(\frac{mg}{kg}\right) \times \begin{pmatrix} \left(\frac{DFS_{res-adj}\left(\frac{103,390 mg}{kg}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times ABS_{d}}{AT_{res}\left(\frac{365 days}{yr} \times LT(70 yrs)\right)}\right) + \\ \left(\frac{SA_{res-c}\left(\frac{2,373 cm^{2}}{day}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times AF_{res-c}\left(\frac{0.2 mg}{cm^{2}}\right) \times ABS_{d}}{BW_{res-c}(15 kg)}\right) \end{pmatrix}$$
where:
$$DFS_{res-adj}\left(\frac{103,390 mg}{kg}\right) = \begin{bmatrix} \frac{EF_{res-c}\left(\frac{350 days}{yr}\right) \times ED_{res-c}(6 yr) \times SA_{res-c}\left(\frac{2,373 cm^{2}}{day}\right) \times AF_{res-c}\left(\frac{0.2 mg}{cm^{2}}\right)}{BW_{res-c}(15 kg)} + \\ \frac{EF_{res-a}\left(\frac{350 days}{yr}\right) \times ED_{res-a}(20 yr) \times SA_{res-a}\left(\frac{6,032 cm^{2}}{day}\right) \times AF_{res-a}\left(\frac{0.07 mg}{cm^{2}}\right)}{BW_{res-a}(80 kg)} \end{bmatrix}$$

Trichloroethylene Soil Ingestion (CDI)

$$IFSM_{res-adj}\left(\frac{166,833.3 \text{ mg}}{\text{kg}}\right) = \frac{C_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{RBA} \times \left(\begin{array}{c} \left(CAF_{0}(0.804) \times IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{\text{kg}}\right)\right) + \\ \left(MAF_{0}(0.202) \times IFSM_{res-adj}\left(\frac{166,833.3 \text{ mg}}{\text{kg}}\right)\right)\right)}{AT_{res}\left(\frac{365 \text{ days}}{\text{yr}} \times LT(70 \text{ yrs})\right)}$$
where:
$$IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{\text{kg}}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{res-c}(6 \text{ yr}) \times IRS_{res-c}\left(\frac{200 \text{ mg}}{\text{day}}\right)}{BW_{res-c}(15 \text{ kg})} + \right]$$
and:
$$IFS_{res-adj}\left(\frac{36,750 \text{ mg}}{\text{kg}}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{res-a}(20 \text{ yr}) \times IRS_{res-a}\left(\frac{100 \text{ mg}}{\text{day}}\right)}{BW_{res-a}(80 \text{ kg})} + \right]$$

$$\frac{EF_{res-a}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{0-2}(2 \text{ yr}) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 10}{BW_{0-2}(15 \text{ kg})} + \left[\frac{EF_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{2-6}(4 \text{ yr}) \times IRS_{2-6}\left(\frac{200 \text{ mg}}{\text{day}}\right) \times 3}{BW_{2-6}(15 \text{ kg})} + \left[\frac{EF_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{2-6}(10 \text{ yr}) \times IRS_{6-16}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 3}{BW_{6-16}(80 \text{ kg})} + \left[\frac{EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{16-26}(10 \text{ yr}) \times IRS_{16-26}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 1}{BW_{16-26}(80 \text{ kg})}\right]$$

Trichloroethylene Soil Inhalation (CDI)

$$C_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{1000 \ \mu\text{g}}{\text{mg}}\right) \times \left(\frac{1}{\text{VF}_{\text{s}}}\left(\frac{\text{m}^{3}}{\text{kg}}\right)^{+} \frac{1}{\text{PEF}}\left(\frac{\text{m}^{3}}{\text{kg}}\right)\right) \times \\ \left( \text{EF}_{\text{res}}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res}}(26 \ \text{yr}) \times \text{ET}_{\text{res}}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{CAF}_{\text{i}}(0.756)\right) + \\ \left( \text{EF}_{0-2}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \ \text{yr}) \times \text{ET}_{0-2}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{MAF}_{\text{i}}(0.244) \times 10\right) + \\ \left( \text{EF}_{2-6}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \ \text{yr}) \times \text{ET}_{2-6}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{MAF}_{\text{i}}(0.244) \times 3\right) + \\ \left( \text{EF}_{6-16}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{6-16}(10 \ \text{yr}) \times \text{ET}_{6-16}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{MAF}_{\text{i}}(0.244) \times 3\right) + \\ \left( \text{EF}_{16-26}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \ \text{yr}) \times \text{ET}_{16-26}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{MAF}_{\text{i}}(0.244) \times 3\right) + \\ \left( \text{EF}_{16-26}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \ \text{yr}) \times \text{ET}_{16-26}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{MAF}_{\text{i}}(0.244) \times 1\right) \right) \right] - \\ \left( \text{CDI}_{\text{res-sol-inhtce}}\left(\frac{\mu\text{g}}{\text{m}^{3}}\right) = \frac{1 \ \left( \text{EF}_{16-26}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \ \text{yr}) \times \text{ET}_{16-26}\left(\frac{24 \ \text{hrs}}{\text{day}}\right) \times \left(\frac{1 \ \text{day}}{24 \ \text{hrs}}\right) \times \text{MAF}_{\text{i}}(0.244) \times 1\right) \right) \right)}$$

# Trichloroethylene Soil Dermal (CDI)

$$DFSM_{res-adj}\left(\frac{428,260 \text{ mg}}{\text{kg}}\right) = \frac{C_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \left(\begin{pmatrix} (CAF_0(0.804) \times DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{\text{kg}}\right) \times ABS_d\right) + \\ \left((MAF_0(0.202) \times DFSM_{res-adj}\left(\frac{428,260 \text{ mg}}{\text{kg}}\right) \times ABS_d\right) \end{pmatrix}}{AT_{res}\left(\frac{365 \text{ days}}{\text{yr}} \times LT(70 \text{ yrs})\right)}$$
where:
$$DFS_{res-adj}\left(\frac{103,390 \text{ mg}}{\text{kg}}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{res-c}(6 \text{ yr}) \times SA_{res-c}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times AF_{res-c}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right)}{BW_{res-c}(15 \text{ kg})} + \\ \frac{EF_{res-a}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{res-a}(20 \text{ yr}) \times SA_{res-a}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) \times AF_{res-a}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right)}{BW_{res-a}(80 \text{ kg})} \right]$$
and:
$$\frac{EF_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{0-2}(2 \text{ yr}) \times SA_{0-2}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times AF_{0-2}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) \times 10}{BW_{0-2}(15 \text{ kg})} + \\ \frac{EF_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{0-2}(2 \text{ yr}) \times SA_{2-6}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times AF_{2-6}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) \times 10}{BW_{2-6}(15 \text{ kg})} + \\ \frac{EF_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{0-2}(2 \text{ yr}) \times SA_{0-2}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times AF_{2-6}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) \times 10}{BW_{2-6}(15 \text{ kg})} + \\ \frac{EF_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{2-6}(4 \text{ yr}) \times SA_{2-6}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times AF_{2-6}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) \times 3}{BW_{2-6}(15 \text{ kg})} + \\ \frac{EF_{0-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{0-16}(10 \text{ yr}) \times SA_{0-16}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) \times AF_{0-2}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right) \times 3}{BW_{2-6}(15 \text{ kg})} + \\ \frac{EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{16-26}(10 \text{ yr}) \times SA_{16-26}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) \times AF_{16-26}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right) \times 1}{BW_{16-26}(80 \text{ kg})}$$

Supporting Child Soil (CDI)

$$\begin{split} \mathsf{BW}_{\text{res-c}}\left(15\text{ kg}\right) &= \frac{\mathsf{ED}_{0-2}\left(2\text{ yr}\right) \times \mathsf{BW}_{0-2}\left(15\text{ kg}\right) + \mathsf{ED}_{2-6}\left(4\text{ yr}\right) \times \mathsf{BW}_{2-6}\left(15\text{ kg}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{EF}_{\text{res-c}}\left(\frac{350\text{ days}}{\mathsf{yr}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{EF}_{0-2}\left(\frac{350\text{ days}}{\mathsf{yr}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{EF}_{2-6}\left(\frac{350\text{ days}}{\mathsf{yr}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{ET}_{\text{res-c}}\left(\frac{24\text{ hrs}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{ET}_{0-2}\left(\frac{24\text{ hrs}}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{ET}_{2-6}\left(\frac{24\text{ hrs}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{\text{res-c}}\left(\frac{0.2\text{ mg}}{\mathsf{cm}^2}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{AF}_{0-2}\left(\frac{0.2\text{ mg}}{\mathsf{cm}^2}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{AF}_{2-6}\left(\frac{0.2\text{ mg}}{\mathsf{cm}^2}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{\text{res-c}}\left(\frac{2,373\text{ cm}^2}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{AF}_{0-2}\left(\frac{2,373\text{ cm}^2}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{AF}_{2-6}\left(\frac{2,373\text{ cm}^2}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{\text{res-c}}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{AF}_{2-6}\left(\frac{2,373\text{ cm}^2}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{AF}_{2-6}\left(\frac{200\text{ mg}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{AF}_{2-6}\left(\frac{200\text{ mg}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}(2\text{ yr}) \times \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) + \mathsf{ED}_{2-6}(4\text{ yr}) \times \mathsf{AF}_{2-6}\left(\frac{200\text{ mg}}{\mathsf{day}}\right)}{\mathsf{ED}_{0-2}(2\text{ yr}) + \mathsf{ED}_{2-6}(4\text{ yr})} \\ &= \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) = \frac{\mathsf{ED}_{0-2}\left(2\text{ yr}\right) \times \mathsf{AF}_{0-2}\left(\frac{200\text{ mg}}{\mathsf{day}}\right) + \mathsf{ED}_{0-2}\left(\frac{200\text$$

Supporting Adult Soil (CDI)

$$BW_{res-a} (80 \text{ kg}) = \frac{ED_{6-16} (10 \text{ yr}) \times BW_{6-16} (80 \text{ kg}) + ED_{16-26} (10 \text{ yr}) \times BW_{16-26} (80 \text{ kg})}{ED_{6-16} (10 \text{ yr}) + ED_{16-26} (10 \text{ yr})}$$

$$EF_{res-a} \left(\frac{350 \text{ days}}{\text{yr}}\right) = \frac{ED_{6-16} (10 \text{ yr}) \times EF_{6-16} \left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26} (10 \text{ yr}) \times EF_{16-26} \left(\frac{350 \text{ days}}{\text{yr}}\right)}{ED_{6-16} (10 \text{ yr}) + ED_{16-26} (10 \text{ yr}) \times EF_{16-26} \left(\frac{24 \text{ hrs}}{day}\right)}$$

$$ET_{res-a} \left(\frac{24 \text{ hrs}}{day}\right) = \frac{ED_{6-16} (10 \text{ yr}) \times ET_{6-16} \left(\frac{24 \text{ hrs}}{day}\right) + ED_{16-26} (10 \text{ yr}) \times ET_{16-26} \left(\frac{24 \text{ hrs}}{day}\right)}{ED_{6-16} (10 \text{ yr}) + ED_{16-26} (10 \text{ yr}) \times AF_{16-26} \left(\frac{0.07 \text{ mg}}{cm^2}\right)}$$

$$AF_{res-a} \left(\frac{0.07 \text{ mg}}{cm^2}\right) = \frac{ED_{6-16} (10 \text{ yr}) \times AF_{6-16} \left(\frac{0.07 \text{ mg}}{cm^2}\right) + ED_{16-26} (10 \text{ yr}) \times AF_{16-26} \left(\frac{0.07 \text{ mg}}{cm^2}\right)}{ED_{6-16} (10 \text{ yr}) + ED_{16-26} (10 \text{ yr})}$$

$$SA_{res-a} \left(\frac{6,032 \text{ cm}^2}{day}\right) = \frac{ED_{6-16} (10 \text{ yr}) \times SA_{6-16} \left(\frac{6,032 \text{ cm}^2}{day}\right) + ED_{16-26} (10 \text{ yr}) \times SA_{16-26} \left(\frac{6,032 \text{ cm}^2}{day}\right)}{ED_{6-16} (10 \text{ yr}) + ED_{16-26} (10 \text{ yr})}$$

$$IRS_{res-a} \left(\frac{100 \text{ mg}}{day}\right) = \frac{ED_{6-16} (10 \text{ yr}) \times IRS_{6-16} \left(\frac{100 \text{ mg}}{day}\right) + ED_{16-26} (10 \text{ yr}) \times IRS_{16-26} \left(\frac{100 \text{ mg}}{day}\right)}{ED_{6-16} (10 \text{ yr}) + ED_{16-26} (10 \text{ yr})}$$

Supporting Age-adjusted Soil (CDI)

$$EF_{res}\left(\frac{350 \text{ days}}{\text{yr}}\right) = \frac{\left(\frac{ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{6-16}(10 \text{ yr}) \times EF_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right)\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr})}$$

$$ET_{res}\left(\frac{24 \text{ hrs}}{\text{day}}\right) = \frac{\left(\frac{ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)\right)}{ED_{0-2}(2 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)\right)}$$

### **Resident Air CDI Equations**

Noncarcinogenic Air Inhalation (CDI)

$$CDI_{res-air-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times ET_{res}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right)}{AT_{res-a}\left(\frac{365 \ days}{yr} \ \times ED_{res}(26 \ yr)\right)}$$

### Carcinogenic Air Inhalation (CDI)

$$CDI_{res-air-inhc}\left(\frac{\mu g}{m^3}\right) = \frac{C_{air}\left(\frac{\mu g}{m^3}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

Mutagenic Air Inhalation (CDI)

$$C_{air}\left(\frac{\mu g}{m^{3}}\right) \times \begin{bmatrix} \left(EF_{0-2}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 10\right) + \\ \left(EF_{2-6}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(EF_{6-16}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right)\right) \\ - \left(ET_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right)\right) \\ - \left(ET_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ET_{16-26}\left(10 \text{ yr}\right) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right)\right) \\ - \left(ET_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ET_{16-26}\left(10 \text{ yr}\right) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right)\right) \right)$$

### Vinyl Chloride Air Inhalation (CDI)

$$CDI_{res-air-inhvc}\left(\frac{\mu g}{m^{3}}\right) = C_{air}\left(\frac{\mu g}{m^{3}}\right) \times \left(1 + \left(\frac{EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}\right)\right)$$

Trichloroethylene Air Inhalation (CDI)

$$CDI_{res-air-inhtce}\left(\frac{\mu g}{m^3}\right) = \frac{\left(\mathsf{EF}_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{res}(26 \text{ yr}) \times \mathsf{ET}_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{CAF}_i(0.756)\right) + \left(\mathsf{EF}_{0-2}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{0-2}(2 \text{ yr}) \times \mathsf{ET}_{0-2}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{MAF}_i(0.244) \times 10\right) + \left(\mathsf{EF}_{2-6}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{2-6}(4 \text{ yr}) \times \mathsf{ET}_{2-6}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{MAF}_i(0.244) \times 3\right) + \left(\mathsf{EF}_{6-16}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{6-16}(10 \text{ yr}) \times \mathsf{ET}_{6-16}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{MAF}_i(0.244) \times 3\right) + \left(\mathsf{EF}_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{16-26}(10 \text{ yr}) \times \mathsf{ET}_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{MAF}_i(0.244) \times 3\right) + \left(\mathsf{EF}_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{16-26}(10 \text{ yr}) \times \mathsf{ET}_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{MAF}_i(0.244) \times 3\right) + \left(\mathsf{EF}_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times \mathsf{ED}_{16-26}(10 \text{ yr}) \times \mathsf{ET}_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{MAF}_i(0.244) \times 1\right)\right)}$$

Refractory Ceramic Fibers Air Inhalation (CDI)

$$CDI_{res-air-inhrcf}\left(\frac{f}{m^3}\right) = \frac{C_{air}\left(\frac{f}{m^3}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right)}$$

Asbestos Air Inhalation (CDI)

$$CDI_{res-air-inhasb}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

### **Resident Tap Water CDI Equations**

Noncarcinogenic Child Tap Water Ingestion (CDI)

$$CDI_{res-wat-ingnc}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{AT_{res-c}\left(\frac{365 \ days}{yr} \ \times ED_{res-c}(6 \ yr)\right) \times BW_{res-c}(15 \ kg)}$$

Noncarcinogenic Child Tap Water Inhalation (CDI)

$$CDI_{res-wat-inhnc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times ET_{res-c}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times K\left(\frac{0.5 \ L}{m^{3}}\right)}{AT_{res-c}\left(\frac{365 \ days}{yr} \times ED_{res-c}(6 \ yr)\right)}$$

Noncarcinogenic Child Tap Water Dermal (CDI)

$$\begin{split} & \text{CDI}_{\text{res-wat-derc}}\left(\frac{\text{mg}}{\text{kg-day}}\right) = \frac{\text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^{2}-\text{event}}\right) \times \left(\frac{\text{mg}}{1000 \ \mu g}\right) \times \text{EF}_{\text{res-c}}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \ \text{yr}) \times \text{EV}_{\text{res-c}}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times \text{SA}_{\text{res-c}}\left(6, 365 \ \text{cm}^{2}\right)}{\text{AT}_{\text{res-c}}\left(\frac{365 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \ \text{yr}) \times \text{EV}_{\text{res-c}}\left(15 \ \text{kg}\right)} \\ & \text{where:} \\ & \text{For Inorganics:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^{2}-\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \left(\frac{\text{L}}{1000 \ \text{cm}^{3}}\right) \times \text{ET}_{\text{event-res-c}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) \\ & \text{For Organics:} \\ & \text{IF ET}_{\text{event-res-c}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) \leq t^{*} \ (\text{hrs}), \text{then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^{2}-\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{\text{L}}{1000 \ \text{cm}^{3}}\right) \times 2 \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \sqrt{\frac{6 \times \tau_{\text{event}}\left(\frac{\text{hrs}}{\text{event}\right) \times \text{ET}_{\text{event-res-c}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right)}}{\pi} \\ & \text{or:} \\ & \text{IF ET}_{\text{event-res-c}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) > t^{*} \ (\text{hrs}), \text{then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^{2}-\text{event}}\right) > t^{*} \ (\text{hrs}), \text{then:} \\ & \text{DA}_{\text{event}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) > t^{*} \ (\text{hrs}), \text{then:} \\ & \text{DA}_{\text{event}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) > t^{*} \ (\text{hrs}), \text{then:} \\ & \text{DA}_{\text{event}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) > t^{*} \ (\text{hrs}), \text{then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^{2}-\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{1 \ \text{L}}{1000 \ \text{cm}^{3}}\right) \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \left[\frac{\text{ET}_{\text{event-res-c}}\left(\frac{0.54 \ \text{hrs}}{\text{event}}\right) + 2 \times \tau_{\text{event}}\left(\frac{\text{hrs}}{\text{event}}\right) \times \left(\frac{1 \ \text{Hs} \ \text{Hs}^{2}}{(1 \ \text{Hs}^{2}}\right)\right) \right] \\ \end{array}$$

Noncarcinogenic Adult Tap Water Ingestion (CDI)

$$CDI_{res-wat-ingna}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times IRW_{res-a}\left(\frac{2.5 \ L}{day}\right)}{AT_{res-a}\left(\frac{365 \ days}{yr}\right) \times ED_{res}(26 \ yr)\right) \times BW_{res-a}(80 \ kg)}$$

Noncarcinogenic Adult Tap Water Inhalation (CDI)

$$CDI_{res-wat-inhna}\left(\frac{mg}{m^{3}}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times ET_{res-a}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times K\left(\frac{0.5 \ L}{m^{3}}\right)}{AT_{res-a}\left(\frac{365 \ days}{yr}\right) \times ED_{res}(26 \ yr)}$$

Noncarcinogenic Adult Tap Water Dermal (CDI)

$$CDI_{res-wat-derna}\left(\frac{mg}{kg-day}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times EV_{res-a}\left(\frac{1 \ event}{day}\right) \times SA_{res-a}\left(19,652 \ cm^{2}\right)}{AT_{res-a}\left(\frac{365 \ days}{yr}\right) \times ED_{res}(26 \ yr)\right) \times BW_{res-a}(80 \ kg)}$$
where:
For Inorganics:
$$DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^{3}}\right) \times K_{p}\left(\frac{cm}{hr}\right) \times ET_{event-res-a}\left(\frac{0.71 \ hrs}{event}\right)$$
For Organics:
$$DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^{3}}\right) \times 2 \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \frac{6 \times \tau_{event}\left(\frac{hrs}{event}\right) \times ET_{event-res-a}\left(\frac{0.71 \ hrs}{event}\right)}{\pi}$$
or:
$$IF \ ET_{event-res-a}\left(\frac{0.71 \ hrs}{event}\right) > t^{*}(hrs), \text{ then:}$$

$$DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^{3}}\right) \times 2 \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{event}\left(\frac{hrs}{event}\right) \times ET_{event-res-a}\left(\frac{0.71 \ hrs}{event}\right)}{\pi}}$$
or:
$$IF \ ET_{event-res-a}\left(\frac{0.71 \ hrs}{event}\right) > t^{*}(hrs), \text{ then:}$$

$$DA_{event}\left(\frac{\mu g}{cm^{2}-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^{3}}\right) \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \left[\frac{ET_{event-res-a}\left(\frac{0.71 \ hrs}{event}\right)}{1 + B} + 2 \times \tau_{event}\left(\frac{hrs}{event}\right) \times \left(\frac{1 + 3B + 3B^{2}}{(1 + B)^{2}}\right)\right]$$

Noncarcinogenic Age-adjusted Tap Water Ingestion (CDI)

$$CDI_{res-wat-ingnadj}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right)}{AT_{res-a}\left(\frac{365 \ days}{yr} \times ED_{res}(26 \ yr)\right)}$$
where:
$$IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right) = \left[\frac{\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}(15 \ kg)} + \frac{EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res-a}(20 \ yr) \times IRW_{res-a}\left(\frac{2.5 \ L}{day}\right)}{BW_{res-a}(80 \ kg)}\right]$$

Noncarcinogenic Age-adjusted Tap Water Inhalation (CDI)

$$CDI_{res-wat-inhnadj}\left(\frac{mg}{m^3}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res}(26 \ yr) \times ET_{res-a}\left(\frac{24 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times K\left(\frac{0.5 \ L}{m^3}\right)}{AT_{res-a}\left(\frac{365 \ days}{yr}\right) \times ED_{res}(26 \ yr)}$$

Noncarcinogenic Age-adjusted Tap Water Dermal (CDI)

$$\begin{split} & \text{CDI}_{\text{res-wat-densel}}\left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^{2}-\text{event}}\right) \times \left(\frac{\text{mg}}{1000\ \mu g}\right) \times \text{DFW}_{\text{res-ad}}\left(\frac{2.610,650\ \text{cm}^{2}-\text{event}}{\text{kg}}\right)}{\text{AT}_{\text{res-ad}}\left(\frac{355\ \text{days}}{\text{yr}} \times \text{ED}_{\text{res}}(26\ \text{yr})\right)} \\ & \text{where:} \\ \\ & \text{DFW}_{\text{res-ad}}\left(\frac{2.610,650\ \text{cm}^{2}-\text{event}}{\text{kg}}\right) = \left(\frac{\text{EF}_{\text{res-c}}\left(\frac{350\ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(16\ \text{yr}) \times \text{EV}_{\text{res-c}}\left(\frac{1\ \text{event}}{\text{day}}\right) \times \text{SA}_{\text{res-a}}\left(6,365\ \text{cm}^{2}\right)}{\text{BW}_{\text{res-c}}\left(15\ \text{kg}\right)} + \right) \\ & \text{and:} \\ \\ & \text{DFW}_{\text{res-ad}}\left(\frac{2.610,650\ \text{cm}^{2}-\text{event}}{\text{kg}}\right) = \text{C}_{\text{water}}\left(\frac{350\ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{res-ad}}(20\ \text{yr}) \times \text{EV}_{\text{res-a}}\left(\frac{1\ \text{event}}{\text{day}}\right) \times \text{SA}_{\text{res-a}}\left(9,635\ \text{cm}^{2}\right)}{\text{BW}_{\text{res-c}}\left(15\ \text{kg}\right)} \\ & \text{and:} \\ \\ & \text{For Inorganics:} \\ \\ & \text{DA}_{\text{event}}\left(\frac{-\mu g}{\text{cweet}}\right) = \text{C}_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{1}{(1000\ \text{cm}^{3}}\right) \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \text{ET}_{\text{event-res-ad}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) \\ & \text{For Organics:} \\ \\ & \text{DA}_{\text{event}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) \leq t^*(\text{hrs}), \text{then:} \\ \\ & \text{DA}_{\text{event}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) \leq t^*(\text{hrs}), \text{then:} \\ \\ & \text{DA}_{\text{event}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) > t^*(\text{hrs}), \text{then:} \\ \\ & \text{DA}_{\text{event}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) > t^*(\text{hrs}), \text{then:} \\ \\ & \text{DA}_{\text{event}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) = \text{C}_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{1}{1000\ \text{cm}^{3}}\right) \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \left[\frac{\text{ET}_{\text{event-res-adg}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right)}{\pi} + 2 \times \text{T}_{\text{event}}\left(\frac{\text{hrs}}{\text{event}}\right) \times \left(\frac{1+38+38^{2}}{(1+8y^{2}}^{2}\right)\right) \\ \\ & \text{where:} \\ \\ & \text{ET}_{\text{event-res-adg}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right) + \left(\frac{\left(\text{ED}_{\text{res-c}}\left(6\ \text{yr}\right) \times \text{ET}_{\text{event-res-adg}}\left(\frac{0.671\ \text{hrs}}{\text{event}}\right)}{\pi}\right) \\ \end{array}$$

Carcinogenic Tap Water Ingestion (CDI)

$$CDI_{res-wat-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right)}{AT_{res}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$
where:
$$IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right) = \left[\frac{\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}(15 \ kg)} + \frac{EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res-a}(20 \ yr) \times IRW_{res-a}\left(\frac{2.5 \ L}{day}\right)}{BW_{res-a}(80 \ kg)}\right]$$

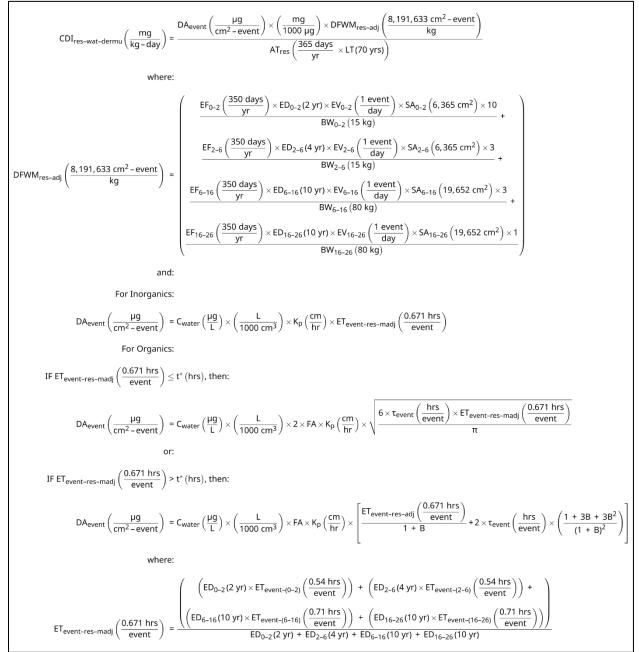
Carcinogenic Tap Water Inhalation (CDI)

$$CDI_{res-wat-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times K\left(\frac{0.5 \text{ L}}{m^{3}}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

٦

# Carcinogenic Tap Water Dermal (CDI)

$$\begin{split} & \text{CDI}_{\text{res-wat-derc}}\left(\frac{mg}{kg-day}\right) = \frac{DA_{\text{ovent}}\left(\frac{\mu g}{cm^2 - \text{event}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times DFW_{\text{res-ad}}\left(\frac{2.610.650 \ cm^2 - \text{event}}{kg}\right)}{AT_{\text{res}}\left(\frac{355 \ days}{yr} \times LT(70 \ yrs)\right)} \\ & \text{where:} \\ \\ & \text{DFW}_{\text{res-ad}}\left(\frac{2.610.650 \ cm^2 - \text{event}}{kg}\right) = \left(\frac{E_{\text{res-c}}\left(\frac{350 \ days}{yr}\right) \times E_{\text{res-c}}\left(5 \ yr\right) \times E_{\text{Vres-c}}\left(\frac{1 \ event}{day}\right) \times SA_{\text{res-c}}\left(6,365 \ cm^2\right)}{BW_{\text{res-c}}\left(15 \ kg\right)} + \right) \\ & \text{ard:} \\ \\ & \text{DFW}_{\text{res-ad}}\left(\frac{350 \ days}{yr}\right) \times E_{\text{D}}\left(\frac{20 \ yr}{yr}\right) \times E_{\text{V}}\left(\frac{1}{day}\right) \times SA_{\text{res-c}}\left(6,365 \ cm^2\right)}{BW_{\text{res-c}}\left(15 \ kg\right)} + \right) \\ & \text{and:} \\ & \text{For Inorganics:} \\ \\ & \text{DA_{event}}\left(\frac{d}{cm^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times K_{\mu}\left(\frac{m}{hr}\right) \times E_{\text{T}}\left(\frac{6.671 \ hrs}{event - \text{res-ad}}\left(\frac{0.671 \ hrs}{event}\right)}{\pi} \right) \\ & \text{For Organics:} \\ \\ & \text{DA_{event}}\left(\frac{d}{cm^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times FA \times K_{\mu}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{\text{event}}\left(\frac{\ln s}{event}\right) \times E_{\text{T}}\left(\frac{0.671 \ hrs}{event} - \frac{1}{event}\right)}{\pi}} \\ & \text{or:} \\ \\ & \text{DA_{event}}\left(\frac{d}{cm^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times FA \times K_{\mu}\left(\frac{cm}{hr}\right) \times \left(\frac{5 \times \tau_{\text{event}}\left(\frac{\ln s}{event}\right) \times \tau_{\text{event}}\left(\frac{1 \ hrs}{event}\right)}{\pi} \right) \\ & \text{or:} \\ \\ & \text{DA_{event}}\left(\frac{d}{cm^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times FA \times K_{\mu}\left(\frac{cm}{hr}\right) \times \left(\frac{1 \ FT_{\text{event}-\text{res}-ad}\left(\frac{0.671 \ hrs}{event}\right)}{\pi} + 2 \times \tau_{\text{event}}\left(\frac{\ln s}{event}\right) \times \left(\frac{1 \ Hs}{1 \ Hs}^2\right)}\right) \right) \\ \\ & \text{where:} \\ \\ & \text{ET_{event-res-ad}}\left(\frac{0.671 \ hrs}{event}\right) = \left(\frac{\left(\text{ED}_{\text{res}}\left(6 \ yr\right) \times \text{ET}_{\text{event}-\text{res}-ad}\left(\frac{0.671 \ hrs}{event}\right)}{ED_{\text{res}}\left(2 \ yr\right)}\right) + \left(E_{\text{T}_{\text{event}}-\text{res}-ad}\left(\frac{0.671 \ hrs}{event}\right) \times \left(\frac{1 \ Hs}{1 \ Hs}^2\right)}\right) \right) \\ \end{array}$$


Mutagenic Tap Water Ingestion (CDI)

$$\begin{split} \text{CDI}_{\text{res-wat-ingmu}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{C}_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{\text{mg}}{1000 \ \mu g}\right) \times \text{IFWM}_{\text{res-adj}}\left(\frac{1,019.9 \ L}{\text{kg}}\right)}{\text{AT}_{\text{res}}\left(\frac{365 \ \text{days}}{\text{yr}} \times \text{LT}(70 \ \text{yrs})\right)} \\ & \text{where:} \\ \\ \text{IFWM}_{\text{res-adj}}\left(\frac{1,019.9 \ L}{\text{kg}}\right) = \begin{bmatrix} \frac{\text{EF}_{0-2}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \ \text{yr}) \times \text{IRW}_{0-2}\left(\frac{0.78 \ L}{\text{day}}\right) \times 10}{\text{BW}_{0-2} (15 \ \text{kg})} + \\ & \frac{\text{EF}_{2-6}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \ \text{yr}) \times \text{IRW}_{2-6}\left(\frac{0.78 \ L}{\text{day}}\right) \times 3}{\text{BW}_{2-6} (15 \ \text{kg})} + \\ & \frac{\text{EF}_{6-16}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{6-16} (10 \ \text{yr}) \times \text{IRW}_{6-16}\left(\frac{2.5 \ L}{\text{day}}\right) \times 3}{\text{BW}_{6-16} (80 \ \text{kg})} + \\ & \frac{\text{EF}_{16-26}\left(\frac{350 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{16-26} (10 \ \text{yr}) \times \text{IRW}_{16-26}\left(\frac{2.5 \ L}{\text{day}}\right) \times 1}{\text{BW}_{16-26} (80 \ \text{kg})} \\ \end{bmatrix} \end{split}$$

Mutagenic Tap Water Inhalation (CDI)

$$C_{water}\left(\frac{\mu g}{L}\right) \times K\left(\frac{0.5 L}{m^3}\right) \times \\ \left[ \begin{array}{c} \left(EF_{0-2}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 10\right) + \\ \left(EF_{2-6}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(EF_{6-16}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 3\right) + \\ \left(EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times 1\right)\right] \\ - CDI_{res-wat-inhmu}\left(\frac{\mu g}{m^3}\right) = \frac{1}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

#### Mutagenic Tap Water Dermal (CDI)



Vinyl Chloride Tap Water Ingestion (CDI)

$$CDI_{res-wat-ingvc}\left(\frac{mg}{kg-day}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \left( \left(\frac{IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right)}{AT_{res}\left(\frac{365 \ days}{yr} \ \times LT(70 \ yrs)\right)}\right) + \left(\frac{IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}(15 \ kg)}\right) \right)$$
where:
$$IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}(15 \ kg)} + \frac{EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res-a}(20 \ yr) \times IRW_{res-a}\left(\frac{2.5 \ L}{day}\right)}{BW_{res-a}\left(\frac{2.5 \ L}{day}\right)}\right]$$

Vinyl Chloride Tap Water Inhalation (CDI)

$$CDI_{res-wat-inhvc}\left(\frac{\mu g}{m^{3}}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left( \left(\frac{EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times K\left(\frac{0.5 \text{ L}}{m^{3}}\right) \right) + K\left(\frac{0.5 \text{ L}}{m^{3}}\right) \right) + K\left(\frac{0.5 \text{ L}}{m^{3}}\right) \right)$$

# Vinyl Chloride Tap Water Dermal (CDI)

$$CDI_{res-wat-derve}\left(\frac{mg}{kg-day}\right) = DA_{kc-event}\left(\frac{\mu g}{cm^2 - event}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times \left(\left(\frac{DFW_{res-adj}}{kg}\left(\frac{2.610,650 \ cm^2 - event}{kg}\right)\right)\right) + \left(\frac{EV_{res-c}\left(\frac{1 \ event}{day}\right) \times SA_{res-c}\left(6.365 \ cm^2\right)}{BW_{res-c}\left(15 \ kg\right)}\right)\right)$$
where:
$$DFW_{res-adj}\left(\frac{2.610,650 \ cm^2 - event}{kg}\right) = \left(\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times EV_{res-c}\left(\frac{1 \ event}{day}\right) \times SA_{res-c}\left(6.365 \ cm^2\right)}{BW_{res-c}\left(15 \ kg\right)} + \left(\frac{EV_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-d}\left(20 \ yr\right) \times EV_{res-c}\left(\frac{1 \ event}{day}\right) \times SA_{res-c}\left(6.365 \ cm^2\right)}{BW_{res-a}\left(30 \ kg\right)} + \left(\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-d}\left(20 \ yr\right) \times EV_{res-a}\left(\frac{1 \ event}{day}\right) \times SA_{res-d}\left(3.652 \ cm^2\right)}{BW_{res-a}\left(15 \ kg\right)} + \left(\frac{EF_{res-a}\left(\frac{350 \ days}{yr}\right) \times ED_{res-a}\left(20 \ yr\right) \times EV_{res-a}\left(\frac{1 \ event}{day}\right) \times SA_{res-a}\left(19.652 \ cm^2\right)}{BW_{res-a}\left(19.652 \ cm^2\right)}\right)$$
and:
$$IF \ ET_{event-res-adj}\left(\frac{0.671 \ hrs}{event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{event}\left(\frac{hrs}{event}\right) \times ET_{event-res-adj}\left(\frac{0.671 \ hrs}{event}\right)}{\pi}}$$
or:
$$IF \ ET_{event-res-adj}\left(\frac{0.671 \ hrs}{event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \left[\frac{ET_{event-res-adj}\left(\frac{0.671 \ hrs}{event}\right)}{1 + B} + 2 \times \tau_{event}\left(\frac{hrs}{event}\right) \times \left(\frac{1 + 3B + 3B^2}{(1 + B)^2}\right)\right]$$
where:
$$ET_{event-res-adj}\left(\frac{0.671 \ hrs}{event}\right) = \left(\frac{\left(ED_{res-c}(6 \ yr) \times ET_{event-res-c}\left(\frac{0.54 \ hrs}{event}\right)}{ED_{res}(26 \ yr)}\right) + \left(ED_{res-a}\left(20 \ yr\right) \times ET_{event-res-ad}\left(\frac{0.71 \ hrs}{event}\right)\right)\right)$$

Trichloroethylene Tap Water Ingestion (CDI)

$$CDI_{res-wat-ingtce}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times \left(\frac{\left(CAF_{o}(0.804) \times IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right)\right) + \left(\frac{1000 \ \mu g}{kg-day}\right) \times \left(\frac{1000 \ \mu g}{kg-day}\right) \times \left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)\right)}{AT_{res}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$
where:  

$$IFW_{res-adj}\left(\frac{327.95 \ L}{kg}\right) = \left[\frac{EF_{res-c}\left(\frac{350 \ days}{yr}\right) \times ED_{res-c}(6 \ yr) \times IRW_{res-c}\left(\frac{0.78 \ L}{day}\right)}{BW_{res-c}(15 \ kg)} + \frac{1}{BW_{res-adj}\left(\frac{2.5 \ L}{day}\right)}{BW_{res-a}(80 \ kg)}\right)$$
and:  

$$IFWM_{res-adj}\left(\frac{1,019.9 \ L}{kg}\right) = \left[\frac{EF_{0-2}\left(\frac{350 \ days}{yr}\right) \times ED_{2-6}(4 \ yr) \times IRW_{0-2}\left(\frac{0.78 \ L}{day}\right) \times 10}{BW_{2-6}(15 \ kg)} + \frac{1}{EF_{6-16}\left(\frac{350 \ days}{yr}\right) \times ED_{2-6}(10 \ yr) \times IRW_{6-16}\left(\frac{2.5 \ L}{day}\right) \times 3}{BW_{6-16}(80 \ kg)} + \frac{1}{EF_{16-26}\left(\frac{350 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times IRW_{16-26}\left(\frac{2.5 \ L}{day}\right) \times 1}{BW_{16-26}(80 \ kg)}\right]$$

Trichloroethylene Tap Water Inhalation (CDI)

$$C_{water}\left(\frac{\mu g}{L}\right) \times K\left(\frac{0.5 L}{m^3}\right) \times \\ \left(EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times CAF_i(0.756)\right) + \\ \left(EF_{0-2}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times MAF_i(0.244) \times 10\right) + \\ \left(EF_{2-6}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times MAF_i(0.244) \times 3\right) + \\ \left(EF_{6-16}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times MAF_i(0.244) \times 3\right) + \\ \left(EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times MAF_i(0.244) \times 3\right) + \\ \left(EF_{16-26}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times MAF_i(0.244) \times 1\right)\right) \right)$$

# Trichloroethylene Tap Water Dermal (CDI)

$$DPW_{rec:sdl}\left(\frac{2.610,650 \text{ cm}^{2}-\text{event}}{\text{kg}}\right) + \frac{DA_{tot-overt}\left(\frac{\mu g}{\text{cm}^{2}+\text{event}}\right) \times \left(\frac{1}{1000 \text{ µ}}\right)}{KT_{rec}\left(\frac{400}{5} \frac{3000}{9}\right) \times SA_{tot-2}\left(\frac{4.910,630 \text{ cm}^{2}-\text{event}}{\text{kg}}\right)\right)\right)}{(MF_{5}(0.200 \times DPW_{rec:sdl}\left(\frac{4.910,630 \text{ cm}^{2}-\text{event}}{\text{kg}}\right))\right)}$$
where:  

$$DPW_{rec:sdl}\left(\frac{2.610,650 \text{ cm}^{2}-\text{event}}{\text{kg}}\right) = \left(\frac{\text{Efree}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{rec:s}(6 \text{ yr}) \times \text{EV}_{rec:s}\left(\frac{1 \text{ event}}{4\text{gy}}\right) \times \text{SA}_{rec:}\left(6,365 \text{ cm}^{2}\right)}{\frac{1}{8}} + \frac{1}{(1600 \text{ cm}^{2}) \times \text{SA}_{rec:}\left(16,365 \text{ cm}^{2}\right)} + \frac{1}{(1600 \text{ cm}^{2}) \times \text{SA}_{rec:}\left(16,365 \text{ cm}^{2}\right) \times 10} + \frac{1}{(1600 \text{ cm}^{2}) \times \text{SA}_{rec:s}\left(19,652 \text{ cm}^{2}\right)} + \frac{1}{(1600 \text{ cm}^{2}) \times \text{SA}_{rec:s}\left(19,652 \text{ cm}^{2}\right) \times 10} + \frac{1}{(1600 \text{ cm}^{2}) \times \text{SA}_{rec:s}\left(19,652 \text{ cm}^{2}\right) \times 10} + \frac{1}{(1600 \text{ cm}^{2}) \times \text{SA}_{rec:s}\left(19,652 \text{ cm}^{2}\right) \times 10} + \frac{1}{(1600 \text{ cm}^{2}) \times 10} + \frac{1}{(16$$

Supporting Child Tap Water (CDI)

$$\begin{split} BW_{\text{res-c}}(15 \text{ kg}) &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{BW}_{0-2}(15 \text{ kg}) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{BW}_{2-6}(15 \text{ kg})}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EF}_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EF}_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EF}_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right)} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{ET}_{0-2}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{ET}_{2-6}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{ET}_{0-2}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{ET}_{event-(2-6)}\left(\frac{0.54 \text{ hrs}}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{ET}_{event-(0-2)}\left(\frac{0.54 \text{ hrs}}{\text{event}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{ET}_{event-(2-6)}\left(\frac{0.54 \text{ hrs}}{\text{event}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EV}_{0-2}\left(\frac{1 \text{ event}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EV}_{2-6}\left(\frac{1 \text{ event}}{\text{day}}\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(6,365 \text{ cm}^2\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EA}_{2-6}\left(6,365 \text{ cm}^2\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(6,365 \text{ cm}^2\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EA}_{2-6}\left(6,365 \text{ cm}^2\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(6,365 \text{ cm}^2\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EA}_{2-6}\left(6,365 \text{ cm}^2\right)}{\text{ED}_{0-2}(2 \text{ yr}) + \text{ED}_{2-6}(4 \text{ yr})} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(\frac{0.78 \text{ L}}{\text{day}}\right) \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(\frac{0.78 \text{ L}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EA}_{2-6}\left(\frac{0.78 \text{ L}}{\text{day}}\right)} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(\frac{0.78 \text{ L}}{\text{day}}\right) + \text{ED}_{2-6}(4 \text{ yr}) \times \text{EA}_{2-6}\left(\frac{0.78 \text{ L}}{\text{day}}\right)} \\ &= \frac{\text{ED}_{0-2}(2 \text{ yr}) \times \text{EA}_{0-2}\left(\frac{0.78 \text{ L}}{\text{day}}\right)$$

Supporting Adult Tap Water (CDI)

$$\begin{split} BW_{res-a}\left(80 \text{ kg}\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times BW_{6-16}\left(80 \text{ kg}\right) + ED_{16-26}(10 \text{ yr}) \times BW_{16-26}\left(80 \text{ kg}\right)}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ EF_{res-a}\left(\frac{350 \text{ days}}{\text{yr}}\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times EF_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right)}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ ET_{res-a}\left(\frac{24 \text{ hrs}}{\text{day}}\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right)}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ ET_{res-a}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times ET_{event-(6-16)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{event-(16-26)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right)}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{event-(16-26)}\left(\frac{0.71 \text{ hrs}}{\text{event}}\right)}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ EV_{res-a}\left(\frac{1 \text{ event}}{\text{day}}\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times EV_{6-16}\left(\frac{1 \text{ event}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times EV_{16-26}\left(\frac{1 \text{ event}}{\text{day}}\right)}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ SA_{res-a}\left(19,652 \text{ cm}^2\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times SA_{6-16}\left(\frac{19,652 \text{ cm}^2}{\text{ED}_{6-16}(10 \text{ yr})} + ED_{16-26}(10 \text{ yr})}{ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ IRW_{res-a}\left(\frac{2.5 \text{ L}}{\text{day}}\right) &= \frac{ED_{6-16}(10 \text{ yr}) \times IRW_{6-16}\left(\frac{2.5 \text{ L}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr})}{ED_{6-16}(10 \text{ yr})} \\ ED_{6-16}(10 \text{ yr}) + ED_{16-26}(10 \text{ yr})} \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}\left(\frac{2.5 \text{ L}}{\text{day}}\right) \\ ED_{6-16}(10 \text{ yr}) \times IRW_{6-16}\left(\frac{2.5 \text{ L}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr})} \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}\left(\frac{2.5 \text{ L}}{\text{day}}\right) \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}(10 \text{ yr}) \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}(10 \text{ yr}) \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}(10 \text{ yr}) \\ ED_{6-16}(10 \text{ yr}) \times ED_{16-26}(10 \text{ yr}) \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}\left(\frac{2.5 \text{ L}}{\text{day}}\right) \\ ED_{6-16}(10 \text{ yr}) \times IRW_{16-26}\left(\frac{2.5 \text{ L}}{\text{day}}\right$$

Supporting Age-adjusted Tap Water (CDI)

$$EF_{res}\left(\frac{350 \text{ days}}{\text{yr}}\right) = \frac{\left(\begin{array}{c}ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{350 \text{ days}}{\text{yr}}\right) + \\ \left(\begin{array}{c}ED_{6-16}(10 \text{ yr}) \times EF_{6-16}\left(\frac{350 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right)\right) \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) \times EF_{16-26}\left(\frac{350 \text{ days}}{\text{yr}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{2-6}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{2-6}(10 \text{ yr}) \times ET_{16-26}\left(\frac{24 \text{ hrs}}{\text{day}}\right) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{2-6}(10 \text{ yr}) + ED_{2-6}(10 \text{ yr}) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{0-2}(2 \text{ yr}) + ED_{0-2}(4 \text{ yr}) + ED_{0-2}(10 \text{ yr}) + ED_{0-2}(10 \text{ yr}) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{0-2}(4 \text{ yr}) + ED_{0-2}(10 \text{ yr}) + \\ \hline ED_{0-2}(2 \text{ yr}) + ED_{0-2}$$

### **Resident Fish CDI Equations**

Noncarcinogenic Fish Ingestion (CDI)

$$CDI_{res-fsh-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{fish}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times IRFI_{res-a}\left(\frac{54,000 \text{ mg}}{day}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right) \times BW_{res-a}(80 \text{ kg})}$$

#### Carcinogenic Fish Ingestion (CDI)

$$\mathsf{CDI}_{\mathsf{res-fsh-ingc}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) = \frac{\mathsf{C}_{\mathsf{fish}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \ \mathsf{yr}) \times \mathsf{IRFI}_{\mathsf{res-a}}\left(\frac{54,000 \ \mathsf{mg}}{\mathsf{day}}\right)}{\mathsf{AT}_{\mathsf{res}}\left(\frac{365 \ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \ \mathsf{yrs})\right) \times \mathsf{BW}_{\mathsf{res-a}}(80 \ \mathsf{kg})}$$

Noncarcinogenic Fish Ingestion Back-calculated to Water (CDI)

$$CDI_{res-fsh-ingnw}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{mg}{L}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times BCF\left(\frac{L}{kg}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times IRFI_{res-a}\left(\frac{54,000 \text{ mg}}{day}\right)}{AT_{res-a}\left(\frac{365 \text{ days}}{yr} \times ED_{res}(26 \text{ yr})\right) \times BW_{res-a}(80 \text{ kg})}$$

### Carcinogenic Fish Ingestion Back-calculated to Water (CDI)

$$CDI_{res-fsh-ingcw}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{mg}{L}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times BCF\left(\frac{L}{kg}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times IRFI_{res-a}\left(\frac{54,000 \text{ mg}}{day}\right)}{AT_{res}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right) \times BW_{res-a}(80 \text{ kg})}$$

### **Composite Worker Soil CDI Equations**

Noncarcinogenic Soil Ingestion (CDI)

$$CDI_{com-sol-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times IRS_{com}\left(\frac{100 \text{ mg}}{day}\right)}{AT_{com-a}\left(\frac{365 \text{ days}}{yr} \times ED_{com}(25 \text{ yr})\right) \times BW_{com}(80 \text{ kg})}$$

# Noncarcinogenic Soil Inhalation (CDI)

$$CDI_{com-sol-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+} \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{com-a}\left(\frac{365 \text{ days}}{yr} \times ED_{com}(25 \text{ yr})\right)}$$

#### Noncarcinogenic Soil Dermal (CDI)

$$CDI_{com-sol-dern}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times SA_{com}\left(\frac{3,527 \text{ cm}^2}{day}\right) \times AF_{com}\left(\frac{0.12 \text{ mg}}{cm^2}\right) \times ABS_{d}}{AT_{com-a}\left(\frac{365 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr})\right) \times BW_{com}(80 \text{ kg})}$$

#### Carcinogenic Soil Ingestion (CDI)

$$CDI_{com-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times IRS_{com}\left(\frac{100 \text{ mg}}{day}\right)}{AT_{com}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right) \times BW_{com}(80 \text{ kg})}$$

Carcinogenic Soil Inhalation (CDI)

$$CDI_{com-sol-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_{com}\left(\frac{250 \ days}{yr}\right) \times ED_{com}\left(25 \ yr\right) \times ET_{com}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{com}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$

#### Carcinogenic Soil Dermal (CDI)

$$CDI_{com-sol-derc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times SA_{com}\left(\frac{3,527 \text{ cm}^2}{day}\right) \times AF_{com}\left(\frac{0.12 \text{ mg}}{cm^2}\right) \times ABS_{d}}{AT_{com}\left(\frac{365 \text{ days}}{yr}\right) \times LT(70 \text{ yrs})\right) \times BW_{com}(80 \text{ kg})}$$

#### **Composite Worker Air CDI Equations**

Noncarcinogenic Air Inhalation (CDI)

$$CDI_{com-air-inhn}\left(\frac{mg}{m^3}\right) = \frac{C_{air}\left(\frac{\mu g}{m^3}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) EF_{com}\left(\frac{250 \ days}{yr}\right) \times ED_{com}(25 \ yr) \times ET_{com}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right)}{AT_{com-a}\left(\frac{365 \ days}{yr} \ \times ED_{com}(25 \ yr)\right)}$$

# Carcinogenic Air Inhalation (CDI)

$$CDI_{com-air-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}\left(25 \text{ yr}\right) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{com}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

Refractory Ceramic Fibers Air Inhalation (CDI)

$$CDI_{com-air-inhrcf}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{com-a}\left(\frac{365 \text{ days}}{yr} \times ED_{com}(25 \text{ yr})\right)}$$

Asbestos Air Inhalation (CDI)

$$CDI_{com-air-inhasb}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{com}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

### **Outdoor Worker Soil CDI Equations**

Noncarcinogenic Soil Ingestion (CDI)

$$CDI_{out-sol-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times IRS_{out}\left(\frac{100 \text{ mg}}{day}\right)}{AT_{out-a}\left(\frac{365 \text{ days}}{yr} \times ED_{out}(25 \text{ yr})\right) \times BW_{out}(80 \text{ kg})}$$

Noncarcinogenic Soil Inhalation (CDI)

$$CDI_{out-sol-inhn}\left(\frac{mg}{m^3}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_s\left(\frac{m^3}{kg}\right)} + \frac{1}{PEF\left(\frac{m^3}{kg}\right)}\right)}{AT_{out-a}\left(\frac{365 \text{ days}}{yr} \times ED_{out}(25 \text{ yr})\right)}$$

Noncarcinogenic Soil Dermal (CDI)

$$CDI_{out-sol-dern}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times EF_{out}\left(\frac{225 \ days}{yr}\right) \times ED_{out}(25 \ yr) \times SA_{out}\left(\frac{3,527 \ cm^2}{day}\right) \times AF_{out}\left(\frac{0.12 \ mg}{cm^2}\right) \times ABS_{d}}{AT_{out-a}\left(\frac{365 \ days}{yr}\right) \times ED_{out}(25 \ yr)\right) \times BW_{out}(80 \ kg)}$$

### Carcinogenic Soil Ingestion (CDI)

$$CDI_{out-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times IRS_{out}\left(\frac{100 \text{ mg}}{day}\right)}{AT_{out}\left(\frac{365 \text{ days}}{yr}\right) \times LT(70 \text{ yrs}) \times BW_{out}(80 \text{ kg})}$$

_____

Carcinogenic Soil Inhalation (CDI)

$$CDI_{out-sol-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_{out}\left(\frac{225 \ days}{yr}\right) \times ED_{out}(25 \ yr) \times ET_{out}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{out}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$

Carcinogenic Soil Dermal (CDI)

$$CDI_{out-sol-derc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times EF_{out}\left(\frac{225 \ days}{yr}\right) \times ED_{out}(25 \ yr) \times SA_{out}\left(\frac{3,527 \ cm^2}{day}\right) \times AF_{out}\left(\frac{0.12 \ mg}{cm^2}\right) \times ABS_{d}}{AT_{out}\left(\frac{365 \ days}{yr}\right) \times LT(70 \ yrs)\right) \times BW_{out}(80 \ kg)}$$

### **Outdoor Worker Air CDI Equations**

Noncarcinogenic Air Inhalation (CDI)

$$CDI_{out-air-inhn}\left(\frac{mg}{m^3}\right) = \frac{C_{air}\left(\frac{\mu g}{m^3}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) EF_{out}\left(\frac{225 \ days}{yr}\right) \times ED_{out}(25 \ yr) \times ET_{out}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right)}{AT_{out-a}\left(\frac{365 \ days}{yr} \ \times ED_{out}(25 \ yr)\right)}$$

Carcinogenic Air Inhalation (CDI)

$$CDI_{out-air-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{out}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

Refractory Ceramic Fibers Air Inhalation (CDI)

$$CDI_{out-air-inhrcf}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{out-a}\left(\frac{365 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr})}$$

#### Asbestos Air Inhalation (CDI)

$$CDI_{out-air-inhasb}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{out}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

### **Indoor Worker Soil CDI Equations**

### Noncarcinogenic Soil Ingestion (CDI)

$$CDI_{ind-sol-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times IRS_{ind}\left(\frac{50 \text{ mg}}{day}\right)}{AT_{ind-a}\left(\frac{365 \text{ days}}{yr} \times ED_{ind}(25 \text{ yr})\right) \times BW_{ind}(80 \text{ kg})}$$

Noncarcinogenic Soil Inhalation (CDI)

$$CDI_{ind-sol-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{ind-a}\left(\frac{365 \text{ days}}{yr} \times ED_{ind}(25 \text{ yr})\right)}$$

Carcinogenic Soil Ingestion (CDI)

$$CDI_{ind-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times IRS_{ind}\left(\frac{50 \text{ mg}}{day}\right)}{AT_{ind}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right) \times BW_{ind}(80 \text{ kg})}$$

Carcinogenic Soil Inhalation (CDI)

$$CDI_{ind-sol-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_{ind}\left(\frac{250 \ days}{yr}\right) \times ED_{ind}(25 \ yr) \times ET_{ind}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{ind}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$

### **Indoor Worker Air CDI Equations**

Noncarcinogenic Air Inhalation (CDI)

$$CDI_{ind-air-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) EF_{ind}\left(\frac{250 \ days}{yr}\right) \times ED_{ind}(25 \ yr) \times ET_{ind}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right)}{AT_{ind-a}\left(\frac{365 \ days}{yr} \ \times ED_{ind}(25 \ yr)\right)}$$

Carcinogenic Air Inhalation (CDI)

$$CDI_{ind-air-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{ind}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

Refractory Ceramic Fibers Air Inhalation (CDI)

$$CDI_{ind-air-inhrcf}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{ind-a}\left(\frac{365 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr})}$$

Asbestos Air Inhalation (CDI)

$$CDI_{ind-air-inhasb}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{ind}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

### **Indoor Worker Tap Water CDI Equations**

Noncarcinogenic Tap Water Ingestion (CDI)

$$CDI_{ind-wat-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{ind}\left(\frac{250 \ days}{yr}\right) \times ED_{ind}(25 \ yr) \times IRW_{ind}\left(\frac{1.25 \ L}{day}\right)}{AT_{ind-a}\left(\frac{365 \ days}{yr} \ \times ED_{ind}(25 \ yr)\right) \times BW_{ind}(80 \ kg)}$$

Noncarcinogenic Tap Water Inhalation (CDI)

$$CDI_{ind-wat-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{ind}\left(\frac{250 \ days}{yr}\right) \times ED_{ind}\left(25 \ yr\right) \times ET_{ind-a}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times K\left(\frac{0.5 \ L}{m^{3}}\right)}{AT_{ind-a}\left(\frac{365 \ days}{yr} \ \times ED_{ind}\left(25 \ yr\right)\right) \times ED_{ind}\left(25 \ yr\right)}$$

Noncarcinogenic Tap Water Dermal (CDI)

$$\begin{split} \text{CDI}_{\text{ind-wat-dern}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^2-\text{event}}\right) \times \left(\frac{\text{mg}}{1000\,\mu g}\right) \times \text{EF}_{\text{ind}}\left(\frac{250\,\text{days}}{\text{yr}}\right) \times \text{ED}_{\text{ind}}(25\,\text{yr}) \times \text{EV}_{\text{ind}}\left(\frac{1\,\text{event}}{\text{day}}\right) \times \text{SA}_{\text{ind}}\left(19,652\,\text{cm}^2\right)}{\text{AT}_{\text{ind-a}}\left(\frac{365\,\text{days}}{\text{yr}} \times \text{ED}_{\text{ind}}(25\,\text{yr})\right) \times \text{BW}_{\text{ind}}(80\,\text{kg})} \\ & \text{where:} \\ & \text{For Inorganics:} \\ \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^2-\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{\text{L}}{1000\,\text{cm}^3}\right) \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \text{ET}_{\text{event-ind-a}}\left(\frac{0.71\,\text{hrs}}{\text{event}}\right) \\ & \text{For Organics:} \\ \text{IF ET}_{\text{event-ind}}\left(\frac{0.71\,\text{hrs}}{\text{event}}\right) \leq t^*\,(\text{hrs}), \text{ then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^2-\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{\text{L}}{1000\,\text{cm}^3}\right) \times 2 \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \sqrt{\frac{6 \times \tau_{\text{event}}\left(\frac{\text{hrs}}{\text{event}}\right) \times \text{ET}_{\text{event-ind}}\left(\frac{0.71\,\text{hrs}}{\text{event}}\right)}{\pi}} \\ & \text{or,} \\ & \text{IF ET}_{\text{event-ind}}\left(\frac{0.71\,\text{hrs}}{\text{event}}\right) > t^*\,(\text{hrs}), \text{ then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{L}}\right) \times \left(\frac{1}{1000\,\text{cm}^3}\right) \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \left[\frac{\text{ET}_{\text{event-ind}}\left(\frac{0.71\,\text{hrs}}{\text{event}}\right)}{\pi} + 2 \times \tau_{\text{event}}\left(\frac{\text{hrs}}{\text{event}}\right) \times \left(\frac{1+38+38^2}{(1+8^2}\right)\right] \\ \end{array}$$

Carcinogenic Tap Water Ingestion (CDI)

$$CDI_{ind-wat-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{ind}\left(\frac{250 \ days}{yr}\right) \times ED_{ind}(25 \ yr) \times IRW_{ind}\left(\frac{1.25 \ L}{day}\right)}{AT_{ind}\left(\frac{365 \ days}{yr} \ \times LT(70 \ yrs)\right) \times BW_{ind}(80 \ kg)}$$

Carcinogenic Tap Water Inhalation (CDI)

$$CDI_{ind-wat-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind-a}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times K\left(\frac{0.5 \text{ L}}{m^{3}}\right)}{AT_{ind}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

Carcinogenic Tap Water Dermal (CDI)

$$\begin{split} & \text{CDI}_{\text{ind-wat-derc}}\left(\frac{mg}{kg-day}\right) = \frac{\text{DA}_{\text{event}}\left(\frac{\mu g}{cm^2 - \text{event}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times \text{EF}_{\text{ind}}\left(\frac{250 \ days}{yr}\right) \times \text{ED}_{\text{ind}}\left(25 \ yr\right) \times \text{EV}_{\text{ind}}\left(\frac{1 \ \text{event}}{day}\right) \times \text{SA}_{\text{ind}}\left(19,652 \ cm^2\right)}{\text{AT}_{\text{ind}}\left(\frac{365 \ days}{yr} \times \text{LT}(70 \ yrs)\right) \times \text{BW}_{\text{ind}}\left(80 \ \text{kg}\right)} \\ & \text{where:} \\ & \text{For Inorganics:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{cm^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times \text{Kp}\left(\frac{cm}{hr}\right) \times \text{ET}_{\text{event-ind-a}}\left(\frac{0.71 \ hrs}{\text{event}}\right) \\ & \text{For Organics:} \\ & \text{IF ET}_{\text{event-ind}}\left(\frac{0.71 \ hrs}{\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times \text{FA} \times \text{Kp}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{\text{event}}\left(\frac{hrs}{\text{event}}\right) \times \text{ET}_{\text{event-ind}}\left(\frac{0.71 \ hrs}{\text{event}}\right)}{\pi} \\ & \text{or,} \\ & \text{IF ET}_{\text{event-ind}}\left(\frac{0.71 \ hrs}{\text{event}}\right) > t^* (\text{hrs}), \text{ then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{cm}^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times \text{FA} \times \text{Kp}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{\text{event}}\left(\frac{hrs}{\text{event}}\right) \times \text{ET}_{\text{event-ind}}\left(\frac{0.71 \ hrs}{\text{event}}\right)}{\pi}} \\ & \text{DA}_{\text{event}}\left(\frac{0.71 \ hrs}{\text{event}}\right) > t^* (\text{hrs}), \text{ then:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times \text{FA} \times \text{Kp}\left(\frac{cm}{hr}\right) \times \left[\frac{\text{ET}_{\text{event-ind}}\left(\frac{0.71 \ hrs}{\text{event}}\right)}{1 + B} + 2 \times \tau_{\text{event}}\left(\frac{hrs}{\text{event}}\right) \times \left(\frac{1 + 3B + 3B^2}{(1 + B^2}\right)\right) \\ \end{array}$$

#### **Construction Worker Soil Exposure to Unpaved Road Traffic CDI Equations**

Noncarcinogenic Soil Ingestion (CDI) Unpaved Road Traffic

Γ

$$CDI_{con-sol-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times RBA \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times IRS_{con}\left(\frac{330 \ mg}{day}\right)}{AT_{con-a}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times \left(\frac{7 \ days}{wk}\right) \times ED_{con}(1 \ yr)\right) \times BW_{con}(80 \ kg)}$$

Noncarcinogenic Soil Inhalation (CDI) Unpaved Road Traffic

$$CDI_{con-sol-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{\text{yr}}\right) \times DW_{con}\left(\frac{5 \text{ days}}{\text{wk}}\right)\right) \times ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{\text{VF}_{s}\left(\frac{m^{3}}{kg}\right)}^{+}\frac{1}{\text{PEF}_{sc}\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{con-a}\left(EW_{con}\left(\frac{50 \text{ wks}}{\text{yr}}\right) \times \left(\frac{7 \text{ days}}{\text{wk}}\right) \times ED_{con}(1 \text{ yr})\right)}$$

### Noncarcinogenic Soil Dermal (CDI) Unpaved Road Traffic

$$CDI_{con-sol-dern}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times SA_{con}\left(\frac{3,527 \ cm^2}{day}\right) \times AF_{con}\left(\frac{0.3 \ mg}{cm^2}\right) \times ABS_{d}}{AT_{con-a}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times \left(\frac{7 \ days}{wk}\right) \times ED_{con}(1 \ yr)\right) \times BW_{con}(80 \ kg)}$$

### Carcinogenic Soil Ingestion (CDI) Unpaved Road Traffic

$$CDI_{con-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times RBA \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times IRS_{con}\left(\frac{330 \ mg}{day}\right)}{AT_{con}\left(\frac{365 \ days}{yr}\right) \times LT(70 \ yrs)\right) \times BW_{con}(80 \ kg)}$$

#### Carcinogenic Soil Inhalation (CDI) Unpaved Road Traffic

$$CDI_{con-sol-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soll}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times ET_{con}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times \left(\frac{1 \ day}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF_{sc}\left(\frac{m^{3}}{kg}\right)}\right) \times ED_{con}(1 \ yr) \times ET_{con}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)$$

Carcinogenic Soil Dermal (CDI) Unpaved Road Traffic

$$CDI_{con-sol-derc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soll}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times SA_{con}\left(\frac{3,527 \ cm^2}{day}\right) \times AF_{con}\left(\frac{0.3 \ mg}{cm^2}\right) \times ABS_{d}}{AT_{con}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right) \times BW_{con}(80 \ kg)}$$

#### **Construction Worker Soil Exposure to Other Construction Activities CDI Equations**

Noncarcinogenic Soil Ingestion (CDI) Other Construction Activities

$$CDI_{con-sol-ingnsa}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times RBA \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times IRS_{con}\left(\frac{330 \ mg}{day}\right)}{AT_{con-a}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times \left(\frac{7 \ days}{wk}\right) \times ED_{con}(1 \ yr)\right) \times BW_{con}(80 \ kg)}$$

#### Noncarcinogenic Soil Inhalation (CDI) Other Construction Activities

$$CDI_{con-sol-inhnsa}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF_{sc}'\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{con-a}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times \left(\frac{7 \text{ days}}{wk}\right) \times ED_{con}(1 \text{ yr})\right)}$$

Noncarcinogenic Soil Dermal (CDI) Other Construction Activities

$$CDI_{con-sol-dernsa}\left(\frac{mg}{kg-day}\right) = \frac{C_{soli}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times SA_{con}\left(\frac{3,527 \text{ cm}^2}{day}\right) \times AF_{con}\left(\frac{0.3 \text{ mg}}{cm^2}\right) \times ABS_{d}}{AT_{con-a}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times \left(\frac{7 \text{ days}}{wk}\right) \times ED_{con}(1 \text{ yr})\right) \times BW_{con}(80 \text{ kg})}$$

### Carcinogenic Soil Ingestion (CDI) Other Construction Activities

$$CDI_{con-sol-ingcsa}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times RBA \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times IRS_{con}\left(\frac{330 \ mg}{day}\right)}{AT_{con}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right) \times BW_{con}(80 \ kg)}$$

Carcinogenic Soil Inhalation (CDI) Other Construction Activities

$$CDI_{con-sol-inhcsa}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times ET_{con}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+}\frac{1}{PEF_{sc}^{'}\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{con}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$

Carcinogenic Soil Dermal (CDI) Other Construction Activities

$$CDI_{con-sol-dercsa}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times SA_{con}\left(\frac{3,527 \ cm^2}{day}\right) \times AF_{con}\left(\frac{0.3 \ mg}{cm^2}\right) \times ABS_{d}}{AT_{con}\left(\frac{365 \ days}{yr}\right) \times LT(70 \ yrs)\right) \times BW_{con}(80 \ kg)}$$

#### **Construction Worker Air CDI Equations**

#### Noncarcinogenic Air Inhalation (CDI)

$$CDI_{con-air-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times DW_{con}\left(\frac{5 \ days}{wk}\right)\right) \times ED_{con}(1 \ yr) \times ET_{con}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right)}{AT_{con-a}\left(EW_{con}\left(\frac{50 \ wks}{yr}\right) \times \left(\frac{7 \ days}{wk}\right) \times ED_{con}(1 \ yr)\right)}$$

#### Carcinogenic Air Inhalation (CDI)

$$CDI_{con-air-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{\text{yr}}\right) \times DW_{con}\left(\frac{5 \text{ days}}{\text{wk}}\right)\right) \times ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{con}\left(\frac{365 \text{ days}}{\text{yr}} \times LT(70 \text{ yrs})\right)}$$

#### Refractory Ceramic Fibers Air Inhalation (CDI)

$$CDI_{con-air-inhrcf}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{\text{yr}}\right) \times DW_{con}\left(\frac{5 \text{ days}}{\text{wk}}\right)\right) \times ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{con-a}\left(EW_{con}\left(\frac{50 \text{ wks}}{\text{yr}}\right) \times \left(\frac{7 \text{ days}}{\text{wk}}\right) \times ED_{con}(1 \text{ yr})\right)}$$

#### Asbestos Air Inhalation (CDI)

$$CDI_{con-air-inhasb}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{\text{yr}}\right) \times DW_{con}\left(\frac{5 \text{ days}}{\text{wk}}\right)\right) \times ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{con}\left(\frac{365 \text{ days}}{\text{yr}} \times LT(70 \text{ yrs})\right)}$$

### **Excavation Worker Soil CDI Equations**

### Noncarcinogenic Soil Ingestion (CDI)

$$CDI_{exc-sol-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times IRS_{exc}\left(\frac{330 \text{ mg}}{day}\right)}{AT_{exc-a}\left(\frac{365 \text{ days}}{yr} \times ED_{exc}(1 \text{ yr})\right) \times BW_{exc}(80 \text{ kg})}$$

Noncarcinogenic Soil Inhalation (CDI)

$$CDI_{exc-sol-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{exc-a}\left(\frac{365 \text{ days}}{yr} \times ED_{exc}(1 \text{ yr})\right)}$$

#### Noncarcinogenic Soil Dermal (CDI)

$$CDI_{exc-sol-dern}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times SA_{exc}\left(\frac{3,527 \text{ cm}^2}{day}\right) \times AF_{exc}\left(\frac{0.3 \text{ mg}}{cm^2}\right) \times ABS_d}{AT_{exc-a}\left(\frac{365 \text{ days}}{yr} \times ED_{exc}(1 \text{ yr})\right) \times BW_{exc}(80 \text{ kg})}$$

Carcinogenic Soil Ingestion (CDI)

$$CDI_{exc-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times RBA \times EF_{exc}\left(\frac{20 \ days}{yr}\right) \times ED_{exc}(1 \ yr) \times IRS_{exc}\left(\frac{330 \ mg}{day}\right)}{AT_{exc}\left(\frac{365 \ days}{yr} \ \times LT(70 \ yrs)\right) \times BW_{exc}(80 \ kg)}$$

### Carcinogenic Soil Inhalation (CDI)

$$CDI_{exc-sol-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times EF_{exc}\left(\frac{20 \ days}{yr}\right) \times ED_{exc}(1 \ yr) \times ET_{exc}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{exc}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$

#### Carcinogenic Soil Dermal (CDI)

$$CDI_{exc-sol-dern}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times SA_{exc}\left(\frac{3,527 \text{ cm}^2}{day}\right) \times AF_{exc}\left(\frac{0.3 \text{ mg}}{cm^2}\right) \times ABS_d}{AT_{exc-a}\left(\frac{365 \text{ days}}{yr} \times ED_{exc}(1 \text{ yr})\right) \times BW_{exc}(80 \text{ kg})}$$

### **Excavation Worker Air CDI Equations**

Noncarcinogenic Air Inhalation (CDI)

$$CDI_{exc-air-inhn}\left(\frac{mg}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) EF_{exc}\left(\frac{20 \ days}{yr}\right) \times ED_{exc}(1 \ yr) \times ET_{exc}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right)}{AT_{exc-a}\left(\frac{365 \ days}{yr} \ \times ED_{exc}(1 \ yr)\right)}$$

Carcinogenic Air Inhalation (CDI)

$$CDI_{exc-air-inhc}\left(\frac{\mu g}{m^{3}}\right) = \frac{C_{air}\left(\frac{\mu g}{m^{3}}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{exc}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

Refractory Ceramic Fibers Air Inhalation (CDI)

$$CDI_{exc-air-inhrcf}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{exc-a}\left(\frac{365 \text{ days}}{yr} \times ED_{exc}(1 \text{ yr})\right)}$$

Asbestos Air Inhalation (CDI)

$$CDI_{exc-air-inhasb}\left(\frac{f}{m^{3}}\right) = \frac{C_{air}\left(\frac{f}{m^{3}}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{exc}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$

### **Recreator Soil/Sediment CDI Equations**

Noncarcinogenic Child Soil Ingestion (CDI)

$$CDI_{rec-sol-ingnc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times RBA \times EF_{rec-c}\left(\frac{75 \ days}{yr}\right) \times ED_{rec-c} (6 \ yr) \times IRS_{rec-c}\left(\frac{200 \ mg}{day}\right)}{AT_{rec-c}\left(\frac{365 \ days}{yr} \ \times ED_{rec-c} (6 \ yr)\right) \times BW_{rec-c} (15 \ kg)}$$

### Noncarcinogenic Child Soil Inhalation (CDI)

$$CDI_{rec-sol-inhnc}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times ET_{rec-c}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+} \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{rec-c}\left(\frac{365 \text{ days}}{yr} \times ED_{rec-c}(6 \text{ yr})\right)}$$

Noncarcinogenic Child Soil Dermal (CDI)

$$CDI_{rec-sol-dernc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times SA_{rec-c}\left(\frac{2,373 \text{ cm}^2}{day}\right) \times AF_{rec-c}\left(\frac{0.2 \text{ mg}}{cm^2}\right) \times ABS_{d}}{AT_{rec-c}\left(\frac{365 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr})\right) \times BW_{rec-c}(15 \text{ kg})}$$

Noncarcinogenic Adult Soil Ingestion (CDI)

$$CDI_{rec-sol-ingna}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times IRS_{rec-a}\left(\frac{100 \text{ mg}}{day}\right)}{AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right) \times BW_{rec-a}(80 \text{ kg})}$$

Noncarcinogenic Adult Soil Inhalation (CDI)

$$CDI_{rec-sol-inhna}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times ET_{rec-a}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+}\frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right)}$$

Noncarcinogenic Adult Soil Dermal (CDI)

$$CDI_{rec-sol-derna}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times SA_{rec-a}\left(\frac{6,032 \text{ cm}^2}{day}\right) \times AF_{rec-a}\left(\frac{0.07 \text{ mg}}{cm^2}\right) \times ABS_d}{AT_{rec-a}\left(\frac{365 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times SA_{rec-a}\left(\frac{6000 \text{ cm}^2}{2000 \text{ cm}^2}\right) \times AF_{rec-a}\left(\frac{1000 \text{ cm}^2}{2000 \text{ cm}^2}\right) \times ABS_d}$$

Noncarcinogenic Age-adjusted Soil Ingestion (CDI)

$$\begin{split} \text{CDI}_{\text{rec-sol-ingnadj}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\mathsf{C}_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{RBA} \times \text{IFS}_{\text{rec-adj}}\left(\frac{7,875 \text{ mg}}{\text{kg}}\right)}{\text{AT}_{\text{rec-a}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{ED}_{\text{rec}}(26 \text{ yr})\right)} \\ & \text{where:} \\ \\ \text{IFS}_{\text{rec-adj}}\left(\frac{7,875 \text{ mg}}{\text{kg}}\right) = \left[\frac{\frac{\text{EF}_{\text{rec-c}}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-c}}(6 \text{ yr}) \times \text{IRS}_{\text{rec-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{rec-c}}(15 \text{ kg})} + \left[\frac{\text{EF}_{\text{rec-adj}}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-a}}(20 \text{ yr}) \times \text{IRS}_{\text{rec-ad}}\left(\frac{100 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{rec-a}}(80 \text{ kg})} \right] \end{split}$$

Noncarcinogenic Age-adjusted Soil Inhalation (CDI)

$$CDI_{rec-sol-inhnadj}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right)} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{rec-a}\left(\frac{365 \text{ days}}{yr} \times ED_{rec}(26 \text{ yr})\right)}$$

Noncarcinogenic Age-adjusted Soil Dermal (CDI)

$$CDI_{rec-sol-dernadj}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times DFS_{rec-adj}\left(\frac{22,155 \ mg}{kg}\right) \times ABS_{d}}{AT_{rec-a}\left(\frac{365 \ days}{yr} \ \times ED_{rec}(26 \ yr)\right)}$$

where:  

$$DFS_{rec-adj}\left(\frac{22,155 \text{ mg}}{\text{kg}}\right) = \begin{bmatrix} \frac{EF_{rec-c}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times ED_{rec-c}\left(6 \text{ yr}\right) \times SA_{rec-c}\left(\frac{2,373 \text{ cm}^2}{\text{day}}\right) \times AF_{rec-c}\left(\frac{0.2 \text{ mg}}{\text{cm}^2}\right)}{BW_{rec-c}\left(15 \text{ kg}\right)} + \\ \frac{EF_{rec-a}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times ED_{rec-a}\left(20 \text{ yr}\right) \times SA_{rec-a}\left(\frac{6,032 \text{ cm}^2}{\text{day}}\right) \times AF_{rec-a}\left(\frac{0.07 \text{ mg}}{\text{cm}^2}\right)}{BW_{rec-a}\left(80 \text{ kg}\right)} \end{bmatrix}$$

Carcinogenic Soil Ingestion (CDI)

$$CDI_{rec-sol-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times RBA \times IFS_{rec-adj}\left(\frac{7,875 \text{ mg}}{kg}\right)}{AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$
where:
$$\left[ -\frac{(75 \text{ days})}{yr} + \frac{(200 \text{ mg})}{yr} - \frac{1}{yr} \right]$$

$$IFS_{rec-adj}\left(\frac{7,875 \text{ mg}}{\text{kg}}\right) = \left[\frac{EF_{rec-c}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times ED_{rec-c}\left(6 \text{ yr}\right) \times IRS_{rec-c}\left(\frac{200 \text{ mg}}{\text{day}}\right)}{BW_{rec-c}\left(15 \text{ kg}\right)} + \frac{EF_{rec-a}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times ED_{rec-a}\left(20 \text{ yr}\right) \times IRS_{rec-a}\left(\frac{100 \text{ mg}}{\text{day}}\right)}{BW_{rec-a}\left(80 \text{ kg}\right)}\right]$$

Carcinogenic Soil Inhalation (CDI)

$$CDI_{rec-sol-inhnc}\left(\frac{mg}{m^{3}}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times ET_{rec-c}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+}\frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right)}{AT_{rec-c}\left(\frac{365 \text{ days}}{yr} \times ED_{rec-c}(6 \text{ yr})\right)}$$

Carcinogenic Soil Dermal (CDI)

$$CDI_{rec-sol-derc}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times DFS_{rec-adj}\left(\frac{22,155 \ mg}{kg}\right) \times ABS_{d}}{AT_{rec}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$
where:  

$$DFS_{rec-adj}\left(\frac{22,155 \ mg}{kg}\right) = \begin{bmatrix} \frac{EF_{rec-c}\left(\frac{75 \ days}{yr}\right) \times ED_{rec-c}(6 \ yr) \times SA_{rec-c}\left(\frac{2,373 \ cm^{2}}{day}\right) \times AF_{rec-c}\left(\frac{0.2 \ mg}{cm^{2}}\right)}{BW_{rec-c}(15 \ kg)} + \\ \frac{EF_{rec-a}\left(\frac{75 \ days}{yr}\right) \times ED_{rec-a}(20 \ yr) \times SA_{rec-a}\left(\frac{6,032 \ cm^{2}}{day}\right) \times AF_{rec-a}\left(\frac{0.07 \ mg}{cm^{2}}\right)}{BW_{rec-a}(80 \ kg)} \end{bmatrix}$$

Mutagenic Soil Ingestion (CDI)

$$CDI_{rec-sol-ingmu}\left(\frac{mg}{kg-day}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times RBA \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times IFSM_{rec-adj}\left(\frac{35,750 \text{ mg}}{kg}\right)}{AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$
where:
$$IFSM_{rec-adj}\left(\frac{35,750 \text{ mg}}{kg}\right) = \begin{bmatrix} \frac{EF_{0-2}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{day}\right) \times 10}{BW_{0-2}(15 \text{ kg})} + \frac{EF_{2-6}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times IRS_{2-6}\left(\frac{200 \text{ mg}}{day}\right) \times 3}{BW_{2-6}(15 \text{ kg})} + EE_{2-6}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{2-6}(10 \text{ yr}) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{day}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{2-6}(10 \text{ yr}) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{day}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{2-6}(10 \text{ yr}) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{day}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{2-6}\left(10 \text{ yr}\right) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{day}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{2-6}\left(10 \text{ yr}\right) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{z}\right) \times ED_{2-6}\left(10 \text{ yr}\right) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{z}\right) \times ED_{2-6}\left(10 \text{ yr}\right) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{z}\right) \times ED_{2-6}\left(10 \text{ yr}\right) \times IRS_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{z}\right) \times ED_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{z}\right) \times ED_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{75 \text{ days}}{z}\right) \times ED_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times 3 + EE_{2-6}\left(\frac{100 \text{ mg}}{z}\right) \times$$

$$\frac{\frac{\mathsf{EF}_{6-16}\left(\frac{150 \text{ Hg}}{\text{yr}}\right) \times \mathsf{ED}_{6-16}\left(10 \text{ yr}\right) \times \mathsf{IRS}_{6-16}\left(\frac{100 \text{ Hg}}{\text{day}}\right) \times 3}{\mathsf{BW}_{6-16}\left(80 \text{ kg}\right)} + \frac{\mathsf{EF}_{16-26}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{16-26}\left(10 \text{ yr}\right) \times \mathsf{IRS}_{16-26}\left(\frac{100 \text{ mg}}{\text{day}}\right) \times 1}{\mathsf{BW}_{16-26}\left(80 \text{ kg}\right)}$$

### Mutagenic Soil Inhalation (CDI)

$$C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times \left(\frac{1}{VF_{s}}\left(\frac{m^{3}}{kg}\right)^{+} + \frac{1}{PEF\left(\frac{m^{3}}{kg}\right)}\right) \times \left[\left(EF_{0-2}\left(\frac{75 \ days}{yr}\right) \times ED_{0-2}(2 \ yr) \times ET_{0-2}\left(\frac{1 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 10\right)^{+}\right] + \left(EF_{2-6}\left(\frac{75 \ days}{yr}\right) \times ED_{2-6}(4 \ yr) \times ET_{2-6}\left(\frac{1 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 3\right)^{+} + \left(EF_{6-16}\left(\frac{75 \ days}{yr}\right) \times ED_{6-16}(10 \ yr) \times ET_{6-16}\left(\frac{1 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 3\right)^{+} + \left(EF_{16-26}\left(\frac{75 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times ET_{16-26}\left(\frac{1 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 1\right)\right) + \left(EF_{16-26}\left(\frac{75 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times ET_{16-26}\left(\frac{1 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times 1\right)\right)$$

### Mutagenic Soil Dermal (CDI)

$$\begin{split} \text{CDI}_{\text{rec-sol-dermu}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{C}_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{DFSM}_{\text{rec-adj}}\left(\frac{91,770 \text{ mg}}{\text{kg}}\right) \times \text{ABS}_{d}}{\text{AT}_{\text{rec}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)} \\ & \text{where:} \\ \\ & \text{DFSM}_{\text{rec-adj}}\left(\frac{91,770 \text{ mg}}{\text{kg}}\right) = \begin{bmatrix} \frac{\text{EF}_{0-2}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{0-2}(2 \text{ yr}) \times \text{SA}_{0-2}\left(\frac{2,373 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{0-2}\left(\frac{0.2 \text{ mg}}{\text{cm}^{2}}\right) \times 10}{\text{BW}_{0-2}(15 \text{ kg})} + \\ & \frac{\text{EF}_{2-6}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{2-6}(4 \text{ yr}) \times \text{SA}_{2-6}\left(\frac{2,373 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{2-6}\left(\frac{0.2 \text{ mg}}{\text{cm}^{2}}\right) \times 3}{\text{BW}_{2-6}(15 \text{ kg})} + \\ & \frac{\text{EF}_{6-16}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{6-16}(10 \text{ yr}) \times \text{SA}_{6-16}\left(\frac{6,032 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{6-16}\left(\frac{0.07 \text{ mg}}{\text{cm}^{2}}\right) \times 3}{\text{BW}_{6-16}(80 \text{ kg})} + \\ & \frac{\text{EF}_{16-26}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{16-26}(10 \text{ yr}) \times \text{SA}_{16-26}\left(\frac{6,032 \text{ cm}^{2}}{\text{day}}\right) \times \text{AF}_{16-26}\left(\frac{0.07 \text{ mg}}{\text{cm}^{2}}\right) \times 1}{\text{BW}_{16-26}(80 \text{ kg})} \end{bmatrix}$$

Vinyl Chloride Soil Ingestion (CDI)

$$CDI_{rec-sol-ingvc}\left(\frac{mg}{kg-day}\right) = C_{soil}\left(\frac{mg}{kg}\right) \times \begin{pmatrix} \left(\frac{IFS_{rec-adj}\left(\frac{7,875 mg}{kg}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times RBA}{AT_{rec}\left(\frac{365 days}{yr} \times LT(70 yrs)\right)} \right) + \left(\frac{IRS_{rec-c}\left(\frac{365 days}{yr} \times LT(70 yrs)\right)}{\left(\frac{IRS_{rec-c}\left(\frac{200 mg}{day}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times RBA}{BW_{rec-c}(15 kg)}\right)} \right) + \right)$$
  
where:  
$$IFS_{rec-adj}\left(\frac{7,875 mg}{kg}\right) = \left[\frac{\frac{EF_{rec-c}\left(\frac{75 days}{yr}\right) \times ED_{rec-c}(6 yr) \times IRS_{rec-c}\left(\frac{200 mg}{day}\right)}{BW_{rec-c}(15 kg)} + \frac{EF_{rec-a}\left(\frac{75 days}{yr}\right) \times ED_{rec-a}(20 yr) \times IRS_{rec-a}\left(\frac{100 mg}{day}\right)}{BW_{rec-a}(80 kg)}\right]$$

Vinyl Chloride Soil Inhalation (CDI)

$$CDI_{rec-sol-inhvc}\left(\frac{\mu g}{m^{3}}\right) = C_{soil}\left(\frac{mg}{kg}\right) \times \left( \begin{pmatrix} \frac{EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}{AT_{rec}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right) \times VF_{s}\left(\frac{m^{3}}{kg}\right) \times \left(\frac{mg}{1000 \ \mu g}\right)} \right) + \left( \frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right) \times \left(\frac{mg}{1000 \ \mu g}\right)} \right) + \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right) \times \left(\frac{mg}{1000 \ \mu g}\right)} \right) + \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right) \times \left(\frac{mg}{1000 \ \mu g}\right)} \right) + \left(\frac{1}{VF_{s}\left(\frac{m^{3}}{kg}\right) \times \left(\frac{mg}{1000 \ \mu g}\right)} \right) + \left(\frac{1}{VF_{s}\left(\frac{mg}{kg}\right) \times \left(\frac{mg}{100 \ \mu g}\right)} \right) + \left(\frac{1}{VF_{s}\left(\frac{mg}{kg}\right) \times \left(\frac{m$$

Vinyl Chloride Soil Dermal (CDI)

$$CDI_{rec-sol-dervc}\left(\frac{mg}{kg-day}\right) = C_{soil}\left(\frac{mg}{kg}\right) \times \begin{pmatrix} \left(\frac{DFS_{rec-adj}\left(\frac{22,155 mg}{kg}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times ABS_{d}}{AT_{rec}\left(\frac{365 days}{yr} \times LT(70 yrs)\right)}\right) + \\ \left(\frac{SA_{rec-c}\left(\frac{2,373 cm^{2}}{day}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times AF_{rec-c}\left(\frac{0.2 mg}{cm^{2}}\right) \times ABS_{d}}{BW_{rec-c}(15 kg)}\right) \end{pmatrix}$$
where:
$$DFS_{rec-adj}\left(\frac{22,155 mg}{kg}\right) = \begin{bmatrix} \frac{EF_{rec-c}\left(\frac{75 days}{yr}\right) \times ED_{rec-c}(6 yr) \times SA_{rec-c}\left(\frac{2,373 cm^{2}}{day}\right) \times AF_{rec-c}\left(\frac{0.2 mg}{cm^{2}}\right)}{BW_{rec-c}(15 kg)} + \\ \frac{EF_{rec-a}\left(\frac{75 days}{yr}\right) \times ED_{rec-a}(20 yr) \times SA_{rec-a}\left(\frac{6,032 cm^{2}}{day}\right) \times AF_{rec-a}\left(\frac{0.07 mg}{cm^{2}}\right)}{BW_{rec-a}(80 kg)} \end{bmatrix}$$

Trichloroethylene Soil Ingestion (CDI)

$$CDI_{rec-sol-ingtce}\left(\frac{mg}{kg}\right) = \frac{C_{soll}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} kg}{mg}\right) \times RBA \times \left( \begin{pmatrix} (CAF_{0}(0.804) \times IFS_{rec-adj}\left(\frac{7,875 mg}{kg}\right)\right) + \\ (MAF_{0}(0.202) \times IFSM_{rec-adj}\left(\frac{35,750 mg}{kg}\right)) \end{pmatrix}}{AT_{rec}\left(\frac{365 days}{yr} \times LT(70 yrs)\right)} \\ \text{where:} \\ IFS_{rec-adj}\left(\frac{7,875 mg}{kg}\right) = \left[ \frac{EF_{rec-c}\left(\frac{75 days}{yr}\right) \times ED_{rec-c}(6 yr) \times IRS_{rec-a}\left(\frac{200 mg}{day}\right)}{BW_{rec-a}(15 kg)} + \\ \frac{EF_{rec-a}\left(\frac{75 days}{yr}\right) \times ED_{rec-a}(20 yr) \times IRS_{rec-a}\left(\frac{100 mg}{day}\right)}{BW_{rec-a}(80 kg)} \right] \\ \text{and:} \\ IFSM_{rec-adj}\left(\frac{35,750 mg}{kg}\right) = \left[ \frac{EF_{0-2}\left(\frac{75 days}{yr}\right) \times ED_{0-2}(2 yr) \times IRS_{0-2}\left(\frac{200 mg}{day}\right) \times 10}{BW_{0-2}(15 kg)} + \\ \frac{EF_{2-6}\left(\frac{75 days}{yr}\right) \times ED_{2-6}(4 yr) \times IRS_{2-6}\left(\frac{200 mg}{day}\right) \times 3}{BW_{2-6}(15 kg)} + \\ \frac{EF_{6-16}\left(\frac{75 days}{yr}\right) \times ED_{6-16}(10 yr) \times IRS_{6-16}\left(\frac{100 mg}{day}\right) \times 3}{BW_{6-16}(80 kg)} + \\ \frac{EF_{16-26}\left(\frac{75 days}{yr}\right) \times ED_{16-26}(10 yr) \times IRS_{16-26}\left(\frac{100 mg}{day}\right) \times 1}{BW_{16-26}(80 kg)} \right]$$

Trichloroethylene Soil Inhalation (CDI)

Trichloroethylene Soil Dermal (CDI)

$$\mathsf{CDI}_{\mathsf{rec-sol-dertce}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{C}_{\mathsf{soll}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) \times \left(\frac{10^{-6} \, \mathsf{kg}}{\mathsf{mg}}\right) \times \left(\frac{(\mathsf{CAF}_{\mathsf{o}}(0.804) \times \mathsf{DFS}_{\mathsf{rec-adj}}\left(\frac{22,155 \, \mathsf{mg}}{\mathsf{kg}}\right) \times \mathsf{ABS}_{\mathsf{d}}\right) + \left(\mathsf{MAF}_{\mathsf{o}}(0.202) \times \mathsf{DFSM}_{\mathsf{rec-adj}}\left(\frac{91,770 \, \mathsf{mg}}{\mathsf{kg}}\right) \times \mathsf{ABS}_{\mathsf{d}}\right)\right)}{\mathsf{AT}_{\mathsf{rec}}\left(\frac{365 \, \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70 \, \mathsf{yrs})\right)}$$
where:
$$\mathsf{DFS}_{\mathsf{rec-adj}}\left(\frac{22,155 \, \mathsf{mg}}{\mathsf{kg}}\right) = \left[\frac{\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(\mathsf{6} \, \mathsf{yr}) \times \mathsf{SA}_{\mathsf{rec-c}}\left(\frac{2,373 \, \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{0.2 \, \mathsf{mg}}{\mathsf{cm}^{2}}\right)}{\mathsf{BW}_{\mathsf{rec-c}}(15 \, \mathsf{kg})} + \right]$$

$$\mathsf{DFS}_{\mathsf{rec-adj}}\left(\frac{22,155 \, \mathsf{mg}}{\mathsf{kg}}\right) = \left[\frac{\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(\mathsf{20} \, \mathsf{yr}) \times \mathsf{SA}_{\mathsf{rec-c}}\left(\frac{2,373 \, \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{rec-c}}\left(\frac{0.2 \, \mathsf{mg}}{\mathsf{cm}^{2}}\right)}{\mathsf{BW}_{\mathsf{rec-a}}(\mathsf{80} \, \mathsf{kg})} + \right]$$

$$\mathsf{DFS}_{\mathsf{mec-adj}}\left(\frac{91,770 \, \mathsf{mg}}{\mathsf{kg}}\right) = \left[\frac{\mathsf{EF}_{\mathsf{fec-c}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ec-c}}(2 \, \mathsf{yr}) \times \mathsf{SA}_{\mathsf{o}-2}\left(\frac{2,373 \, \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{fec-c}}\left(\frac{0.2 \, \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{10}}{\mathsf{BW}_{\mathsf{o}-\mathsf{c}}(\mathsf{15} \, \mathsf{kg})} + \right]$$

$$\mathsf{DFS}_{\mathsf{mec-adj}}\left(\frac{91,770 \, \mathsf{mg}}{\mathsf{kg}}\right) = \left[\frac{\mathsf{EF}_{\mathsf{fec-f}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{c}-\mathsf{fe}}(\mathsf{4} \, \mathsf{yr}) \times \mathsf{SA}_{\mathsf{c}-\mathsf{fe}}\left(\frac{2,373 \, \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{c}-\mathsf{fe}}\left(\frac{0.2 \, \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{10}}{\mathsf{BW}_{\mathsf{c}-\mathsf{fe}}(\mathsf{15} \, \mathsf{kg})} + \left[\frac{\mathsf{EF}_{\mathsf{fe-16}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{c}-\mathsf{fe}}(\mathsf{10} \, \mathsf{yr}) \times \mathsf{SA}_{\mathsf{c}-\mathsf{fe}}\left(\frac{6,032 \, \mathsf{cm}^{2}}{\mathsf{day}}\right) \times \mathsf{AF}_{\mathsf{fe}-\mathsf{fe}}\left(\frac{0.2 \, \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{3}}{\mathsf{BW}_{\mathsf{c}-\mathsf{fe}}(\mathsf{16} \, \mathsf{kg})} + \left[\frac{\mathsf{EF}_{\mathsf{c}-\mathsf{fe}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{c}-\mathsf{fe}}(\mathsf{10} \, \mathsf{yr}) \times \mathsf{AF}_{\mathsf{fe}-\mathsf{fe}}\left(\frac{0.07 \, \mathsf{mg}}{\mathsf{cm}^{2}}\right) \times \mathsf{3}}{\mathsf{BW}_{\mathsf{fe}-\mathsf{fe}}(\mathsf{16} \, \mathsf{kg})} + \left[\frac{\mathsf{EF}_{\mathsf{c}-\mathsf{fe}}\left(\frac{75 \, \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{fe}-\mathsf{fe}}(\mathsf{10} \, \mathsf{yr})}{\mathsf{BW}_{\mathsf{fe}-\mathsf{fe}}(\mathsf{fe}(\mathsf{0} \, \mathsf{kg})} + \left[\frac{\mathsf{EF}_{\mathsf{fe}-\mathsf{fe}}\left($$

Supporting Child Soil (CDI)

$$\begin{split} BW_{rec-c}\left(15 \text{ kg}\right) &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times BW_{0-2}\left(15 \text{ kg}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times BW_{2-6}\left(15 \text{ kg}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= EF_{rec-c}\left(\frac{75 \text{ days}}{\text{yr}}\right) &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times EF_{0-2}\left(\frac{75 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{75 \text{ days}}{\text{yr}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}(4 \text{ yr})} \\ &= ET_{rec-c}\left(\frac{1 \text{ hrs}}{\text{ day}}\right) &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times ET_{0-2}\left(\frac{1 \text{ hrs}}{\text{ day}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{1 \text{ hrs}}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times AF_{2-6}\left(\frac{0.2 \text{ mg}}{\text{ cm}^2}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times AF_{0-2}\left(\frac{0.2 \text{ mg}}{\text{ cm}^2}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times AF_{2-6}\left(\frac{0.2 \text{ mg}}{\text{ cm}^2}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times AF_{0-2}\left(\frac{2,373 \text{ cm}^2}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times AF_{2-6}\left(\frac{2,373 \text{ cm}^2}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times SA_{0-2}\left(\frac{2,373 \text{ cm}^2}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times SA_{2-6}\left(\frac{2,373 \text{ cm}^2}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times SA_{0-2}\left(\frac{200 \text{ mg}}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times SA_{2-6}\left(\frac{200 \text{ mg}}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times SA_{2-6}\left(\frac{200 \text{ mg}}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times IRS_{2-6}\left(\frac{200 \text{ mg}}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times IRS_{2-6}\left(\frac{200 \text{ mg}}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times IRS_{0-2}\left(\frac{200 \text{ mg}}{\text{ day}}\right) + ED_{2-6}\left(4 \text{ yr}\right) \times IRS_{2-6}\left(\frac{200 \text{ mg}}{\text{ day}}\right)}{ED_{0-2}\left(2 \text{ yr}\right) + ED_{2-6}\left(4 \text{ yr}\right)} \\ &= \frac{ED_{0-2}\left(2 \text{ yr}\right) \times IRS_$$

Supporting Adult Soil (CDI)

$$\begin{split} BW_{rec-a}\left(80\ kg\right) &= \frac{ED_{6-16}(10\ yr) \times BW_{6-16}\left(80\ kg\right) + ED_{16-26}(10\ yr) \times BW_{16-26}\left(80\ kg\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ EF_{rec-a}\left(\frac{75\ days}{yr}\right) &= \frac{ED_{6-16}(10\ yr) \times EF_{6-16}\left(\frac{75\ days}{yr}\right) + ED_{16-26}(10\ yr) \times EF_{16-26}\left(\frac{75\ days}{yr}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ ET_{rec-a}\left(\frac{1\ hrs}{day}\right) &= \frac{ED_{6-16}(10\ yr) \times ET_{6-16}\left(\frac{1\ hrs}{day}\right) + ED_{16-26}(10\ yr) \times ET_{16-26}\left(\frac{1\ hrs}{day}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ AF_{rec-a}\left(\frac{0.07\ mg}{cm^2}\right) &= \frac{ED_{6-16}(10\ yr) \times AF_{6-16}\left(\frac{0.07\ mg}{cm^2}\right) + ED_{16-26}(10\ yr) \times AF_{16-26}\left(\frac{0.07\ mg}{cm^2}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ SA_{rec-a}\left(\frac{6,032\ cm^2}{day}\right) &= \frac{ED_{6-16}(10\ yr) \times SA_{6-16}\left(\frac{6,032\ cm^2}{day}\right) + ED_{16-26}(10\ yr) \times SA_{16-26}\left(\frac{6,032\ cm^2}{day}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ IRS_{rec-a}\left(\frac{100\ mg}{day}\right) &= \frac{ED_{6-16}(10\ yr) \times IRS_{6-16}\left(\frac{100\ mg}{day}\right) + ED_{16-26}(10\ yr) \times IRS_{16-26}\left(\frac{100\ mg}{day}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ \end{array}$$

Supporting Age-adjusted Soil (CDI)

$$EF_{rec}\left(\frac{75 \text{ days}}{\text{yr}}\right) = \frac{\left(\begin{array}{c} ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{75 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{75 \text{ days}}{\text{yr}}\right) + \\ ED_{6-16}(10 \text{ yr}) \times EF_{6-16}\left(\frac{75 \text{ days}}{\text{yr}}\right) + ED_{16-26}(10 \text{ yr}) \times EF_{16-26}\left(\frac{75 \text{ days}}{\text{yr}}\right)\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) \times EF_{16-26}(10 \text{ yr})} \\ = \frac{\left(\begin{array}{c} ED_{0-2}(2 \text{ yr}) \times ET_{0-2}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{2-6}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + \\ \\ ET_{rec}\left(\frac{1 \text{ hrs}}{\text{day}}\right) = \frac{\left(\begin{array}{c} ED_{6-16}(10 \text{ yr}) \times ET_{6-16}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + \\ \\ ED_{0-2}(2 \text{ yr}) \times ET_{6-16}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + ED_{16-26}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{\text{day}}\right) \right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr}) + ED_{6-16}(10 \text{ yr}) \times ET_{16-26}\left(\frac{1 \text{ hrs}}{\text{day}}\right) + \\ \end{array}\right)}$$

# **Recreator Surface Water CDI Equations**

Noncarcinogenic Child Surface Water Ingestion (CDI)

$$CDI_{rec-wat-ingnc}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{rec-c}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-c}\left(6 \ yr\right) \times ET_{rec-c}\left(\frac{1 \ hrs}{day}\right) \times IRW_{rec-c}\left(\frac{0.12 \ L}{hr}\right)}{AT_{rec-c}\left(\frac{365 \ days}{yr}\right) \times ED_{rec-c}\left(6 \ yr\right) \times BW_{rec-c}\left(15 \ kg\right)}$$

## Noncarcinogenic Child Surface Water Dermal (CDI)

$$CDI_{rec-wat-dercc}\left(\frac{mg}{kg-day}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^2 - event}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{rec-c}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-c}(6 \ yr) \times EV_{rec-c}\left(\frac{1 \ event}{day}\right) \times SA_{rec-c}\left(6, 365 \ cm^2\right)}{AT_{rec-c}\left(\frac{365 \ days}{yr}\right) \times ED_{rec-c}(6 \ yr) \times BW_{rec-c}\left(15 \ kg\right)}$$
where:  
For Inorganics:  

$$DA_{event}\left(\frac{\mu g}{cm^2 - event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times K_{p}\left(\frac{cm}{hr}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right)$$
For Organics:  

$$IF \ ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{event}\left(\frac{hrs}{event}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right)}{\pi}}$$
or:  

$$IF \ ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) > t^{*}(hrs), \text{ then:}$$

$$DA_{event}\left(\frac{\mu g}{cm^2 - event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{event}\left(\frac{hrs}{event}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right)}{\pi}}$$
or:  

$$IF \ ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) > t^{*}(hrs), \text{ then:}$$

$$DA_{event}\left(\frac{\mu g}{cm^2 - event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times FA \times K_{p}\left(\frac{cm}{hr}\right) \times \left[\frac{ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right)}{1 + B} + 2 \times \tau_{event}\left(\frac{hrs}{event}\right) \times \left(\frac{1 + 3B + 3B^2}{(1 + B^2)^2}\right)\right]$$

# Noncarcinogenic Adult Surface Water Ingestion (CDI)

$$CDI_{rec-wat-ingna}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{rec-a}\left(\frac{45 \ days}{yr}\right) \times ED_{rec}(26 \ yr) \times ET_{rec-a}\left(\frac{1 \ hrs}{day}\right) \times IRW_{rec-a}\left(\frac{0.11 \ L}{hr}\right)}{AT_{rec-a}\left(\frac{365 \ days}{yr}\right) \times ED_{rec}(26 \ yr)\right) \times BW_{rec-a}(80 \ kg)}$$

Noncarcinogenic Adult Surface Water Dermal (CDI)

$$CDI_{rec-wat-derna}\left(\frac{mg}{kg-day}\right) = \frac{DA_{event}\left(\frac{\mu g}{cm^2-event}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{rec-a}\left(\frac{\cdot days}{yr}\right) \times ED_{rec}(26 \ yr) \times EV_{rec-a}\left(\frac{\cdot event}{day}\right) \times SA_{rec-a}\left(19,652 \ cm^2\right)}{AT_{rec-a}\left(\frac{365 \ days}{yr}\right) \times ED_{rec}(26 \ yr)\right) \times BW_{rec-a}\left(80 \ kg\right)}$$
where:  
For Inorganics:  

$$DA_{event}\left(\frac{\mu g}{cm^2-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times K_p\left(\frac{cm}{hr}\right) \times ET_{event-rec-a}\left(\frac{\cdot hrs}{event}\right)$$
For Organics:  

$$IF \ ET_{event-rec-a}\left(\frac{\cdot hrs}{event}\right) \leq t^* (hrs), \text{ then:}$$

$$DA_{event}\left(\frac{\mu g}{cm^2-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times 2 \times FA \times K_p\left(\frac{cm}{hr}\right) \times \sqrt{\frac{6 \times \tau_{event}\left(\frac{hrs}{event}\right) \times ET_{event-rec-a}\left(\frac{\cdot hrs}{event}\right)}{\pi}}$$
or:  

$$IF \ ET_{event-rec-a}\left(\frac{\cdot hrs}{event}\right) > t^* (hrs), \text{ then:}$$

$$DA_{event}\left(\frac{\mu g}{cm^2-event}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ cm^3}\right) \times FA \times K_p\left(\frac{cm}{hr}\right) \times \left[\frac{ET_{event-rec-a}\left(\frac{\cdot hrs}{event}\right)}{1 + B} + 2 \times \tau_{event}\left(\frac{hrs}{event}\right) \times \left(\frac{1 + 3B + 3B^2}{(1 + B)^2}\right)\right]$$

Noncarcinogenic Age-adjusted Surface Water Ingestion (CDI)

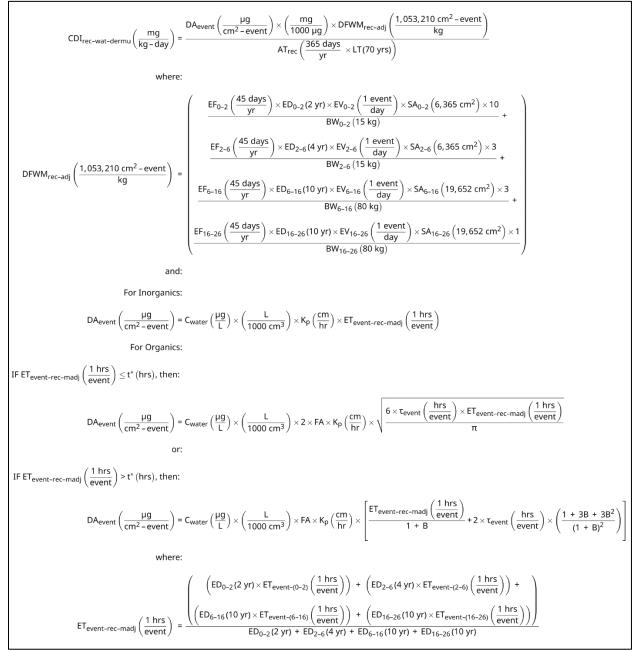
$$\begin{split} \text{CDI}_{\text{rec-wat-ingnadj}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{C}_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{\text{mg}}{1000 \ \mu g}\right) \times \text{IFW}_{\text{rec-adj}}\left(\frac{3.4 \ L}{\text{kg}}\right)}{\text{AT}_{\text{rec-a}}\left(\frac{365 \ \text{days}}{\text{yr}} \times \text{ED}_{\text{rec}}(26 \ \text{yr})\right)} \\ & \text{where:} \\ \text{IFW}_{\text{rec-adj}}\left(\frac{3.4 \ L}{\text{kg}}\right) = \left[\frac{\text{EF}_{\text{rec-c}}\left(\frac{45 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-c}}(6 \ \text{yr}) \times \text{EV}_{\text{rec-c}}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times \text{ET}_{\text{event-rec-c}}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times \text{IRW}_{\text{rec-c}}\left(\frac{0.12 \ L}{\text{hr}}\right)}{\text{BW}_{\text{rec-a}}(15 \ \text{kg})} + \left[\frac{\text{EF}_{\text{rec-a}}\left(\frac{45 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-a}}(20 \ \text{yr}) \times \text{EV}_{\text{rec-a}}\left(\frac{1 \ \text{event}}{\text{day}}\right) \times \text{ET}_{\text{event-rec-a}}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times \text{IRW}_{\text{rec-a}}\left(\frac{0.11 \ L}{\text{hr}}\right)}{\text{BW}_{\text{rec-a}}(80 \ \text{kg})}\right] \end{split}$$

Noncarcinogenic Age-adjusted Surface Water Dermal (CDI)

$$\begin{split} & \text{CD}_{\text{rec-wat-dernalg}}\left(\frac{mg}{kg-day}\right) = \frac{\text{DA}_{\text{event}}\left(\frac{\mu g}{cm^2 - \text{event}}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times \text{DFW}_{\text{rec-adg}}\left(\frac{335,655 \ \text{cm}^2 - \text{event}}{kg}\right)}{\text{A}_{\text{Trec-a}}\left(\frac{265 \ \text{days}}{yr} \times \text{ED}_{\text{rec}}(26 \ \text{yr})\right)} \\ & \text{where:} \\ \\ & \text{DFW}_{\text{rec-adg}}\left(\frac{335,655 \ \text{cm}^2 - \text{event}}{kg}\right) = \left(\frac{\text{E}_{\text{Frec-}}\left(\frac{45 \ \text{days}}{yr}\right) \times \text{ED}_{\text{rec-}}\left(6 \ \text{yr}\right) \times \text{EV}_{\text{rec-}}\left(\frac{1 \ \text{event}}{day}\right) \times \text{SA}_{\text{rec-}}\left(6,365 \ \text{cm}^2\right)}{BW_{\text{rec-}}\left(15 \ \text{kg}\right)} + \right) \\ & \text{ard:} \\ \\ & \text{DFW}_{\text{rec-adg}}\left(\frac{335,655 \ \text{cm}^2 - \text{event}}{kg}\right) = \left(\frac{\text{E}_{\text{Frec-}}\left(\frac{45 \ \text{days}}{yr}\right) \times \text{ED}_{\text{rec-}}\left(20 \ \text{yr}\right) \times \text{EV}_{\text{rec-}}\left(\frac{1 \ \text{event}}{day}\right) \times \text{SA}_{\text{rec-}}\left(6,365 \ \text{cm}^2\right)}{BW_{\text{rec-}}\left(19,652 \ \text{cm}^2\right)}\right) \\ & \text{ard:} \\ \\ & \text{ard:} \\ \\ & \text{For Inorganics:} \\ & \text{DA}_{\text{event}}\left(\frac{\mu g}{cm^2 - \text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ \text{cm}^3}\right) \times \text{Kp}\left(\frac{\text{cm}}{hr}\right) \times \text{ET}_{\text{event-rec-}adg}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) \\ & \text{For Organics:} \\ \\ & \text{IF ET}_{\text{event-rec-}adg}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ \text{cm}^3}\right) \times 2 \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{hr}\right) \times \sqrt{\frac{6 \times \text{tevent}\left(\frac{\ln r}{\text{event}}\right) \times \text{ET}_{\text{event-rec-}adg}\left(\frac{1 \ \text{hrs}}{\text{event}}\right)}} \\ \\ & \text{IF ET}_{\text{event-rec-}adg}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{L}\right) \times \left(\frac{L}{1000 \ \text{cm}^3}\right) \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{hr}\right) \times \left[\frac{\text{ET}_{\text{event-rec-}adg}\left(\frac{1 \ \text{hrs}}{\text{event}}\right)}{\pi} + 2 \times \text{tevent}\left(\frac{\ln r}{\text{event}}\right) \times \left(\frac{1 + 38 + 38^2}{(1 + 8)^2}\right)\right)} \\ \\ & \text{where:} \\ \\ & \text{ET}_{\text{event-rec-}adg}\left(\frac{1 \ \text{hrs}}{\text{event}}\right) = \left(\frac{\left(\text{ED}_{\text{rec-}(6 \ \text{yr}) \times \text{ET}_{\text{event-rec-}(6 \ \text{event}}\right)}{1 + \text{B}} + 2 \times \text{tevent}\left(\frac{\ln r}{\text{event}}\right)}\right) \right) \\ \end{aligned}$$

Carcinogenic Surface Water Ingestion (CDI)

$$\begin{aligned} \text{CDI}_{\text{rec-wat-ingc}} \left(\frac{\text{mg}}{\text{kg-day}}\right) &= \frac{\text{C}_{\text{water}} \left(\frac{\mu g}{L}\right) \times \left(\frac{\text{mg}}{1000 \ \mu g}\right) \times \text{IFW}_{\text{rec-adj}} \left(\frac{3.4 \ \text{L}}{\text{kg}}\right)}{\text{AT}_{\text{rec}} \left(\frac{365 \ \text{days}}{\text{yr}} \times \text{LT}(70 \ \text{yrs})\right)} \\ & \text{where:} \\ \text{IFW}_{\text{rec-adj}} \left(\frac{3.4 \ \text{L}}{\text{kg}}\right) &= \left[\frac{\frac{\text{EF}_{\text{rec-c}} \left(\frac{45 \ \text{days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-c}}(6 \ \text{yr}) \times \text{EV}_{\text{rec-c}} \left(\frac{1 \ \text{event}}{\text{day}}\right) \times \text{ET}_{\text{event-rec-c}} \left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times \text{IRW}_{\text{rec-c}} \left(\frac{0.12 \ \text{L}}{\text{hr}}\right)}{\text{BW}_{\text{rec-a}}(15 \ \text{kg})} + \frac{1}{\text{BW}_{\text{rec-adj}} \left(\frac{1 \ \text{hrs}}{\text{day}}\right) \times \text{ED}_{\text{rec-adj}} \left(\frac{1 \ \text{event}}{\text{day}}\right) \times \text{ET}_{\text{event-rec-adj}} \left(\frac{1 \ \text{hrs}}{\text{event}}\right) \times \text{IRW}_{\text{rec-adj}} \left(\frac{0.11 \ \text{L}}{\text{hr}}\right)}{\text{BW}_{\text{rec-adj}} \left(\frac{30 \ \text{kg}}{\text{g}}\right)} \end{bmatrix}$$


Carcinogenic Surface Water Dermal (CDI)

$$\begin{split} \mathsf{CDI}_{\mathsf{rec-wat-derc}} & \left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) = \frac{\mathsf{DA}_{\mathsf{event}}\left(\frac{\mathsf{mg}}{\mathsf{cm}^2-\mathsf{event}}\right) \times \left(\frac{\mathsf{mg}}{1000\ \mathsf{\mu}g}\right) \times \mathsf{DFW}_{\mathsf{rec-alg}}\left(\frac{335,555\ \mathsf{cm}^2-\mathsf{event}}{\mathsf{kg}}\right)}{\mathsf{Arec}\left(\frac{455\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{L7(70\ yrs}\right)} \\ & \mathsf{where:} \\ \\ \mathsf{DFW}_{\mathsf{rec-alg}}\left(\frac{335,655\ \mathsf{cm}^2-\mathsf{event}}{\mathsf{kg}}\right) = \left(\frac{\mathsf{EF}_{\mathsf{recc}}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}-c}\left(\mathsf{f}\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{recc}}\left(\frac{\mathsf{l}\ \mathsf{event}}{\mathsf{day}}\right) \times \mathsf{SA}_{\mathsf{recc}}\left(\mathsf{6},365\ \mathsf{cm}^2\right)}{\mathsf{BW}_{\mathsf{rec}-al}\left(\mathsf{15\ \mathsf{yg}}\right)} + \right) \\ & \mathsf{add} \\ \\ \mathsf{For\ Inorganics:} \\ \mathsf{DA}_{\mathsf{event}}\left(\frac{\mu \mathsf{g}}{\mathsf{cm}^2-\mathsf{event}}\right) = \mathsf{C}_{\mathsf{water}}\left(\frac{\mu \mathsf{g}}{\mathsf{U}}\right) \times \left(\frac{\mathsf{L}}{\mathsf{1000\ \mathsf{cm}^3}}\right) \times \mathsf{Kp}\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{rec}-al}\left(\frac{\mathsf{l}\ \mathsf{hrs}}{\mathsf{event}}\right) \\ & \mathsf{For\ Organics:} \\ \mathsf{DA}_{\mathsf{event}}\left(\frac{\mathsf{L}\mathsf{rrs}}{\mathsf{event}}\right) = \mathsf{C}_{\mathsf{water}}\left(\frac{\mu \mathsf{g}}{\mathsf{L}}\right) \times \left(\frac{\mathsf{L}}{\mathsf{1000\ \mathsf{cm}^3}}\right) \times \mathsf{2} \times \mathsf{FA} \times \mathsf{Kp}\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right) \times \left(\frac{\mathsf{L}\ \mathsf{receal}}{\mathsf{event}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{rec}-al}\left(\frac{\mathsf{l}\ \mathsf{hrs}}{\mathsf{event}}\right) \\ & \mathsf{IF\ ET}_{\mathsf{event}-\mathsf{rec}-\mathsf{add}}\left(\frac{\mathsf{1}\ \mathsf{hrs}}{\mathsf{event}}\right) = \mathsf{C}_{\mathsf{water}}\left(\frac{\mu \mathsf{g}}{\mathsf{L}}\right) \times \left(\frac{\mathsf{L}}{\mathsf{1000\ \mathsf{cm}^3}}\right) \times \mathsf{2} \times \mathsf{FA} \times \mathsf{Kp}\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right) \times \left(\frac{\mathsf{ferevent}}{\mathsf{event}}\right) \times \mathsf{ET}_{\mathsf{event}-\mathsf{rec}-add}\left(\frac{\mathsf{l}\ \mathsf{hrs}}{\mathsf{event}}\right) \\ & \mathsf{IF\ ET}_{\mathsf{event}-\mathsf{rec}-\mathsf{add}}\left(\frac{\mathsf{l}\ \mathsf{hrs}}{\mathsf{event}\right) \times \mathsf{ET}_{\mathsf{event}}\left(\frac{\mathsf{L}\ \mathsf{hrs}}{\mathsf{event}}\right) = \mathsf{C}_{\mathsf{water}}\left(\frac{\mu \mathsf{g}}{\mathsf{L}}\right) \times \left(\frac{\mathsf{L}}{\mathsf{1000\ \mathsf{cm}^3}}\right) \times \mathsf{EA} \times \mathsf{Kp}\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right) \times \left(\frac{\mathsf{ferded}}{\mathsf{event}}\right) \times \mathsf{ET}_{\mathsf{event}}\left(\frac{\mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{ET}_{\mathsf{event}}\left(\frac{\mathsf{hrs}}{\mathsf{event}}\right) \times \mathsf{L}^{\mathsf{1}} \times \mathsf{L}^{\mathsf{1}} \times \mathsf{E}^{\mathsf{1}} \times \mathsf{E$$

Mutagenic Surface Water Ingestion (CDI)

$$CDI_{rec-wat-ingmu}\left(\frac{mg}{kg-day}\right) = \frac{C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times IFWM_{rec-adj}\left(\frac{14 \ L}{kg}\right)}{AT_{rec}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$
where:
$$IFWM_{rec-adj}\left(\frac{14 \ L}{kg}\right) = \begin{bmatrix} \frac{EF_{0-2}\left(\frac{45 \ days}{yr}\right) \times ED_{0-2}(2 \ yr) \times EV_{0-2}\left(\frac{1 \ event}{day}\right) \times ET_{event-(0-2)}\left(\frac{1 \ hrs}{event}\right) \times IRW_{0-2}\left(\frac{0.12 \ L}{hr}\right) \times 10}{BW_{0-2}(15 \ kg)} + \frac{EF_{2-6}\left(\frac{45 \ days}{yr}\right) \times ED_{2-6}(4 \ yr) \times EV_{2-6}\left(\frac{1 \ event}{day}\right) \times ET_{event-(2-6)}\left(\frac{1 \ hrs}{event}\right) \times IRW_{2-6}\left(\frac{0.12 \ L}{hr}\right) \times 3}{BW_{2-6}(15 \ kg)} + \frac{EF_{6-16}\left(\frac{45 \ days}{yr}\right) \times ED_{6-16}(10 \ yr) \times EV_{6-16}\left(\frac{1 \ event}{day}\right) \times ET_{event-(6-16)}\left(\frac{1 \ hrs}{event}\right) \times IRW_{6-16}\left(\frac{0.124 \ L}{hr}\right) \times 3}{BW_{6-16}(80 \ kg)} + \frac{EF_{16-26}\left(\frac{45 \ days}{yr}\right) \times ED_{16-26}(10 \ yr) \times EV_{16-26}\left(\frac{1 \ event}{day}\right) \times ET_{event-(16-26)}\left(\frac{1 \ hrs}{event}\right) \times IRW_{16-26}\left(\frac{0.098 \ L}{hr}\right) \times 1}{BW_{16-26}(80 \ kg)}$$

### Mutagenic Surface Water Dermal (CDI)



Vinyl Chloride Surface Water Ingestion (CDI)

$$CDI_{rec-wat-ingvc}\left(\frac{mg}{kg-day}\right) = C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \begin{pmatrix} \left(\frac{IFW_{rec-adj}\left(\frac{3.4 \ L}{kg}\right)}{AT_{rec}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}\right) + \\ \left(\frac{EV_{rec-c}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \ L}{hr}\right)}{BW_{rec-c}(15 \ kg)}\right) \end{pmatrix}$$
where:
$$IFW_{rec-adj}\left(\frac{3.4 \ L}{kg}\right) = \begin{bmatrix} \frac{EF_{rec-c}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-c}(6 \ yr) \times EV_{rec-c}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-c}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \ L}{hr}\right)}{BW_{rec-c}(15 \ kg)} + \\ \frac{EF_{rec-a}\left(\frac{45 \ days}{yr}\right) \times ED_{rec-a}(20 \ yr) \times EV_{rec-a}\left(\frac{1 \ event}{day}\right) \times ET_{event-rec-a}\left(\frac{1 \ hrs}{event}\right) \times IRW_{rec-a}\left(\frac{0.11 \ L}{hr}\right)}{BW_{rec-a}(80 \ kg)} \end{bmatrix}$$

٦

Vinyl Chloride Surface Water Dermal (CDI)

$$\begin{split} & \text{CD}_{\text{rec-mat-derve}}\left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \text{DA}_{\text{vc-event}}\left(\frac{\mu g}{\text{cm}^2-\text{event}}\right) \times \left(\frac{\text{mg}}{1000\,\mu g}\right) \times \left(\left(\frac{\text{DFW}_{\text{rec-d}}\left(\frac{355\,\text{days}}{\text{kg}} \times \text{LT}(70\,\text{yrs})\right)}{\text{AT}_{\text{rec}}\left(\frac{355\,\text{days}}{\text{yr}} \times \text{LT}(70\,\text{yrs})\right)}\right) + \left(\frac{\text{EV}_{\text{rec-c}}\left(\frac{1\,\text{event}}{\text{day}}\right) \times \text{SA}_{\text{rec-c}}\left(6,365\,\text{cm}^2\right)}{\text{BW}_{\text{rec-c}}\left(15\,\text{kg}\right)}\right) \\ & \text{where:} \\ \\ & \text{DFW}_{\text{rec-ad}}\left(\frac{335,655\,\text{cm}^2-\text{event}}{\text{kg}}\right) = \left(\frac{\text{EF}_{\text{rec-c}}\left(\frac{45\,\text{days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-c}}(6\,\text{yr}) \times \text{EV}_{\text{rec-c}}\left(\frac{1\,\text{event}}{\text{day}}\right) \times \text{SA}_{\text{rec-c}}\left(6,365\,\text{cm}^2\right)}{\text{BW}_{\text{rec-a}}\left(15\,\text{kg}\right)} + \left(\frac{1}{\text{EF}_{\text{rec-a}}\left(\frac{45\,\text{days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-a}}\left(20\,\text{yr}\right) \times \text{EV}_{\text{rec-a}}\left(\frac{1\,\text{event}}{\text{day}}\right) \times \text{SA}_{\text{rec-c}}\left(19,652\,\text{cm}^2\right)}{\text{BW}_{\text{rec-a}}\left(80\,\text{kg}\right)} \right) \\ & \text{and:} \\ \\ \text{IF ET}_{\text{event-rec-ad}}\left(\frac{1\,\text{hrs}}{\text{event}}\right) \leq t^{\prime}(\text{hrs}), \text{ then:} \\ \\ \text{DA}_{\text{sc-event}}\left(\frac{\mu g}{\text{cm}^2-\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{T}}\right) \times \left(\frac{L}{1000\,\text{cm}^3}\right) \times 2 \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \sqrt{\frac{6 \times \text{Tevent}\left(\frac{\text{hrs}}{\text{event}}\right) \times \text{ET}_{\text{event}-\text{rec}-\text{ad}}\left(\frac{1\,\text{hrs}}{1\,\text{event}}\right)}{\pi}} \\ \text{or:} \\ \\ \text{IF ET}_{\text{event-rec-ad}}\left(\frac{1\,\text{hrs}}{\text{event}}\right) > t^{\prime}(\text{hrs}), \text{ then:} \\ \\ \text{DA}_{\text{sc-event}}\left(\frac{1\,\text{hrs}}{\text{event}}\right) = C_{\text{water}}\left(\frac{\mu g}{\text{T}}\right) \times \left(\frac{L}{1000\,\text{cm}^3}\right) \times \text{FA} \times \text{Kp}\left(\frac{\text{cm}}{\text{hr}}\right) \times \left[\frac{\text{FT}_{\text{event-rec-ad}}\left(\frac{1\,\text{hrs}}{\text{event}}\right) \times \left(\frac{1+3B+3B^2}{(1+B)^2}\right)\right] \\ \text{where:} \\ \\ \text{ET}_{\text{event-rec-ad}}\left(\frac{1\,\text{hrs}}{\text{event}}\right) = \left(\frac{\left(\text{ED}_{\text{rec-c}}\left(6\,\text{yr}\right) \times \text{ET}_{\text{event-rec-ce}}\left(\frac{1\,\text{hrs}}{\text{event}}\right) + \left(\text{ED}_{\text{rec-d}}\left(20\,\text{yr}\right) \times \text{ET}_{\text{event}}\left(\frac{1+\text{ss}}{\text{event}}\right) \right) \right) \\ \end{array}$$

$CDI_{rec-wat-ingtce}\left(\frac{mg}{kg-day}\right) = -$	$\begin{split} & \sum_{water} \left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times \left( \begin{pmatrix} CAF_{o} \left(0.804\right) \times IFW_{rec-adj} \left(\frac{3.4 \ L}{kg}\right) \end{pmatrix} + \\ & \left( \begin{pmatrix} MAF_{o} \left(0.202\right) \times IFWM_{rec-adj} \left(\frac{14 \ L}{kg}\right) \end{pmatrix} \right) \\ & AT_{rec} \left(\frac{365 \ days}{yr} \times LT(70 \ yrs) \right) \end{split}$
where:	
IFW _{rec-adj} $\left(\frac{3.4 \text{ L}}{\text{kg}}\right)$ =	$ \left[ \frac{EF_{rec-c}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{rec-c}\left(6 \text{ yr}\right) \times EV_{rec-c}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-rec-c}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{rec-c}\left(\frac{0.12 \text{ L}}{hr}\right)}{BW_{rec-c}\left(15 \text{ kg}\right)} + \frac{EF_{rec-a}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{rec-a}\left(20 \text{ yr}\right) \times EV_{rec-a}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-rec-a}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{rec-a}\left(\frac{0.11 \text{ L}}{hr}\right)}{BW_{rec-a}\left(80 \text{ kg}\right)} \right] $
and:	
	$\begin{bmatrix} \frac{EF_{0-2}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{0-2}(2 \text{ yr}) \times EV_{0-2}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-(0-2)}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{0-2}\left(\frac{0.12 \text{ L}}{hr}\right) \times 10}{BW_{0-2}(15 \text{ kg})} + \frac{EF_{2-6}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{2-6}(4 \text{ yr}) \times EV_{2-6}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-(2-6)}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{2-6}\left(\frac{0.12 \text{ L}}{hr}\right) \times 3}{H_{2-6}\left(\frac{1 \text{ hrs}}{hr}\right) \times IRW_{2-6}\left(\frac{1 \text{ hrs}}{hr}\right) \times 4} + ET_{event-(2-6)}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{2-6}\left(\frac{1 \text{ hrs}}{hr}\right) \times 3}{H_{2-6}\left(\frac{1 \text{ hrs}}{hr}\right) \times IRW_{2-6}\left(\frac{1 \text{ hrs}}{hr}\right) \times 4} + ET_{event-(2-6)}\left(\frac{1 \text{ hrs}}{event}\right) \times IRW_{2-6}\left(\frac{1 \text{ hrs}}{hr}\right) \times 4$
$IFWM_{rec-adj}\left(\frac{14 L}{kg}\right) =$	$\frac{EF_{2-6}\left(\frac{45 \text{ days}}{\text{yr}}\right) \times ED_{2-6}\left(4 \text{ yr}\right) \times EV_{2-6}\left(\frac{1 \text{ event}}{\text{day}}\right) \times ET_{\text{event}-(2-6)}\left(\frac{1 \text{ hrs}}{\text{event}}\right) \times \mathrm{IRW}_{2-6}\left(\frac{0.12 \text{ L}}{\text{hr}}\right) \times 3}{BW_{2-6}\left(15 \text{ kg}\right)} + \frac{EF_{6-16}\left(\frac{45 \text{ days}}{\text{yr}}\right) \times ED_{6-16}\left(10 \text{ yr}\right) \times EV_{6-16}\left(\frac{1 \text{ event}}{\text{day}}\right) \times ET_{\text{event}-(6-16)}\left(\frac{1 \text{ hrs}}{\text{event}}\right) \times \mathrm{IRW}_{6-16}\left(\frac{0.124 \text{ L}}{\text{hr}}\right) \times 3}{BW_{6-16}\left(80 \text{ kg}\right)} + \frac{EF_{6-16}\left(\frac{10 \text{ sc}}{\text{sc}}\right) \times EE_{6-16}\left(\frac{10 \text{ sc}}{\text{sc}}\right) \times EE_{6-16}\left(10 \text$
	$\left[\frac{EF_{16-26}\left(\frac{45 \text{ days}}{yr}\right) \times ED_{16-26}\left(10 \text{ yr}\right) \times EV_{16-26}\left(\frac{1 \text{ event}}{day}\right) \times ET_{event-(16-26)}\left(\frac{1 \text{ hrs}}{event}\right) \times \mathrm{IRW}_{16-26}\left(\frac{0.098 \text{ L}}{hr}\right) \times 1}{BW_{16-26}\left(80 \text{ kg}\right)}\right]$

Trichloroethylene Surface Water Ingestion (CDI)

Trichloroethylene Surface Water Dermal (CDI)

$$\begin{split} & \left| \begin{array}{l} D \text{Nuce-even} \left( \frac{\mu g}{(m^2 - \text{event}} \right) \times \left( \frac{\eta g}{(\eta g)} \mu g \right) \times \left[ \begin{pmatrix} CA_{5}(0,00) \times D\text{PW}_{\text{rec-def}} \left( \frac{355,655 \text{ cm}^{2} - \text{event}}{kg} \right) \right) + \\ (MA_{5}(0,02) \times D\text{PW}_{\text{Hc}(n-def} \left( \frac{1053,210 \text{ cm}^{2} - \text{event}}{kg} \right) \right) \end{pmatrix} \\ & \text{Where:} \\ D \text{PW}_{\text{rec-def}} \left( \frac{355,655 \text{ cm}^{2} - \text{event}}{kg} \right) = \left( \frac{\text{EF}_{\text{rec}} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{\text{rec}} \left( 6 \text{ yr} \right) \times \text{EV}_{\text{rec}} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{\text{rec}} \left( 6,365 \text{ cm}^{2} \right) + \\ & \text{Where:} \\ \end{array} \right) \\ & \text{DPW}_{\text{rec-def}} \left( \frac{355,655 \text{ cm}^{2} - \text{event}}{kg} \right) = \left( \frac{\text{EF}_{\text{rec}} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{\text{rec}} \left( 6 \text{ yr} \right) \times \text{EV}_{\text{rec}} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{\text{rec}} \left( 19,652 \text{ cm}^{2} \right) \\ & \text{Where:} \\ \end{array} \right) \\ & \text{and:} \\ & \text{DPWM}_{\text{rec-def}} \left( \frac{1,053,210 \text{ cm}^{2} - \text{event}}{kg} \right) = \left( \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,2} \left( 2 \text{ yr} \right) \times \text{EV}_{p,2} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{p,2} \left( 6,365 \text{ cm}^{2} \right) \times 1 \right) \\ & \text{H} \\ & \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,2} \left( 2 \text{ yr} \right) \times \text{EV}_{p,2} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{p,2} \left( 6,365 \text{ cm}^{2} \right) \times 1 \right) \\ & \text{H} \\ & \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,3} \left( 10 \text{ yr} \right) \times \text{EV}_{p,2} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{p,3} \left( 5,365 \text{ cm}^{2} \right) \times 3 \right) \\ & \text{H} \\ & \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,3} \left( 10 \text{ yr} \right) \times \text{EV}_{p,2} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{p,3} \left( 5,365 \text{ cm}^{2} \right) \times 3 \right) \\ & \text{H} \\ & \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,3} \left( 10 \text{ yr} \right) \times \text{EV}_{p,2} \left( \frac{1 \text{ event}}{dy} \right) \times \text{SA}_{p,3} \left( 5,365 \text{ cm}^{2} \right) \times 3 \right) \\ & \text{H} \\ & \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,3} \left( 10 \text{ yr} \right) \times \text{EV}_{p,2} \left( \frac{1 \text{ event}}}{dy} \right) \times \text{SA}_{p,3} \left( 5,365 \text{ cm}^{2} \right) \times 3 \right) \\ & \text{H} \\ & \frac{\text{EF}_{p,2} \left( \frac{45 \text{ days}}{yr} \right) \times \text{ED}_{p,3} \left( 10 \text{ yr} \right) \times \left( \frac{1 \text{ event}}{dy} \right) \times \left( \frac{1 \text{ event}}}{dy} \right) \times \left( \frac{1 \text{ event}}{dy} \right) \times \left( \frac{1 \text{ event}}}{dy} \right) \times \frac{1 \text{ event$$

Supporting Child Surface Water (CDI)

$$\begin{split} BW_{rec-c}\left(15 \text{ kg}\right) &= \frac{ED_{0-2}(2 \text{ yr}) \times BW_{0-2}\left(15 \text{ kg}\right) + ED_{2-6}(4 \text{ yr}) \times BW_{2-6}\left(15 \text{ kg}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})} \\ EF_{rec-c}\left(\frac{45 \text{ days}}{\text{yr}}\right) &= \frac{ED_{0-2}(2 \text{ yr}) \times EF_{0-2}\left(\frac{45 \text{ days}}{\text{yr}}\right) + ED_{2-6}(4 \text{ yr}) \times EF_{2-6}\left(\frac{45 \text{ days}}{\text{yr}}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})} \\ ET_{event-rec-c}\left(\frac{1 \text{ hrs}}{\text{event}}\right) &= \frac{ED_{0-2}(2 \text{ yr}) \times ET_{event-rec}\left(\frac{1 \text{ hrs}}{\text{event}}\right) + ED_{2-6}(4 \text{ yr}) \times ET_{event-(2-6)}\left(\frac{1 \text{ hrs}}{\text{event}}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})} \\ EV_{rec-c}\left(\frac{1 \text{ event}}{\text{day}}\right) &= \frac{ED_{0-2}(2 \text{ yr}) \times EV_{0-2}\left(\frac{1 \text{ event}}{\text{day}}\right) + ED_{2-6}(4 \text{ yr}) \times EV_{2-6}\left(\frac{1 \text{ event}}{\text{day}}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})} \\ SA_{rec-c}\left(6,365 \text{ cm}^{2}\right) &= \frac{ED_{0-2}(2 \text{ yr}) \times SA_{0-2}\left(6,365 \text{ cm}^{2}\right) + ED_{2-6}(4 \text{ yr}) \times SA_{2-6}\left(6,365 \text{ cm}^{2}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})} \\ IRW_{rec-c}\left(\frac{0.12 \text{ L}}{\text{hr}}\right) &= \frac{ED_{0-2}(2 \text{ yr}) \times IRW_{0-2}\left(\frac{0.12 \text{ L}}{\text{hr}}\right) + ED_{2-6}(4 \text{ yr}) \times IRW_{2-6}\left(\frac{0.12 \text{ L}}{\text{hr}}\right)}{ED_{0-2}(2 \text{ yr}) + ED_{2-6}(4 \text{ yr})} \end{split}$$

Supporting Adult Surface Water (CDI)

$$\begin{split} BW_{rec-a}\left(80\ kg\right) &= \frac{ED_{6-16}(10\ yr) \times BW_{6-16}\left(80\ kg\right) + ED_{16-26}(10\ yr) \times BW_{16-26}\left(80\ kg\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ EF_{rec-a}\left(\frac{45\ days}{yr}\right) &= \frac{ED_{6-16}(10\ yr) \times EF_{6-16}\left(\frac{45\ days}{yr}\right) + ED_{16-26}(10\ yr) \times EF_{16-26}\left(\frac{45\ days}{yr}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr) \times EF_{16-26}\left(\frac{45\ days}{yr}\right)} \\ ET_{event-rec-a}\left(\frac{1\ hrs}{event}\right) &= \frac{ED_{6-16}(10\ yr) \times ET_{event-(6-16)}\left(\frac{1\ hrs}{event}\right) + ED_{16-26}(10\ yr) \times ET_{event-(16-26)}\left(\frac{1\ hrs}{event}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr) \times ET_{event-(16-26)}\left(\frac{1\ hrs}{event}\right)} \\ EV_{rec-a}\left(\frac{1\ event}{day}\right) &= \frac{ED_{6-16}(10\ yr) \times EV_{6-16}\left(\frac{1\ event}{day}\right) + ED_{16-26}(10\ yr) \times EV_{16-26}\left(\frac{1\ event}{day}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ SA_{rec-a}\left(19,652\ cm^{2}\right) &= \frac{ED_{6-16}(10\ yr) \times SA_{6-16}\left(19,652\ cm^{2}\right) + ED_{16-26}(10\ yr) \times SA_{16-26}\left(19,652\ cm^{2}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \\ IRW_{rec-a}\left(\frac{0.11\ L}{hr}\right) &= \frac{ED_{6-16}(10\ yr) \times IRW_{6-16}\left(\frac{0.124\ L}{hr}\right) + ED_{16-26}(10\ yr) \times IRW_{16-26}\left(\frac{0.098\ L}{hr}\right)}{ED_{6-16}(10\ yr) + ED_{16-26}(10\ yr)} \end{split}$$

Supporting Age-adjusted Surface Water (CDI)

$$\mathsf{EF}_{\mathsf{rec}}\left(\frac{45 \text{ days}}{\mathsf{yr}}\right) = \frac{\left(\frac{\mathsf{ED}_{0-2}(2 \text{ yr}) \times \mathsf{EF}_{0-2}\left(\frac{45 \text{ days}}{\mathsf{yr}}\right) + \mathsf{ED}_{2-6}(4 \text{ yr}) \times \mathsf{EF}_{2-6}\left(\frac{45 \text{ days}}{\mathsf{yr}}\right) + \mathsf{ED}_{6-16}(10 \text{ yr}) \times \mathsf{EF}_{6-16}\left(\frac{45 \text{ days}}{\mathsf{yr}}\right) + \mathsf{ED}_{16-26}(10 \text{ yr}) \times \mathsf{EF}_{16-26}\left(\frac{45 \text{ days}}{\mathsf{yr}}\right)\right)}{\mathsf{ED}_{0-2}(2 \text{ yr}) + \mathsf{ED}_{2-6}(4 \text{ yr}) + \mathsf{ED}_{6-16}(10 \text{ yr}) + \mathsf{ED}_{16-26}(10 \text{ yr})}$$

# Farmer Direct Consumption of Agricultural Products CDI Equations

Noncarcinogenic Produce Ingestion (CDI)

$$C_{produce}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times CDI_{far-prod-ingn}\left(\frac{mg}{kg-day}\right) = \frac{CF_{produce}(1) \times \left(IRF_{far-c}\left(\frac{68,100 \text{ mg}}{day}\right) + IRV_{far-c}\left(\frac{41,700 \text{ mg}}{day}\right)\right)}{AT_{far-c}\left(\frac{365 \text{ days}}{yr} \times ED_{far-c}(6 \text{ yr})\right) \times BW_{far-c}(15 \text{ kg})}$$

Carcinogenic Produce Ingestion (CDI)

$$\begin{split} & \text{CDI}_{\text{far-prod-ingc}} \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\text{C}_{\text{produce}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{CF}_{\text{produce}}(1) \times \left(\text{IFF}_{\text{far-adj}}\left(\frac{35,833,000 \text{ mg}}{\text{kg}}\right) + \text{IFV}_{\text{far-adj}}\left(\frac{24,535,875 \text{ mg}}{\text{kg}}\right)\right)}{\text{AT}_{\text{far}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)} \\ & \text{where:} \\ \\ & \text{IFF}_{\text{far-adj}}\left(\frac{35,833,000 \text{ mg}}{\text{kg}}\right) = \left[\frac{\frac{\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRF}_{\text{far-c}}\left(\frac{68,100 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-c}}(15 \text{ kg})} + \right] \\ & \frac{\text{EF}_{\text{far-adj}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRF}_{\text{far-a}}\left(\frac{176,800 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-a}}(80 \text{ kg})} \\ & \text{and:} \\ \\ & \text{IFV}_{\text{far-adj}}\left(\frac{24,535,875 \text{ mg}}{\text{kg}}\right) = \left[\frac{\frac{\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRV}_{\text{far-c}}\left(\frac{41,700 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-a}}(15 \text{ kg})} + \right] \\ & \frac{\text{EF}_{\text{far-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRV}_{\text{far-a}}\left(\frac{125,700 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-a}}(80 \text{ kg})} + \right] \\ \end{array}$$

Noncarcinogenic Dairy Ingestion (CDI)

$$CDI_{far-dairy-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{dairy}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times CF_{dairy}(1) \times IRD_{far-c}\left(\frac{349,500 \text{ mg}}{day}\right)}{AT_{far-c}\left(\frac{365 \text{ days}}{yr} \times ED_{far-c}(6 \text{ yr})\right) \times BW_{far-c}(15 \text{ kg})}$$

Carcinogenic Dairy Ingestion (CDI)

$$CDI_{far-dairy-ingc}\left(\frac{mg}{kg-day}\right) = \frac{C_{dairy}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times CF_{dairy}(1) \times IFD_{far-adj}\left(\frac{115,213,000 \text{ mg}}{kg}\right)}{AT_{far}\left(\frac{365 \text{ days}}{yr} \times LT(70 \text{ yrs})\right)}$$
where:  

$$IFD_{far-adj}\left(\frac{115,213,000 \text{ mg}}{kg}\right) = \left[\frac{\frac{EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRD_{far-c}\left(\frac{349,500 \text{ mg}}{day}\right)}{BW_{far-c}(15 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRD_{far-a}\left(\frac{445,600 \text{ mg}}{day}\right)}{BW_{far-a}(80 \text{ kg})}\right]$$

Noncarcinogenic Beef Ingestion (CDI)

$$CDI_{far-beef-ingn}\left(\frac{mg}{kg-day}\right) = \frac{C_{beef}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times CF_{beef}(1) \times IRB_{far-c}\left(\frac{40,100 \text{ mg}}{day}\right)}{AT_{far-c}\left(\frac{365 \text{ days}}{yr} \times ED_{far-c}(6 \text{ yr})\right) \times BW_{far-c}(15 \text{ kg})}$$

Carcinogenic Beef Ingestion (CDI)

$$\begin{split} \text{CDI}_{\text{far-beef-ingc}} & \left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) = \frac{\mathsf{C}_{\text{beef}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \mathsf{CF}_{\text{beef}}(1) \times \text{IFB}_{\text{far-adj}}\left(\frac{32,091,500 \text{ mg}}{\text{kg}}\right)}{\mathsf{AT}_{\text{far}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)} \\ & \text{where:} \\ \text{IFB}_{\text{far-adj}}\left(\frac{32,091,500 \text{ mg}}{\text{kg}}\right) = \left[\frac{\frac{\mathsf{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{far-c}}\left(6 \text{ yr}\right) \times \text{IRB}_{\text{far-c}}\left(\frac{40,100 \text{ mg}}{\text{day}}\right)}{\mathsf{BW}_{\text{far-c}}\left(15 \text{ kg}\right)} + \right] \\ & \frac{\mathsf{EF}_{\text{far-adj}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRB}_{\text{far-a}}\left(\frac{178,000 \text{ mg}}{\text{day}}\right)}{\mathsf{BW}_{\text{far-a}}\left(80 \text{ kg}\right)} \right] \end{split}$$

### Farmer Direct Consumption of Agricultural Products - Back-calculated to Water CDI Equations

$$\begin{split} & \mathsf{CDI}_{\mathsf{far-wat-ing-prode}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) = \frac{\mathsf{FF}_{\mathsf{far-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(\mathsf{G}\ \mathsf{yr}) \times \mathsf{CF}_{\mathsf{produce}}(1) \times \left(\mathsf{IRF}_{\mathsf{far-c}}\left(\frac{\mathsf{68},\mathsf{100\ mg}}{\mathsf{day}}\right) + \mathsf{IRV}_{\mathsf{far-c}}\left(\frac{\mathsf{41},\mathsf{700\ mg}}{\mathsf{day}}\right)\right)}{\mathsf{AT}_{\mathsf{far-c}}\left(\frac{365\ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{far-c}}\left(\mathsf{6}\ \mathsf{yr}\right) \times \mathsf{BW}_{\mathsf{far-c}}\left(\mathsf{68},\mathsf{100\ mg}}{\mathsf{day}}\right) + \mathsf{IRV}_{\mathsf{far-c}}\left(\frac{\mathsf{41},\mathsf{700\ mg}}{\mathsf{day}}\right)\right)}{\mathsf{AT}_{\mathsf{far-c}}\left(\frac{365\ \mathsf{days}}{\mathsf{yr}} \times \mathsf{ED}_{\mathsf{far-c}}(\mathsf{6}\ \mathsf{yr})\right) \times \mathsf{BW}_{\mathsf{far-c}}\left(\mathsf{15\ kg}\right)} \\ & \text{where:} \\ & \mathsf{Irr}_{\mathsf{rup}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{BV}_{\mathsf{wet}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}}\ \mathsf{(days)}\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \\ & \text{and:} \\ & \mathsf{Irr}_{\mathsf{res}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{produce}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}}\ \mathsf{(days)}\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \\ & \text{and:} \\ & \mathsf{Irr}_{\mathsf{rdep}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{Ir}_{\mathsf{f}} \times \mathsf{T} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}}\ \mathsf{(days)}\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \\ & \mathsf{and:} \\ & \mathsf{Irr}_{\mathsf{rdep}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{Ir}_{\mathsf{f}} \times \mathsf{T} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}}\ \mathsf{(days)}\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \mathsf{k}_{\mathsf{c}}\left(\mathsf{kg}\right)}\right) \\ & \mathsf{Adt} \\ & \mathsf{Adt$$

Noncarcinogenic Produce Ingestion Water (CDI)

Carcinogenic Produce Ingestion Water (CDI)

$$\begin{split} \mathsf{C}_{water}\left(\frac{\mu g}{\mathsf{L}}\right) \times \left(\frac{mg}{1000\,\mu g}\right) \times \left(\mathrm{Irr}_{up}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathrm{Irr}_{res}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathrm{Irr}_{dep}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)\right) \times \left(\frac{10^{-6}\,\mathsf{kg}}{mg}\right) \times \\ \mathsf{CDI}_{far-wat-ing-prode}\left(\frac{mg}{\mathsf{kg}-\mathsf{day}}\right) &= \frac{\mathsf{CF}_{produce}(1) \times \left(\mathrm{IFF}_{far-adj}\left(\frac{35,833,000\,\mathrm{mg}}{\mathsf{kg}}\right) + \mathrm{IFV}_{far-adj}\left(\frac{24,535,875\,\mathrm{mg}}{\mathsf{kg}}\right)\right)}{\mathsf{AT}_{rar}\left(\frac{365\,\mathrm{days}}{\mathsf{yr}}\right) \times \mathsf{LT}(70\,\mathsf{yrs})\right)} \\ \mathsf{where:} \\ \mathsf{IFF}_{far-adj}\left(\frac{35,833,000\,\mathrm{mg}}{\mathsf{kg}}\right) &= \left[\frac{\mathsf{EF}_{far-c}\left(\frac{350\,\mathrm{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(6\,\mathsf{yr}) \times \mathsf{IRF}_{far-a}\left(\frac{176,800\,\mathrm{mg}}{\mathsf{day}}\right)}{\mathsf{BW}_{far-a}(80\,\mathsf{kg})} + \right] \\ \mathsf{and:} \\ \mathsf{IFV}_{far-adj}\left(\frac{24,535,875\,\mathrm{mg}}{\mathsf{kg}}\right) &= \left[\frac{\mathsf{EF}_{far-c}\left(\frac{350\,\mathrm{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34\,\mathsf{yr}) \times \mathsf{IRV}_{far-a}\left(\frac{176,800\,\mathrm{mg}}{\mathsf{day}}\right)}{\mathsf{BW}_{far-a}(80\,\mathsf{kg})} + \right] \\ \mathsf{and:} \\ \mathsf{IFV}_{far-adj}\left(\frac{24,535,875\,\mathrm{mg}}{\mathsf{kg}}\right) &= \left[\frac{\mathsf{EF}_{far-c}\left(\frac{350\,\mathrm{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34\,\mathsf{yr}) \times \mathsf{IRV}_{far-a}\left(\frac{125,700\,\mathrm{mg}}{\mathsf{day}}\right)}{\mathsf{BW}_{far-a}(80\,\mathsf{kg})} \right) \\ \mathsf{and:} \\ \mathsf{Irr}_{rup}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) &= \frac{\mathsf{Ir}_{\ell}\left(\frac{\mathsf{L}}{\mathsf{m}^{2}-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{BV}_{wet} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{g}}{\mathsf{day}}\right) \times \mathsf{tb}\,(\mathsf{days})\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{dy}}\right) \\ \mathsf{and:} \\ \mathsf{Irr}_{res}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) &= \frac{\mathsf{Ir}_{\ell}\left(\frac{\mathsf{L}}{\mathsf{m}^{2}-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{Produce}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{g}}{\mathsf{day}}\right) \times \mathsf{tb}\,(\mathsf{days})\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{dy}}\right) \\ \mathsf{and:} \\ \mathsf{Irr}_{res}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) &= \frac{\mathsf{Ir}_{\ell}\left(\frac{\mathsf{L}}{\mathsf{m}^{2}-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{Produce}} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{g}}{\mathsf{day}}\right) \times \mathsf{tb}\,(\mathsf{days})\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{dy}}\right) \\ \mathsf{and:} \\ \mathsf{Irr}_{rdep}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) &= \frac{\mathsf{Ir}_{\ell}\left(\frac{\mathsf{L}}{\mathsf{m}^{2}-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{K} \times \mathsf{Ir}_{\ell} \times \mathsf{T} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{g}}{\mathsf{day}}\right) \times \mathsf{tb}\,(\mathsf{days})\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{dy}}\right) \\ \mathsf{and:} \\ \mathsf{Irr}_{rdep}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}_{\ell}\left(\frac{\mathsf{L}}{\mathsf{m}^{2}-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{Ir}_{\ell} \times \mathsf{T} \times \left[1 - \mathsf{exp}\left(\left(\frac{\lambda_{g}}{\mathsf{day}}\right) \times \mathsf{tb}\,(\mathsf{days})\right)\right]}{\mathsf{V}\left(\frac{\mathsf{kg}}{\mathsf{dy}}\right)} \\ \mathsf{Irr}_{\ell}$$

Noncarcinogenic Dairy Ingestion Water (CDI)

$$C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{far-c}\left(\frac{350 \ days}{yr}\right) \times ED_{far-c}(6 \ yr) \times CF_{dairy}(1) \times \\ CDI_{far-wat-ing-dairyn}\left(\frac{mg}{kg-day}\right) = \frac{IRD_{far-c}\left(\frac{349,500 \ mg}{day}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times TF_{dairy}\left(\frac{day}{kg}\right) \times Q_{w-dairy}\left(\frac{92 \ L}{day}\right)}{AT_{far-c}\left(\frac{365 \ days}{yr} \times ED_{far-c}(6 \ yr)\right) \times BW_{far-c}(15 \ kg)}$$

Carcinogenic Dairy Ingestion Water (CDI)

$$C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times CF_{dairy}(1) \times IFD_{far-adj}\left(\frac{115,213,000 \ mg}{kg}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times TF_{dairy}\left(\frac{day}{kg}\right) \times Q_{w-dairy}\left(\frac{92 \ L}{day}\right) + \frac{\left(\frac{10^{-6} \ kg}{mg}\right) \times TF_{dairy}\left(\frac{day}{kg}\right) \times Q_{w-dairy}\left(\frac{92 \ L}{day}\right)}{AT_{far}\left(\frac{365 \ days}{yr} \times LT(70 \ yrs)\right)}$$

where:

$$IFD_{far-adj}\left(\frac{115,213,000 \text{ mg}}{\text{kg}}\right) = \begin{bmatrix} \frac{EF_{far-c}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{far-c}(6 \text{ yr}) \times IRD_{far-c}\left(\frac{349,500 \text{ mg}}{\text{day}}\right)}{BW_{far-c}(15 \text{ kg})} + \frac{EF_{far-a}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times ED_{far-a}(34 \text{ yr}) \times IRD_{far-a}\left(\frac{445,600 \text{ mg}}{\text{day}}\right)}{BW_{far-a}(80 \text{ kg})} \end{bmatrix}$$

Noncarcinogenic Beef Ingestion Water (CDI)

$$C_{water}\left(\frac{\mu g}{L}\right) \times \left(\frac{mg}{1000 \ \mu g}\right) \times EF_{far-c}\left(\frac{350 \ days}{yr}\right) \times ED_{far-c}(6 \ yr) \times CF_{beef}(1) \times \\ CDI_{far-wat-ing-beefn}\left(\frac{mg}{kg-day}\right) = \frac{IRB_{far-c}\left(\frac{40,100 \ mg}{day}\right) \times \left(\frac{10^{-6} \ kg}{mg}\right) \times TF_{beef}\left(\frac{day}{kg}\right) \times Q_{w-beef}\left(\frac{53 \ L}{day}\right)}{AT_{far-c}\left(\frac{365 \ days}{yr} \times ED_{far-c}(6 \ yr)\right) \times BW_{far-c}(15 \ kg)}$$

Carcinogenic Beef Ingestion Water (CDI)

$$\begin{split} \mathsf{C}_{water}\left(\frac{\mu g}{\mathsf{L}}\right) \times \left(\frac{mg}{1000\ \mu g}\right) \times \mathsf{CF}_{beef}(1) \times \mathsf{IFB}_{far-adj}\left(\frac{32,091,500\ mg}{\mathsf{kg}}\right) \times \\ \mathsf{CDI}_{far-wat-ing-beefc}\left(\frac{mg}{\mathsf{kg}-\mathsf{day}}\right) &= \frac{\left(\frac{10^{-6}\ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{TF}_{beef}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{w-beef}\left(\frac{53\ \mathsf{L}}{\mathsf{day}}\right)}{\mathsf{AT}_{far}\left(\frac{365\ \mathsf{days}}{\mathsf{yr}} \times \mathsf{LT}(70\ \mathsf{yrs})\right)} \\ \mathsf{where:} \\ \\ \mathsf{IFB}_{far-adj}\left(\frac{32,091,500\ mg}{\mathsf{kg}}\right) &= \left[\frac{\mathsf{EF}_{far-c}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}\left(6\ \mathsf{yr}\right) \times \mathsf{IRB}_{far-c}\left(\frac{40,100\ mg}{\mathsf{day}}\right)}{\mathsf{BW}_{far-c}\left(15\ \mathsf{kg}\right)} + \left[\frac{\mathsf{EF}_{far-a}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}\left(34\ \mathsf{yr}\right) \times \mathsf{IRB}_{far-a}\left(\frac{178,000\ mg}{\mathsf{day}}\right)}{\mathsf{BW}_{far-a}\left(80\ \mathsf{kg}\right)} \right] \\ \end{split}$$

# Farmer Direct Consumption of Agricultural Products - Back-calculated to Soil CDI Equations

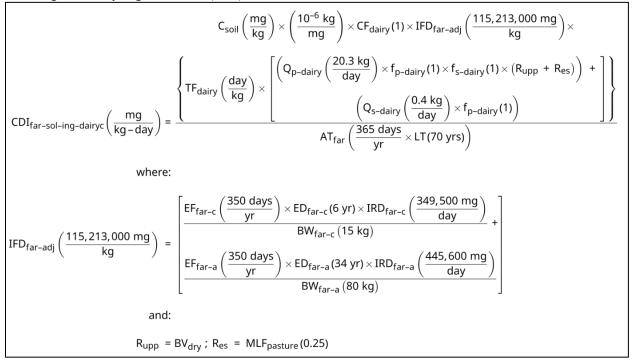
Noncarcinogenic Produce Ingestion Soil (CDI)

$$C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{10^{-6} \text{ kg}}{mg}\right) \times EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times CDI_{far-sol-ing-prodn}\left(\frac{mg}{kg-day}\right) = \frac{CF_{produce}(1) \times (R_{upv} + R_{es}) \times \left(IRF_{far-c}\left(\frac{68,100 \text{ mg}}{day}\right) + IRV_{far-c}\left(\frac{41,700 \text{ mg}}{day}\right)\right)}{AT_{far-c}\left(\frac{365 \text{ days}}{yr} \times ED_{far-c}(6 \text{ yr})\right) \times BW_{far-c}(15 \text{ kg})}$$
where:  

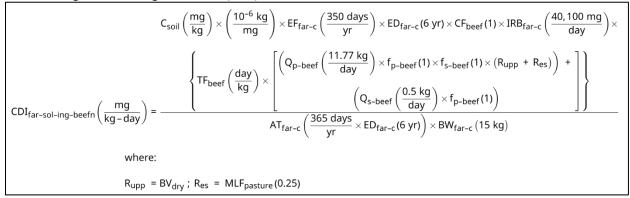
$$R_{upv} = BV_{wet}; R_{es} = MLF_{produce}(0.0135)$$

Carcinogenic Produce Ingestion Soil (CDI)

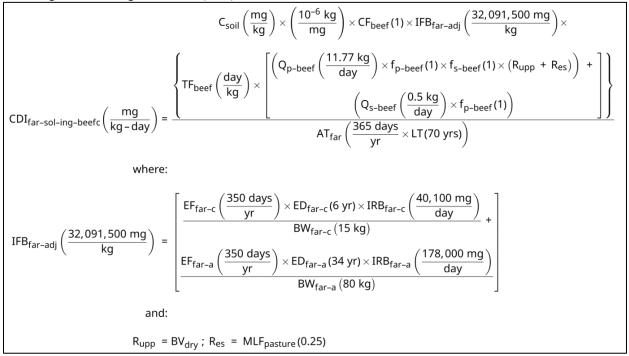
$$\begin{split} C_{\text{soil}}\left(\frac{\text{mg}}{\text{kg}}\right) \times \left(\frac{10^{-6} \text{ kg}}{\text{mg}}\right) \times \text{CF}_{\text{produce}}(1) \times (\text{Rupv} + \text{Res}) \times \\ \text{CDI}_{\text{far-sol-ing-prodc}}\left(\frac{\text{mg}}{\text{kg}-\text{day}}\right) &= \frac{\left(\text{IFF}_{\text{far-adj}}\left(\frac{35,833,000 \text{ mg}}{\text{kg}}\right) + \text{IFV}_{\text{far-adj}}\left(\frac{24,535,875 \text{ mg}}{\text{kg}}\right)\right)}{\text{AT}_{\text{far}}\left(\frac{365 \text{ days}}{\text{yr}} \times \text{LT}(70 \text{ yrs})\right)} \\ \text{where:} \\ \text{IFF}_{\text{far-adj}}\left(\frac{35,833,000 \text{ mg}}{\text{kg}}\right) &= \left[\frac{\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRF}_{\text{far-c}}\left(\frac{68,100 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-c}}(15 \text{ kg})} + \left[\frac{\text{EF}_{\text{far-ad}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}\left(34 \text{ yr}\right) \times \text{IRF}_{\text{far-ad}}\left(\frac{176,800 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-a}}(80 \text{ kg})} \right] \\ \text{and:} \\ \text{IFV}_{\text{far-adj}}\left(\frac{24,535,875 \text{ mg}}{\text{kg}}\right) &= \left[\frac{\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRV}_{\text{far-c}}\left(\frac{41,700 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-c}}(15 \text{ kg})} + \left[\frac{\text{EF}_{\text{far-adj}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRV}_{\text{far-c}}\left(\frac{41,700 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-c}}(15 \text{ kg})} + \left[\frac{\text{EF}_{\text{far-adj}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRV}_{\text{far-c}}\left(\frac{41,700 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-c}}(15 \text{ kg})} + \left[\frac{\text{EF}_{\text{far-adj}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRV}_{\text{far-adj}}\left(\frac{125,700 \text{ mg}}{\text{day}}\right)}{\text{BW}_{\text{far-a}}(80 \text{ kg})}\right] \right]$$


and:

$$R_{upv} = BV_{wet}$$
;  $R_{es} = MLF_{produce}$  (0.0135)


Noncarcinogenic Dairy Ingestion Soil (CDI)

$$\begin{split} \mathsf{C}_{\mathsf{soil}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) \times \left(\frac{10^{-6} \ \mathsf{kg}}{\mathsf{mg}}\right) \times \mathsf{EF}_{\mathsf{far-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(\mathsf{6} \ \mathsf{yr}) \times \mathsf{CF}_{\mathsf{dairy}}(1) \times \mathsf{IRD}_{\mathsf{far-c}}\left(\frac{349,500 \ \mathsf{mg}}{\mathsf{day}}\right) \times \\ & \left\{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\left(\mathsf{Q}_{\mathsf{p}-\mathsf{dairy}}\left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p}-\mathsf{dairy}}(1) \times (\mathsf{Rupp} + \mathsf{Res})\right) + \right]\right\} \\ & \left\{\mathsf{CDI}_{\mathsf{far-sol-ing-dairyn}}\left(\frac{\mathsf{mg}}{\mathsf{kg}-\mathsf{day}}\right) = \frac{\left\{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\left(\mathsf{Q}_{\mathsf{p}-\mathsf{dairy}}\left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p}-\mathsf{dairy}}(1) \times (\mathsf{Rupp} + \mathsf{Res})\right) + \right]\right\} \\ & \left\{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\left(\mathsf{Q}_{\mathsf{s}-\mathsf{dairy}}\left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p}-\mathsf{dairy}}(1)\right) \times (\mathsf{Rupp} + \mathsf{Res})\right) + \right]\right\} \\ & \left\{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \left[\left(\mathsf{Q}_{\mathsf{s}-\mathsf{dairy}}\left(\frac{20.3 \ \mathsf{kg}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{p}-\mathsf{dairy}}(1)\right) \times \mathsf{Rupp} + \mathsf{Res}\right)\right\} \\ & \mathsf{vert}_{\mathsf{res}} = \mathsf{MLF}_{\mathsf{pasture}}(\mathsf{day}) \times \mathsf{ED}_{\mathsf{far-c}}(\mathsf{far-sol-ing-dairy}(1) \times \mathsf{far-sol-ing-dairy}(1) \times \mathsf{Rupp} + \mathsf{Res}) \right\} \\ & \mathsf{vert}_{\mathsf{res}} = \mathsf{MLF}_{\mathsf{pasture}}(\mathsf{o}.\mathsf{25}) \\ \end{aligned}$$


Carcinogenic Dairy Ingestion Soil (CDI)



Noncarcinogenic Beef Ingestion Soil (CDI)



### Carcinogenic Beef Ingestion Soil (CDI)



# Soil to Groundwater CDI Equations

Method 1: Concentration in Groundwater from Concentration in Soil

$$C_{water}\left(\frac{\mu g}{L}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1,000 \ \mu g}{mg}\right)}{\left[K_{d}\left(\frac{L}{kg}\right) + \left(\frac{\theta_{w}\left(\frac{0.3 \ L_{water}}{L_{soil}}\right) + \theta_{a}\left(\frac{0.13 \ L_{air}}{L_{soil}}\right) \times H'}{\rho_{b}\left(\frac{1.5 \ kg}{L}\right)}\right)\right] \times DAF$$
where:
$$(15 \ kg)$$

$$\theta_{a}\left(\frac{0.13 \text{ }L_{air}}{\text{L}_{soil}}\right) = n\left(\frac{0.43 \text{ }L_{pore}}{\text{L}_{soil}}\right) - \theta_{w}\left(\frac{0.3 \text{ }L_{water}}{\text{L}_{soil}}\right); n\left(\frac{0.43 \text{ }L_{pore}}{\text{L}_{soil}}\right) = 1 - \frac{\rho_{b}\left(\frac{1.3 \text{ }Kg}{\text{L}}\right)}{\rho_{s}\left(\frac{2.65 \text{ }Kg}{\text{L}}\right)}$$

and:

$$\begin{split} & \mathsf{K}_{\mathsf{d}}\left(\frac{\mathsf{L}}{\mathsf{k}\mathsf{g}}\right) = \mathsf{f}_{\mathsf{oc}}\left(\frac{0.002 \ \mathsf{g}-\mathsf{carbon}}{\mathsf{g}-\mathsf{soil}}\right) \times \mathsf{K}_{\mathsf{oc}}\left(\frac{\mathsf{L}}{\mathsf{k}\mathsf{g}}\right) \text{ , for organic compounds; } \\ & \mathsf{K}_{\mathsf{d}}\left(\frac{\mathsf{L}}{\mathsf{k}\mathsf{g}}\right) \text{ values for inorganic compounds are listed in the user guide.} \end{split}$$

Method 2: Concentration in Groundwater from Concentration in Soil

$$C_{water}\left(\frac{\mu g}{L}\right) = \frac{C_{soil}\left(\frac{mg}{kg}\right) \times \left(\frac{1000 \ \mu g}{mg}\right) \times \rho_{b}\left(\frac{1.5 \ kg}{L}\right) \times d_{s}\left(\frac{mg}{kg}\right)}{I\left(\frac{0.18 \ m}{yr}\right) \times ED(70 \ yr) \times DAF}$$

# APPENDIX E. TABLES OF RECOMMENDED DEFAULT EXPOSURE PARAMETERS FOR RADIONUCLIDE PRG CALCULATOR

## APPENDIX E. TABLES OF RECOMMENDED DEFAULT EXPOSURE PARAMETERS FOR RADIONUCLIDE PRG CALCULATOR

Symbol	Definition (units)	Default	Reference
SF _s	Soil Ingestion Slope Factor - population (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
SF _{sa}	Soil Ingestion Slope Factor - adult only (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
$SF_{f}$	Food Ingestion Slope Factor (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
$SF_{w}$	Water Ingestion Slope Factor (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
SFi	Slope Factor - inhalation (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-sv}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-1cm}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-5cm}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-15cm}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-gp}	Slope Factor - external exposure (risk/yr per pCi/cm ² )	Isotope-specific	<u>ORNL 2014c</u>
SF _{sub}	Slope Factor - submersion (risk/yr per pCi/cm ³ )	Isotope-specific	<u>ORNL 2014c</u>
SF _{imm}	Slope Factor - immersion (risk/yr per pCi/L)	Isotope-specific	<u>ORNL 2014c</u>

## Table E-1. Slope Factors (SFs)

### Table E-2. Miscellaneous Variables

Symbol	Definition (units)	Default	Reference
TR	Target Risk	$1 \times 10^{-6}$	U.S. EPA 1991b
λ	Decay constant = $0.693$ /half-life (year ⁻¹ ) where	Isotope-specific	Developed for
	$0.693 = \ln(2)$		Radionuclide Soil
			Screening calculator
Κ	Andelman Volatilization Factor (L/m ³ )	0.5	U.S. EPA 1991b (pg. 20)
ACF _{ext-sv}	Area Correction Factor - soil volume (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-1cm}	Area Correction Factor – 1 cm (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-5cm}	Area Correction Factor – 5 cm (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-15cm}	Area Correction Factor – 15 cm (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-gp}	Area Correction Factor - ground plane	Isotope-specific	<u>ORNL 2014a</u>
	(unitless)		
GSF _i	Gamma Shielding Factor - Indoor (unitless)	0.4	U.S. EPA 2000a. (pg. 2-
			22). U.S. EPA 2000b.
			(pg. 2-18)
GSF _{ext-sv}	Gamma Shielding Factor - soil volume	Isotope-specific	<u>ORNL 2014a</u>
	(unitless)		
GSF _{ext-1cm}	Gamma Shielding Factor – 1 cm (unitless)	Isotope-specific	<u>ORNL 2014b</u>
GSF _{ext-5cm}	Gamma Shielding Factor – 5 cm (unitless)	Isotope-specific	<u>ORNL 2014b</u>
GSF _{ext-15cm}	Gamma Shielding Factor – 15 cm (unitless)	Isotope-specific	<u>ORNL 2014b</u>
GSF _{ext-gp}	Gamma Shielding Factor - ground plane	Isotope-specific	<u>ORNL 2014b</u>
	(unitless)		
GSF _a	Gamma Shielding Factor - Air (unitless)	1	Developed for
			Radionuclide Soil
			Screening calculator

Symbol	Definition (units)	Default	Reference
PRG _{res-soil-ing}	Resident Soil Radionuclide Ingestion (pCi/g)	Contaminant-	Determined in this
0		specific	calculator
PRG _{res-soil-inh}	Resident Soil Radionuclide Inhalation (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{res-soil-ext}	Resident Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{res-soil-}	Resident Soil Radionuclide Ingestion (pCi/g)	Contaminant-	Determined in this
produce-ing		specific	calculator
PRG _{res-produce-}	Resident Produce Radionuclide Ingestion	Contaminant-	Determined in this
ing	(pCi/g)	specific	calculator
PRG _{res-soil-tot}	Resident Soil Radionuclide Total (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{res-soil-sv}	Resident Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
105 5011 57		specific	calculator
PRG _{res-soil-1cm}	Resident Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
103-3011-1011		specific	calculator
PRG _{res-soil-5cm}	Resident Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
	(porg)	specific	calculator
PRG _{res-soil-15cm}	Resident Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
110105-5011-15011	resident son radionaende Externar (perg)	specific	calculator
PRG _{res-soil-gp}	Resident Soil Radionuclide External (pCi/cm ² )	Contaminant-	Determined in this
r reoles-soli-gp	resident son radionaende Externar (per em )	specific	calculator
t _{res}	Time - resident (years)	26	U.S. EPA 2011a, Table
ues	Thire Testdent (Jears)	20	16-108; 90th percentile
			or current residence
			time.
CF _{res-produce}	Produce Contaminated Fraction - resident	0.25	U.S. EPA 1990. U.S.
C1 res-produce	(unitless)	0.23	EPA. 1998. (pg. C-9)
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-fresh	Radionuclide-	Hierarchy selection in
Dowel	plant per pCi/g-dry soil)	specific	Section 2.3.2
R _{upv}	Wet root uptake for produce multiplier	Radionuclide-	Hierarchy selection in
rcupv	(unitless)	specific (=Bv _{wet} )	Section 2.3.2
Res	Soil resuspension multiplier (dimensionless)	=MLF (pasture or	Hinton 1992
ixes	son resuspension multiplier (unitensioness)	produce)	11111011 1992
IFS _{res-adj}	Resident Ingestion Fraction - age-adjusted	1,120,000	Calculated using the
II Ores-adj	(mg)	1,120,000	age-adjusted intake
	(ing)		factors equation.
IRS _{res-a}	Resident Soil Ingestion Rate - adult (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRS _{res-c}	Resident Soil Ingestion Rate - child (mg/day)	200	U.S. EPA 1991a (pg. 15)
IFA _{res-adj}	Resident Inhalation Rate - age-adjusted (m ³ )	161,100	Calculated using the
TT Ares-adj	Resident initiatation Rate - age-aujusteu (III')	101,100	age-adjusted intake
			factors equation.
IRA _{res-a}	Resident Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{res-a} IRA _{res-c}	Resident Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5-
II Tres-c	(iii /uay)	10	11)
IEV	Pasident Vagatable Ingestion Frequences	989,870	Calculated using the
IFV _{res-adj}	Resident Vegetable Ingestion Fraction - age-	909,070	age-adjusted intake
	adjusted (g)		
IDV	Desident Vegetable Ingestion Data adult	128.0	factors equation
IRV _{res-a}	Resident Vegetable Ingestion Rate - adult	128.9	U.S. EPA 2011 (Table
	(g/day)		13-10)

Table E-3.	Resident	Soil
------------	----------	------

Symbol	Definition (units)	Default	Reference
IRV _{res-c}	Resident Vegetable Ingestion Rate - child (g/day)	41.7	U.S. EPA 2011 (Table 13-10)
$\mathrm{IFF}_{\mathrm{res-adj}}$	Resident Fruit Ingestion Fraction - age- adjusted (g)	1,462,510	Calculated using the age-adjusted intake factors equation
IRF _{res-a}	Resident Fruit Ingestion Rate - adult (g/day)	188.5	U.S. EPA 2011 (Table 13-5)
IRF _{res-c}	Resident Fruit Ingestion Rate - child (g/day)	68.1	U.S. EPA 2011 (Table 13-5)
EF _{res}	Resident Exposure Frequency - (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-a}	Resident Exposure Frequency - adult (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-c}	Resident Exposure Frequency - child (days/year)	350	U.S. EPA 1991a (pg. 15)
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table 16-108; 90th percentile or current residence time.
ED _{res-a}	Resident Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res-} c (6 years)
ED _{res-c}	Resident Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages 6 and 15
ET _{res}	Resident Exposure Time (hours/day)	24	24 Hours per 24 hour Day
ET _{res-a}	Resident Exposure Time - adult (hours/day)	24	24 Hours per 24 hour Day
ET _{res-c}	Resident Exposure Time - child (hours/day)	24	24 Hours per 24 hour Day
ET _{res-i}	Resident Exposure Time - indoor (hours/day)	16.416	U.S. EPA 2011 (Table 16-16 50 th %)
ET _{res-o}	Resident Exposure Time - outdoor (hours/day)	1.752	U.S. EPA 2011 (Table 16-20 50 th %))

Table E-3. Resident Soil

Symbol	Definition (units)	Default	Reference
PRG _{iw-soil-ing}	Indoor Worker Soil Radionuclide Ingestion	Contaminant-	Determined in this
Ū.	(pCi/g)	specific	calculator
PRG _{iw-soil-inh}	Indoor Worker Soil Radionuclide Inhalation	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{iw-soil-ext}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{iw-soil-tot}	Indoor Worker Soil Radionuclide Total (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{iw-soil-sv}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{iw-soil-1cm}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{iw-soil-5cm}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{iw-soil-15cm}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{iw-soil-gp}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/cm ² )	specific	calculator
$t_{iw}$	Time - indoor worker (years)	25	U.S. EPA 1991a (pg. 15)
IRS _{iw}	Indoor Worker Soil Ingestion Rate (mg/day)	50	U.S. EPA 2001 (pg. 4-3)
IRA _{iw}	Indoor Worker Inhalation Rate (m ³ /day; based	60	U.S. EPA 1997a (pg. 5-
	on a rate of 2.5 m ³ /hour for 24 hours)		11)
$\mathrm{EF}_{\mathrm{iw}}$	Indoor Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
$ED_{iw}$	Indoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ET _{iw}	Indoor Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
			Day

### Table E-4. Indoor Worker Soil

Symbol	Definition (units)	Default	Reference
PRG _{ow-soil-ing}	Outdoor Worker Soil Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi)	specific	calculator
PRGow-soil-inh	Outdoor Worker Soil Radionuclide Inhalation	Contaminant-	Determined in this
	(pCi)	specific	calculator
PRG _{ow-soil-ext}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRGow-soil-tot	Outdoor Worker Soil Radionuclide Total	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{ow-soil-sv}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{ow-soil-1cm}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{ow-soil-5cm}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRGow-soil-15cm	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{ow-soil-gp}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/cm ² )	specific	calculator
t _{ow}	Time - outdoor worker (years)	25	U.S. EPA 1991a (pg. 15)
IRS _{ow}	Outdoor Worker Soil Ingestion Rate (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRA _{ow}	Outdoor Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24 hours)		11)
EFow	Outdoor Worker Exposure Frequency	225	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{ow}	Outdoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ET _{ow}	Outdoor Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
			Day

### Table E-5. Outdoor Worker Soil

Symbol	Definition (units)	Default	Reference
PRG _{w-soil-ing}	Composite Worker Soil Radionuclide Ingestion	Contaminant-	Determined in this
C C	(pCi)	specific	calculator
PRG _{w-soil-inh}	Composite Worker Soil Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi)	specific	calculator
PRG _{w-soil-ext}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{w-soil-tot}	Composite Worker Soil Radionuclide Total	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{w-soil-sv}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
PRG _{w-soil-1cm}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
PRG _{w-soil-5cm}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
PRGw-soil-15cm	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
PRG _{w-soil-gp}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/cm ² )	specific	calculator
t _w	Time - worker (years)	25	U.S. EPA 1991a (pg. 15)
IRS _w	Composite Worker Soil Ingestion Rate	100	U.S. EPA 1991a (pg. 15)
	(mg/day)		
IRAw	Composite Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24 hours)		11)
$EF_w$	Composite Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
$ED_w$	Composite Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
$ET_w$	Composite Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
			Day

Table E-6. Composite Worker Soil

Symbol	Definition (units)	Default	Reference
PRG _{ew-soil-ing}	Excavation Worker Soil Radionuclide	Contaminant-	Determined in this
_	Ingestion (pCi/g)	specific	calculator
PRG _{ew-soil-inh}	Excavation Worker Soil Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi/g)	specific	calculator
PRG _{ew-soil-ext}	Excavation Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{ew-soil-tot}	Excavation Worker Soil Radionuclide Total	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
t _{ew}	Time - excavation worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRS _{ew}	Excavation Worker Soil Ingestion Rate	330	
	(mg/day)		
IRA _{ew}	Excavation Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24 hours)		11)
EFew	Excavation Worker Exposure Frequency	20	
	(days/year)		
$ED_{ew}$	Excavation Worker Exposure Duration (years)	1	U.S. EPA 2002 Exhibit
			5-1
ET _{ew-o}	Excavation Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
			Day

Table E-7. Excavation Worker Soil

Symbol	Definition (units)	Default	Reference
PRG _{cw-soil-ing}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
Ū.	Ingestion (pCi/g)	specific	calculator
PRG _{cw-soil-inh}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi/g)	specific	calculator
PRG _{cw-soil-ext}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi/g)	specific	calculator
PRG _{cw-soil-tot}	Construction Worker Soil Radionuclide Total	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{cw-soil-sv}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi/g)	specific	calculator
PRG _{cw-soil-1cm}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi/g)	specific	calculator
PRG _{cw-soil-5cm}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi/g)	specific	calculator
PRGcw-soil-15cm	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi/g)	specific	calculator
PRG _{cw-soil-gp}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi/cm ² )	specific	calculator
t _{cw}	Time - construction worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRS _{cw}	Construction Worker Soil Ingestion Rate	330	
	(mg/day)		
IRA _{cw}	Construction Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24 hours)		11)
EF _{cw}	Construction Worker Exposure Frequency	250	U.S. EPA 2002 Exhibit
	(days/year)		5-1
EW _{cw}	Construction Worker Exposure Frequency	50	U.S. EPA 2002 Exhibit
	(weeks/year)		5-1
DW _{cw}	Construction Worker Exposure Frequency	5	U.S. EPA 2002 Exhibit
	(days/week)		5-1
ED _{cw}	Construction Worker Exposure Duration	1	U.S. EPA 2002 Exhibit
	(years)		5-1
ET _{cw}	Construction Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

### Table E-8. Construction Worker Soil

 Table E-9. Recreator Soil/Sediment

Symbol	Definition (units)	Default	Reference
PRG _{rec-soil-ing}	Recreator Soil Radionuclide Ingestion (pCi/g)	Contaminant- specific	Determined in this calculator
PRG _{rec-soil-inh}	Recreator Soil Radionuclide Inhalation (pCi/g)	Contaminant- specific	Determined in this calculator
PRG _{rec-soil-ext}	Recreator Soil Radionuclide External (pCi/g)	Contaminant- specific	Determined in this calculator
PRG _{rec-soil-tot}	Recreator Soil Radionuclide Total (pCi/g)	Contaminant- specific	Determined in this calculator
PRG _{rec-soil-sv}	Recreator Soil Radionuclide External (pCi/g)	Contaminant- specific	Determined in this calculator
PRG _{rec-soil-1cm}	Recreator Soil Radionuclide External (pCi/g)	Contaminant- specific	Determined in this calculator

Symbol	Definition (units)	Default	Reference
PRG _{rec-soil-5cm}	Recreator Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{rec-soil-15cm}	Recreator Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{rec-soil-gp}	Recreator Soil Radionuclide External	Contaminant-	Determined in this
	(pCi/cm ² )	specific	calculator
t _{rec}	Time - recreator (years)	Site-specific	Site-specific
IFS _{rec-adj}	Recreator Ingestion Fraction - age-adjusted	240,000	Calculated using the
	(mg)		age-adjusted intake
			factors equation.
IRS _{rec-a}	Recreator Soil Ingestion Rate - adult (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRS _{rec-c}	Recreator Soil Ingestion Rate - child (mg/day)	200	U.S. EPA 1991a (pg. 15)
IFA _{rec-adj}	Recreator Inhalation Fraction - age-adjusted	1,437.50	Calculated using the
	(m ³ )		age-adjusted intake
			factors equation.
IRA _{rec-a}	Recreator Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{rec-c}	Recreator Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
EF _{rec}	Recreator Exposure Frequency - (days/year)	75	Reasonable estimate
EF _{rec-a}	Recreator Exposure Frequency - adult	75	Reasonable estimate
	(days/year)		
EF _{rec-c}	Recreator Exposure Frequency - child	75	Reasonable estimate
	(days/year)		
ED _{rec}	Recreator Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.
ED _{rec-a}	Recreator Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res-}
			_c (6 years)
ED _{rec-c}	Recreator Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages
			6 and 15
ET _{rec}	Recreator Exposure Time (hours/day)	1	Reasonable estimate
ET _{rec-a}	Recreator Exposure Time - adult (hours/day)	1	Reasonable estimate
ET _{rec-c}	Recreator Exposure Time - child (hours/day)	1	Reasonable estimate

## Table E-9. Recreator Soil/Sediment

### Table E-10. Farmer Soil

Symbol	Definition (units)	Default	Reference
PRG _{far-soil-ing}	Farmer Soil Radionuclide Ingestion (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRG _{far-soil-inh}	Farmer Soil Radionuclide Inhalation	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{far-soil-ext}	Farmer Soil Radionuclide External (pCi/g)	Contaminant-	Determined in this
		specific	calculator
PRGsoil-far-produce-ing	Farmer Produce Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi/g)		
PRG _{soil-far-poultry-ing}	Farmer Poultry Radionuclide Back-	Contaminant-	Determined in this
1 , 0	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi/g)	-	

Table	E-10.	Farmer	Soil
-------	-------	--------	------

Symbol	Definition (units)	Default	Reference
PRG _{soil-far-egg-ing}	Farmer Egg Radionuclide Back-calculated	Contaminant-	Determined in this
000	Concentration in Soil Ingestion (pCi/g)	specific	calculator
$PRG_{soil-far-beef-ing}$	Farmer Beef Radionuclide Back-calculated	Contaminant-	Determined in this
	Concentration in Soil Ingestion (pCi/g)	specific	calculator
$PRG_{soil-far-dairy-ing}$	Farmer Dairy Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi/g)	speeme	curculator
$PRG_{soil-far-swine-ing}$	Farmer Swine Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil Ingestion (pCi/g)	specific	calculator
PRG _{soil-far-fish-ing}	Farmer Fish Radionuclide Back-calculated	Contaminant-	Determined in this
	Concentration in Soil Ingestion (pCi/g)	specific	calculator
		Contaminant-	Determined in this
PRG _{far-soil-tot}	Farmer Soil Radionuclide Total (pCi/g)	specific	calculator
PRG _{sw-far-produce-ing}	Farmer Produce Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil and Water	specific	calculator
	Ingestion	-	
PRG _{sw-far-poultry-ing}	Farmer Poultry Radionuclide Back-	Contaminant-	Determined in this
r,8	calculated Concentration in Soil and Water	specific	calculator
	Ingestion	1	
PRG _{sw-far-egg-ing}	Farmer Egg Radionuclide Back-calculated	Contaminant-	Determined in this
1 100sw-lar-egg-ing	Concentration in Soil and Water Ingestion	specific	calculator
PRG _{sw-far-beef-ing}	Farmer Beef Radionuclide Back-calculated	Contaminant-	Determined in this
T KO _{sw-far-beef-ing}			calculator
DDC	Concentration in Soil and Water Ingestion	specific	Determined in this
$PRG_{sw\mbox{-}far\mbox{-}dairy\mbox{-}ing}$	Farmer Dairy Radionuclide Back-	Contaminant-	
	calculated Concentration in Soil and Water	specific	calculator
	Ingestion		
PRG _{sw-far-swine-ing}	Farmer Swine Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil and Water	specific	calculator
	Ingestion		
PRG _{sw-far-fish-ing}	Farmer Fish Radionuclide Back-calculated	Contaminant-	Determined in this
	Concentration in Soil and Water Ingestion	specific	calculator
ρ _m	Density of milk (kg/L)	1.03	Milk Composition &
			Synthesis Resource
			Library
t _{far}	Time - farmer (years)	40	U.S. EPA 2005 (pg. C-
uar	Time Turner (years)	01	24/C-26)
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-	Radionuclide-	Hierarchy selection in
D V wet		Radionucitue-	
		specific	Section 222
	fresh plant per pCi/g-dry soil)	specific Redianualida	Section 2.3.2
Bv _{dry}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g-	Radionuclide-	Hierarchy selection in
Bv _{dry}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil)	Radionuclide- specific	Hierarchy selection in Section 2.3.2
Bv _{dry}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier	Radionuclide- specific Radionuclide-	Hierarchy selection in Section 2.3.2 Hierarchy selection in
Bv _{dry} R _{upv}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless)	Radionuclide- specific Radionuclide- specific (=Bv _{wet} )	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2
Bv _{dry} R _{upv}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless) Dry root uptake for pasture multiplier	Radionuclide- specific Radionuclide- specific (=Bv _{wet} ) Radionuclide-	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hierarchy selection in
Bv _{dry} R _{upv}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless)	Radionuclide- specific Radionuclide- specific (=Bv _{wet} )	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2
Bv _{dry}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless) Dry root uptake for pasture multiplier	Radionuclide- specific Radionuclide- specific (=Bv _{wet} ) Radionuclide-	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hierarchy selection in
Bv _{dry} R _{upv} R _{upp}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless) Dry root uptake for pasture multiplier (dimensionless)	Radionuclide- specific Radionuclide- specific (=Bv _{wet} ) Radionuclide- specific (=Bv _{drv} )	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2
Bv _{dry} R _{upv} R _{upp} R _{es}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless) Dry root uptake for pasture multiplier (dimensionless) Soil resuspension multiplier (dimensionless)	Radionuclide- specific Radionuclide- specific (=Bv _{wet} ) Radionuclide- specific (=Bv _{drv} ) =MLF (pasture or produce)	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hinton 1992
Bv _{dry} R _{upv} R _{upp}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless) Dry root uptake for pasture multiplier (dimensionless) Soil resuspension multiplier	Radionuclide- specific Radionuclide- specific (=Bv _{wet} ) Radionuclide- specific (=Bv _{drv} ) =MLF (pasture or produce) Radionuclide-	Hierarchy selection in Section 2.3.2Hierarchy selection in Section 2.3.2Hierarchy selection in Section 2.3.2Hinton 1992Hierarchy selection in
Bv _{dry} R _{upv} R _{upp} R _{es}	fresh plant per pCi/g-dry soil) Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil) Wet root uptake for produce multiplier (unitless) Dry root uptake for pasture multiplier (dimensionless) Soil resuspension multiplier (dimensionless)	Radionuclide- specific Radionuclide- specific (=Bv _{wet} ) Radionuclide- specific (=Bv _{drv} ) =MLF (pasture or produce)	Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hierarchy selection in Section 2.3.2 Hinton 1992

Symbol	Definition (units)	Default	Reference
TF _{swine}	Swine Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TFpoultry	Poultry Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{egg}	Egg Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
00		specific	Section 2.3.2
MLF _{produce}	Produce Plant Mass Loading Factor	0.26 x 0.052 =	Hinton, 1992. U.S.
•	(unitless)	0.0135	EPA SSG 1996 table
			G-1. Dry weight to wet
			weight conversion
			equation from section
			4.10.8.
MLF _{pasture}	Pasture Plant Mass Loading Factor	0.25	Hinton, T. G. 1992
-	(unitless)		
Qp-beef	Beef Fodder Intake Rate (kg/day)	11.77	U.S. EPA 2005 (pg. B-
			138)
Q _{p-dairy}	Dairy Fodder Intake Rate (kg/day)	20.3	U.S. EPA 2005 (pg. B-
			145)
Q _{p-swine}	Swine Fodder Intake Rate (kg/day)	4.7	U.S. EPA 2005 (pg. B-
-			152)
Q _{p-poultry}	Poultry Fodder Intake Rate (kg/day)	0.2	U.S. EPA 2005 (pg. B-
			158/164)
Q _{s-beef}	Beef Soil Intake Rate (kg/day)	0.5	U.S. EPA 2005 (pg. B-
			139)
Qs-dairy	Dairy Soil Intake Rate (kg/day)	0.4	U.S. EPA 2005 (pg. B-
			146)
Qs-swine	Swine Soil Intake Rate (kg/day)	0.37	U.S. EPA 2005 (pg. B-
			153)
Qs-poultry	Poultry Soil Intake Rate (kg/day)	0.022	U.S. EPA 2005 (pg. B-
			159/165)
f _{p-beef}	Fraction of Time Animal is On-Site - beef	1	Developed for this
-	(unitless)		calculator
f _{p-dairy}	Fraction of Time Animal is On-Site - dairy	1	Developed for this
	(unitless)		calculator
f _{p-swine}	Fraction of Time Animal is On-Site - swine	1	Developed for this
	(unitless)		calculator
$f_{p-poultry}$	Fraction of Time Animal is On-Site -	1	Developed for this
	poultry (unitless)		calculator
$f_{s-beef}$	Fraction of Animal's Food from Site when	1	Developed for this
	On-Site - beef (unitless)		calculator
$\mathbf{f}_{\text{s-dairy}}$	Fraction of Animal's Food from Site when	1	Developed for this
	On-Site - dairy (unitless)		calculator
f _{s-swine}	Fraction of Animal's Food from Site when	1	Developed for this
	On-Site - swine (unitless)		calculator
$f_{s-poultry}$	Fraction of Animal's Food from Site when	1	Developed for this
	On-Site - poultry (unitless)		calculator
$\mathrm{IFS}_{\mathrm{far-adj}}$	Farmer Soil Ingestion Fraction - age-	1,610,000	Calculated using the
	adjusted (mg)		age-adjusted intake
			factors equation.
$IRS_{far-a}$	Farmer Soil Ingestion Rate - adult	100	U.S. EPA 1991a (pg.
	(mg/day)		15)

**Table E-10. Farmer Soil** 

Symbol	Definition (units)	Default	Reference
$\mathrm{IFA}_{\mathrm{far-adj}}$	Farmer Inhalation Rate - age-adjusted (m ³ )	259,000	Calculated using the age-adjusted intake factors equation.
IRA _{far-a}	Farmer Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{far-c}	Farmer Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
IRS _{far-c}	Farmer Soil Ingestion Rate - child (mg/day)	200	U.S. EPA 1991a (pg. 15)
$\mathrm{EF}_{\mathrm{far}}$	Farmer Exposure Frequency (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{far-a}	Farmer Exposure Frequency - adult (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{far}	Farmer Exposure Frequency - child (days/year)	350	U.S. EPA 1991a (pg. 15)
$\mathrm{ED}_{\mathrm{far}}$	Farmer Exposure Duration (years)	40	U.S. EPA 2005 (Table 6-3)
ED _{far-a}	Farmer Exposure Duration - adult (years)	34	U.S. EPA 1994a
ED _{far-c}	Farmer Exposure Duration - child (years)	6	U.S. EPA 2005 (Table 6-3)
$\mathrm{ET}_{\mathrm{far}}$	Farmer Exposure Time - (hours/day)	24	24 Hours per 24 hour Day
ET _{far-a}	Farmer Exposure Time - Adult (hours/day)	24	24 Hours per 24 hour Day
ET _{far-c}	Farmer Exposure Time - Child (hours/day)	24	24 Hours per 24 hour Day
ET _{far-i}	Farmer Exposure Time - indoor (hours/day)	10.008	1440 hrs/day - (ET _{far-o} + ET _{far-a} )
ET _{far-away}	Farmer Exposure Time - away (hours/day)	1.83	U.S. EPA 2011 (Tables 16-20 and 16-24 total of time in vehicles, near vehicles and outdoors other than near residence 25 th %)
ET _{far-o}	Farmer Exposure Time - outdoor (hours/day)	12.168	U.S. EPA 2011 (Table 16-20 95 th %))

Table E-10. Farmer Soil

Table E-11. Resident Tap Water

Symbol	Definition (units)	Default	Reference
PRG _{water-ing}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Radionuclide Ingestion (pCi/L)		calculator
PRG _{water-inh}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Radionuclide Inhalation (pCi/L)		calculator
PRG _{water-imm}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Radionuclide Immersion (pCi/L)		calculator
PRG _{water-tot}	Resident Tap Water (Groundwater)	Contaminant-specific	Determined in this
	Radionuclide Total (pCi/L)		calculator
Irr _{rup}	Root uptake from irrigation multiplier	Isotope-specific	Calculated
	(L/kg)		

Symbol	Definition (units)	Default	Reference
Irr _{res}	Resuspension from irrigation multiplier	Isotope-specific	Calculated
	(L/kg)		
Irr _{dep}	Aerial deposition from irrigation	Isotope-specific	Calculated
-	multiplier (L/kg)		
Bv _{wet}	Soil to Plant Transfer Factor - wet	Radionuclide-specific	Hierarchy selection in
	(pCi/g-fresh plant per pCi/g-dry soil)	_	Section 2.3.2
F	Irrigation Period (unitless)	0.25	Personal communication
If	Interception Fraction (unitless)	0.42	Miller, C. W. 1980
Ir	Irrigation Rate (L/m ² )	3.62	Personal communication
$\lambda_{HL}$	Soil Leaching Rate (1/day)	0.000027	NCRP 1996
$\lambda_i$	Decay (1/day)	0.693/TR -	NCRP 1996
-		radionuclides	
$\lambda_{\rm E}$	Decay for Removal on Produce (1/day)	$\lambda_{i} + (0.693/t_{w})$	NCRP 1996
λ _B	Effective Rate for Removal (1/day)	$\lambda_{\rm HL}$ - $\lambda_{\rm i}$	NCRP 1996
T	Translocation Factor (unitless)	1	NCRP 1996
t _b	Long Term Deposition and Buildup	10950	NCRP 1996
-0	(day)		
t _v	Above Ground Exposure Time (day)	60	NCRP 1996
t _w	Weathering Half-life (day)	14	NCRP 1996
Y _v	Plant Yield - wet (kg/m ² )	2	NCRP 1996
P	Area Density for Root Zone $(kg/m^2)$	240	Hoffman, F. O., R. H.
1	The Density for Root Zone (Rg/m )	240	Gardner, and K. F.
			Eckerman. 1982;
			Peterson, H. T., Jr. 1983;
			McKone, T. E. 1994
MLF _{produce}	Produce Plant Mass Loading Factor	$0.26 \ge 0.052 = 0.0135$	Hinton, 1992. U.S. EPA
filler produce	(unitless)	0.20 X 0.022 0.0122	SSG 1996 table G-1. Dry
	(university)		weight to wet weight
			conversion equation from
			section 4.10.8.
IFW _{res-adj}	Resident Tap Water Ingestion Rate -	19,138	Calculated using the age-
··· ies-auj	age-adjusted (L)		adjusted intake factors
	-gj (_)		equation.
IRW _{res-a}	Resident Tap Water Ingestion - adult	2.5	U.S. EPA 2011a, Tables
110 103-4	(L/day)		3-15 and 3-33; weighted
			average of 90th percentile
			consumer-only ingestion
			of drinking water (21+)
IRW _{res-c}	Resident Tap Water Ingestion - child	0.78	U.S. EPA 2011a, Tables
in the sec	(L/day)		3-15 and 3-33; weighted
			average of 90th percentile
			consumer-only ingestion
			of drinking water (birth to
			<6 years)
IFA _{res-adj}	Resident Inhalation Rate - age-adjusted	161,100	Calculated using the age-
/ -ics-auj	$(m^3)$		adjusted intake factors
	()		equation.
DFA _{res-adj}	Resident Immersion Factor - age-	6104	Calculated using the age-
res-adj	adjusted (hours)		adjusted intake factors
			equation.
ΙΡΛ	Parident Inhelation Data adult (m3/1)	20	U.S. EPA 1991a (pg. 15)
IRA _{res-a}	Resident Inhalation Rate - adult (m ³ /day)	20	0.5. EFA 1991a (pg. 15)

### Table E-11. Resident Tap Water

Symbol	Definition (units)	Default	Reference
IRA _{res-c}	Resident Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
IFV _{res-adj}	Resident Vegetable Ingestion Fraction - age-adjusted (g)	989,870	Calculated using the age- adjusted intake factors equation
IRV _{res-a}	Resident Vegetable Ingestion Rate - adult (g/day)	128.9	U.S. EPA 2011 (Table 13-10)
IRV _{res-c}	Resident Vegetable Ingestion Rate - child (g/day)	41.7	U.S. EPA 2011 (Table 13-10)
IFF _{res-adj}	Resident Fruit Ingestion Fraction - age- adjusted (g)	1,462,510	Calculated using the age- adjusted intake factors equation
IRF _{res-a}	Resident Fruit Ingestion Rate - adult (g/day)	188.5	U.S. EPA 2011 (Table 13-5)
IRF _{res-c}	Resident Fruit Ingestion Rate - child (g/day)	68.1	U.S. EPA 2011 (Table 13-5)
EF _{res}	Resident Exposure Frequency - (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-a}	Resident Exposure Frequency - adult (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-c}	Resident Exposure Frequency - child (days/year)	350	U.S. EPA 1991a (pg. 15)
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table 16-108; 90th percentile or current residence time.
ED _{res-a}	Resident Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res} . c (6 years)
ED _{res-c}	Resident Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages 6 and 15
ET _{event-res-a}	Resident Tap Water Exposure Time - Adult (hours/event)	0.71	U.S. EPA 1997a
ET _{event-res-c}	Resident Tap Water Exposure Time - Child (hours/event)	0.54	U.S. EPA 1997a
EV _{res-a}	Number of bathing events per day - adult resident (events/day)	1	U.S. EPA 2004 Exhibit 3- 2
EV _{res-c}	Number of bathing events per day - child resident (events/day)	1	U.S. EPA 2004 Exhibit 3- 2

# Table E-11. Resident Tap Water

Symbol	Definition (units)	Default	Reference
PRG _{iw-water-ing}	Indoor Worker Tap Water Radionuclide	Contaminant-	Determined in this
-	Ingestion (pCi/g)	specific	calculator
PRG _{iw-water-inh}	Indoor Worker Tap Water Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi/g)	specific	calculator
PRG _{iw-water-ext}	Indoor Worker Tap Water Radionuclide	Contaminant-	Determined in this
	External (pCi/g)	specific	calculator
PRG _{iw-water-tot}	Indoor Worker Tap Water Radionuclide Total	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
IRW _{iw}	Indoor Worker Tap Water Ingestion (L/day)	1.25	U.S. EPA 2014, FAQ
			13
$EF_{iw}$	Indoor Worker Exposure Frequency	250	U.S. EPA 1991a (pg.
	(days/year)		15)
$ED_{iw}$	Indoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg.
			15)
ET _{iw}	Indoor Worker Exposure Time (hours/day)	8	Eight Hours per 24
			hour Day
ET _{event-iw}	Indoor Worker Tap Water Exposure Time -	0.71	U.S. EPA 1997a
	adult (hours/event)		
EV _{iw}	Number of bathing events per day - Indoor	1	U.S. EPA 2004 Exhibit
	Worker (events/day)		3-2

Table E-12. Indoor Worker Tap Water

Symbol	Definition (units)	Default	Reference
PRG _{rec-water-}	Recreator Surface Water Radionuclide	Contaminant-	Determined in this
ing	Ingestion (pCi)	specific	calculator
PRG _{rec-water-}	Recreator Surface Water Radionuclide	Contaminant-	Determined in this
imm	Immersion (pCi/L)	specific	calculator
PRG _{rec-water-}	Recreator Surface Water Radionuclide	Contaminant-	Determined in this
tot	Total (pCi/L)	specific	calculator
IFW _{rec-adj}	Recreator Surface Water Ingestion - age- adjusted (L)	131.4	Calculated using the age-adjusted intake
			factors equation.
IRW _{rec-a}	Recreator Surface water Ingestion - adult	0.11	Time weighted
IIX VV rec-a	(L/hour)	0.11	<u>average was</u>
			calculated based on
			the upper percentile
			from Table 3.7 of
			EFH 2019
IRW _{rec-c}	Recreator Surface water Ingestion - child	0.12	Table 3.5 in EFH
IIC VV rec-c	(L/hour)	0.12	2011
DFA _{rec-adj}	Recreator Immersion Factor - age-adjusted	1170	Calculated using the
,	(hours)		age-adjusted intake
			factors equation.
EF _{rec}	Recreator Exposure Frequency -	45	Region 4 Bulletin
	(days/year)		
EF _{rec-c}	Recreator Exposure Frequency - child	45	Region 4 Bulletin
	(days/year)		
EF _{rec-a}	Recreator Exposure Frequency - adult (days/year)	45	Region 4 Bulletin
ED _{rec}	Recreator Exposure Duration (years)	26	U.S. EPA 2011a,
LDrec	Recreator Exposure Duration (years)	20	Table 16-108; 90th
			percentile or current
			residence time.
ED _{rec-a}	Recreator Exposure Duration - adult	20	ED _{res} (26 years) -
LD rec-a	(years)	20	ED _{res-c} (6 years)
ED _{rec-c}	Recreator Exposure Duration - child	6	U.S. EPA 1991a,
LDIet-C	(years)	0	Pages 6 and 15
ET _{event-rec-a}	Number of bathing events per day - adult	1	Reasonable estimate
event-ree-a	recreator (events/day)	·	
ET _{event-rec-c}	Number of hours per bathing event - child	1	Reasonable estimate
event-rec-c	recreator (hours/event)	·	
EV _{rec-a}	Number of hours per bathing event - child	1	Reasonable estimate
rec-a	recreator (hours/event)	1	
EV _{rec-c}	Number of bathing events per day - child	1	Reasonable estimate
		1 1	i neasonaine estimate

Table E-13. Recreator Surface Water

Symbol	Definition (units)	Default	Reference
PRG _{water-far-ing}	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
6	Radionuclide Ingestion (pCi/L)	specific	calculator
PRG _{water-far-inh}	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Inhalation (pCi/L)	specific	calculator
PRG _{water-far-imm}	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
water-rar-mini	Radionuclide Immersion (pCi/L)	specific	calculator
PRGwater-far-produce-	Farmer Produce Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Water	specific	calculator
ing	Ingestion (pCi/L)	speenie	culculator
PRG _{water-far-poultry-}	Farmer Poultry Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Water	specific	calculator
ing	Ingestion (pCi/L)	speenie	calculator
PRG _{water-far-egg-ing}	Farmer Egg Radionuclide Back-calculated	Contaminant-	Determined in this
I KOwater-far-egg-ing	Concentration in Water Ingestion (pCi/L)	specific	calculator
DDC	Farmer Beef Radionuclide Back-	Contaminant-	Determined in this
PRG _{water-far-beef-ing}	calculated Concentration in Water		calculator
		specific	calculator
DDC	Ingestion (pCi/L)	Cantana' t	Determined in (1)
PRGwater-far-dairy-ing	Farmer Dairy Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Water	specific	calculator
	Ingestion (pCi/L)		
PRG _{water-far-swine-ing}	Farmer Swine Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Water	specific	calculator
	Ingestion (pCi/L)		
PRG _{water-far-fish-ing}	Farmer Fish Radionuclide Back-calculated	Contaminant-	Determined in this
	Concentration in Water Ingestion (pCi/L)	specific	calculator
PRG _{water-far-tot}	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Total (pCi/L)	specific	calculator
PRG _{sw-far-produce-ing}	Farmer Produce Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil and Water	specific	calculator
	Ingestion		
PRG _{sw-far-poultry-ing}	Farmer Poultry Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil and Water	specific	calculator
	Ingestion		
PRG _{sw-far-egg-ing}	Farmer Egg Radionuclide Back-calculated	Contaminant-	Determined in this
00 0	Concentration in Soil and Water Ingestion	specific	calculator
PRG _{sw-far-beef-ing}	Farmer Beef Radionuclide Back-	Contaminant-	Determined in this
6	calculated Concentration in Soil and Water	specific	calculator
	Ingestion	1	
PRG _{sw-far-dairy-ing}	Farmer Dairy Radionuclide Back-	Contaminant-	Determined in this
sw far dany ng	calculated Concentration in Soil and Water	specific	calculator
	Ingestion	-1	
PRG _{sw-far-swine-ing}	Farmer Swine Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil and Water	specific	calculator
	Ingestion	SP COMP	
PRG _{sw-far-fish-ing}	Farmer Fish Radionuclide Back-calculated	Contaminant-	Determined in this
• • • • • • sw-1ar-IIsn-ing	Concentration in Soil and Water Ingestion	specific	calculator
2	Density of milk (kg/L)	1.03	Milk Composition &
$\rho_{m}$	Density Of IIIIK (Kg/L)	1.03	Synthesis Resource
			Library
DCE	Figh Transfor Easter (L/Ira)	Radionuclide-	
BCF	Fish Transfer Factor (L/kg)		Hierarchy selection in
		specific	Section 2.3.2

Table E-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
TF _{beef}	Beef Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{dairy}	Dairy Transfer Factor (day/L)	Radionuclide-	Hierarchy selection in
2		specific	Section 2.3.2
TF _{swine}	Swine Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{poultry}	Poultry Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
1 5		specific	Section 2.3.2
TFegg	Egg Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
66		specific	Section 2.3.2
Q _{w-beef}	Beef Water Intake Rate (L/day)	53	U.S. EPA 1999a (pg. 10-
<b>C</b> ¹			23). U.S. EPA 1997b.
Q _{w-dairy}	Dairy Water Intake Rate (L/day)	92	U.S. EPA 1999a (pg. 10-
Cir dany			23). U.S. EPA 1997b.
Q _{w-swine}	Swine Water Intake Rate (L/day)	11.4	NEC, Swine Nutrition
Cu swine			Guide (pg. 19). U.S. EPA
			1998 (pg. B-180)
Qw-poultry	Poultry Water Intake Rate (L/day)	0.4	U.S. EPA 2005 (pg. B-
C w poundy			159/165), NRC 1994 pg.
			$15 (Q_w = 2 \times Q_p)$
Irr _{rup}	Root uptake from irrigation multiplier	Isotope-specific	Calculated
Irr _{res}	Resuspension from irrigation multiplier	Isotope-specific	Calculated
Irr _{dep}	Aerial deposition from irrigation	Isotope-specific	Calculated
muep	multiplier	isotope specific	Curculated
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-	Radionuclide-	Hierarchy selection in
Dowel	fresh plant per pCi/g-dry soil)	specific	Section 2.3.2
F	Irrigation Period (unitless)	0.25	Personal communication
I _f	Interception Fraction (unitless)	0.42	Miller, C. W. 1980
I _r	Irrigation Rate (L/m ² )	3.62	Personal communication
$\frac{\Gamma_{\rm r}}{\lambda_{\rm HL}}$	Soil Leaching Rate (1/day)	0.000027	NCRP 1996
λ _i	Decay (1/day)	0.693/TR -	NCRP 1996
10	Decuy (Irauy)	radionuclides	
$\lambda_{\rm E}$	Decay for Removal on Produce (1/day)	$\lambda_i + (0.693/t_w)$	NCRP 1996
$\frac{\lambda_{\rm E}}{\lambda_{\rm B}}$	Effective Rate for Removal (1/day)	$\lambda_{\rm HL} - \lambda_{\rm i}$	NCRP 1996
T	Translocation Factor (unitless)	$\chi_{\rm HL} - \chi_{\rm I}$	NCRP 1996
t _b	Long Term Deposition and Buildup (day)	10950	NCRP 1996
	Above Ground Exposure Time (day)	60	NCRP 1996
t _v		14	NCRP 1996
t _w Y _v	Weathering Half-life (day)           Plant Yield - wet (kg/m²)	2	NCRP 1996
P			
P	Area Density for Root Zone (kg/m ² )	240	Hoffman, F. O., R. H. Gardner, and K. F.
			Eckerman. 1982;
			Peterson, H. T., Jr. 1983;
MIE	Draduce Diant Mass Laster Ester	0.26 - 0.052 -	McKone, T. E. 1994
MLF _{produce}	Produce Plant Mass Loading Factor	$0.26 \ge 0.052 =$	Hinton, 1992. U.S. EPA
	(unitless)	0.0135	SSG 1996 table G-1. Dry
			weight to wet weight
			conversion equation from
IEW		21.200	section 4.10.8.
$\mathrm{IFW}_{\mathrm{far-adj}}$	Farmer Water Ingestion Fraction - age-	31,388	Calculated using the age-
	adjusted (L)		adjusted intake factors
			equation.

### Table E-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
IRW _{far-a}	Farmer Water Ingestion Rate - adult (L/day)	2.5	U.S. EPA 2011a, Tables 3-15 and 3-33; weighted average of 90th percentile consumer-only ingestion of drinking water (21+)
IRW _{far-c}	Farmer Water Ingestion Rate - child (L/day)	0.78	U.S. EPA 2011a, Tables 3-15 and 3-33; weighted average of 90th percentile consumer-only ingestion of drinking water (birth to <6 years)
$\mathrm{IFA}_{\mathrm{far-adj}}$	Farmer Inhalation Rate - age-adjusted (m ³ )	259,000	Calculated using the age- adjusted intake factors equation.
$\mathrm{DFA}_{\mathrm{far-adj}}$	Farmer Immersion Factor - age-adjusted (hours)	9583	Calculated using the age- adjusted intake factors equation.
IRA _{far-a}	Farmer Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{far-c}	Farmer Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
EF _{far}	Farmer Exposure Frequency (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{far-a}	Farmer Exposure Frequency - adult (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{far}	Farmer Exposure Frequency - child (days/year)	350	U.S. EPA 1991a (pg. 15)
ED _{far}	Farmer Exposure Duration (years)	40	U.S. EPA 2005 (Table 6- 3)
ED _{far-a}	Farmer Exposure Duration - adult (years)	34	U.S. EPA 1994a
ED _{far-c}	Farmer Exposure Duration - child (years)	6	U.S. EPA 2005 (Table 6- 3)
ET _{event-far-c}	Farmer Tap Water Exposure Time - Child (hours/day)	0.54	Ú.S. EPA 1997a
ET _{event-far-a}	Farmer Tap Water Exposure Time - Adult (hours/day)	0.71	U.S. EPA 1997a
EV _{far-a}	Number of bathing events per day - adult farmer (events/day)	1	U.S. EPA 2004 Exhibit 3- 2
EV _{far-c}	Number of bathing events per day - child farmer (events/day)	1	U.S. EPA 2004 Exhibit 3- 2

# Table E-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
PRG _{res-air-inh-decay}	Resident Air Radionuclide Inhalation w/	Contaminant-	Determined in this
	Decay (pCi/m ³ )	specific	calculator
PRG _{res-air-sub-decay}	Resident Air Radionuclide Submersion w/	Contaminant-	Determined in this
	Decay (pCi/m ³ )	specific	calculator
PRG _{res-air-tot-decay}	Resident Air Radionuclide Total w/ Decay	Contaminant-	Determined in this
	(pCi/m ³ )	specific	calculator
PRG _{res-air-inh-nodecay}	Resident Air Radionuclide Inhalation	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
PRG _{res-air-sub-nodecay}	Resident Air Radionuclide Submersion	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
PRG _{res-air-tot-nodecay}	Resident Air Radionuclide Total w/out	Contaminant-	Determined in this
	Decay (pCi/m ³ )	specific	calculator
t _{res}	Time - resident (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.
IFA _{res-adj}	Resident Inhalation Rate - age-adjusted	161,100	Calculated using the
	$(m^3)$		age-adjusted intake
			factors equation.
IRA _{res-a}	Resident Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{res-c}	Resident Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5-
			11)
EF _{res}	Resident Exposure Frequency -	350	U.S. EPA 1991a (pg. 15)
	(days/year)		
EF _{res-c}	Resident Exposure Frequency - child	350	U.S. EPA 1991a (pg. 15)
	(days/year)		
EF _{res-a}	Resident Exposure Frequency - adult	350	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.
ED _{res-a}	Resident Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res} -
			_c (6 years)
ED _{res-c}	Resident Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages
			6 and 15
ET _{res}	Resident Exposure Time (hours/day)	24	24 Hours per 24 hour
			Day
ET _{res-a}	Resident Exposure Time - adult	24	24 Hours per 24 hour
	(hours/day)		Day
ET _{res-c}	Resident Exposure Time - child	24	24 Hours per 24 hour
	(hours/day)		Day

Table E-15. Resident Air

Symbol	Definition (units)	Default	Reference
PRG _{iw-air-inh-decay}	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
PRG _{iw-air-sub-decay}	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi/m ³ )	specific	calculator
PRG _{iw-air-tot-decay}	Indoor Worker Air Radionuclide Total w/	Contaminant-	Determined in this
	Decay (pCi/m ³ )	specific	calculator
PRGiw-air-inh-nodecay	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
PRG _{iw-air-sub-nodecay}	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/out Decay (pCi/m ³ )	specific	calculator
PRG _{iw-air-tot-nodecay}	Indoor Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
IRA _{iw}	Indoor Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24		11)
	hours)		
EF _{iw}	Indoor Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{iw}	Indoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
$ET_{iw}$	Indoor Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

Table E-16. Indoor Worker Air

Table E-17. Outdoor Worker Air

Symbol	Definition (units)	Default	Reference
PRG _{ow-air-inh-decay}	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
PRGow-air-sub-decay	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi/m ³ )	specific	calculator
PRGow-air-tot-decay	Outdoor Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/ Decay (pCi/m ³ )	specific	calculator
PRG _{ow-air-inh-nodecay}	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
PRGow-air-sub-nodecay	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/out Decay (pCi/m ³ )	specific	calculator
PRGow-air-tot-nodecay	Outdoor Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
t _{ow}	Time - outdoor worker (years)	25	U.S. EPA 1991a (pg. 15)
IRA _{ow}	Outdoor Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24		11)
	hours)		
EFow	Outdoor Worker Exposure Frequency	225	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{ow}	Outdoor Worker Exposure Duration	25	U.S. EPA 1991a (pg. 15)
	(years)		
ET _{ow}	Outdoor Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

Symbol	Definition (units)	Default	Reference
PRG _{w-air-inh-decay}	Composite Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
PRG _{w-air-sub-decay}	Composite Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi/m ³ )	specific	calculator
PRG _{w-air-tot-decay}	Composite Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/ Decay (pCi/m ³ )	specific	calculator
PRGw-air-inh-nodecay	Composite Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
PRGw-air-sub-nodecay	Composite Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/out Decay (pCi/m ³ )	specific	calculator
PRG _{w-air-tot-nodecay}	Composite Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
t _w	Time - worker (years)	25	U.S. EPA 1991a (pg. 15)
IRA _w	Composite Worker Inhalation Rate	60	U.S. EPA 1997a (pg. 5-
	$(m^{3}/day; based on a rate of 2.5 m^{3}/hour for$		11)
	24 hours)		
$EF_w$	Composite Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
EDw	Composite Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
$ET_w$	Composite Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

Table E-18. Composite Worker Air

Table E-19. Excavation Worker Air

Symbol	Definition (units)	Default	Reference
PRG _{ew-air-inh-decay}	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
PRGew-air-sub-decay	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi/m ³ )	specific	calculator
PRGew-air-tot-decay	Excavation Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/ Decay (pCi/m ³ )	specific	calculator
PRGew-air-inh-nodecay	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
PRGew-air-sub-nodecay	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/out Decay (pCi/m ³ )	specific	calculator
PRGew-air-tot-nodecay	Excavation Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
t _{ew}	Time - excavation worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRA _{ew}	Excavation Worker Inhalation Rate	60	U.S. EPA 1997a (pg. 5-
	$(m^3/day; based on a rate of 2.5 m^3/hour for$		11)
	24 hours)		
EF _{ew}	Excavation Worker Exposure Frequency	20	
	(days/year)		
$ED_{ew}$	Excavation Worker Exposure Duration	1	U.S. EPA 2002 Exhibit
	(years)		5-1
ET _{ew-o}	Excavation Worker Exposure Time	8	Eight Hours per 24
	(hours/day)		hour Day

Symbol	Definition (units)	Default	Reference
PRG _{cw-air-inh-decay}	Construction Worker Air Radionuclide	Contaminant-	Determined in this
•	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
PRG _{cw-air-sub-decay}	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi/m ³ )	specific	calculator
PRG _{cw-air-tot-decay}	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Total w/ Decay (pCi/m ³ )	specific	calculator
PRGcw-air-inh-nodecay	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
PRGcw-air-sub-nodecay	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/out Decay (pCi/m ³ )	specific	calculator
PRG _{cw-air-tot-nodecay}	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Total w/out Decay (pCi/m ³ )	specific	calculator
t _{cw}	Time - construction worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRA _{cw}	Construction Worker Inhalation Rate	60	U.S. EPA 1997a (pg. 5-
	$(m^{3}/day; based on a rate of 2.5 m^{3}/hour for$		11)
	24 hours)		
EF _{cw}	Construction Worker Exposure Frequency	250	U.S. EPA 2002 Exhibit
	(days/year)		5-1
EW _{cw}	Construction Worker Exposure Frequency	50	U.S. EPA 2002 Exhibit
	(weeks/year)		5-1
$\mathrm{DW}_{\mathrm{cw}}$	Construction Worker Exposure Frequency	5	U.S. EPA 2002 Exhibit
	(days/week)		5-1
$ED_{cw}$	Construction Worker Exposure Duration	1	U.S. EPA 2002 Exhibit
	(years)		5-1
ET _{cw}	Construction Worker Exposure Time	8	Eight Hours per 24
	(hours/day)		hour Day

Table E-20	. Construction	Worker	Air
------------	----------------	--------	-----

Symbol	Definition (units)	Default	Reference
PRG _{rec-air-inh-decay}	Recreator Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
PRG _{rec-air-sub-decay}	Recreator Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi/m ³ )	specific	calculator
PRG _{rec-air-tot-decay}	Recreator Worker Air Radionuclide Total	Contaminant-	Determined in this
	w/ Decay (pCi/m ³ )	specific	calculator
PRG _{rec-air-inh-nodecay}	Recreator Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
PRG _{rec-air-sub-nodecay}	Recreator Air Radionuclide Submersion	Contaminant-	Determined in this
	w/out Decay (pCi/m ³ )	specific	calculator
PRG _{rec-air-tot-nodecay}	Recreator Air Radionuclide Total w/out	Contaminant-	Determined in this
·	Decay (pCi/m ³ )	specific	calculator
t _{rec}	Time - recreator (years)	Site-specific	Site-specific
IFA _{rec-adj}	Recreator Inhalation Fraction - age-	1,437.5	Calculated using the
U	adjusted (m ³ )		age-adjusted intake
			factors equation.
IRA _{rec-a}	Recreator Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg.
			15)
IRA _{rec-c}	Recreator Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5-
			11)
EF _{rec}	Recreator Exposure Frequency -	75	Reasonable estimate
	(days/year)		
EF _{rec-a}	Recreator Exposure Frequency - adult	75	Reasonable estimate
	(days/year)		
EF _{rec-c}	Recreator Exposure Frequency - child	75	Reasonable estimate
	(days/year)		
ED _{rec}	Recreator Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.
ED _{rec-a}	Recreator Exposure Duration - adult	20	ED _{res} (26 years) - ED _{res} -
	(years)		_c (6 years)
ED _{rec-c}	Recreator Exposure Duration - child	6	U.S. EPA 1991a, Pages
	(years)		6 and 15
ET _{rec}	Recreator Exposure Time (hours/day)	1	Reasonable estimate
ET _{rec-a}	Recreator Exposure Time - adult	1	Reasonable estimate
	(hours/day)		
ET _{rec-c}	Recreator Exposure Time - child	1	Reasonable estimate
	(hours/day)		

Table E-21. Recreator Air

Symbol	Definition (units)	Default	Reference
PRG _{res-fsh-ing}	Resident Fish Radionuclide (pCi)	Contaminant-	Determined in this
		specific	calculator
PRG _{res-fshw-ing}	Resident Surface Water Fish Radionuclide	Contaminant-	Determined in this
	(pCi)	specific	calculator
CF _{res-fish}	Fish Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
BCF	Fish Transfer Factor (L/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
IRF _{res}	Resident Fish Ingestion Rate (g/day)	54	U.S. EPA 1991a (page
			15)
EF _{res}	Resident Exposure Frequency - (days/year)	350	U.S. EPA 1991a (pg.
			15)
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.

Table E-22.	Resident	Fish	Consumption
-------------	----------	------	-------------

Symbol	Definition (units)	Default	Reference
CDI _{rec-fowl-rad-ing}	Recreator Fowl Radionuclide Ingestion (pCi)	Contaminant- specific	Determined in this calculator
$CDI_{soil-rec-fowl-rad-ing}$	Recreator Fowl Radionuclide Back- calculated Concentration in Soil Ingestion (pCi)	Contaminant- specific	Determined in this calculator
CDI _{water} -rec-fowl-rad-	Recreator Fowl Radionuclide Back- calculated Concentration in Water Ingestion (pCi)	Contaminant- specific	Determined in this calculator
CDI _{rec-game-rad-ing}	Recreator Game Radionuclide Ingestion (pCi)	Contaminant- specific	Determined in this calculator
$\mathrm{CDI}_{\mathrm{soil}}$ -rec-game-rad-ing	Recreator Game Radionuclide Back- calculated Concentration in Soil Ingestion (pCi)	Contaminant- specific	Determined in this calculator
CDIwater-rec-game-rad-	Recreator Game Radionuclide Back- calculated Concentration in Water Ingestion (pCi)	Contaminant- specific	Determined in this calculator
CF _{rec-game}	Game Contaminated Fraction - farmer (unitless)	1	Developed for Radionuclide Soil Screening calculator
CF _{rec-fowl}	Fowl Contaminated Fraction - farmer (unitless)	1	Developed for Radionuclide Soil Screening calculator
Bv _{dry}	Soil to Plant Transfer Factor - dry (pCi/g- dry plant per pCi/g-dry soil)	Radionuclide- specific	Hierarchy selection in Section 2.3.2
R _{upp}	Dry root uptake for pasture multiplier (dimensionless)	Radionuclide- specific (=Bv _{dry} )	Hierarchy selection in Section 2.3.2
TF _{beef}	Game Transfer Factor (day/kg)	Radionuclide- specific	Hierarchy selection in Section 2.3.2

Table E-23. Recreator Game and Fowl Consumption

Symbol	Definition (units)	Default	Reference
TF _{poultry}	Fowl Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
Qw-game	Game Water Intake Rate (L/day)	Site-specific	-
Q _{w-fowl}	Fowl Water Intake Rate (L/day)	Site-specific	-
Q _{p-game}	Game Fodder Intake Rate (kg/day)	Site-specific	-
Q _{p-fowl}	Fowl Fodder Intake Rate (kg/day)	Site-specific	-
Q _{s-game}	Game Soil Intake Rate (kg/day)	Site-specific	-
Q _{s-fowl}	Fowl Soil Intake Rate (kg/day)	Site-specific	-
f _{p-game}	Fraction of Time Animal is On-Site - game (unitless)	Site-specific	-
f _{p-fowl}	Fraction of Time Animal is On-Site - fowl (unitless)	Site-specific	-
f _{s-game}	Fraction of Animal's Food from Site when On-Site - game (unitless)	Site-specific	-
$f_{s-fowl}$	Fraction of Animal's Food from Site when On-Site - fowl (unitless)	Site-specific	-
EF _{rec}	Recreator Exposure Frequency - (days/year)	75	Reasonable estimate
ED _{rec}	Recreator Exposure Duration (years)	26	Reasonable estimate

Table E-23. Recreator Game and Fowl Consumption

Table E-24. Farmer Direct Ingestion

Symbol	Definition (units)	Default	Reference
PRG _{far} -produce-ing	Farmer Produce Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{far-poultry-ing}	Farmer Poultry Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{far-egg-ing}	Farmer Egg Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{far-beef-ing}	Farmer Beef Radionuclide Ingestion	Contaminant-	Determined in this
Ū.	(pCi/g)	specific	calculator
PRG _{far-dairy-ing}	Farmer Dairy Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
PRG _{far-swine-ing}	Farmer Swine Radionuclide Ingestion	Contaminant-	Determined in this
_	(pCi/g)	specific	calculator
PRG _{far-fish-ing}	Farmer Fish Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi/g)	specific	calculator
CF _{far-produce}	Produce Contaminated Fraction - farmer	1	U.S. EPA 1994c. U.S.
	(unitless)		EPA. 1998. (pg. C-9)
CF _{far-poultry}	Poultry Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-egg}	Egg Contaminated Fraction - Farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-beef}	Beef Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-dairy}	Dairy Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator

Symbol	Definition (units)	Default	Reference
CF _{far-swine}	Swine Contaminated Fraction - farmer (unitless)	1	Developed for Radionuclide Soil Screening calculator
$CF_{\text{far-fish}}$	Fish Contaminated Fraction - farmer (unitless)	1	Developed for Radionuclide Soil Screening calculator
$\mathrm{IFV}_{\mathrm{far-adj}}$	Farmer Vegetable Ingestion Fraction - age- adjusted (g)	1,583,400	Calculated using the age-adjusted intake factors equation
IRV _{far-a}	Farmer Vegetable Ingestion Rate - adult (g/day)	125.7	U.S. EPA 2011 (Table 13-10)
IRV _{far-c}	Farmer Vegetable Ingestion Rate - child (g/day)	41.7	U.S. EPA 2011 (Table 13-10)
$\mathrm{IFF}_{\mathrm{far-adj}}$	Farmer Fruit Ingestion Rate - age-adjusted (g)	2,246,930	Calculated using the age-adjusted intake factors equation
IRF _{far-a}	Farmer Fruit Ingestion Rate - adult (g/day)	176.8	U.S. EPA 2011 (Table 13-5)
IRF _{far-c}	Farmer Fruit Ingestion Rate - child (g/day)	68.1	U.S. EPA 2011 (Table 13-5)
$\mathrm{IFP}_{\mathrm{far-adj}}$	Farmer Poultry Ingestion Fraction - age- adjusted (g)	1,318,100	Calculated using the age-adjusted intake factors equation
IRP _{far-a}	Farmer Poultry Ingestion Rate - adult (g/day)	106.6	U.S. EPA 2011 (Table 13-52)
IRP _{far-c}	Farmer Poultry Ingestion Rate - child (g/day)	23.6	U.S. EPA 2011 (Table 13-52)
$\mathrm{IFE}_{\mathrm{far-adj}}$	Farmer Egg Ingestion Rate - age-adjusted (g)	658,455	Calculated using the age-adjusted intake factors equation
IRE _{far-a}	Farmer Egg Ingestion Rate - adult (g/day)	53.4	U.S. EPA 2011 (Table 13-40)
IRE _{far-c}	Farmer Egg Ingestion Rate - child (g/day)	10.95	U.S. EPA 2011 (Table 13-40)
$\mathrm{IFB}_{\mathrm{far-adj}}$	Farmer Beef Ingestion Fraction - age- adjusted (g)	2,202,410	Calculated using the age-adjusted intake factors equation
IRB _{far-a}	Farmer Beef Ingestion Rate - adult (g/day)	178.0	U.S. EPA 2011 (Table 13-33)
IRB _{far-c}	Farmer Beef Ingestion Rate - child (g/day)	40.1	U.S. EPA 2011 (Table 13-33)
IFD _{far-adj}	Farmer Dairy Ingestion Fraction - age- adjusted (g)	6,036,590	Calculated using the age-adjusted intake factors equation
IRD _{far-a}	Farmer Dairy Ingestion Rate - adult (g/day)	445.6	U.S. EPA 2011 (Table 11-4)
IRD _{far-c}	Farmer Dairy Ingestion Rate - child (g/day)	349.5	U.S. EPA 2011 (Table 11-4)
$\mathrm{IFSW}_{\mathrm{far-adj}}$	Farmer Swine Ingestion Fraction - age- adjusted (g)	1,203,860	Calculated using the age-adjusted intake factors equation

Symbol	Definition (units)	Default	Reference
IRSW _{far-a}	Farmer Swine Ingestion Rate - adult	97.9	U.S. EPA 2011 (Table
	(g/day)		13-51)
IRSW _{far-c}	Farmer Swine Ingestion Rate - child	18.5	U.S. EPA 2011 (Table
	(g/day)		13-51)
IFFI _{far-adj}	Farmer Fish Ingestion Fraction - age-	1,918,140	Calculated using the
	adjusted (g)		age-adjusted intake
			factors equation
IRFI _{far-a}	Farmer Fish Ingestion Rate - adult (g/day)	155.4	U.S. EPA 2011 (Table
			13-20)
IRFI _{far-c}	Farmer Fish Ingestion Rate - child (g/day)	32.8	U.S. EPA 2011 (Table
			13-20)
CDI _{far-produce-rad-ing}	Farmer Produce Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi)	specific	calculator

Table E-24. Farmer Direct Ingestion

Symbol	Definition (units)	Default	Reference
Cw	Target soil leachate concentration (pCi/L)	Nonzero MCL or	U.S. EPA. 2002
		$RSL \times DAF$	Equation 4-14
DAF	Dilution attenuation factor (unitless)	20 (or site-specific)	U.S. EPA. 2002
			Equation 4-11
$ED_{gw}$	Exposure duration	70	U.S. EPA. 2002
-			Equation 4-14
Ι	Infiltration Rate (m/year)	0.18	U.S. EPA. 2002
			Equation 4-11
L	Source length parallel to ground water	Site-specific	U.S. EPA. 2002
	flow (m)	-	Equation 4-11
i	Hydraulic gradient (m/m)	Site-specific	U.S. EPA. 2002
			Equation 4-11
Κ	Aquifer hydraulic conductivity (m/year)	Site-specific	U.S. EPA. 2002
		-	Equation 4-11
$\theta_{\rm w}$	Water-filled soil porosity (L _{water} /L _{soil} )	0.3	U.S. EPA. 2002
			Equation 4-10
$\theta_a$	Air-filled soil porosity (Lair/Lsoil)	$= n - \theta_w$	U.S. EPA. 2002
			Equation 4-10
n	Total soil porosity (L _{pore} /L _{soil} )	$= 1 - (\rho_b / \rho_s)$	U.S. EPA. 2002
			Equation 4-10
ρs	Soil particle density (kg/L)	2.65	U.S. EPA. 2002
			Equation 4-10
$\rho_b$	Dry soil bulk density (kg/L)	1.5	U.S. EPA. 2002
			Equation 4-10
K _d	Soil-water partition coefficient (L/kg)	$= K_{oc} * f_{oc}$ for	U.S. EPA. 2002
		organics	Equation 4-10
d _a	Aquifer thickness (m)	Site-specific	U.S. EPA. 2002
			Equation 4-10
ds	Depth of source (m)	Site-specific	U.S. EPA. 2002
		-	Equation 4-10
d	Mixing zone depth (m)	Site-specific	U.S. EPA. 2002
			Equation 4-12

	Table E-25. Soil to	Groundwater	SSL Factor	Variables
--	---------------------	-------------	------------	-----------

Symbol	Definition (units)	Default	Reference
PEFw	Particulate Emission Factor - Minneapolis	1.36 x 10 ⁹ (region-	U.S. EPA 2002 Exhibit
	$(m^3/kg)$	specific)	D-2
Q/C _{wind}	Inverse of the Mean Concentration at the	93.77 (region-	U.S. EPA 2002 Exhibit
	Center of a 0.5-Acre-Square Source $(g/m^2-s \text{ per } kg/m^3)$	specific)	D-2
V	Fraction of Vegetative Cover (unitless)	0.5	U.S. EPA. 2002
			Equation 4-5
Um	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA. 2002
			Equation 4-5
Ut	Equivalent Threshold Value of Wind	11.32	U.S. EPA. 2002
	Speed at 7 m (m/s)		Equation 4-5
F(x)	Function Dependent on U _m /U _t (unitless)	0.194	U.S. EPA. 2002
			Equation 4-5
А	Dispersion constant unitless	PEF and region-	U.S. EPA 2002 Exhibit
		specific	D-2
As	Areal extent of the site or contamination	0.5 (range 0.5 to	U.S. EPA 2002 Exhibit
	(acres)	500)	D-2
В	Dispersion constant unitless	PEF and region-	U.S. EPA 2002 Exhibit
		specific	D-2
С	Dispersion constant unitless	PEF and region-	U.S. EPA 2002 Exhibit
		specific	D-2

Table E-26. Wind Particulate Emission Factor Variables

Symbol	Definition (units)	Default	Reference
PEF _{sc}	Particulate Emission Factor -	(Site-specific)	U.S. EPA 2002
	subchronic (m ³ /kg)		Equation 5-5
Q/C _{sr}	Inverse of the ratio of the 1-h geometric	23.02 (for 0.5 acre site)	U.S. EPA 2002
-	mean concentration to the emission flux		Equation 5-5
	along a straight road segment bisecting		
	a square site $(g/m^2$ -s per kg/m ³ )		
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation 5-5
Т	Total time over which construction	7,200,000	U.S. EPA 2002
	occurs (s)		Equation 5-5
A _R	Surface area of contaminated road	$(A_R = L_R \times W_R \times$	U.S. EPA 2002
	segment (m ² )	0.092903 m ² /ft ² )	Equation 5-5
L _R	Length of road segment (ft)	Site-specific	U.S. EPA 2002
			Equation 5-5
W _R	Width of road segment (ft)	20	U.S. EPA 2002
			Equation E-18
W	Mean vehicle weight (tons)	(Number of cars x	U.S. EPA 2002
		tons/car + number of	Equation 5-5
		trucks x tons/truck) /	
		total vehicles)	
р	Number of days with at least 0.01	Site-specific	U.S. EPA 2002
	inches of precipitation (days/year)		Exhibit 5-2
$\sum VKT$	Sum of fleet vehicle kilometers traveled	$\sum VKT = total vehicles$	U.S. EPA 2002
	during the exposure duration (km)	x distance (km/day) x	Equation 5-5
		frequency (weeks/year)	
		x (days/year)	
А	Dispersion constant unitless	12.9351	U.S. EPA 2002
			Equation 5-6
As	Areal extent of site surface soil	0.5 (range 0.5 to 500)	U.S. EPA 2002
	contamination (acres)		Equation 5-6
В	Dispersion constant unitless	5.7383	U.S. EPA 2002
			Equation 5-6
С	Dispersion constant unitless	71.7711	U.S. EPA 2002
			Equation 5-6

Table E-27. Mechanical Particulate Emission Factor Variables from Vehicle Traffic

 Table E-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
PEF'sc	Particulate Emission Factor - subchronic	(Site-specific)	U.S. EPA 2002
	$(m^{3}/kg)$		Equation E-26
Q/C _{sa}	Inverse of the ratio of the 1-h geometric	Site-specific	U.S. EPA 2002
	mean air concentration and the emission		Equation E-15
	flux at the center of the square emission		
	source $(g/m^2$ -s per kg/m ³ )		
FD	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation E-16
Α	Dispersion constant unitless	2.4538	U.S. EPA 2002
			Equation E-15
В	Dispersion constant unitless	17.5660	U.S. EPA 2002
			Equation E-15

Symbol	Definition (units)	Default	Reference
С	Dispersion constant unitless	189.0426	U.S. EPA 2002
			Equation E-15
As	Areal extent of site surface soil	(Range 0.5 to 500)	U.S. EPA 2002
	contamination (acres)		Equation E-15
$J_{T}'(g/m^{2}-s)$	Total time-averaged PM ₁₀ unit emission	Site-specific	U.S. EPA 2002
. (8	flux for construction activities other than	1	Equation E-25
	traffic on unpaved roads		1 -
M ^{PC} _{wind}	Unit mass emitted from wind erosion (g)	Site-specific	U.S. EPA 2002
		1	Equation E-20
V	Fraction of Vegetative Cover (unitless)	0	U.S. EPA 2002
	8		Equation E-20
Um	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA 2002
- 111			Equation E-20
Ut	Equivalent Threshold Value of Wind Speed	11.32	U.S. EPA 2002
O1	at 7 m (m/s)	11.52	Equation E-20
F(x)	Function Dependent on $U_m/U_t$ (unitless)	0.194	U.S. EPA 2002
1 (A)	r unetion Dependent on Om Of (unitiess)	0.174	Equation E-20
A _{surf}	Areal extent of site surface soil	(Range 0.5 to 500)	U.S. EPA 2002
Asurf	contamination $(m^2)$	(Range 0.5 to 500)	Equation E-20
ED	Exposure duration (years)	Site-specific	U.S. EPA 2002
LD	Exposure duration (years)	She-specific	Equation E-20
М	Unit mass emitted from excavation soil	Site-specific	U.S. EPA 2002
M _{excav}		Site-specific	
0.25	dumping (g)	0.25	Equation E-21
0.35	PM ₁₀ particle size multiplier (unitless)	0.35	U.S. EPA 2002
TT		4.60	Equation E-21
U _m	Mean annual wind speed during	4.69	U.S. EPA 2002
24	construction (m/s)	10.01 1.0	Equation E-21
M _{m-excav}	Gravimetric soil moisture content (%)	12 (Mean value for	U.S. EPA 2002
		municipal landfill	Equation E-21
		cover)	
$\rho_{soil}$	In situ soil density (includes water) (mg/m ³ )	1.68	U.S. EPA 2002
•		$(\mathbf{D}, \mathbf{O}, \mathbf{C}, \mathbf{C}, \mathbf{O}, \mathbf{O})$	Equation E-21
A _{excav}	Areal extent of excavation (m ² )	(Range 0.5 to 500)	U.S. EPA 2002
		a:	Equation E-21
d _{excav}	Average depth of excavation (m)	Site-specific	U.S. EPA 2002
<b>N</b> .T			Equation E-21
N _{A-dump}	Number of times soil is dumped (unitless)	2	U.S. EPA 2002
			Equation E-21
M _{doz}	Unit mass emitted from dozing operations	Site-specific	U.S. EPA 2002
	(g)		Equation E-22
0.75	PM ₁₀ scaling factor (unitless)	0.75	U.S. EPA 2002
			Equation E-22
Sdoz	Soil silt content (%)	6.9	U.S. EPA 2002
			Equation E-22
M _{m-doz}	Gravimetric soil moisture content (%)	7.9 (mean value for	U.S. EPA 2002
		overburden)	Equation E-22
$\sum VKT_{doz}$	Sum of dozing kilometers traveled (km)	Site-specific	U.S. EPA 2002
			Equation E-22
S _{doz}	Average dozing speed (kph)	11.4 (mean value	U.S. EPA 2002
		for graders)	Equation E-22
N _{A-doz}	Number of times site is dozed (unitless)	Site-specific	U.S. EPA 2002
			Equation E-22

Table E-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
$B_d$	Dozer blade length (m)	Site-specific	U.S. EPA 2002 Page E-28
Mgrade	Unit mass emitted from grading operations (g)	Site-specific	U.S. EPA 2002 Equation E-23
0.60	PM ₁₀ scaling factor (unitless)	0.60	U.S. EPA 2002 Equation E-23
$\sum VKT_{grade}$	Sum of grading kilometers traveled (km)		U.S. EPA 2002 Equation E-23
$\mathbf{S}_{\text{grade}}$	Average grading speed (kph)	11.4 (mean value for graders)	U.S. EPA 2002 Equation E-23
N _{A-grade}	Number of times site is graded (unitless)	Site-specific	U.S. EPA 2002 Equation E-23
$\mathrm{B}_{\mathrm{g}}$	Grader blade length (m)	Site-specific	U.S. EPA 2002 Page E-28
M _{till}	Unit mass emitted from tilling operations (g)	Site-specific	U.S. EPA 2002 Equation E-24
S _{till}	Soil silt content (%)	18	U.S. EPA 2002 Equation E-24
A _{c-till}	Areal extent of tilling (acres)	Site-specific	U.S. EPA 2002 Equation E-24
A _{c-grade}	Areal extent of grading (acres)	Site-specific	Necessary to solve $\sum VKT_{grade}$ in U.S. EPA 2002 Equation E- 23
A _{c-doz}	Areal extent of dozing (acres)	Site-specific	Necessary to solve $\sum VKT_{doz}$ in U.S. EPA 2002 Equation E-22
N _{A-till}	Number of times soil is tilled (unitless)	2	U.S. EPA 2002 Equation E-24

Table E-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

**APPENDIX F. RADIONUCLIDE PRG EQUATIONS** 

# **APPENDIX F. RADIONUCLIDE PRG EQUATIONS**

# **Resident Soil PRG Equations**

# Soil Ingestion

$$\begin{split} &\mathsf{PRG}_{res-sol-ing}\!\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{o}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFS}_{res-adj}(1,120,000 \text{ mg}) \times \left(\frac{\mathsf{g}}{1000 \text{ mg}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \end{split}$$
 where:  
$$&\mathsf{IFS}_{res-adj}(1,120,000 \text{ mg}) = \begin{bmatrix} \left(\mathsf{EF}_{res-c}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{res-c}(\mathsf{6} \text{ yr}) \times \mathsf{IRS}_{res-c}\left(\frac{200 \text{ mg}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{res-a}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{res-a}(20 \text{ yr}) \times \mathsf{IRS}_{res-a}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right)\right) \end{bmatrix} \end{split}$$

# Soil Inhalation

$$\begin{split} & \mathsf{PRG}_{\mathsf{res-sol-inh}}\Big(\frac{\mathsf{pCi}}{\mathsf{g}}\Big) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{\mathsf{res-adj}}\left(161,000\ \mathsf{m}^{3}\right) \times \frac{1}{\mathsf{PEF}}\left(\frac{\mathsf{m}^{3}}{\mathsf{kg}}\right) \times \left(\frac{1000\ \mathsf{g}}{\mathsf{kg}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \\ & \text{where:} \\ & \mathsf{IFA}_{\mathsf{res-adj}}\left(161,000\ \mathsf{m}^{3}\right) = \left[\left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-c}}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{res-c}}\left(\frac{10\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-a}}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{res-a}}\left(\frac{20\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) \right) \end{split}$$

# Soil External Exposure

	/ TR	
$PRG_{res-sol-ext}\left(\frac{pCi}{n}\right) =$	$ \qquad \qquad$	$\times \left( \frac{t(yr) \times \lambda \left( \frac{1}{yr} \right)}{\sqrt{1 + \frac{1}{yr}}} \right)$
g /	$\left\{ \left[ \left( ET_{res-o} \left( \frac{1.752 \text{ hrs}}{day} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times GSF_{o-ext-sv} \right) + \left( ET_{res-i} \left( \frac{16.416 \text{ hrs}}{day} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times GSF_{i-total} \right) \right] \right\}$	$\left( \left( 1 - \exp^{-\lambda \left( \frac{1}{yr} \right) \times t(yr)} \right) \right)$

Soil Contribution to Produce Ingestion

$$\begin{split} &\mathsf{PRG}_{\mathsf{res-sol-produce-ing}}\!\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{res-produce-ing}}\!\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{(\mathsf{R_{upv}} + \mathsf{R_{es}})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\!\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda}\!\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \end{split}$$
 where:  
$$&\mathsf{R_{upv}} = \mathsf{BV}_{\mathsf{wet}}\!\left(\frac{\mathsf{pCi}\,/\,\mathsf{g-fresh-plant}}{\mathsf{pCi}\,/\,\mathsf{g-dry-soil}}\right); \mathsf{R}_{\mathsf{es}} = \mathsf{MLF}_{\mathsf{produce}}\left(\frac{0.0135\;\mathsf{g-dry-soil}}{\mathsf{g-fresh-plant}}\right)$$

Direct Produce Ingestion

$$\begin{split} & \mathsf{PRG}_{\mathsf{res-produce-ing}} \left( \frac{\mathsf{pCi}}{\mathsf{g}} \right) = \left( \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}} \left( \frac{\mathsf{risk}}{\mathsf{pCi}} \right) \times (\mathsf{IFF}_{\mathsf{res-adj}}(1,462,510\;\mathsf{g}) + \mathsf{IFV}_{\mathsf{res-adj}}(989,870\;\mathsf{g})) \times \mathsf{CF}_{\mathsf{res-produce}}(0.25)} \right) \\ & \mathsf{where:} \\ & \mathsf{IFF}_{\mathsf{res-adj}}(1,462,510\;\mathsf{g}) = \begin{bmatrix} \left( \mathsf{EF}_{\mathsf{res-c}} \left( \frac{350\;\mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{res-c}}(6\;\mathsf{yr}) \times \mathsf{IRF}_{\mathsf{res-c}} \left( \frac{68.1\;\mathsf{g}}{\mathsf{day}} \right) \right) + \\ \left( \mathsf{EF}_{\mathsf{res-a}} \left( \frac{350\;\mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{res-a}}(20\;\mathsf{yr}) \times \mathsf{IRF}_{\mathsf{res-a}} \left( \frac{188.5\;\mathsf{g}}{\mathsf{day}} \right) \right) \end{bmatrix} \\ & \mathsf{and:} \\ & \mathsf{IFV}_{\mathsf{res-adj}}(989,870\;\mathsf{g}) = \begin{bmatrix} \left( \mathsf{EF}_{\mathsf{res-c}} \left( \frac{350\;\mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{res-c}}(6\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{res-c}} \left( \frac{41.7\;\mathsf{g}}{\mathsf{day}} \right) \right) + \\ \left( \mathsf{EF}_{\mathsf{res-a}} \left( \frac{350\;\mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{res-a}}(20\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{res-a}} \left( \frac{128.9\;\mathsf{g}}{\mathsf{day}} \right) \right) + \\ & \left( \mathsf{EF}_{\mathsf{res-a}} \left( \frac{350\;\mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{res-a}}(20\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{res-a}} \left( \frac{128.9\;\mathsf{g}}{\mathsf{day}} \right) \right) \end{bmatrix} \end{split}$$

Soil Total

$$\mathsf{PRG}_{\mathsf{res-sol-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{1}{\mathsf{PRG}_{\mathsf{res-sol-ing}}} + \frac{1}{\mathsf{PRG}_{\mathsf{res-sol-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{res-sol-ext}}} + \frac{1}{\mathsf{PRG}_{\mathsf{res-sol-produce-ing-tot}}}\right)$$

# **Resident Alternate External Sources PRG Equations**

### Direct External Exposure (sv)

$$\mathsf{PRG}_{\mathsf{res-sol-sv}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \left[\left(\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)\right) \times \left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{16.416 \text{ hrs}}{\mathsf{day}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \mathsf{ED}_{\mathsf{ext-sv}} \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \mathsf{ED}_{\mathsf{ext-sv}} \times \mathsf{ED}_{\mathsf{ex$$

# Direct External Exposure (1 cm)

$PRG_{res-sol-1cm}\left(\frac{pCi}{g}\right) = \left(\frac{SF_{ext-1cm}\left(\frac{risk/yr}{pCi/g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACI}{\left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times CSF_{o-ext-1cm}\right) + CSF_{o-ext-1cm}\left(\frac{16.416 \text{ hrs}}{day}\right) \times CSF_{o-ext-1cm}\left(16$	$\frac{\overline{F}_{ext-1cm} \times}{\left  \frac{\partial y}{\eta rs} \right  \times GSF_{i-total} \right } \right) \times \left( \frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)} \right)$

# Direct External Exposure (5 cm)

	( TR )	
ppc (pCi)	$SF_{ext-5cm}\left(\frac{risk/yr}{pCi/g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-5cm} \times ED_{res}(26 \text{ yr}) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-5cm} \times ED_{res}(26 \text{ yr}) \times ED_{res}($	$\int \int t(yr) \times \lambda\left(\frac{1}{yr}\right)$
$PRG_{res-sol-5cm}\left(\frac{pcl}{g}\right) =$		$\times \left( \frac{1}{\left( 1 - \exp^{-\lambda \left( \frac{1}{yr} \right) \times t(yr)} \right)} \right)$
	$ \left\langle \left[ \left( ET_{res-o} \left( \frac{1.752 \ hrs}{day} \right) \times \left( \frac{1 \ day}{24 \ hrs} \right) \times GSF_{o-ext-5cm} \right) + \left( ET_{res-i} \left( \frac{16.416 \ hrs}{day} \right) \times \left( \frac{1 \ day}{24 \ hrs} \right) \times GSF_{i-total} \right) \right] \right\rangle $	((1-exp (0))))

# Direct External Exposure (15 cm)

$$\mathsf{PRG}_{\mathsf{res-sol-15cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-15cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-15cm}} \times \left[\left(\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right) \times \left(\frac{1}{\mathsf{yr}}\right) \times \left(\frac{1}{\mathsf{yr}}\right) \times \left(\frac{1}{\mathsf{day}}\right) \times \left(\frac{1}{\mathsf{day}}\right) \times \left(\frac{1}{\mathsf{day}}\right) \times \mathsf{GSF}_{\mathsf{i-total}}\right)\right]\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Direct External Exposure (ground plane)

$$\mathsf{PRG}_{\mathsf{res-sol-gp}}\left(\frac{\mathsf{pCi}}{\mathsf{cm}^2}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-gp}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{cm}^2}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-gp}} \times$$

#### **Resident Air PRG Equations**

Air Inhalation

$$\begin{split} &\mathsf{PRG}_{\mathsf{res-air-inh}}\Big(\frac{\mathsf{pCi}}{\mathsf{m}^3}\Big) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_i\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{\mathsf{res-adj}}\left(161,000\ \mathsf{m}^3\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \end{split}$$
 where:  
$$&\mathsf{IFA}_{\mathsf{res-adj}}\left(161,000\ \mathsf{m}^3\right) = \left[\left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-c}}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{res-c}}\left(\frac{10\ \mathsf{m}^3}{\mathsf{day}}\right)\right) + \left[\left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{res-a}}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{res-a}}\left(\frac{20\ \mathsf{m}^3}{\mathsf{day}}\right)\right)\right] \end{split}$$

٦

#### Air Submersion

	TR	$\begin{pmatrix} t(yr) \times \lambda\left(\frac{1}{yr}\right) \end{pmatrix}$
$PRG_{res-air-sub}\left(\frac{pCi}{m^3}\right) = \left($	$\left(\frac{\text{risk/yr}}{\text{pCi/m}^3}\right) \times \text{EF}_{\text{res}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \text{ED}_{\text{res}}(26 \text{ yr}) \times \text{ET}_{\text{res}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{GSF}_{a}(1.0)\right)$	$\times \left( \frac{(yr)}{\left( 1 - \exp^{-\lambda \left( \frac{1}{yr} \right) \times t(yr)} \right)} \right)$

Air Total

$$PRG_{res-air-tot}\left(\frac{pCi}{m^{3}}\right) = \left(\frac{1}{\frac{1}{PRG_{res-air-inh}} + \frac{1}{PRG_{res-air-sub}}}\right)$$

Air Inhalation (without decay)

$$PRG_{res-air-inhnd}\left(\frac{pCi}{m^{3}}\right) = \left(\frac{TR}{SF_{i}\left(\frac{risk}{pCi}\right) \times IFA_{res-adj}\left(161,000 \text{ m}^{3}\right)}\right)$$

where:

$$IFA_{res-adj} \left(161,000 \text{ m}^3\right) = \begin{bmatrix} \left( \mathsf{EF}_{res-c} \left( \frac{350 \text{ days}}{yr} \right) \times \mathsf{ED}_{res-c} (6 \text{ yr}) \times \mathsf{ET}_{res-c} \left( \frac{24 \text{ hrs}}{day} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times IRA_{res-c} \left( \frac{10 \text{ m}^3}{day} \right) \right) + \left[ \left( \mathsf{EF}_{res-a} \left( \frac{350 \text{ days}}{yr} \right) \times \mathsf{ED}_{res-a} (20 \text{ yr}) \times \mathsf{ET}_{res-a} \left( \frac{24 \text{ hrs}}{day} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times IRA_{res-a} \left( \frac{20 \text{ m}^3}{day} \right) \right) \right] \end{bmatrix}$$

# Air Submersion (without decay)

$$\mathsf{PRG}_{\mathsf{res-air-subnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/m}^3}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{res}}\left(\frac{24 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right)$$

# Air Total (without decay)

$$\mathsf{PRG}_{\mathsf{res-air-totnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{res-air-inhnd}}} + \frac{1}{\mathsf{PRG}_{\mathsf{res-air-subnd}}}}\right)$$

# **Resident Tap Water PRG Equations**

Tap Water Ingestion

$$\begin{aligned} & \mathsf{PRG}_{\mathsf{res-wat-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{w}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFW}_{\mathsf{res-adj}}(19, 138 \ \mathsf{L})}\right) \\ & \mathsf{where:} \\ & \mathsf{IFW}_{\mathsf{res-adj}}(19, 138 \ \mathsf{L}) = \left[ \left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6 \ \mathsf{yr}) \times \mathsf{IRW}_{\mathsf{res-c}}\left(\frac{0.78 \ \mathsf{L}}{\mathsf{day}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20 \ \mathsf{yr}) \times \mathsf{IRW}_{\mathsf{res-a}}\left(\frac{2.5 \ \mathsf{L}}{\mathsf{day}}\right)\right) \right) \end{aligned}$$

Tap Water Inhalation

$$\begin{split} & \mathsf{PRG}_{res-wat-inh}\!\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{i}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{res-adj}\left(161,000\ \mathsf{m}^{3}\right) \times \mathsf{K}\left(\frac{0.5\ \mathsf{L}}{\mathsf{m}^{3}}\right)}\right) \\ & \text{where:} \\ & \mathsf{IFA}_{res-adj}\left(161,000\ \mathsf{m}^{3}\right) = \left[\left(\mathsf{EF}_{res-c}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{res-c}(6\ \mathsf{yr}) \times \mathsf{ET}_{res-c}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{res-c}\left(\frac{10\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) + \left| \left(\mathsf{EF}_{res-a}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{res-a}(20\ \mathsf{yr}) \times \mathsf{ET}_{res-a}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{res-a}\left(\frac{20\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) \right] \end{split}$$

Tap Water Immersion

$$\begin{aligned} & \mathsf{PRG}_{\mathsf{res-wat-imm}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{imm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/L}}\right) \times \left(\frac{1\ \mathsf{yr}}{8,760\ \mathsf{hrs}}\right) \times \mathsf{DFA}_{\mathsf{res-adj}}\left(6,104\ \mathsf{hrs}\right)}\right) \\ & \mathsf{where:} \\ & \mathsf{DFA}_{\mathsf{res-adj}}\left(6,104\ \mathsf{hrs}\right) = \left[ \left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}\left(6\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{res-c}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-res-c}}\left(\frac{0.54\ \mathsf{hrs}}{\mathsf{event}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}\left(20\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{res-a}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-res-a}}\left(\frac{0.71\ \mathsf{hrs}}{\mathsf{event}}\right)\right) \right] \end{aligned}$$

Tap Water Contribution to Produce Ingestion

$$\begin{aligned} & \mathsf{PRG}_{\mathsf{res-wat-produce-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \frac{\mathsf{PRG}_{\mathsf{res-produce-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\left(\frac{1\ \mathsf{kg}}{1000\ \mathsf{g}}\right) \times \left(\mathsf{Irr}_{\mathsf{rup}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathsf{Irr}_{\mathsf{res}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) + \mathsf{Irr}_{\mathsf{dep}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)\right)} \end{aligned}$$
where:
$$& \mathsf{Irr}_{\mathsf{rup}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{MLF}_{\mathsf{produce}}\left(\frac{0.0135\ \mathsf{g}-\mathsf{dry-soil}}{\mathsf{g}-\mathsf{fresh-plant}}\right) \times \left[1-\mathsf{exp}\left(-\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}}\left(\mathsf{days}\right)\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \end{aligned}$$

$$& \mathsf{Irr}_{\mathsf{res}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \frac{\mathsf{Ir}\left(\frac{\mathsf{L}}{\mathsf{m}^2-\mathsf{day}}\right) \times \mathsf{F} \times \mathsf{BV}_{\mathsf{wet}}\left(\frac{\mathsf{pCi}\/\mathsf{g}-\mathsf{fresh-plant}}{\mathsf{pCi}\/\mathsf{g}-\mathsf{dry-soil}}\right) \times \left[1-\mathsf{exp}\left(-\left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right) \times \mathsf{t}_{\mathsf{b}}\left(\mathsf{days}\right)\right)\right]}{\mathsf{P}\left(\frac{\mathsf{kg}}{\mathsf{m}^2}\right) \times \left(\frac{\lambda_{\mathsf{B}}}{\mathsf{day}}\right)} \end{aligned}$$

and:

$$Irr_{dep}\left(\frac{L}{kg}\right) \ = \ \frac{I_r\left(\frac{L}{m^2 - day}\right) \times F \times I_f \times T \times \left[1 - exp\left(-\left(\frac{\lambda_E}{day}\right) \times t_v\left(days\right)\right)\right]}{Y_v\left(\frac{kg}{m^2}\right) \times \left(\frac{\lambda_E}{day}\right)}$$

Direct Produce Ingestion

$$\begin{split} & \mathsf{PRG}_{\mathsf{res-produce-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_\mathsf{f}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times (\mathsf{IFF}_{\mathsf{res-adj}}(1,462,510\;\mathsf{g}) + \mathsf{IFV}_{\mathsf{res-adj}}(989,870\;\mathsf{g})) \times \mathsf{CF}_{\mathsf{res-produce}}(0.25)}\right) \\ & \mathsf{where:} \\ & \mathsf{IFF}_{\mathsf{res-adj}}(1,462,510\;\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6\;\mathsf{yr}) \times \mathsf{IRF}_{\mathsf{res-c}}\left(\frac{68.1\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20\;\mathsf{yr}) \times \mathsf{IRF}_{\mathsf{res-a}}\left(\frac{188.5\;\mathsf{g}}{\mathsf{day}}\right)\right) \end{bmatrix} \\ & \mathsf{and:} \\ & \mathsf{IFV}_{\mathsf{res-adj}}(989,870\;\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}(6\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{res-c}}\left(\frac{41.7\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}(20\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{res-a}}\left(\frac{128.9\;\mathsf{g}}{\mathsf{day}}\right) \right) \end{bmatrix} \end{split}$$

Tap Water Total

$$PRG_{res-wat-tot}\left(\frac{pCi}{L}\right) = \left(\frac{1}{\frac{1}{PRG_{res-wat-ing}} + \frac{1}{PRG_{res-wat-inh}} + \frac{1}{PRG_{res-wat-imm}} + \frac{1}{PRG_{res-wat-produce-ing}}}\right)$$

# **Resident Fish PRG Equations**

**Direct Fish Ingestion** 

$$\mathsf{PRG}_{\mathsf{res-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{res}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res}}(26 \text{ yr}) \times \mathsf{IRFI}_{\mathsf{res-a}}\left(\frac{54,000 \text{ mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{1000 \text{ mg}}\right) \times \mathsf{CF}_{\mathsf{res-fish}}(1)}\right)$$

Surface Water Contribution to Fish Ingestion

$$\mathsf{PRG}_{\mathsf{res-fish-ingw}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{res-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{BCF}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) \times \left(\frac{1\ \mathsf{kg}}{1000\ \mathsf{g}}\right)}\right)$$

# **Indoor Worker Soil PRG Equations**

Soil Ingestion

$$\mathsf{PRG}_{\mathsf{ind-sol-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sa}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}\left(25 \text{ yr}\right) \times \mathsf{IRS}_{\mathsf{ind}}\left(\frac{50 \text{ mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{\mathsf{1000 \text{ mg}}}\right)\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

Soil Inhalation

$$\mathsf{PRG}_{\mathsf{ind-sol-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times}{\left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{ind}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right) \times \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} \times \left(\frac{1000 \text{ g}}{\mathsf{kg}}\right)} \right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

### Soil External Exposure

$$\mathsf{PRG}_{\mathsf{ind-sol-ext}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{ind}}(25 \text{ yr})} \\ \\ \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \mathsf{GSF}_{\mathsf{i-total}} \end{pmatrix} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \\ \end{pmatrix}$$

Soil Total

$$PRG_{ind-sol-tot}\left(\frac{pCi}{g}\right) = \left(\frac{1}{\frac{1}{PRG_{ind-sol-ing}} + \frac{1}{PRG_{ind-sol-inh}} + \frac{1}{PRG_{ind-sol-ext}}}\right)$$

## Indoor Worker Alternate External Sources PRG Equations

Direct External Exposure (sv)

$$\mathsf{PRG}_{\mathsf{ind-sol-sv}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk/yr}}{\mathsf{pCi/g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{ind}}(25 \text{ yr})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

### Direct External Exposure (1 cm)

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{sol-1cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \mathsf{TR} \\ \\ \mathsf{SF}_{\mathsf{ext-1cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \\ \\ \\ \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-1cm}} \times \mathsf{GSF}_{\mathsf{i-total}} \end{pmatrix} \times \left(\frac{1 (\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)} \right) \\ \end{pmatrix}$$

### Direct External Exposure (5 cm)

$$\mathsf{PRG}_{\mathsf{ind-sol-5cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{SF}_{\mathsf{ext-5cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times} \\ \mathbb{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-5cm}} \times \mathsf{GSF}_{\mathsf{i-total}} \end{pmatrix} \times \left(\frac{1 \text{ (yr)} \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t(yr)}\right)}\right) \end{pmatrix}$$

# Direct External Exposure (15 cm)

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{sol}-\mathsf{15cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext}-\mathsf{15cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{2\mathsf{50}\;\mathsf{days}}{\mathsf{yr}}\right) \times \left(\frac{1\;\mathsf{yr}}{\mathsf{365}\;\mathsf{days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(\mathsf{25\;\mathsf{yr}}) \times}{\mathsf{ED}_{\mathsf{ind}}(\mathsf{25\;\mathsf{yr}})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

#### Direct External Exposure (ground plane)

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{sol-gp}}\left(\frac{\mathsf{pCi}}{\mathsf{cm}^2}\right) = \begin{pmatrix} \mathsf{TR} \\ \\ \overline{\mathsf{SF}_{\mathsf{ext}-\mathsf{gp}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/cm}^2}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times} \\ \\ \\ \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext}-\mathsf{gp}} \times \mathsf{GSF}_{\mathsf{i-total}} \end{pmatrix} \\ \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \\ \end{pmatrix}$$

# **Indoor Worker Air PRG Equations**

#### Air Inhalation

$PRG_{ind-air-inh}\left(\frac{pCi}{m^3}\right) = \left($	(TR	$(t(yr) \times \lambda(\frac{1}{2}))$
	$\left(\frac{\text{TR}}{\text{SF}_{i}\left(\frac{\text{risk}}{\text{pCi}}\right) \times \text{EF}_{ind}\left(\frac{250 \text{ days}}{\text{yr}}\right) \times \text{ED}_{ind}(25 \text{ yr}) \times \text{ET}_{ind}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{ind}\left(\frac{60 \text{ m}^{3}}{\text{day}}\right)}\right)$	$\left  \times \left[ \frac{(\mathbf{y} \mathbf{r})}{(\mathbf{y} - \lambda (\frac{1}{y}) \times \mathbf{t}(\mathbf{y} \mathbf{r}))} \right] \right $
		/ ((1-exp (yr) ))

#### Air Submersion

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air}-\mathsf{sub}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Air Total

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{ind}-\mathsf{air-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{ind}-\mathsf{air-sub}}}}\right)$$

#### Air Inhalation (without decay)

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{air}-\mathsf{inhnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_\mathsf{i}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_\mathsf{ind}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_\mathsf{ind}\left(25 \text{ yr}\right) \times \mathsf{ET}_\mathsf{ind}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_\mathsf{ind}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right)}\right)$$

## Air Submersion (without decay)

(pCi)	/ TR	
$PRG_{ind-air-subnd}\left(\frac{pCI}{m^3}\right) = \left(\frac{pCI}{m^3}\right)$	$\sqrt{SF_{sub}\left(\frac{risk/yr}{pCi/m^3}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(100 \text{ cm})}$	.0)

Air Total (without decay)

$$PRG_{ind-air-totnd}\left(\frac{pCi}{m^{3}}\right) = \left(\frac{1}{\frac{1}{PRG_{ind-air-inhnd}} + \frac{1}{PRG_{ind-air-subnd}}}\right)$$

## **Indoor Worker Tap Water PRG Equations**

Tap Water Ingestion

$$\mathsf{PRG}_{\mathsf{ind-wat-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{w}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{IRW}_{\mathsf{ind-a}}\left(\frac{1.25 \text{ L}}{\mathsf{day}}\right)}\right)$$

#### Tap Water Inhalation

$$\mathsf{PRG}_{\mathsf{ind-wat-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{I}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{ind}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{ind}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{ind-a}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right) \times \mathsf{K}\left(\frac{0.5 \text{ L}}{\mathsf{m}^3}\right)}\right)}$$

## Tap Water Immersion

$$\mathsf{PRG}_{\mathsf{ind}-\mathsf{wat}-\mathsf{imm}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{imm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/L}}\right) \times \mathsf{EF}_{\mathsf{ind}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{ind}}\left(25 \text{ yr}\right) \times \mathsf{EV}_{\mathsf{ind}}\left(\frac{1 \text{ events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-ind-a}}\left(\frac{0.71 \text{ hrs}}{\mathsf{event}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)}\right)}$$

Tap Water Total

$$PRG_{ind-wat-tot}\left(\frac{pCi}{L}\right) = \left(\frac{1}{\frac{1}{PRG_{ind-wat-ing}} + \frac{1}{PRG_{ind-wat-inh}} + \frac{1}{PRG_{ind-wat-imm}}}\right)$$

# **Outdoor Worker Soil PRG Equations**

Soil Ingestion

$$\mathsf{PRG}_{\mathsf{out-sol-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sa}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{IRS}_{\mathsf{out}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{\mathsf{1000 \text{ mg}}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

٦

Soil Inhalation

$$\mathsf{PRG}_{\mathsf{out-sol-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times}{\left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{out}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right) \times \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} \times \left(\frac{1000 \text{ g}}{\mathsf{kg}}\right)} \right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

Soil External Exposure

$$\mathsf{PRG}_{\mathsf{out-sol-ext}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/g}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{out}}(25 \text{ yr})} \end{pmatrix} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)} \right)$$

Soil Total

$$\mathsf{PRG}_{\mathsf{out-sol-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{out-sol-ing}}} + \frac{1}{\mathsf{PRG}_{\mathsf{out-sol-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{out-sol-ext}}}}\right)$$

# **Outdoor Worker Alternate External Sources PRG Equations**

## Direct External Exposure (sv)

$$\mathsf{PRG}_{\mathsf{out-sol-sv}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk/yr}}{\mathsf{pCi/g}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{out}}(25 \text{ yr})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

## Direct External Exposure (1 cm)

$$\mathsf{PRG}_{\mathsf{out-sol-1cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \mathsf{TR} \\ \\ \mathsf{SF}_{\mathsf{ext-1cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \, \mathsf{days}}{\mathsf{yr}}\right) \times \left(\frac{1 \, \mathsf{yr}}{365 \, \mathsf{days}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \, \mathsf{yr}) \times \\ \\ \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \, \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \, \mathsf{day}}{24 \, \mathsf{hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-1cm}} \times \mathsf{GSF}_{\mathsf{o-ext-1cm}} \end{pmatrix} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

Direct External Exposure (5 cm)

$$\mathsf{PRG}_{\mathsf{out-sol-5cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-5cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times}{\mathsf{SF}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-5cm}} \times \mathsf{GSF}_{\mathsf{o-ext-5cm}}}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

## Direct External Exposure (15 cm)

$$\mathsf{PRG}_{\mathsf{out-sol-15cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-15cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \mathsf{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \mathsf{ yr}}{365 \mathsf{ days}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \mathsf{ yr}) \times}{\mathsf{ED}_{\mathsf{out}}(25 \mathsf{ yr})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

#### Direct External Exposure (ground plane)

## **Outdoor Worker Air PRG Equations**

#### Air Inhalation

$$\mathsf{PRG}_{\mathsf{out-air-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_i\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{out}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Air Submersion

$$\mathsf{PRG}_{\mathsf{out-air-sub}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{\mathsf{225 days}}{\mathsf{yr}}\right) \times \left(\frac{\mathsf{1 yr}}{\mathsf{365 days}}\right) \times \mathsf{ED}_{\mathsf{out}}(\mathsf{25 yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{\mathsf{8 hrs}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{1 day}}{\mathsf{24 hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(\mathsf{1.0})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Air Total

$$\mathsf{PRG}_{\mathsf{out-air-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{out-air-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{out-air-sub}}}}\right)$$

## Air Inhalation (without decay)

$$\mathsf{PRG}_{\mathsf{out-air-inhnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{out}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{out}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right)}\right)$$

## Air Submersion (without decay)

$$\mathsf{PRG}_{\mathsf{out-air-subnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{out}}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{out}}\left(25 \text{ yr}\right) \times \mathsf{ET}_{\mathsf{out}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right)$$

Air Total (without decay)

$$PRG_{out-air-totnd}\left(\frac{pCi}{m^{3}}\right) = \left(\frac{1}{\frac{1}{PRG_{out-air-inhnd}} + \frac{1}{PRG_{out-air-subnd}}}\right)$$

## **Composite Worker Soil PRG Equations**

Soil Ingestion

$$\mathsf{PRG}_{\mathsf{com-sol-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sa}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{IRS}_{\mathsf{com}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{1000 \text{ mg}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

Soil Inhalation

$$\mathsf{PRG}_{\mathsf{com-sol-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times}{\left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{com}}\left(\frac{60 \text{ m}^{3}}{\mathsf{day}}\right) \times \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^{3}}{\mathsf{kg}}\right)} \times \left(\frac{1000 \text{ g}}{\mathsf{kg}}\right)} \right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

## Soil External Exposure

$$\mathsf{PRG}_{\mathsf{com-sol-ext}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \left[\left(\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right) \times \left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{GSF}_{\mathsf{o-ext-sv}}\right) + \left(\mathsf{ET}_{\mathsf{com-i}}\left(\frac{0 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{i-total}}\right)\right]\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

Soil Total

$$\mathsf{PRG}_{\mathsf{com-sol-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{com-sol-ing}}} + \frac{1}{\mathsf{PRG}_{\mathsf{com-sol-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{com-sol-ext}}}}\right)$$

## **Composite Worker Alternate External Sources PRG Equations**

Direct External Exposure (sv)

$$\mathsf{PRG}_{\mathsf{com-sol-sv}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext}-\mathsf{sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext}-\mathsf{sv}} \times \left[\left(\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right) \times \left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{CSF}_{\mathsf{i-total}}\right)\right]\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{CSF}_{\mathsf{i-total}}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{\mathsf{day}}\right) \times \mathsf{CSF}_{\mathsf{i-total}}\right)\right)$$

## Direct External Exposure (1 cm)

(	TR N	
$PRG_{com-sol-1cm}\left(\frac{pCi}{q}\right) =$	$SF_{ext-1cm}\left(\frac{risk/yr}{pCi/g}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ACF_{ext-1cm} \times CF_{ext-1cm} \times$	$\times \left( \frac{t(yr) \times \lambda \left( \frac{1}{yr} \right)}{\sqrt{1-(1-yr)}} \right)$
	$\left[ \left( ET_{com-o} \left( \frac{8 \ hrs}{day} \right) \times \left( \frac{1 \ day}{24 \ hrs} \right) \times GSF_{o-ext-1cm} \right) + \left( ET_{com-i} \left( \frac{0 \ hrs}{day} \right) \times \left( \frac{1 \ day}{24 \ hrs} \right) \times GSF_{i-total} \right) \right] $	$\left( \left( 1 - \exp^{-\lambda \left( \frac{1}{yr} \right) \times t(yr)} \right) \right)$

## Direct External Exposure (5 cm)

(	TR	
$PRG_{com-sol-5cm}\left(\frac{pCi}{g}\right) = \left($	$\label{eq:Fext-5cm} \hline \frac{Fisk/yr}{pCi/g} \times EF_{com}\left(\frac{250 \ days}{yr}\right) \times \left(\frac{1 \ yr}{365 \ days}\right) \times ED_{com}(25 \ yr) \times ACF_{ext-5cm} \times \\ \left[ \left(ET_{com-o}\left(\frac{8 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times GSF_{o-ext-5cm}\right) + \left(ET_{com-i}\left(\frac{0 \ hrs}{day}\right) \times \left(\frac{1 \ day}{24 \ hrs}\right) \times GSF_{i-total}\right) \right] \right]$	$\times \left( \frac{t(yr) \times \lambda \left( \frac{1}{yr} \right)}{\left( 1 - exp^{-\lambda} \left( \frac{1}{yr} \right) \times t(yr) \right)} \right)$

#### Direct External Exposure (15 cm)

$$\mathsf{PRG}_{\mathsf{com-sol-15cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-15cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-15cm}} \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}} \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}} \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}} \times \mathsf{ED}_{\mathsf{com}} \times \mathsf{ACF}_{\mathsf{com}} \times \mathsf{$$

## Direct External Exposure (ground plane)

$$\mathsf{PRG}_{\mathsf{com-sol-gp}}\left(\frac{\mathsf{pCi}}{\mathsf{cm}^2}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-gp}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/cm^2}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{com}}\left(25 \text{ yr}\right) \times \mathsf{ACF}_{\mathsf{ext-gp}} \times \mathsf{ED}_{\mathsf{com}}\left(\frac{1 \text{ yr}}{\mathsf{pCi/cm^2}}\right)}{\left[\left(\mathsf{ET}_{\mathsf{com-o}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{o}-\mathsf{ext-gp}}\right) + \left(\mathsf{ET}_{\mathsf{com-i}}\left(\frac{0 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{i}-\mathsf{total}}\right)\right]}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

## **Composite Worker Air PRG Equations**

#### Air Inhalation

$$\mathsf{PRG}_{\mathsf{com-air-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_i\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25\;\mathsf{yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8\;\mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\;\mathsf{day}}{24\;\mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{com}}\left(\frac{60\;\mathsf{m}^3}{\mathsf{day}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Air Submersion

$$\mathsf{PRG}_{\mathsf{com-air-sub}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk/yr}}{\mathsf{pCi/m^3}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

## Air Total

$$PRG_{com-air-tot}\left(\frac{pCi}{m^3}\right) = \left(\frac{1}{\frac{1}{PRG_{com-air-inh}} + \frac{1}{PRG_{com-air-sub}}}\right)$$

Air Inhalation (without	decay)	TR	
$PRG_{com-air-inhnd}\left(\frac{pCi}{m^3}\right) =$	$\left( \overline{SF_{i}\left( \frac{risk}{pCi} \right) \times EF_{com}} \right)$	$\left(\frac{250 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{com}}(25 \text{ yr}) \times \text{ET}_{\text{com}}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{com}}\left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)$	$\left(\frac{60 \text{ m}^3}{\text{day}}\right)$

# Air Submersion (without decay)

$$\mathsf{PRG}_{\mathsf{com-air-subnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250\;\mathsf{days}}{\mathsf{yr}}\right) \times \left(\frac{1\;\mathsf{yr}}{365\;\mathsf{days}}\right) \times \mathsf{ED}_{\mathsf{com}}(25\;\mathsf{yr}) \times \mathsf{ET}_{\mathsf{com}}\left(\frac{8\;\mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\;\mathsf{day}}{24\;\mathsf{hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right)$$

## Air Total (without decay)

$$\mathsf{PRG}_{\mathsf{com-air-totnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{com-air-inhnd}}} + \frac{1}{\mathsf{PRG}_{\mathsf{com-air-subnd}}}}\right)$$

## **Excavation Worker Soil PRG Equations**

Soil Ingestion

$$\mathsf{PRG}_{\mathsf{exc-sol-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sa}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{IRS}_{\mathsf{exc}}\left(\frac{330 \text{ mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{\mathsf{1000 \text{ mg}}}\right)\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

Soil Inhalation

$$\mathsf{PRG}_{\mathsf{exc-sol-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times}{\left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{exc}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right) \times \frac{1}{\mathsf{PEF}\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} \times \left(\frac{1000 \text{ g}}{\mathsf{kg}}\right)} \right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

## Soil External Exposure

$$\mathsf{PRG}_{\mathsf{exc-sol-ext}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{exc}}(1 \text{ yr})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

Soil Total

$$\mathsf{PRG}_{\mathsf{exc-sol-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{exc-sol-ing}}} + \frac{1}{\mathsf{PRG}_{\mathsf{exc-sol-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{exc-sol-ext}}}}\right)$$

## **Excavation Worker Air PRG Equations**

#### Air Inhalation

$$\mathsf{PRG}_{exc-air-inh}\left(\frac{\mathsf{pCi}}{\mathsf{m}^{3}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{exc}}\left(\frac{60 \text{ m}^{3}}{\mathsf{day}}\right)}{\left(\frac{1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t(yr)}\right)}\right)$$

#### Air Submersion

$$\mathsf{PRG}_{\mathsf{exc-air-sub}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/m}^3}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \mathsf{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \mathsf{ yr}}{365 \mathsf{ days}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \mathsf{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \mathsf{ hrs}}{\mathsf{ day}}\right) \times \left(\frac{1 \mathsf{ day}}{24 \mathsf{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Air Total

$$\mathsf{PRG}_{\mathsf{exc-air-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{exc-air-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{exc-air-sub}}}}\right)$$

## Air Inhalation (without decay)

$$\mathsf{PRG}_{\mathsf{exc-air-inhnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{exc}}\left(\frac{60 \text{ m}^3}{\mathsf{day}}\right)}\right)$$

#### Air Submersion (without decay)

$$\mathsf{PRG}_{\mathsf{exc-air-subnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk/yr}}{\mathsf{pCi/m}^3}\right) \times \mathsf{EF}_{\mathsf{exc}}\left(\frac{20 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{exc}}(1 \text{ yr}) \times \mathsf{ET}_{\mathsf{exc}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right)$$

#### Air Total (without decay)

$$\mathsf{PRG}_{\mathsf{exc-air-totnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{exc-air-inhnd}}} + \frac{1}{\mathsf{PRG}_{\mathsf{exc-air-subnd}}}}\right)$$

## **Construction Worker Soil Exposure to Unpaved Road Traffic PRG Equations**

Soil Ingestion - Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sa}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\;\mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\;\mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(\mathsf{1}\;\mathsf{yr}) \times \mathsf{IRS}_{\mathsf{con}}\left(\frac{\mathsf{330}\;\mathsf{mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{\mathsf{1000}\;\mathsf{mg}}\right)\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

## Soil Inhalation - Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50 \text{ wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5 \text{ days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(1 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{con}}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{IRA}_{\mathsf{con}}\left(\frac{60 \text{ m}^{3}}{\mathsf{day}}\right) \times \frac{1}{\mathsf{PEF}_{\mathsf{sc}}\left(\frac{\mathsf{m}^{3}}{\mathsf{kg}}\right)} \times \left(\frac{1000 \text{ g}}{\mathsf{kg}}\right) \end{pmatrix}} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)} \right)$$

#### Soil External Exposure - Unpaved Road Traffic

$$\mathsf{PRG}_{\mathsf{con-sol-ext}}\left(\frac{p\mathsf{C}i}{g}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pC}i/g}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50\ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5\ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \left(\frac{1\ \mathsf{yr}}{365\ \mathsf{days}}\right) \times}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\mathsf{F}_{\mathsf{con}}\left(1\ \mathsf{yr}\right) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \mathsf{GSF}_{\mathsf{o-ext-sv}}}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \times \mathsf{C}_{\mathsf{con}}\left(\frac{1}{\mathsf{v}}\right) \times \mathsf{C}_{\mathsf{con}}\left(\frac{1}{\mathsf{v}}\right) \times \mathsf{C}_{\mathsf{v}}\left(\frac{1}{\mathsf{v}}\right) \times \mathsf{C}_{\mathsf{v$$

#### Soil Total - Unpaved Road Traffic

$$PRG_{con-sol-tot}\left(\frac{pCi}{g}\right) = \left(\frac{1}{\frac{1}{PRG_{con-sol-ing}} + \frac{1}{PRG_{con-sol-inh}} + \frac{1}{PRG_{con-sol-ext}}}\right)$$

#### **Construction Worker Soil Exposure to Other Construction Activities PRG Equations**

Soil Ingestion - Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-ingsa}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sa}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\;\mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\;\mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(\mathsf{1}\;\mathsf{yr}) \times \mathsf{IRS}_{\mathsf{con}}\left(\frac{\mathsf{330}\;\mathsf{mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{\mathsf{1000}\;\mathsf{mg}}\right)\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

#### Soil Inhalation - Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-inhsa}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\;\mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\;\mathsf{days}}{\mathsf{wk}}\right)\right) \times \mathsf{ED}_{\mathsf{con}}(\mathsf{1}\;\mathsf{yr}) \times}{\mathsf{ED}_{\mathsf{con}}(\mathsf{1}\;\mathsf{yr})} \\ \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\;\mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{1}\;\mathsf{day}}{\mathsf{24}\;\mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{con}}\left(\frac{\mathsf{60}\;\mathsf{m}^3}{\mathsf{day}}\right) \times \frac{\mathsf{1}}{\mathsf{PEF}_{\mathsf{sc}}'\left(\frac{\mathsf{m}^3}{\mathsf{kg}}\right)} \times \left(\frac{\mathsf{1000}\;\mathsf{g}}{\mathsf{kg}}\right) \\ \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(\mathsf{1}-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \\ \times \left(\frac{\mathsf{risk}}{\mathsf{risk}}\right) \times \mathsf{risk}_{\mathsf{risk}} = \mathsf{risk}_{\mathsf{risk}} + \mathsf{risk}_{\mathsf{risk}} +$$

#### Soil External Exposure - Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-extsa}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\;\mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\;\mathsf{days}}{\mathsf{wk}}\right)\right) \times \left(\frac{\mathsf{1}\;\mathsf{yr}}{\mathsf{365}\;\mathsf{days}}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \times \left(\frac{\mathsf{1}\;\mathsf{br}}{\mathsf{1}-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right) \times \left(\frac{\mathsf{1}\;\mathsf{br}}{\mathsf{1}-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right) \times \left(\frac{\mathsf{1}\;\mathsf{br}}{\mathsf{1}-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right) \times \left(\frac{\mathsf{1}\;\mathsf{br}}{\mathsf{1}-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right) \times \left(\frac{\mathsf{1}\;\mathsf{br}}{\mathsf{1}-\mathsf{br}}\right) \times \mathsf{br}^{-1}(\mathsf{br}) \times \mathsf{br}^$$

Soil Total - Other Construction Activities

$$\mathsf{PRG}_{\mathsf{con-sol-totsa}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{con-sol-ingsa}}} + \frac{1}{\mathsf{PRG}_{\mathsf{con-sol-inhsa}}} + \frac{1}{\mathsf{PRG}_{\mathsf{con-sol-extsa}}}\right)$$

#### **Construction Worker Soil Alternate External Sources PRG Equations**

#### Direct External Exposure (sv)

$$PRG_{con-sol-sv}\left(\frac{pCi}{g}\right) = \begin{pmatrix} \frac{TR}{SF_{ext-sv}\left(\frac{risk/yr}{pCi/g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times}{ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv}} \end{pmatrix} \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}\right)$$

#### Direct External Exposure (1 cm)

	(TR)	
$PRG_{con-sol-1cm}\left(\frac{pCi}{g}\right) =$	$ \begin{split} \overline{SF_{ext-1cm}\left(\frac{risk/yr}{pCi/g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50\ wks}{yr}\right) \times DW_{con}\left(\frac{5\ days}{wk}\right)\right) \times \left(\frac{1\ yr}{365\ days}\right) \times \\ \\ \overline{ED_{con}\left(1\ yr\right) \times ET_{con}\left(\frac{8\ hrs}{day}\right) \times \left(\frac{1\ day}{24\ hrs}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm}} \right) } \end{split} $	$\times \left( \frac{t(yr) \times \lambda \left( \frac{1}{yr} \right)}{\left( 1 - exp^{-\lambda} \left( \frac{1}{yr} \right) \times t(yr) \right)} \right)$

## Direct External Exposure (5 cm)

$$PRG_{con-sol-1cm}\left(\frac{pCi}{g}\right) = \begin{pmatrix} \frac{TR}{SF_{ext-1cm}\left(\frac{risk/yr}{pCi/g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times}{ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm}} \end{pmatrix} \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}\right)$$

## Direct External Exposure (15 cm)

$$\mathsf{PRG}_{\mathsf{con-sol-15cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left( \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-15cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\,\mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\,\mathsf{days}}{\mathsf{wk}}\right)\right) \times \left(\frac{1\,\mathsf{yr}}{\mathsf{365}\,\mathsf{days}}\right) \times}{\mathsf{ED}_{\mathsf{con}}(1\,\mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\,\mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\,\mathsf{day}}{\mathsf{24}\,\mathsf{hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-15cm}} \times \mathsf{GSF}_{\mathsf{o-ext-15cm}}}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\,\mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\,\mathsf{day}}{\mathsf{24}\,\mathsf{hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-15cm}} \times \mathsf{GSF}_{\mathsf{o-ext-15cm}}}\right)$$

# Direct External Exposure (ground plane)

$$\mathsf{PRG}_{\mathsf{con-sol-gp}}\left(\frac{\mathsf{pCi}}{\mathsf{cm}^2}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{SF}_{\mathsf{ext-gp}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/cm^2}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\ \mathsf{days}}{\mathsf{wk}}\right)\right) \times \left(\frac{1\ \mathsf{yr}}{\mathsf{365}\ \mathsf{days}}\right) \times}{\mathsf{ED}_{\mathsf{con}}(1\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{\mathsf{24}\ \mathsf{hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-gp}} \times \mathsf{GSF}_{\mathsf{o-ext-gp}}} \end{pmatrix} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\ \mathsf{hrs}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\ \mathsf{hrs}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{1}\ \mathsf{day}}{\mathsf{12}\ \mathsf{hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-gp}} \times \mathsf{GSF}_{\mathsf{o-ext-gp}} \end{pmatrix}$$

## **Construction Worker Air PRG Equations**

Air Inhalation

$$PRG_{con-air-inh}\left(\frac{pCi}{m^{3}}\right) = \begin{pmatrix} \frac{TR}{SF_{i}\left(\frac{risk}{pCi}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times}{ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{con}\left(\frac{60 \text{ m}^{3}}{day}\right)} \end{pmatrix} \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}\right)$$

## Air Submersion

$$\mathsf{PRG}_{\mathsf{con-air-sub}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{\mathsf{50}\;\mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{\mathsf{5}\;\mathsf{days}}{\mathsf{wk}}\right)\right) \times \left(\frac{1\;\mathsf{yr}}{\mathsf{365}\;\mathsf{days}}\right) \times}{\mathsf{EF}_{\mathsf{con}}\left(1\;\mathsf{yr}\right) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{\mathsf{8}\;\mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{1}\;\mathsf{day}}{\mathsf{24}\;\mathsf{hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(\mathsf{1.0})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda}\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

Air Total

$$PRG_{con-air-tot}\left(\frac{pCi}{m^{3}}\right) = \left(\frac{1}{\frac{1}{PRG_{con-air-inh}} + \frac{1}{PRG_{con-air-sub}}}\right)$$

Air Inhalation (without decay)

$$\mathsf{PRG}_{\mathsf{con-air-inhnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{SF}_i\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{con}}\left(\mathsf{EW}_{\mathsf{con}}\left(\frac{50\ \mathsf{wks}}{\mathsf{yr}}\right) \times \mathsf{DW}_{\mathsf{con}}\left(\frac{5\ \mathsf{days}}{\mathsf{wk}}\right)\right) \times} \\ \mathsf{ED}_{\mathsf{con}}(1\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{con}}\left(\frac{8\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{con}}\left(\frac{60\ \mathsf{m}^3}{\mathsf{day}}\right) \end{pmatrix} \end{pmatrix}$$

## Air Submersion (without decay)

$$PRG_{con-air-subnd}\left(\frac{pCi}{m^3}\right) = \begin{pmatrix} \frac{TR}{SF_{sub}\left(\frac{risk/yr}{pCi/m^3}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times B}{ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)} \end{pmatrix}$$

Air Total (without decay)

$$\mathsf{PRG}_{\mathsf{con-air-totnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{con-air-inhnd}}} + \frac{1}{\mathsf{PRG}_{\mathsf{con-air-subnd}}}}\right)$$

# **Recreator Soil PRG Equations**

Soil Ingestion

$$\begin{split} &\mathsf{PRG}_{\mathsf{rec-sol-ing}}\Big(\frac{\mathsf{pCi}}{\mathsf{g}}\Big) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{o}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFS}_{\mathsf{rec-adj}}(240,000 \ \mathsf{mg}) \times \left(\frac{\mathsf{g}}{1000 \ \mathsf{mg}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \\ & \text{where:} \\ & \mathsf{IFS}_{\mathsf{rec-adj}}(240,000 \ \mathsf{mg}) = \left[ \left(\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(\mathsf{6} \ \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{rec-c}}\left(\frac{200 \ \mathsf{mg}}{\mathsf{day}}\right)\right) + \left(\mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75 \ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(20 \ \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{rec-a}}\left(\frac{100 \ \mathsf{mg}}{\mathsf{day}}\right)\right) \right] \end{split}$$

Soil Inhalation

$$\begin{split} & \mathsf{PRG}_{\mathsf{rec-sol-inh}}\Big(\frac{\mathsf{pCi}}{\mathsf{g}}\Big) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{\mathsf{rec-adj}}\left(1,437.5\ \mathsf{m}^{3}\right) \times \frac{1}{\mathsf{PEF}}\left(\frac{\mathsf{m}^{3}}{\mathsf{kg}}\right) \times \left(\frac{1000\ \mathsf{g}}{\mathsf{kg}}\right)}{\mathsf{N}}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \\ & \mathsf{where:} \\ & \mathsf{IFA}_{\mathsf{rec-adj}}\left(1,437.5\ \mathsf{m}^{3}\right) = \left[\left(\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(\mathsf{6}\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{rec-c}}\left(\frac{10\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) + \left[\left(\mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(\mathsf{20}\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-a}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{rec-a}}\left(\frac{20\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right)\right] \\ & \end{split}$$

Soil External Exposure

$$\mathsf{PRG}_{\mathsf{rec-sol-ext}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{rec}}(26 \text{ yr})} \end{pmatrix} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)} \right)$$

Soil Total

$$\mathsf{PRG}_{\mathsf{rec-sol-tot}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{rec-sol-ing}}} + \frac{1}{\mathsf{PRG}_{\mathsf{rec-sol-inh}}} + \frac{1}{\mathsf{PRG}_{\mathsf{rec-sol-ext}}}}\right)$$

## **Recreator Alternate External Sources PRG Equations**

## Direct External Exposure (sv)

$$\mathsf{PRG}_{\mathsf{rec-sol-sv}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times}{\mathsf{ED}_{\mathsf{rec}}(26 \text{ yr})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

# Direct External Exposure (1 cm)

$$\mathsf{PRG}_{\mathsf{rec-sol-1cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \begin{pmatrix} \mathsf{TR} \\ \overline{\mathsf{F}_{\mathsf{ext-1cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/g}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times}{\mathsf{SF}_{\mathsf{ext-1cm}}\left(\frac{1 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-1cm}} \times \mathsf{GSF}_{\mathsf{o-ext-1cm}}} \end{pmatrix}} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)} \right)$$

#### Direct External Exposure (5 cm)

	/ TR	
$PRG_{rec-sol-5cm}\left(\frac{pCi}{g}\right) =$	$\begin{split} \hline SF_{\text{ext-5cm}} \left( \frac{\text{risk/yr}}{\text{pCi/g}} \right) \times \text{EF}_{\text{rec}} \left( \frac{75 \text{ days}}{\text{yr}} \right) \times \left( \frac{1 \text{ yr}}{365 \text{ days}} \right) \times \text{ED}_{\text{rec}} (26 \text{ yr}) \times \\ \\ ET_{\text{rec}} \left( \frac{1 \text{ hrs}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times \text{ACF}_{\text{ext-5cm}} \times \text{GSF}_{\text{o-ext-5cm}} \end{split}$	$\left  \times \left( \frac{t(yr) \times \lambda \left( \frac{1}{yr} \right)}{\left( 1 - exp^{-\lambda \left( \frac{1}{yr} \right) \times t(yr)} \right)} \right) \right $

# Direct External Exposure (15 cm)

$$\mathsf{PRG}_{\mathsf{rec-sol-15cm}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-15cm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times}{\mathsf{SF}_{\mathsf{ext-15cm}}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{CF}_{\mathsf{rec}}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{ACF}_{\mathsf{ext-15cm}} \times \mathsf{GSF}_{\mathsf{o-ext-15cm}}}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)$$

# Direct External Exposure (ground plane)

$$\mathsf{PRG}_{\mathsf{rec-sol-gp}}\left(\frac{\mathsf{pCi}}{\mathsf{cm}^2}\right) = \begin{pmatrix} \mathsf{TR} \\ \hline \mathsf{SF}_{\mathsf{ext-gp}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/cm}^2}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times \\ \hline \mathsf{ET}_{\mathsf{rec}}\left(\frac{1 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{ACF}_{\mathsf{ext-gp}} \times \mathsf{GSF}_{\mathsf{o-ext-gp}} \end{pmatrix} \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \end{pmatrix}$$

# **Recreator Air PRG Equations**

Air Inhalation

$$\begin{split} &\mathsf{PRG}_{\mathsf{rec-air-inh}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{\mathsf{rec-adj}}\left(1,437.5\ \mathsf{m}^3\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1-\mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \end{split}$$
 where:  
$$&\mathsf{IFA}_{\mathsf{rec-adj}}\left(1,437.5\ \mathsf{m}^3\right) = \left[\left(\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(6\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{rec-c}}\left(\frac{10\ \mathsf{m}^3}{\mathsf{day}}\right)\right) + \left[\left(\mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(20\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-a}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{rec-a}}\left(\frac{20\ \mathsf{m}^3}{\mathsf{day}}\right)\right)\right] \end{split}$$

Air Submersion

$$\mathsf{PRG}_{\mathsf{rec-air-sub}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{rec}}\left(\frac{1 \text{ hrs}}{\mathsf{day}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

Air Total

$$PRG_{rec-air-tot}\left(\frac{pCi}{m^3}\right) = \left(\frac{1}{\frac{1}{PRG_{rec-air-inh}} + \frac{1}{PRG_{rec-air-sub}}}\right)$$
  
Air Inhalation (without decay)

$$\begin{aligned} & \mathsf{PRG}_{\mathsf{rec-air-inhnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_i\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{\mathsf{rec-adj}}\left(1,437.5\ \mathsf{m}^3\right)}\right) \\ & \text{where:} \\ & \mathsf{IFA}_{\mathsf{rec-adj}}\left(1,437.5\ \mathsf{m}^3\right) = \left[ \left(\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(6\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{rec-c}}\left(\frac{10\ \mathsf{m}^3}{\mathsf{day}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{rec-a}}\left(\frac{75\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(20\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{rec-a}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{rec-a}}\left(\frac{20\ \mathsf{m}^3}{\mathsf{day}}\right)\right) \right] \end{aligned}$$

Air Submersion (without decay)

$$\mathsf{PRG}_{\mathsf{rec-air-subnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{sub}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{m}^3}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{75 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{rec}}(26 \text{ yr}) \times \mathsf{ET}_{\mathsf{rec}}\left(\frac{1 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{a}}(1.0)}\right)$$

Air Total (without decay)

$$\mathsf{PRG}_{\mathsf{rec-air-totnd}}\left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) = \left(\frac{1}{\frac{1}{\mathsf{PRG}_{\mathsf{rec-air-inhnd}}} + \frac{1}{\mathsf{PRG}_{\mathsf{rec-air-subnd}}}}\right)$$

## **Recreator Consumption of Fowl and Game PRG Equations**

Direct Fowl Ingestion

$$\mathsf{PRG}_{\mathsf{rec-fowl-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}\left(\mathsf{26}\;\mathsf{yr}\right) \times \mathsf{IRGF}_{\mathsf{rec}}\left(\frac{\mathsf{g}}{\mathsf{day}}\right) \times \mathsf{CF}_{\mathsf{rec-fowl}}(1)}\right)$$

Soil Contribution to Fowl Ingestion

$$PRG_{rec-sol-fowl-ing}\left(\frac{pCi}{g}\right) = \left(\frac{PRG_{rec-fowl-ing}\left(\frac{pCi}{g}\right)}{TF_{fowl}\left(\frac{day}{kg}\right) \times \left[\left(Q_{p-fowl}\left(\frac{kg}{day}\right) \times f_{p-fowl}(1) \times f_{s-fowl}(1) \times (R_{upp} + R_{es})\right) + \right]}\right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}\right)$$
where:
$$R_{upp} = BV_{dry}\left(\frac{pCi / g - dry - plant}{pCi / g - dry - soil}\right); R_{es} = MLF_{pasture}\left(\frac{0.25 g - dry - soil}{g - dry - plant}\right)$$

Surface Water Contribution to Fowl Ingestion

$$\mathsf{PRG}_{\mathsf{rec-wat-fowl-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{rec-fowl-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{fowl}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-fowl}}\left(\frac{\mathsf{L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-fowl}}(1) \times \left(\frac{1\ \mathsf{kg}}{1000\ \mathsf{g}}\right)}\right)$$

Direct Land Game Ingestion

$$\mathsf{PRG}_{\mathsf{rec-game-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}\left(\mathsf{26}\;\mathsf{yr}\right) \times \mathsf{IRGL}_{\mathsf{rec}}\left(\frac{\mathsf{g}}{\mathsf{day}}\right) \times \mathsf{CF}_{\mathsf{rec-game}}(1)}\right)$$

Soil Contribution to Land Game Ingestion

$$PRG_{rec-sol-game-ing}\left(\frac{pCi}{g}\right) = \left(\frac{PRG_{rec-game-ing}\left(\frac{pCi}{g}\right)}{TF_{game}\left(\frac{day}{kg}\right) \times \left[\left(Q_{p-game}\left(\frac{kg}{day}\right) \times f_{p-game}(1) \times (R_{upp} + R_{es})\right) + \right]}{\left(Q_{s-game}\left(\frac{kg}{day}\right) \times f_{p-game}(1)\right)}\right] \right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}\right)$$
where:
$$R_{upp} = BV_{dry}\left(\frac{pCi / g - dry - plant}{pCi / g - dry - soil}\right); R_{es} = MLF_{pasture}\left(\frac{0.25 g - dry - soil}{g - dry - plant}\right)$$

Surface Water Contribution to Land Game Ingestion

$$\mathsf{PRG}_{\mathsf{rec-wat-game-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{rec-game-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{game}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-game}}\left(\frac{\mathsf{L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-game}}(1) \times \left(\frac{1\ \mathsf{kg}}{1000\ \mathsf{g}}\right)}\right)$$

## **Recreator Surface Water PRG Equations**

Surface Water Ingestion

$$\begin{aligned} \mathsf{PRG}_{\mathsf{rec-wat-ing}} & \left( \frac{\mathsf{pCi}}{\mathsf{L}} \right) = \left( \frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{w}} \left( \frac{\mathsf{risk}}{\mathsf{pCi}} \right) \times \mathsf{IFW}_{\mathsf{rec-adj}}(131.4 \, \mathsf{L})} \right) \\ \end{aligned}$$
where:
$$\mathsf{IFW}_{\mathsf{rec-adj}}(131.4 \, \mathsf{L}) = \begin{bmatrix} \left( \mathsf{EF}_{\mathsf{rec-c}} \left( \frac{45 \, \mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{rec-c}}(6 \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-c}} \left( \frac{1 \, \mathsf{events}}{\mathsf{day}} \right) \times \mathsf{ET}_{\mathsf{event-rec-c}} \left( \frac{1 \, \mathsf{hrs}}{\mathsf{event}} \right) \times \mathsf{IRW}_{\mathsf{rec-c}} \left( \frac{0.12 \, \mathsf{L}}{\mathsf{day}} \right) \right) + \\ & \left( \mathsf{EF}_{\mathsf{rec-a}} \left( \frac{45 \, \mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{rec-a}}(20 \, \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-a}} \left( \frac{1 \, \mathsf{events}}{\mathsf{day}} \right) \times \mathsf{ET}_{\mathsf{event-rec-a}} \left( \frac{1 \, \mathsf{hrs}}{\mathsf{event}} \right) \times \mathsf{IRW}_{\mathsf{rec-a}} \left( \frac{0.11 \, \mathsf{L}}{\mathsf{day}} \right) \right) \end{bmatrix} \end{aligned}$$

## Surface Water Immersion

$$\begin{aligned} \mathsf{PRG}_{\mathsf{rec-wat-imm}} & \left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{imm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/L}}\right) \times \left(\frac{1\ \mathsf{yr}}{8,760\ \mathsf{hrs}}\right) \times \mathsf{DFA}_{\mathsf{rec-adj}}\left(1,170\ \mathsf{hrs}\right)}\right) \\ \text{where:} \\ \mathsf{DFA}_{\mathsf{rec-adj}}\left(1,170\ \mathsf{hrs}\right) = \left[\left(\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}\left(6\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{rec-a}}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}\left(20\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{rec-a}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-rec-a}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right)\right) \right] \end{aligned}$$

Surface Water Total

$$PRG_{rec-wat-tot}\left(\frac{pCi}{L}\right) = \left(\frac{1}{\frac{1}{PRG_{rec-wat-ing}} + \frac{1}{PRG_{rec-wat-imm}}}\right)$$

# Farmer Direct Consumption of Agricultural Products PRG Equations

Direct Produce Ingestion

$$\begin{split} & \mathsf{PRG}_{\mathsf{far-produce-ing}} \left( \frac{\mathsf{pCi}}{\mathsf{g}} \right) = \left( \frac{\mathsf{TR}}{\mathsf{SF}_\mathsf{f} \left( \frac{\mathsf{risk}}{\mathsf{pCi}} \right) \times (\mathsf{IFF}_{\mathsf{far-adj}}(2, 246, 930 \ \mathsf{g}) + \mathsf{IFV}_{\mathsf{far-adj}}(1, 583, 400 \ \mathsf{g})) \times \mathsf{CF}_{\mathsf{far-produce}}(1)} \right) \\ & \mathsf{where:} \\ & \mathsf{IFF}_{\mathsf{far-adj}}(2, 246, 930 \ \mathsf{g}) = \begin{bmatrix} \left( \mathsf{EF}_{\mathsf{far-c}} \left( \frac{350 \ \mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{far-c}}(6 \ \mathsf{yr}) \times \mathsf{IRF}_{\mathsf{far-c}} \left( \frac{68.1 \ \mathsf{g}}{\mathsf{day}} \right) \right) + \\ \left( \mathsf{EF}_{\mathsf{far-a}} \left( \frac{350 \ \mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{far-a}}(34 \ \mathsf{yr}) \times \mathsf{IRF}_{\mathsf{far-a}} \left( \frac{176.8 \ \mathsf{g}}{\mathsf{day}} \right) \right) \end{bmatrix} \\ & \mathsf{and:} \\ & \mathsf{IFV}_{\mathsf{far-adj}}(1, 583, 400 \ \mathsf{g}) = \begin{bmatrix} \left( \mathsf{EF}_{\mathsf{far-c}} \left( \frac{350 \ \mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{far-c}}(6 \ \mathsf{yr}) \times \mathsf{IRV}_{\mathsf{far-c}} \left( \frac{41.7 \ \mathsf{g}}{\mathsf{day}} \right) \right) \right) \\ & \left( \mathsf{EF}_{\mathsf{far-adj}} \left( \frac{350 \ \mathsf{days}}{\mathsf{yr}} \right) \times \mathsf{ED}_{\mathsf{far-a}}(34 \ \mathsf{yr}) \times \mathsf{IRV}_{\mathsf{far-a}} \left( \frac{125.7 \ \mathsf{g}}{\mathsf{day}} \right) \right) \end{bmatrix} \end{split}$$

Direct Egg Ingestion

$$\mathsf{PRG}_{\mathsf{far-egg-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFE}_{\mathsf{far-adj}}(658,455 \text{ g}) \times \mathsf{CF}_{\mathsf{far-egg}}(1)}\right)$$

where:

$$IFE_{far-adj}(658,455 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRE_{far-c} \left( \frac{10.95 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRE_{far-a} \left( \frac{53.4 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Direct Poultry Ingestion

$$\begin{split} \mathsf{PRG}_{\mathsf{far-poultry-ing}}\!\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) &= \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFP}_{\mathsf{far-adj}}(1,318,100\;\mathsf{g}) \times \mathsf{CF}_{\mathsf{far-poultry}}(1)}\right) \\ \text{where:} \\ & \left[\left(\mathsf{EF}_{\mathsf{far-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6\;\mathsf{yr}) \times \mathsf{IRP}_{\mathsf{far-c}}\left(\frac{23.6\;\mathsf{g}}{\mathsf{day}}\right)\right) + \right] \end{split}$$

$$IFP_{far-adj}(1,318,100 \text{ g}) = \left[ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRP_{far-a} \left( \frac{106.6 \text{ g}}{\text{day}} \right) \right) \right]$$

Direct Fish Ingestion

$$\mathsf{PRG}_{\mathsf{far-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFFI}_{\mathsf{far-adj}}(1,918,140 \text{ g}) \times \mathsf{CF}_{\mathsf{far-fish}}(1)}\right)$$

where:

$$IFFI_{far-adj}(1,918,140 \text{ g}) = \begin{bmatrix} \left( \mathsf{EF}_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{far-c}(6 \text{ yr}) \times IRFI_{far-c} \left( \frac{32.8 \text{ g}}{\text{day}} \right) \right) + \\ \left( \mathsf{EF}_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{far-a}(34 \text{ yr}) \times IRFI_{far-a} \left( \frac{155.4 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Direct Beef Ingestion

$$\mathsf{PRG}_{\mathsf{far-beef-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFB}_{\mathsf{far-adj}}(2,202,410 \text{ g}) \times \mathsf{CF}_{\mathsf{far-beef}}(1)}\right)$$

where:

$$IFB_{far-adj}(2, 202, 410 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRB_{far-c} \left( \frac{40.1 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRB_{far-a} \left( \frac{178 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

**Direct Dairy Ingestion** 

$$\begin{split} &\mathsf{PRG}_{\mathsf{far}-\mathsf{dairy}-\mathsf{ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFD}_{\mathsf{far}-\mathsf{adj}}(6,036,590\;\mathsf{g}) \times \mathsf{CF}_{\mathsf{far}-\mathsf{dairy}}(1)}\right) \\ &\mathsf{where:} \\ &\mathsf{IFD}_{\mathsf{far}-\mathsf{adj}}(6,036,590\;\mathsf{g}) = \left[ \left(\mathsf{EF}_{\mathsf{far}-\mathsf{c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far}-\mathsf{c}}(6\;\mathsf{yr}) \times \mathsf{IRD}_{\mathsf{far}-\mathsf{c}}\left(\frac{349.5\;\mathsf{g}}{\mathsf{day}}\right)\right) + \right] \\ &\left(\mathsf{EF}_{\mathsf{far}-\mathsf{a}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far}-\mathsf{a}}(34\;\mathsf{yr}) \times \mathsf{IRD}_{\mathsf{far}-\mathsf{a}}\left(\frac{445.6\;\mathsf{g}}{\mathsf{day}}\right)\right) \right) \right] \end{split}$$

**Direct Swine Ingestion** 

$$\mathsf{PRG}_{far-swine-ing}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFSW}_{far-adj}(1,203,860 \text{ g}) \times \mathsf{CF}_{far-swine}(1)}\right)$$

where:

$$IFSW_{far-adj}(1, 203, 860 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c} (6 \text{ yr}) \times IRSW_{far-c} \left( \frac{18.5 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a} (34 \text{ yr}) \times IRSW_{far-a} \left( \frac{97.9 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

# Farmer Direct Consumption of Agricultural Products - Back-calculated to Soil PRG Equations

Soil Ingestion

$$\begin{split} & \mathsf{PRG}_{\mathsf{far-sol-ing}}\!\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{o}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFS}_{\mathsf{far-adj}}(1,610,000 \ \mathsf{mg}) \times \left(\frac{\mathsf{g}}{\mathsf{1000 \ \mathsf{mg}}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{\mathsf{1}}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right)} \right) \\ & \text{where:} \\ & \mathsf{IFS}_{\mathsf{far-adj}}(1,610,000 \ \mathsf{mg}) = \left[ \left(\mathsf{EF}_{\mathsf{far-c}}\left(\frac{\mathsf{350 \ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6 \ \mathsf{yr}) \times \mathsf{IRS}_{\mathsf{far-c}}\left(\frac{\mathsf{200 \ mg}}{\mathsf{day}}\right)\right) + \left(\mathsf{EF}_{\mathsf{far-a}}\left(\frac{\mathsf{350 \ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-a}}(\mathsf{34 \ yr}) \times \mathsf{IRS}_{\mathsf{far-a}}\left(\frac{\mathsf{100 \ mg}}{\mathsf{day}}\right)\right) \right] \end{split}$$

Soil Inhalation

$$\begin{split} & \mathsf{PRG}_{\mathsf{far-sol-inh}}\Big(\frac{\mathsf{pCi}}{\mathsf{g}}\Big) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{i}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{\mathsf{far-adj}}\left(259,000\ \mathsf{m}^{3}\right) \times \frac{1}{\mathsf{PEF}}\left(\frac{\mathsf{m}^{3}}{\mathsf{kg}}\right) \times \left(\frac{1000\ \mathsf{g}}{\mathsf{kg}}\right)}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}\right) \\ & \mathsf{where:} \\ & \mathsf{IFA}_{\mathsf{far-adj}}\left(259,000\ \mathsf{m}^{3}\right) = \left[\left(\mathsf{EF}_{\mathsf{far-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{far-c}}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{far-c}}\left(\frac{10\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{far-a}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-a}}(34\ \mathsf{yr}) \times \mathsf{ET}_{\mathsf{far-a}}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ \mathsf{day}}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{\mathsf{far-a}}\left(\frac{20\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) \right) \end{split}$$

## Soil External Exposure

$$\mathsf{PRG}_{\mathsf{far-sol-ext}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{ext-sv}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi}/\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{far}}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{\mathsf{far}}(40 \text{ yr}) \times \mathsf{ACF}_{\mathsf{ext-sv}} \times \left[\left(\mathsf{ET}_{\mathsf{far-o}}\left(\frac{12.168 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{o-ext-sv}}\right) + \left(\mathsf{ET}_{\mathsf{far-i}}\left(\frac{10.008 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{\mathsf{i-total}}\right)\right]}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \mathsf{exp}^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right)$$

Soil Contribution to Produce Ingestion

$$\begin{split} \mathsf{PRG}_{\mathsf{far-sol-produce-ing}} & \left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-produce-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{(\mathsf{R_{upv}} + \mathsf{R_{es}})}\right) \times \left(\frac{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})}\right)}\right) \\ \text{where:} \\ \mathsf{R_{upv}} = \mathsf{BV}_{wet} \left(\frac{\mathsf{pCi} / \mathsf{g} - \mathsf{fresh} - \mathsf{plant}}{\mathsf{pCi} / \mathsf{g} - \mathsf{dry} - \mathsf{soil}}\right); \mathsf{R}_{es} = \mathsf{MLF}_{\mathsf{produce}} \left(\frac{0.0135 \ \mathsf{g} - \mathsf{dry} - \mathsf{soil}}{\mathsf{g} - \mathsf{fresh} - \mathsf{plant}}\right) \end{split}$$

# Direct Produce Ingestion

$$\begin{split} & \mathsf{PRG}_{far-produce-ing}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times (\mathsf{IFF}_{far-adj}(2,246,930\;\mathsf{g}) + \mathsf{IFV}_{far-adj}(1,583,400\;\mathsf{g})) \times \mathsf{CF}_{far-produce}(1)}\right) \\ & \mathsf{where:} \\ & \mathsf{IFF}_{far-adj}(2,246,930\;\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{far-c}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(6\;\mathsf{yr}) \times \mathsf{IRF}_{far-c}\left(\frac{68.1\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{far-a}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34\;\mathsf{yr}) \times \mathsf{IRF}_{far-a}\left(\frac{176.8\;\mathsf{g}}{\mathsf{day}}\right)\right) \end{bmatrix} \\ & \mathsf{and:} \\ & \mathsf{IFV}_{far-adj}(1,583,400\;\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{far-c}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(6\;\mathsf{yr}) \times \mathsf{IRV}_{far-c}\left(\frac{41.7\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{far-a}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34\;\mathsf{yr}) \times \mathsf{IRV}_{far-c}\left(\frac{41.7\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \end{bmatrix} \end{split}$$

Soil Contribution to Egg Ingestion

Soil Contribution to Poultry Ingestion

$$PRG_{far-poultry-ing}\left(\frac{pCi}{g}\right) = \left(\frac{\frac{PRG_{far-poultry-ing}\left(\frac{pCi}{g}\right)}{TF_{poultry}\left(\frac{day}{kg}\right) \times \left[\left(Q_{p-poultry}\left(\frac{0.2 \text{ kg}}{day}\right) \times f_{p-poultry}(1) \times f_{s-poultry}(1) \times (R_{upp} + R_{es})\right) + \right]}{\left(Q_{s-poultry}\left(\frac{0.022 \text{ kg}}{day}\right) \times f_{p-poultry}(1)\right)}\right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}\right)$$
 where:

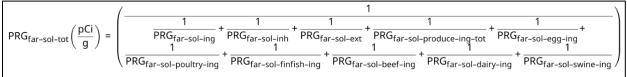
 $R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right); R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$ 

Soil Contribution to Fish Ingestion

$$\mathsf{PRG}_{\mathsf{far-sol-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) \times \mathsf{K}_{\mathsf{d}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)}{\mathsf{BCF}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)}\right)$$

Soil Contribution to Beef Ingestion

$$PRG_{far-sol-beef-ing}\left(\frac{pCi}{g}\right) = \left(\frac{PRG_{far-beef-ing}\left(\frac{pCi}{g}\right)}{TF_{beef}\left(\frac{day}{kg}\right) \times \left[\left(Q_{p-beef}\left(\frac{11.77 \text{ kg}}{day}\right) \times f_{p-beef}(1) \times f_{s-beef}(1) \times (R_{upp} + R_{es})\right) + \right]}\right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}\right)$$
where:
$$R_{upp} = BV_{dry}\left(\frac{pCi / g - dry - plant}{pCi / g - dry - soil}\right); R_{es} = MLF_{pasture}\left(\frac{0.25 \text{ g} - dry - soil}{g - dry - plant}\right)$$


#### Soil Contribution to Dairy Ingestion

$$\begin{split} & \mathsf{PRG}_{far-sol-dairy-ing} \left( \frac{\mathsf{pCi}}{\mathsf{g}} \right) = \begin{pmatrix} \frac{\mathsf{PRG}_{far-dairy-ing} \left( \frac{\mathsf{pCi}}{\mathsf{g}} \right) \\ & \mathsf{TF}_{dairy} \left( \frac{\mathsf{day}}{\mathsf{L}-\mathsf{milk}} \right) \times \mathsf{pm} \left( \frac{1.03 \ \mathsf{kg}}{\mathsf{L}-\mathsf{milk}} \right)^{-1} \times \\ & \left[ \left( \mathsf{Q}_{\mathsf{p}-dairy} \left( \frac{20.3 \ \mathsf{kg}}{\mathsf{day}} \right) \times \mathsf{f}_{\mathsf{p}-dairy}(1) \times \mathsf{f}_{\mathsf{s}-dairy}(1) \times (\mathsf{Rupp} + \mathsf{Res}) \right) + \\ & \left( \mathsf{Q}_{\mathsf{s}-dairy} \left( \frac{0.4 \ \mathsf{kg}}{\mathsf{day}} \right) \times \mathsf{f}_{\mathsf{p}-dairy}(1) \right) \\ & \mathsf{where:} \\ & \mathsf{Rupp} = \mathsf{BV}_{dry} \left( \frac{\mathsf{pCi} \ / \ \mathsf{g}-\mathsf{dry}-\mathsf{plant}}{\mathsf{pCi} \ / \ \mathsf{g}-\mathsf{dry}-\mathsf{soil}} \right); \ \mathsf{Res} = \mathsf{MLF}_{\mathsf{pasture}} \left( \frac{0.25 \ \mathsf{g}-\mathsf{dry}-\mathsf{soil}}{\mathsf{g}-\mathsf{dry}-\mathsf{plant}} \right) \end{split}$$

## Soil Contribution to Swine Ingestion

$$PRG_{far-sol-swine-ing}\left(\frac{pCi}{g}\right) = \left(\frac{PRG_{far-swine-ing}\left(\frac{pCi}{g}\right)}{TF_{swine}\left(\frac{day}{kg}\right) \times \left[\left(Q_{p-swine}\left(\frac{4.7 \text{ kg}}{day}\right) \times f_{p-swine}(1) \times f_{s-swine}(1) \times (R_{upp} + R_{es})\right) + \right]}\right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}\right)$$
where:
$$R_{upp} = BV_{dry}\left(\frac{pCi / g - dry - plant}{pCi / g - dry - soil}\right); R_{es} = MLF_{pasture}\left(\frac{0.25 \text{ g} - dry - soil}{g - dry - plant}\right)$$

#### Soil Total



#### Farmer Direct Consumption of Agricultural Products - Back-calculated to Water PRG Equations

Tap Water Ingestion

$$PRG_{far-wat-ing}\left(\frac{pCi}{L}\right) = \left(\frac{TR}{SF_w\left(\frac{risk}{pCi}\right) \times IFW_{far-adj}(31,388 L)}\right)$$
where:
$$IFW_{far-adj}(31,388 L) = \left[\left(EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRW_{far-c}\left(\frac{0.78 \text{ L}}{day}\right)\right) + \left(EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRW_{far-a}\left(\frac{2.5 \text{ L}}{day}\right)\right)\right]$$

Tap Water Inhalation

$$\begin{split} &\mathsf{PRG}_{far-wat-inh}\!\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{i}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFA}_{far-adj}\left(259,000\ \mathsf{m}^{3}\right) \times \mathsf{K}\left(\frac{0.5\ \mathsf{L}}{\mathsf{m}^{3}}\right)}\right) \\ &\text{where:} \\ &\mathsf{IFA}_{far-adj}\left(259,000\ \mathsf{m}^{3}\right) = \left[\left(\mathsf{EF}_{far-c}\left(\frac{350\ days}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(6\ \mathsf{yr}) \times \mathsf{ET}_{far-c}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ day}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{far-c}\left(\frac{10\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right) + \left[\left(\mathsf{EF}_{far-a}\left(\frac{350\ days}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34\ \mathsf{yr}) \times \mathsf{ET}_{far-a}\left(\frac{24\ \mathsf{hrs}}{\mathsf{day}}\right) \times \left(\frac{1\ day}{24\ \mathsf{hrs}}\right) \times \mathsf{IRA}_{far-a}\left(\frac{20\ \mathsf{m}^{3}}{\mathsf{day}}\right)\right)\right] \end{split}$$

Tap Water Immersion

$$\begin{aligned} & \mathsf{PRG}_{\mathsf{far-wat-imm}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{imm}}\left(\frac{\mathsf{risk}/\mathsf{yr}}{\mathsf{pCi/L}}\right) \times \left(\frac{1\ \mathsf{yr}}{8,760\ \mathsf{hrs}}\right) \times \mathsf{DFA}_{\mathsf{far-adj}}\left(9,583\ \mathsf{hrs}\right)}\right) \\ & \mathsf{where:} \\ & \mathsf{DFA}_{\mathsf{far-adj}}\left(9,583\ \mathsf{hrs}\right) = \left[ \left(\mathsf{EF}_{\mathsf{far-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}\left(6\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{far-c}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-far-c}}\left(\frac{0.54\ \mathsf{hrs}}{\mathsf{event}}\right)\right) + \right] \\ & \left(\mathsf{EF}_{\mathsf{far-a}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-a}}(34\ \mathsf{yr}) \times \mathsf{EV}_{\mathsf{far-a}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-far-a}}\left(\frac{0.71\ \mathsf{hrs}}{\mathsf{event}}\right)\right) \right) \end{aligned}$$

Tap Water Contribution to Produce Ingestion

$$PRG_{far-wat-produce-ing}\left(\frac{pCi}{L}\right) = \frac{PRG_{far-produce-ing}\left(\frac{pCi}{g}\right)}{\left(\frac{1 \ kg}{1000 \ g}\right) \times \left(Irr_{rup}\left(\frac{L}{kg}\right) + Irr_{res}\left(\frac{L}{kg}\right) + Irr_{dep}\left(\frac{L}{kg}\right)\right)}$$

where:

$$Irr_{rup}\left(\frac{L}{kg}\right) = \frac{Ir\left(\frac{L}{m^{2}-day}\right) \times F \times MLF_{produce}\left(\frac{0.0135 \text{ g}-dry-soil}{g-fresh-plant}\right) \times \left[1-exp\left(-\left(\frac{\lambda_{B}}{day}\right) \times t_{b}\left(days\right)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)}$$
$$Irr_{res}\left(\frac{L}{kg}\right) = \frac{Ir\left(\frac{L}{m^{2}-day}\right) \times F \times BV_{wet}\left(\frac{pCi / g-fresh-plant}{pCi / g-dry-soil}\right) \times \left[1-exp\left(-\left(\frac{\lambda_{B}}{day}\right) \times t_{b}\left(days\right)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)}$$
and:

$$Irr_{dep}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times I_{f} \times T \times \left[1 - exp\left(-\left(\frac{\lambda_{E}}{day}\right) \times t_{v}\left(days\right)\right)\right]}{Y_{v}\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{E}}{day}\right)}$$

Direct Produce Ingestion

$$\begin{split} & \mathsf{PRG}_{far-produce-ing}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \left(\mathsf{IFF}_{\mathsf{far-adj}}(2,246,930\;\mathsf{g}) + \mathsf{IFV}_{\mathsf{far-adj}}(1,583,400\;\mathsf{g})\right) \times \mathsf{CF}_{\mathsf{far-produce}}(1)}\right) \\ & \mathsf{where:} \\ & \mathsf{IFF}_{\mathsf{far-adj}}(2,246,930\;\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{\mathsf{far-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6\;\mathsf{yr}) \times \mathsf{IRF}_{\mathsf{far-c}}\left(\frac{68.1\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{\mathsf{far-a}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-a}}(34\;\mathsf{yr}) \times \mathsf{IRF}_{\mathsf{far-a}}\left(\frac{176.8\;\mathsf{g}}{\mathsf{day}}\right)\right) \end{bmatrix} \\ & \mathsf{and:} \\ & \mathsf{IFV}_{\mathsf{far-adj}}(1,583,400\;\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{\mathsf{far-c}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-c}}(6\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{far-c}}\left(\frac{41.7\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ \left(\mathsf{EF}_{\mathsf{far-a}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-a}}(34\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{far-c}}\left(\frac{41.7\;\mathsf{g}}{\mathsf{day}}\right)\right) + \\ & \left(\mathsf{EF}_{\mathsf{far-a}}\left(\frac{350\;\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{far-a}}(34\;\mathsf{yr}) \times \mathsf{IRV}_{\mathsf{far-a}}\left(\frac{125.7\;\mathsf{g}}{\mathsf{day}}\right)\right) \right] \end{split}$$

Tap Water Contribution to Egg Ingestion

$$\mathsf{PRG}_{\mathsf{far-wat-egg-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-egg-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{egg}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-poultry}}\left(\frac{\mathsf{0.4 L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-poultry}}(\mathsf{1}) \times \left(\frac{\mathsf{1 kg}}{\mathsf{1000 g}}\right)}\right)$$

Tap Water Contribution to Poultry Ingestion

$$\mathsf{PRG}_{\mathsf{far-wat-poultry-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-poultry-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{poultry}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-poultry}}\left(\frac{\mathsf{0.4 \ L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-poultry}}(\mathsf{1}) \times \left(\frac{\mathsf{1 \ kg}}{\mathsf{1000 \ g}}\right)}\right)$$

Tap Water Contribution to Fish Ingestion

$$\mathsf{PRG}_{\mathsf{far-wat-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-fish-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{BCF}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) \times \left(\frac{1\ \mathsf{kg}}{1000\ \mathsf{g}}\right)}\right)$$

Tap Water Contribution to Beef Ingestion

$$\mathsf{PRG}_{far-wat-beef-ing}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{far-beef-ing}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{beef}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{w-beef}\left(\frac{\mathsf{53 L}}{\mathsf{day}}\right) \times \mathsf{f}_{w-beef}(\mathsf{1}) \times \left(\frac{\mathsf{1 kg}}{\mathsf{1000 g}}\right)}\right)$$

Tap Water Contribution to Dairy Ingestion

$$\mathsf{PRG}_{\mathsf{far-wat-dairy-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-dairy-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{L-milk}}\right) \times \rho_{\mathsf{m}}\left(\frac{1.03 \text{ kg}}{\mathsf{L-milk}}\right)^{-1} \times \mathsf{Q}_{\mathsf{w-dairy}}\left(\frac{92 \text{ L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-dairy}}(1) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right)}\right)}\right)$$

Tap Water Contribution to Swine Ingestion

$$\mathsf{PRG}_{far-wat-swine-ing}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{far-swine-ing}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{swine}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{w-swine}\left(\frac{\mathsf{11.4 L}}{\mathsf{day}}\right) \times \mathsf{f}_{w-swine}\left(\mathsf{1}\right) \times \left(\frac{\mathsf{1 kg}}{\mathsf{1000 g}}\right)}\right)$$

Tap Water Total

$$PRG_{far-wat-tot}\left(\frac{pCi}{L}\right) = \left(\frac{\frac{1}{PRG_{far-wat-ing}} + \frac{1}{PRG_{far-wat-inh}} + \frac{1}{$$

## **Farmer Direct Consumption of Agricultural Products - Back-calculated to Soil and Water PRG Equations**

Soil and Tap Water Contribution to Produce Ingestion

$$\begin{aligned} y-INTERCEPT &= \\ PRG_{far-sw-produce-ing}\left(\frac{pCi}{g}\right) &= \left(\frac{PRG_{far-produce-ing}\left(\frac{pCi}{g}\right)}{(R_{upv} + R_{es})}\right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}\right) \end{aligned}$$
and:
$$x-INTERCEPT = \\ PRG_{far-sw-produce-ing}\left(\frac{pCi}{L}\right) &= \frac{PRG_{far-produce-ing}\left(\frac{pCi}{g}\right)}{\left(\frac{1 \ kg}{1000 \ g}\right) \times \left(Irr_{rup}\left(\frac{L}{kg}\right) + Irr_{res}\left(\frac{L}{kg}\right) + Irr_{dep}\left(\frac{L}{kg}\right)\right)} \end{aligned}$$

Soil and Tap Water Contribution to Egg Ingestion

$$y-INTERCEPT = \frac{PRG_{far-egg-ing}\left(\frac{pCi}{g}\right)}{PRG_{far-soil-egg-ing}\left(\frac{pCi}{g}\right)} = \left(\frac{\left(Q_{p-poultry}\left(\frac{0.2 \text{ kg}}{\text{ day}}\right) \times f_{p-poultry}(1) \times f_{s-poultry}(1) \times (R_{upp} + R_{es})\right) + \left(Q_{s-poultry}\left(\frac{0.022 \text{ kg}}{\text{ day}}\right) \times f_{p-poultry}(1)\right)\right)}\right)$$

and:

x-INTERCEPT =

$$\mathsf{PRG}_{\mathsf{far-wat-egg-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-egg-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{egg}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-poultry}}\left(\frac{0.4 \ \mathsf{L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-poultry}}(1) \times \left(\frac{1 \ \mathsf{kg}}{1000 \ \mathsf{g}}\right)}\right)$$

and:

$$\begin{split} \text{SLOPE} &= \frac{\text{Q}_{\text{w-poultry}}\left(\frac{0.4 \text{ L}}{\text{day}}\right) \times f_{\text{w-poultry}}(1)}{\left(\text{Q}_{p-\text{poultry}}\left(\frac{0.2 \text{ kg}}{\text{day}}\right) \times f_{p-\text{poultry}}(1) \times f_{s-\text{poultry}}(1) \times (\text{Rupp + Res})\right) + \left(\text{Q}_{s-\text{poultry}}\left(\frac{0.022 \text{ kg}}{\text{day}}\right) \times f_{p-\text{poultry}}(1)\right)} \\ \text{where:} \\ \text{R}_{\text{upp}} &= \text{BV}_{\text{dry}}\left(\frac{\text{pCi} / \text{g} - \text{dry} - \text{plant}}{\text{pCi} / \text{g} - \text{dry} - \text{soil}}\right); \text{R}_{\text{es}} = \text{MLF}_{\text{pasture}}\left(\frac{0.25 \text{ g} - \text{dry} - \text{soil}}{\text{g} - \text{dry} - \text{plant}}\right) \end{split}$$

# Soil and Tap Water Contribution to Poultry Ingestion

$$\begin{aligned} y-\text{INTERCEPT} = \\ & \text{PRG}_{far-soil-poultry-ing}\left(\frac{pCi}{g}\right) = \left(\frac{\text{PRG}_{far-poultry}\left(\frac{0.2 \text{ kg}}{day}\right) \times f_{p-poultry}\left(1) \times f_{s-poultry}\left(1\right) \times \left(\text{Rupp} + \text{Res}\right)\right) + 1}{\left(Q_{s-poultry}\left(\frac{0.22 \text{ kg}}{day}\right) \times f_{p-poultry}\left(1\right)\right)}\right) \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - \exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}\right) \\ & \text{and:} \\ & x-\text{INTERCEPT} = \\ & \text{PRG}_{far-wat-poultry-ing}\left(\frac{pCi}{L}\right) = \left(\frac{\text{PRG}_{far-poultry}\left(\frac{0.4 \text{ L}}{day}\right) \times f_{w-poultry}\left(1\right) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right)}{\text{TF}_{poultry}\left(\frac{0.4 \text{ L}}{day}\right) \times q_{w-poultry}\left(1\right) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right)}\right) \end{aligned}$$
 and: 
$$& \text{SLOPE} = \frac{Q_{w-poultry}\left(\frac{0.2 \text{ kg}}{day}\right) \times f_{p-poultry}(1) \times f_{s-poultry}(1) \times (Rupp + \text{Res})) + \left(Q_{s-poultry}\left(\frac{0.022 \text{ kg}}{day}\right) \times f_{p-poultry}(1)\right)} \\ & \text{where:} \\ & \text{Rupp} = \text{BV}_{dry}\left(\frac{pCi / g - dry - plant}{pCi / g - dry - soil}\right); \text{ Res} = \text{MLF}_{pasture}\left(\frac{0.25 \text{ g} - dry - soil}{g - dry - plant}\right) \end{aligned}$$

Soil and Tap Water Contribution to Fish Ingestion

$$y-INTERCEPT = \frac{V}{PRG_{far-soil-fish-ing}\left(\frac{pCi}{g}\right)} = \left(\frac{PRG_{far-fish-ing}\left(\frac{pCi}{g}\right) \times K_{d}\left(\frac{L}{kg}\right)}{BCF\left(\frac{L}{kg}\right)}\right)$$
and:
$$x-INTERCEPT = \frac{PRG_{far-soil-fish-ing}\left(\frac{pCi}{L}\right)}{BCF\left(\frac{L}{kg}\right) \times \left(\frac{1 \ kg}{1000 \ g}\right)}\right)$$
and:
$$SLOPE = \frac{K_{d}\left(\frac{L}{kg}\right)}{1000}$$

Soil and Tap Water Contribution to Beef Ingestion

$$y-INTERCEPT = \frac{PRG_{far-beef-ing}\left(\frac{pCi}{g}\right)}{PRG_{far-soil-beef-ing}\left(\frac{pCi}{g}\right)} = \left(\frac{\left(\frac{Q_{p-beef}\left(\frac{11.77 \text{ kg}}{\text{ kg}}\right) \times f_{p-beef}\left(1\right) \times f_{s-beef}\left(1\right) \times \left(R_{upp} + R_{es}\right)\right)}{\left(Q_{s-beef}\left(\frac{0.5 \text{ kg}}{\text{ day}}\right) \times f_{p-beef}\left(1\right)\right)}\right)}\right)$$
  
and:

x-INTERCEPT =

$$\mathsf{PRG}_{\mathsf{far-wat-beef-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-beef-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{beef}}\left(\frac{\mathsf{day}}{\mathsf{kg}}\right) \times \mathsf{Q}_{\mathsf{w-beef}}\left(\frac{\mathsf{53 L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-beef}}(\mathsf{1}) \times \left(\frac{\mathsf{1 kg}}{\mathsf{1000 g}}\right)}\right)$$

and:

$$\label{eq:SLOPE} SLOPE = \frac{Q_{w-beef}\left(\frac{53\ L}{day}\right) \times f_{w-beef}(1)}{\left(Q_{p-beef}\left(\frac{11.77\ kg}{day}\right) \times f_{p-beef}(1) \times f_{s-beef}(1) \times \left(R_{upp}\ +\ R_{es}\right)\right) + \left(Q_{s-beef}\left(\frac{0.5\ kg}{day}\right) \times f_{p-beef}(1)\right)}$$
 where:

$$\mathsf{R}_{upp} \ = \ \mathsf{BV}_{dry} \left( \frac{\mathsf{pCi} \ / \ \mathsf{g} - \mathsf{dry} - \mathsf{plant}}{\mathsf{pCi} \ / \ \mathsf{g} - \mathsf{dry} - \mathsf{soil}} \right) \ ; \ \mathsf{R}_{es} = \mathsf{MLF}_{pasture} \left( \frac{0.25 \ \mathsf{g} - \mathsf{dry} - \mathsf{soil}}{\mathsf{g} - \mathsf{dry} - \mathsf{plant}} \right)$$

Soil and Tap Water Contribution to Dairy Ingestion

$$y-INTERCEPT = \left( \frac{PRG_{far-dairy-ing}\left(\frac{pCi}{g}\right)}{TF_{dairy}\left(\frac{day}{L-milk}\right) \times \rho_m\left(\frac{1.03 \text{ kg}}{L-milk}\right)^{-1} \times} \left[ \left( Q_{p-dairy}\left(\frac{20.3 \text{ kg}}{day}\right) \times f_{p-dairy}(1) \times f_{s-dairy}(1) \times (R_{upp} + R_{es})\right) + \right] \right) \times \left( \frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)} \right)$$

and:

x-INTERCEPT =

$$\mathsf{PRG}_{\mathsf{far-wat-dairy-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) = \left(\frac{\mathsf{PRG}_{\mathsf{far-dairy-ing}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right)}{\mathsf{TF}_{\mathsf{dairy}}\left(\frac{\mathsf{day}}{\mathsf{L-milk}}\right) \times \mathsf{pm}\left(\frac{1.03 \text{ kg}}{\mathsf{L-milk}}\right)^{-1} \times \mathsf{Q}_{\mathsf{w-dairy}}\left(\frac{\mathsf{g2} \text{ L}}{\mathsf{day}}\right) \times \mathsf{f}_{\mathsf{w-dairy}}(1) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right)}\right)$$

and:

$$\begin{split} \text{SLOPE} &= \frac{\text{Q}_{\text{w-dairy}}\left(\frac{92 \text{ L}}{\text{day}}\right) \times f_{\text{w-dairy}}(1)}{\left(\text{Q}_{p-\text{dairy}}\left(\frac{20.3 \text{ kg}}{\text{day}}\right) \times f_{p-\text{dairy}}(1) \times f_{s-\text{dairy}}(1) \times \left(\text{R}_{\text{upp}} + \text{R}_{\text{es}}\right)\right) + \left(\text{Q}_{s-\text{dairy}}\left(\frac{0.4 \text{ kg}}{\text{day}}\right) \times f_{p-\text{dairy}}(1)\right)} \\ \text{where:} \\ \text{R}_{\text{upp}} &= \text{BV}_{\text{dry}}\left(\frac{\text{pCi} / \text{g} - \text{dry} - \text{plant}}{\text{pCi} / \text{g} - \text{dry} - \text{soil}}\right); \text{R}_{\text{es}} = \text{MLF}_{\text{pasture}}\left(\frac{0.25 \text{ g} - \text{dry} - \text{soil}}{\text{g} - \text{dry} - \text{plant}}\right) \end{split}$$

Soil and Tap Water Contribution to Swine Ingestion

$$\mathsf{PRG}_{far-swine-ing}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) = \left(\frac{\mathsf{TR}}{\mathsf{SF}_{\mathsf{f}}\left(\frac{\mathsf{risk}}{\mathsf{pCi}}\right) \times \mathsf{IFSW}_{far-adj}(1, 203, 860 \text{ g}) \times \mathsf{CF}_{far-swine}(1)}\right)$$

where:

$$IFSW_{far-adj}(1, 203, 860 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c} (6 \text{ yr}) \times IRSW_{far-c} \left( \frac{18.5 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a} (34 \text{ yr}) \times IRSW_{far-a} \left( \frac{97.9 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

# Soil to Groundwater PRG Equations

Method 1 for SSL Determination

$$\begin{split} & SSL\left(\frac{pCi}{g}\right) = \ C_{water}\left(\frac{pCi}{L}\right) \times \left(\frac{kg}{1,000\ g}\right) \times \left[K_{d}\left(\frac{L}{kg}\right) + \left(\frac{\theta_{w}\left(\frac{0.3\ L_{water}}{L_{soil}}\right)}{\rho_{b}\left(\frac{1.5\ kg}{L}\right)}\right)\right] \times \left(\frac{t(yr) \times \lambda\left(\frac{1}{yr}\right)}{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}\right) \end{split}$$
 where:  

$$C_{water}\left(\frac{pCi}{L}\right) = \ MCL\left(\frac{pCi}{L}\right) \times DAF$$
or:  

$$C_{water}\left(\frac{pCi}{L}\right) = \ PRG\left(\frac{pCi}{L}\right) \times DAF$$

Method 2 for SSL Determination

$$\begin{split} & \text{SSL}\Big(\frac{p\text{C}i}{g}\Big) = \left(\frac{C_{water}\Big(\frac{p\text{C}i}{L}\Big) \times I\Big(\frac{0.18 \text{ m}}{yr}\Big) \times \text{ED}(70 \text{ yr})}{\rho_b\Big(\frac{1.5 \text{ kg}}{L}\Big) \times d_s\Big(\frac{mg}{kg}\Big) \times \Big(\frac{1,000 \text{ g}}{kg}\Big)}\right) \times \left(\frac{t(yr) \times \lambda\Big(\frac{1}{yr}\Big)}{\Big(1 - exp^{-\lambda\Big(\frac{1}{yr}\Big) \times t(yr)}\Big)}\right) \\ & \text{where:} \\ & \text{C}_{water}\Big(\frac{p\text{C}i}{L}\Big) = \text{MCL}\Big(\frac{p\text{C}i}{L}\Big) \times \text{DAF} \\ & \text{or:} \\ & \text{C}_{water}\left(\frac{p\text{C}i}{L}\right) = \text{PRG}\left(\frac{p\text{C}i}{L}\right) \times \text{DAF} \end{split}$$

# APPENDIX G. TABLES OF RECOMMENDED DEFAULT EXPOSURE PARAMETERS FOR RADIONUCLIDE RISK CALCULATOR

## APPENDIX G. TABLES OF RECOMMENDED DEFAULT EXPOSURE PARAMETERS FOR RADIONUCLIDE RISK CALCULATOR

Symbol	Definition (units)	Default	Reference
SFs	Soil Ingestion Slope Factor - population (risk/pCi)	Isotope-specific	ORNL 2014c
SF _{sa}	Soil Ingestion Slope Factor - adult only (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
SF _f	Food Ingestion Slope Factor (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
$SF_w$	Water Ingestion Slope Factor (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
SFi	Slope Factor - inhalation (risk/pCi)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-sv}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-1cm}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-5cm}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-15cm}	Slope Factor - external exposure (risk/yr per pCi/g)	Isotope-specific	<u>ORNL 2014c</u>
SF _{ext-gp}	Slope Factor - external exposure (risk/yr per pCi/cm ² )	Isotope-specific	ORNL 2014c
SF _{sub}	Slope Factor - submersion (risk/yr per pCi/cm ³ )	Isotope-specific	<u>ORNL 2014c</u>
SF _{imm}	Slope Factor - immersion (risk/yr per pCi/L)	Isotope-specific	<u>ORNL 2014c</u>

#### Table G-1. Slope Factors (SFs)

Symbol	Definition (units)	Default	Reference
C _{soil}	Concentration of contaminant in soil (pCi/g)	User-input	
C _{g-water}	Concentration of contaminant in groundwater (pCi/L)	User-input	
C _{s-water}	Concentration of contaminant in surface water (pCi/L)	User-input	
C _{air}	Concentration of contaminant in air (pCi/m ³ )	User-input	
$\mathrm{C}_{\mathrm{fish}}$	Concentration of contaminant in fish (pCi/g)	User-input	
C _{produce}	Concentration of contaminant in produce (pCi/g)	User-input	
C _{milk}	Concentration of contaminant in milk (pCi/g)	User-input	
Cbeef	Concentration of contaminant in beef (pCi/g)	User-input	
C _{poultry}	Concentration of contaminant in poultry (pCi/g)	User-input	
C _{egg}	Concentration of contaminant in egg (pCi/g)	User-input	
Cswine	Concentration of contaminant in swine (pCi/g)	User-input	
λ	Decay constant = $0.693$ /half-life (year ⁻¹ ) where $0.693 = \ln(2)$	Isotope-specific	Developed for Radionuclide Soil Screening calculator
Κ	Andelman Volatilization Factor (L/m ³ )	0.5	U.S. EPA 1991b (pg. 20)
ACF _{ext-sv}	Area Correction Factor - soil volume (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-1cm}	Area Correction Factor – 1 cm (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-5cm}	Area Correction Factor – 5 cm (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-15cm}	Area Correction Factor – 15 cm (unitless)	Isotope-specific	<u>ORNL 2014a</u>
ACF _{ext-gp}	Area Correction Factor - ground plane (unitless)	Isotope-specific	<u>ORNL 2014a</u>
GSF _i	Gamma Shielding Factor - Indoor (unitless)	0.4	U.S. EPA 2000a. (pg. 2- 22). U.S. EPA 2000b. (pg. 2-18)
GSF _{ext-sv}	Gamma Shielding Factor - soil volume (unitless)	Isotope-specific	<u>ORNL 2014a</u>
GSF _{ext-1cm}	Gamma Shielding Factor – 1 cm (unitless)	Isotope-specific	ORNL 2014b
GSF _{ext-5cm}	Gamma Shielding Factor – 5 cm (unitless)	Isotope-specific	ORNL 2014b
GSF _{ext-15cm}	Gamma Shielding Factor – 15 cm (unitless)	Isotope-specific	<u>ORNL 2014b</u>
GSF _{ext-gp}	Gamma Shielding Factor - ground plane (unitless)	Isotope-specific	ORNL 2014b
GSF _a	Gamma Shielding Factor - Air (unitless)	1	Developed for Radionuclide Soil Screening calculator

#### Table G-2. Miscellaneous Variables

#### Table G-3. Resident Soil

Symbol	Definition (units)	Default	Reference
CDI _{res-soil-rad-}	Resident Soil Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
ing		specific	calculator
CDI _{res-soil-rad-}	Resident Soil Radionuclide Inhalation (pCi)	Contaminant-	Determined in this
inh		specific	calculator
CDI _{res-soil-rad-}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
ext	year/g)	specific	calculator
CDI _{res-soil-rad-sv}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
	year/g)	specific	calculator

Symbol	Definition (units)	Default	Reference
CDI _{res-soil-rad-}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
lcm	year/g)	specific	calculator
CDI _{res-soil-rad-}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
5cm	year/g)	specific	calculator
CDI _{res-soil-rad-}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
15cm	year/g)	specific	calculator
CDI _{res-soil-rad-gp}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
res son nue gp	year/cm ² )	specific	calculator
t _{res}	Time - resident (years)	26	U.S. EPA 2011a, Table
-105			16-108; 90th percentile
			or current residence
			time.
CF _{res} -produce	Produce Contaminated Fraction - resident	0.25	U.S. EPA 1990. U.S.
les produce	(unitless)		EPA. 1998. (pg. C-9)
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-fresh	Radionuclide-	Hierarchy selection in
2 · wet	plant per pCi/g-dry soil)	specific	Section 2.3.2
R _{upv}	Wet root uptake for produce multiplier	Radionuclide-	Hierarchy selection in
reupv	(unitless)	specific (=Bv _{wet} )	Section 2.3.2
R _{es}	Soil resuspension multiplier (dimensionless)	=MLF (pasture or	Hinton 1992
Res	son resuspension multiplier (unitensioness)	produce)	
IFS _{res-adj}	Resident Ingestion Fraction - age-adjusted	1,120,000	Calculated using the
II Ores-adj	(mg)	1,120,000	age-adjusted intake
	(ing)		factors equation.
IRS _{res-a}	Resident Soil Ingestion Rate - adult (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRS _{res-c}	Resident Soil Ingestion Rate - child (mg/day)	200	U.S. EPA 1991a (pg. 15)
	Resident Inhalation Rate - age-adjusted (m ³ )	161,100	Calculated using the
IFA _{res-adj}	Resident Innalation Rate - age-adjusted (m ⁻ )	101,100	
			age-adjusted intake
ID A	$\mathbf{D}$ 1 $(1 + 1 + 1 + 1)$ $\mathbf{D}$ $(1 + 1 + 1)$	20	factors equation.
IRA _{res-a}	Resident Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{res-c}	Resident Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
IFV _{res-adj}	Resident Vegetable Ingestion Fraction - age-	989,870	Calculated using the
-	adjusted (g)		age-adjusted intake
			factors equation
IRV _{res-a}	Resident Vegetable Ingestion Rate - adult	128.9	U.S. EPA 2011 (Table
	(g/day)		13-10)
IRV _{res-c}	Resident Vegetable Ingestion Rate - child	41.7	U.S. EPA 2011 (Table
	(g/day)		13-10)
IFF _{res-adj}	Resident Fruit Ingestion Fraction - age-	1,462,510	Calculated using the
,	adjusted (g)		age-adjusted intake
			factors equation
IRF _{res-a}	Resident Fruit Ingestion Rate - adult (g/day)	188.5	U.S. EPA 2011 (Table
			13-5)
IRF _{res-c}	Resident Fruit Ingestion Rate - child (g/day)	68.1	U.S. EPA 2011 (Table
100 0			13-5)
EF _{res}	Resident Exposure Frequency - (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-a}	Resident Exposure Frequency - adult	350	U.S. EPA 1991a (pg. 15)
105-0	(days/year)		(P5.10)
EF _{res-c}	Resident Exposure Frequency - child	350	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile

Table G-3. Resident Soil

Symbol	Definition (units)	Default	Reference
			or current residence
			time.
ED _{res-a}	Resident Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res} -
			_c (6 years)
ED _{res-c}	Resident Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages
			6 and 15
ET _{res}	Resident Exposure Time (hours/day)	24	24 Hours per 24 hour
			Day
ET _{res-a}	Resident Exposure Time - adult (hours/day)	24	24 Hours per 24 hour
			Day
ET _{res-c}	Resident Exposure Time - child (hours/day)	24	24 Hours per 24 hour
			Day
ET _{res-i}	Resident Exposure Time - indoor (hours/day)	16.416	U.S. EPA 2011 (Table
			16-16 50 th %)
ET _{res-o}	Resident Exposure Time - outdoor (hours/day)	1.752	U.S. EPA 2011 (Table
			16-20 50 th %))
CDI _{res-soil-rad-}	Resident Soil Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
ing		specific	calculator
CDI _{res-soil-rad-}	Resident Soil Radionuclide Inhalation (pCi)	Contaminant-	Determined in this
inh		specific	calculator
CDI _{res-soil-rad-}	Resident Soil Radionuclide External (pCi-	Contaminant-	Determined in this
ext	year/g)	specific	calculator

Table G-3. Resident Soil

Symbol	Definition (units)	Default	Reference
CDI _{iw-rad-ing}	Indoor Worker Soil Radionuclide Ingestion	Contaminant-	Determined in this
-	(pCi)	specific	calculator
CDI _{iw-rad-inh}	Indoor Worker Soil Radionuclide Inhalation	Contaminant-	Determined in this
	(pCi)	specific	calculator
CDI _{iw-sol-rad-ext}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
CDI _{iw-sol-rad-sv}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
CDI _{iw-sol-rad-}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
1cm	(pCi-year/g)	specific	calculator
CDI _{iw-sol-rad-}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
5cm	(pCi-year/g)	specific	calculator
CDI _{iw-sol-rad-}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
15cm	(pCi-year/g)	specific	calculator
CDI _{iw-sol-rad-gp}	Indoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/cm ² )	specific	calculator
t _{iw}	Time - indoor worker (years)	25	U.S. EPA 1991a (pg. 15)
IRS _{iw}	Indoor Worker Soil Ingestion Rate (mg/day)	50	U.S. EPA 2001 (pg. 4-3)
IRA _{iw}	Indoor Worker Inhalation Rate (m ³ /day; based	60	U.S. EPA 1997a (pg. 5-
	on a rate of 2.5 m ³ /hour for 24 hours)		11)
EF _{iw}	Indoor Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{iw}	Indoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ET _{iw}	Indoor Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
	_ 、 , , , , , , , , , , , , , , , , , ,		Day

Table G-4. Indoor Worker Soil

Symbol	Definition (units)	Default	Reference
CDI _{ow-soil-rad-}	Outdoor Worker Soil Radionuclide Ingestion	Contaminant-	Determined in this
ing	(pCi)	specific	calculator
CDI _{ow-soil-rad-}	Outdoor Worker Soil Radionuclide Inhalation	Contaminant-	Determined in this
inh	(pCi)	specific	calculator
CDI _{ow-soil-rad-}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
ext	(pCi-year/g)	specific	calculator
CDI _{ow-soil-rad-sv}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
CDI _{ow-soil-rad-}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
1cm	(pCi-year/g)	specific	calculator
CDI _{ow-soil-rad-}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
5cm	(pCi-year/g)	specific	calculator
CDI _{ow-soil-rad-}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
15cm	(pCi-year/g)	specific	calculator
CDI _{ow-soil-rad-gp}	Outdoor Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/cm ² )	specific	calculator
t _{ow}	Time - outdoor worker (years)	25	U.S. EPA 1991a (pg. 15)
IRS _{ow}	Outdoor Worker Soil Ingestion Rate (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRA _{ow}	Outdoor Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24 hours)		11)
EFow	Outdoor Worker Exposure Frequency	225	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{ow}	Outdoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ET _{ow}	Outdoor Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
			Day

#### Table G-5. Outdoor Worker Soil

Symbol	Definition (units)	Default	Reference
CDI _{w-soil-rad-ing}	Composite Worker Soil Radionuclide Ingestion	Contaminant-	Determined in this
w son nu nig	(pCi)	specific	calculator
CDI _{w-soil-rad-inh}	Composite Worker Soil Radionuclide Inhalation (pCi)	Contaminant- specific	Determined in this calculator
CDI _{w-soil-rad-ext}	Composite Worker Soil Radionuclide External (pCi-year/g)	Contaminant- specific	Determined in this calculator
CDI _{w-soil-rad-sv}	Composite Worker Soil Radionuclide External (pCi-year/g)	Contaminant- specific	Determined in this calculator
CDI _{w-soil-rad-}	Composite Worker Soil Radionuclide External (pCi-year/g)	Contaminant- specific	Determined in this calculator
CDI _{w-soil-rad-}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
5cm	(pCi-year/g)	specific	calculator
CDI _{w-soil-rad-}	Composite Worker Soil Radionuclide External	Contaminant-	Determined in this
15cm	(pCi-year/g)	specific	calculator
CDI _{w-soil-rad-gp}	Composite Worker Soil Radionuclide External (pCi-year/cm ² )	Contaminant- specific	Determined in this calculator
t _w	Time - worker (years)	25	U.S. EPA 1991a (pg. 15)
IRS _w	Composite Worker Soil Ingestion Rate (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRAw	Composite Worker Inhalation Rate (m ³ /day; based on a rate of 2.5 m ³ /hour for 24 hours)	60	U.S. EPA 1997a (pg. 5- 11)
EFw	Composite Worker Exposure Frequency (days/year)	250	U.S. EPA 1991a (pg. 15)
ED _w	Composite Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ETw	Composite Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour Day

Table G-6. Composite Worker Soil

Table G-7. Excavation Worker Soil

Symbol	Definition (units)	Default	Reference
CDI _{ew-sol-rad-ing}	Excavation Worker Soil Radionuclide	Contaminant-	Determined in this
	Ingestion (pCi)	specific	calculator
CDI _{ew-sol-rad-inh}	Excavation Worker Soil Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi)	specific	calculator
CDI _{ew-sol-rad-ext}	Excavation Worker Soil Radionuclide External	Contaminant-	Determined in this
	(pCi-year/g)	specific	calculator
t _{ew}	Time - excavation worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRS _{ew}	Excavation Worker Soil Ingestion Rate	330	
	(mg/day)		
IRA _{ew}	Excavation Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 $m^3$ /hour for 24 hours)		11)
EFew	Excavation Worker Exposure Frequency	20	
	(days/year)		
$ED_{ew}$	Excavation Worker Exposure Duration (years)	1	U.S. EPA 2002 Exhibit
			5-1
ET _{ew-o}	Excavation Worker Exposure Time (hours/day)	8	Eight Hours per 24 hour
			Day

Symbol	Definition (units)	Default	Reference
CDIcw-sol-rad-ing	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
_	Ingestion (pCi)	specific	calculator
CDIcw-sol-rad-inh	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi)	specific	calculator
CDI _{cw-sol-rad-ext}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi-year/g)	specific	calculator
CDIcw-sol-rad-sv	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi-year/g)	specific	calculator
CDIcw-sol-rad-	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
1cm	External (pCi-year/g)	specific	calculator
CDI _{cw-sol-rad-}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
5cm	External (pCi-year/g)	specific	calculator
CDI _{cw-sol-rad-}	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
15cm	External (pCi-year/g)	specific	calculator
CDIcw-sol-rad-gp	Construction Worker Soil Radionuclide	Contaminant-	Determined in this
	External (pCi-year/cm ² )	specific	calculator
t _{cw}	Time - construction worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRS _{cw}	Construction Worker Soil Ingestion Rate	330	
	(mg/day)		
IRA _{cw}	Construction Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24 hours)		11)
EF _{cw}	Construction Worker Exposure Frequency	250	U.S. EPA 2002 Exhibit
	(days/year)		5-1
EW _{cw}	Construction Worker Exposure Frequency	50	U.S. EPA 2002 Exhibit
	(weeks/year)		5-1
DW _{cw}	Construction Worker Exposure Frequency	5	U.S. EPA 2002 Exhibit
	(days/week)		5-1
ED _{cw}	Construction Worker Exposure Duration	1	U.S. EPA 2002 Exhibit
	(years)		5-1
ET _{cw}	Construction Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

Table G-8. Construction Worker Soil

Symbol	Definition (units)	Default	Reference
CDI _{rec-soil-rad-}	Recreator Soil Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
ing		specific	calculator
CDI _{rec-soil-rad-}	Recreator Soil Radionuclide Inhalation (pCi)	Contaminant-	Determined in this
inh		specific	calculator
CDI _{rec-soil-rad-}	Recreator Soil Radionuclide External (pCi-	Contaminant-	Determined in this
ext	year/g)	specific	calculator
CDI _{rec-soil-rad-sv}	Recreator Soil Radionuclide External (pCi-	Contaminant-	Determined in this
	year/g)	specific	calculator
CDI _{rec-soil-rad-}	Recreator Soil Radionuclide External (pCi-	Contaminant-	Determined in this
1cm	year/g)	specific	calculator
CDI _{rec-soil-rad-}	Recreator Soil Radionuclide External (pCi-	Contaminant-	Determined in this
5cm	year/g)	specific	calculator
CDI _{rec-soil-rad-}	Recreator Soil Radionuclide External (pCi-	Contaminant-	Determined in this
15cm	year/g)	specific	calculator
CDI _{rec-soil-rad-gp}	Recreator Soil Radionuclide External (pCi-	Contaminant-	Determined in this
	year/cm ² )	specific	calculator
t _{rec}	Time - recreator (years)	Site-specific	Site-specific
IFS _{rec-adj}	Recreator Ingestion Fraction - age-adjusted	240,000	Calculated using the
	(mg)		age-adjusted intake
			factors equation.
IRS _{rec-a}	Recreator Soil Ingestion Rate - adult (mg/day)	100	U.S. EPA 1991a (pg. 15)
IRS _{rec-c}	Recreator Soil Ingestion Rate - child (mg/day)	200	U.S. EPA 1991a (pg. 15)
IFA _{rec-adj}	Recreator Inhalation Fraction - age-adjusted	1,437.50	Calculated using the
	(m ³ )		age-adjusted intake
			factors equation.
IRA _{rec-a}	Recreator Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{rec-c}	Recreator Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
EF _{rec}	Recreator Exposure Frequency - (days/year)	75	Reasonable estimate
EF _{rec-a}	Recreator Exposure Frequency - adult	75	Reasonable estimate
	(days/year)		
EF _{rec-c}	Recreator Exposure Frequency - child	75	Reasonable estimate
	(days/year)	26	
ED _{rec}	Recreator Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
ED	Description Error Providence - dult (comme)	20	time.
ED _{rec-a}	Recreator Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res} . c (6 years)
ED _{rec-c}	Recreator Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages
			6 and 15
ET _{rec}	Recreator Exposure Time (hours/day)	1	Reasonable estimate
ET _{rec-a}	Recreator Exposure Time - adult (hours/day)	1	Reasonable estimate
ET _{rec-c}	Recreator Exposure Time - child (hours/day)	1	Reasonable estimate

## Table G-9. Recreator Soil/Sediment

Table	G-10.	Farmer	Soil
-------	-------	--------	------

Symbol	Definition (units)	Default	Reference
CDI _{far-soil-rad-ing}	Farmer Soil Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
		specific	calculator
CDI _{far-soil-rad-inh}	Farmer Soil Radionuclide Inhalation (pCi)	Contaminant-	Determined in this
		specific	calculator
CDI _{far-soil-rad-ext}	Farmer Soil Radionuclide External (pCi-	Contaminant-	Determined in this
	year/g)	specific	calculator
CDI _{soil-far-produce-rad-}	Farmer Produce Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Soil Ingestion	specific	calculator
·	(pCi)	-	
CDI _{soil-far-poultry-rad-}	Farmer Poultry Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi)	1	
CDI _{soil-far-egg-rad-ing}	Farmer Egg Radionuclide Back-calculated	Contaminant-	Determined in this
son in ogg ind ing	Concentration in Soil Ingestion (pCi)	specific	calculator
CDI _{soil-far-beef-rad-ing}	Farmer Beef Radionuclide Back-calculated	Contaminant-	Determined in this
-son-m-occi-iau-illg	Concentration in Soil Ingestion (pCi)	specific	calculator
CDI _{soil-far-dairy-rad-ing}	Farmer Dairy Radionuclide Back-	Contaminant-	Determined in this
CD Ison-lai-dan y-rad-ing	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi)		
CDI _{soil-far-swine-rad-}	Farmer Swine Radionuclide Back-	Contaminant-	Determined in this
	calculated Concentration in Soil Ingestion	specific	calculator
ing	(pCi)	specific	culculator
CDI _{soil-far-fish-rad-ing}	Farmer Fish Radionuclide Back-calculated	Contaminant-	Determined in this
CD1soil-far-fish-rad-ing	Concentration in Soil Ingestion (pCi)	specific	calculator
0	Density of milk (kg/L)	1.03	Milk Composition &
$\rho_{m}$	Density of milk (kg/L)	1.05	Synthesis Resource
			<u>Library</u>
4	Time former (menn)	40	
t _{far}	Time - farmer (years)	40	U.S. EPA 2005 (pg. C-
D	$\mathbf{C}$ it $\mathbf{D}$ $\mathbf{T}$ $\mathbf{C}$ $\mathbf{E}$ $\mathbf{A}$ $\mathbf{C}$ $\mathbf{C}$	D 1' 1' 1	24/C-26)
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-	Radionuclide-	Hierarchy selection in
D	fresh plant per pCi/g-dry soil)	specific	Section 2.3.2
Bv _{dry}	Soil to Plant Transfer Factor - dry (pCi/g-	Radionuclide-	Hierarchy selection in
	dry plant per pCi/g-dry soil)	specific	Section 2.3.2
R _{upv}	Wet root uptake for produce multiplier	Radionuclide-	Hierarchy selection in
-	(unitless)	specific (=Bv _{wet} )	Section 2.3.2
R _{upp}	Dry root uptake for pasture multiplier	Radionuclide-	Hierarchy selection in
	(dimensionless)	specific (=Bv _{dry} )	Section 2.3.2
Res	Soil resuspension multiplier	=MLF (pasture or	Hinton 1992
	(dimensionless)	produce)	
TF _{beef}	Beef Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{dairy}	Dairy Transfer Factor (day/L)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{swine}	Swine Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{poultry}	Poultry Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
1 -		specific	Section 2.3.2
TF _{egg}	Egg Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
-22		specific	Section 2.3.2
MLF _{produce}	Produce Plant Mass Loading Factor	$0.26 \ge 0.052 =$	Hinton, 1992. U.S.
produce	•	0.0135	EPA SSG 1996 table
	(unitless)		I DEA SOUTISSO MOLE

Symbol	Definition (units)	Default	Reference
			weight conversion equation from section
		0.25	4.10.7.
MLF _{pasture}	Pasture Plant Mass Loading Factor (unitless)	0.25	Hinton, T. G. 1992
Q _p -beef	Beef Fodder Intake Rate (kg/day)	11.77	U.S. EPA 2005 (pg. B- 138)
Q _{p-dairy}	Dairy Fodder Intake Rate (kg/day)	20.3	U.S. EPA 2005 (pg. B- 145)
Q _{p-swine}	Swine Fodder Intake Rate (kg/day)	4.7	U.S. EPA 2005 (pg. B- 152)
$Q_{p-poultry}$	Poultry Fodder Intake Rate (kg/day)	0.2	U.S. EPA 2005 (pg. B- 158/164)
Q _{s-beef}	Beef Soil Intake Rate (kg/day)	0.5	U.S. EPA 2005 (pg. B- 139)
Q _{s-dairy}	Dairy Soil Intake Rate (kg/day)	0.4	U.S. EPA 2005 (pg. B- 146)
Q _{s-swine}	Swine Soil Intake Rate (kg/day)	0.37	U.S. EPA 2005 (pg. B- 153)
$Q_{s\text{-poultry}}$	Poultry Soil Intake Rate (kg/day)	0.022	U.S. EPA 2005 (pg. B- 159/165)
$f_{p\text{-beef}}$	Fraction of Time Animal is On-Site - beef (unitless)	1	Developed for this calculator
$\mathbf{f}_{p-dairy}$	Fraction of Time Animal is On-Site - dairy (unitless)	1	Developed for this calculator
f _{p-swine}	Fraction of Time Animal is On-Site - swine (unitless)	1	Developed for this calculator
$f_{p\text{-poultry}}$	Fraction of Time Animal is On-Site - poultry (unitless)	1	Developed for this calculator
$f_{s\text{-beef}}$	Fraction of Animal's Food from Site when On-Site - beef (unitless)	1	Developed for this calculator
f _{s-dairy}	Fraction of Animal's Food from Site when On-Site - dairy (unitless)	1	Developed for this calculator
f _{s-swine}	Fraction of Animal's Food from Site when On-Site - swine (unitless)	1	Developed for this calculator
f _{s-poultry}	Fraction of Animal's Food from Site when On-Site - poultry (unitless)	1	Developed for this calculator
IFS _{far-adj}	Farmer Soil Ingestion Fraction - age- adjusted (mg)	1,610,000	Calculated using the age-adjusted intake factors equation.
IRS _{far-a}	Farmer Soil Ingestion Rate - adult (mg/day)	100	U.S. EPA 1991a (pg. 15)
$\mathrm{IFA}_{\mathrm{far-adj}}$	Farmer Inhalation Rate - age-adjusted (m ³ )	259,000	Calculated using the age-adjusted intake factors equation.
IRA _{far-a}	Farmer Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{far-c}	Farmer Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
IRS _{far-c}	Farmer Soil Ingestion Rate - child (mg/day)	200	U.S. EPA 1991a (pg. 15)

Symbol	Definition (units)	Default	Reference
$\mathrm{EF}_{\mathrm{far}}$	Farmer Exposure Frequency (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{far-a}	Farmer Exposure Frequency - adult (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{far}	Farmer Exposure Frequency - child (days/year)	350	U.S. EPA 1991a (pg. 15)
ED _{far}	Farmer Exposure Duration (years)	40	U.S. EPA 2005 (Table 6-3)
ED _{far-a}	Farmer Exposure Duration - adult (years)	34	U.S. EPA 1994a
ED _{far-c}	Farmer Exposure Duration - child (years)	6	U.S. EPA 2005 (Table 6-3)
$\mathrm{ET}_{\mathrm{far}}$	Farmer Exposure Time - (hours/day)	24	24 Hours per 24 hour Day
ET _{far-a}	Farmer Exposure Time - Adult (hours/day)	24	24 Hours per 24 hour Day
ET _{far-c}	Farmer Exposure Time - Child (hours/day)	24	24 Hours per 24 hour Day
ET _{far-i}	Farmer Exposure Time - indoor (hours/day)	10.008	1440 hrs/day - (ET _{far-o} + ET _{far-a} )
ET _{far-away}	Farmer Exposure Time - away (hours/day)	1.83	U.S. EPA 2011 (Tables 16-20 and 16-24 total of time in vehicles, near vehicles and outdoors other than near residence 25 th %)
ET _{far-o}	Farmer Exposure Time - outdoor (hours/day)	12.168	U.S. EPA 2011 (Table 16-20 95 th %))

### Table G-10. Farmer Soil

Table G-11. Resident Tap Water

Symbol	Definition (units)	Default	Reference
CDI _{water-rad-ing}	Resident Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Ingestion (pCi)	specific	calculator
CDIwater-rad-inh	Resident Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Inhalation (pCi)	specific	calculator
CDIwater-rad-imm	Resident Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Immersion (pCi-year/L)	specific	calculator
Irr _{rup}	Root uptake from irrigation multiplier	Isotope-specific	Calculated
-	(L/kg)		
Irr _{res}	Resuspension from irrigation multiplier	Isotope-specific	Calculated
	(L/kg)		
Irr _{dep}	Aerial deposition from irrigation	Isotope-specific	Calculated
	multiplier (L/kg)		
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-	Radionuclide-	Hierarchy selection in
	fresh plant per pCi/g-dry soil)	specific	Section 2.3.2
F	Irrigation Period (unitless)	0.25	Personal
			communication
If	Interception Fraction (unitless)	0.42	Miller, C. W. 1980
Ir	Irrigation Rate (L/m ² )	3.62	Personal
			communication

Symbol	Definition (unite)	- Dofault	Defenence
Symbol	Definition (units)	Default	Reference
λ _{HL}	Soil Leaching Rate (1/day)	0.000027	NCRP 1996
$\lambda_i$	Decay (1/day)	0.693/TR - radionuclides	NCRP 1996
$\lambda_{\rm E}$	Decay for Removal on Produce (1/day)	$\lambda_i + (0.693/t_w)$	NCRP 1996
$\lambda_{\rm B}$	Effective Rate for Removal (1/day)	$\lambda_{HL}$ - $\lambda_i$	NCRP 1996
Т	Translocation Factor (unitless)	1	NCRP 1996
t _b	Long Term Deposition and Buildup (day)	10950	NCRP 1996
t _v	Above Ground Exposure Time (day)	60	NCRP 1996
tw	Weathering Half-life (day)	14	NCRP 1996
Yv	Plant Yield - wet $(kg/m^2)$	2	NCRP 1996
Р	Area Density for Root Zone (kg/m ² )	240	Hoffman, F. O., R. H. Gardner, and K. F. Eckerman. 1982; Peterson, H. T., Jr. 1983; McKone, T. E. 1994
MLF _{produce}	Produce Plant Mass Loading Factor (unitless)	0.26 x 0.052 = 0.0135	Hinton, 1992. U.S. EPA SSG 1996 table G-1. Dry weight to wet weight conversion equation from section 4.10.7.
IFW _{res-adj}	Resident Tap Water Ingestion Rate - age- adjusted (L)	19,138	Calculated using the age-adjusted intake factors equation.
IRW _{res-a}	Resident Tap Water Ingestion - adult (L/day)	2.5	U.S. EPA 2011a, Tables 3-15 and 3-33; weighted average of 90th percentile consumer-only ingestion of drinking water (21+)
IRW _{res-c}	Resident Tap Water Ingestion - child (L/day)	0.78	U.S. EPA 2011a, Tables 3-15 and 3-33; weighted average of 90th percentile consumer-only ingestion of drinking water (birth to <6 years)
IFA _{res-adj}	Resident Inhalation Rate - age-adjusted (m ³ )	161,100	Calculated using the age-adjusted intake factors equation.
DFA _{res-adj}	Resident Immersion Factor - age-adjusted (hours)	6104	Calculated using the age-adjusted intake factors equation.
IRA _{res-a}	Resident Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{res-c}	Resident Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5-11)

## Table G-11. Resident Tap Water

I

Symbol	Definition (units)	Default	Reference
IFV _{res-adj}	Resident Vegetable Ingestion Fraction -	989,870	Calculated using the
-	age-adjusted (g)		age-adjusted intake
			factors equation
IRV _{res-a}	Resident Vegetable Ingestion Rate - adult	128.9	U.S. EPA 2011 (Table
	(g/day)		13-10)
IRV _{res-c}	Resident Vegetable Ingestion Rate - child	41.7	U.S. EPA 2011 (Table
	(g/day)		13-10)
IFF _{res-adj}	Resident Fruit Ingestion Fraction - age-	1,462,510	Calculated using the
	adjusted (g)		age-adjusted intake
			factors equation
IRF _{res-a}	Resident Fruit Ingestion Rate - adult	188.5	U.S. EPA 2011 (Table
	(g/day)		13-5)
IRF _{res-c}	Resident Fruit Ingestion Rate - child	68.1	U.S. EPA 2011 (Table
	(g/day)		13-5)
EF _{res}	Resident Exposure Frequency -	350	U.S. EPA 1991a (pg.
	(days/year)		15)
EF _{res-a}	Resident Exposure Frequency - adult	350	U.S. EPA 1991a (pg.
	(days/year)		15)
EF _{res-c}	Resident Exposure Frequency - child	350	U.S. EPA 1991a (pg.
	(days/year)	26	15)
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a,
			Table 16-108; 90th
			percentile or current residence time.
ED _{res-a}	Resident Exposure Duration - adult (years)	20	ED _{res} (26 years) -
LD _{res-a}	Resident Exposure Duration - adult (years)	20	$ED_{res}$ (20 years) - $ED_{res-c}$ (6 years)
ED _{res-c}	Resident Exposure Duration - child (years)	6	U.S. EPA 1991a,
LDres-c	Resident Exposure Duration - ennu (years)	0	Pages 6 and 15
ET _{event-res-a}	Resident Tap Water Exposure Time -	0.71	U.S. EPA 1997a
L I event-res-a	Adult (hours/event)	0.71	0.5. LI A 1997a
ET _{event-res-c}	Resident Tap Water Exposure Time -	0.54	U.S. EPA 1997a
event-res-c	Child (hours/event)		C.S. E111 19974
EV _{res-a}	Number of bathing events per day - adult	1	U.S. EPA 2004
- · 105-a	resident (events/day)	-	Exhibit 3-2
EV _{res-c}	Number of bathing events per day - child	1	U.S. EPA 2004
105-0	resident (events/day)		Exhibit 3-2

Symbol	Definition (units)	Default	Reference
CDI _{iw-water-ing}	Indoor Worker Tap Water Radionuclide	Contaminant-	Determined in this
_	Ingestion (pCi)	specific	calculator
CDI _{iw-water-inh}	Indoor Worker Tap Water Radionuclide	Contaminant-	Determined in this
	Inhalation (pCi)	specific	calculator
CDI _{iw-water-imm}	Indoor Worker Tap Water Radionuclide	Contaminant-	Determined in this
	Immersion (pCi/L-year)	specific	calculator
IRW _{iw}	Indoor Worker Tap Water Ingestion (L/day)	1.25	U.S. EPA 2014, FAQ
			13
EF _{iw}	Indoor Worker Exposure Frequency	250	U.S. EPA 1991a (pg.
	(days/year)		15)
$ED_{iw}$	Indoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg.
			15)
ET _{iw}	Indoor Worker Exposure Time (hours/day)	8	Eight Hours per 24
			hour Day
ET _{event-iw}	Indoor Worker Tap Water Exposure Time -	0.71	U.S. EPA 1997a
	adult (hours/event)		
EV _{iw}	Number of bathing events per day - Indoor	1	U.S. EPA 2004 Exhibit
	Worker (events/day)		3-2

Table G-12. Indoor	· Worker Tap Water
--------------------	--------------------

Symbol	Definition (units)	Default	Reference
CDI _{rec-water-rad-}	Recreator Surface Water Radionuclide	Contaminant-	Determined in this
ing	Ingestion (pCi)	specific	calculator
CDI _{rec-water-rad-}	Recreator Surface Water Radionuclide	Contaminant-	Determined in this
imm	Immersion (pCi-year/L)	specific	calculator
IFW _{rec-adj}	Recreator Surface Water Ingestion - age-	131.4	Calculated using the
	adjusted (L)		age-adjusted intake
			factors equation.
IRW _{rec-a}	Recreator Surface Water Ingestion - adult	0.11	Time weighted average
	(L/hour)		was calculated based on
			the upper percentile
			from Table 3.7 of EFH
			<u>2019</u>
IRW _{rec-c}	Recreator Surface Water Ingestion - child	0.12	Table 3.5 in EFH 2011
	(L/hour)		
DFA _{rec-adj}	Recreator Immersion Factor - age-adjusted	1170	Calculated using the
	(hours)		age-adjusted intake
			factors equation.
EF _{rec}	Recreator Exposure Frequency - (days/year)	45	Region 4 Bulletin
EF _{rec-c}	Recreator Exposure Frequency - child	45	Region 4 Bulletin
	(days/year)		
EF _{rec-a}	Recreator Exposure Frequency - adult	45	Region 4 Bulletin
	(days/year)		
ED _{rec}	Recreator Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.
ED _{rec-a}	Recreator Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res-}
			_c (6 years)
ED _{rec-c}	Recreator Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages
			6 and 15
ET _{event-rec-a}	Number of bathing events per day - adult	1	Reasonable estimate
	recreator (events/day)		
ET _{event-rec-c}	Number of hours per bathing event - child	1	Reasonable estimate
<b>F1</b>	recreator (hours/event)	1	
EV _{rec-a}	Number of hours per bathing event - child	1	Reasonable estimate
<b>E1</b>	recreator (hours/event)	1	
EV _{rec-c}	Number of bathing events per day - child	1	Reasonable estimate
	recreator (events/day)		

## Table G-13. Recreator Surface Water

Table G-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
CDIwater-rad-far-ing	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Ingestion (pCi)	specific	calculator
CDIwater-rad-far-inh	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Inhalation (pCi)	specific	calculator
CDIwater-rad-far-imm	Farmer Tap Water (Groundwater)	Contaminant-	Determined in this
	Radionuclide Immersion (pCi-year/L)	specific	calculator
CDI _{water-far-produce-}	Farmer Produce Radionuclide Back-	Contaminant-	Determined in this
rad-ing	calculated Concentration in Water	specific	calculator
	Ingestion (pCi)		

Symbol	Definition (units)	Default	Reference
CDI _{water-far-poultry-}	Farmer Poultry Radionuclide Back-	Contaminant-	Determined in this
rad-ing	calculated Concentration in Water	specific	calculator
Ū.	Ingestion (pCi)	-	
CDIwater-far-egg-rad-ing	Farmer Egg Radionuclide Back-calculated	Contaminant-	Determined in this
	Concentration in Water Ingestion (pCi)	specific	calculator
CDIwater-far-beef-rad-	Farmer Beef Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Water	specific	calculator
-	Ingestion (pCi)	-	
CDIwater-far-dairy-rad-	Farmer Dairy Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Water	specific	calculator
	Ingestion (pCi)		
CDIwater-far-swine-rad-	Farmer Swine Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Water	specific	calculator
	Ingestion (pCi)		
CDIwater-far-fish-rad-	Farmer Fish Radionuclide Back-calculated	Contaminant-	Determined in this
ing	Concentration in Water Ingestion (pCi)	specific	calculator
$\rho_m$	Density of milk (kg/L)	1.03	Milk Composition &
			Synthesis Resource
			<u>Library</u>
BCF	Fish Transfer Factor (L/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{beef}	Beef Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{dairy}	Dairy Transfer Factor (day/L)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{swine}	Swine Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{poultry}	Poultry Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{egg}	Egg Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
Q _{w-beef}	Beef Water Intake Rate (L/day)	53	U.S. EPA 1999a (pg.
			10-23). U.S. EPA
			1997b.
Q _{w-dairy}	Dairy Water Intake Rate (L/day)	92	U.S. EPA 1999a (pg.
			10-23). U.S. EPA
			1997b.
Qw-swine	Swine Water Intake Rate (L/day)	11.4	NEC, Swine Nutrition
			Guide (pg. 19). U.S.
_			EPA 1998 (pg. B-180)
Qw-poultry	Poultry Water Intake Rate (L/day)	0.4	U.S. EPA 2005 (pg. B-
			159/165), NRC 1994
Ŧ		T	$pg. 15 (Q_w = 2 \times Q_p)$
Irr _{rup}	root uptake from irrigation multiplier	Isotope-specific	Calculated
Irr _{res}	resuspension from irrigation multiplier	Isotope-specific	Calculated
Irr _{dep}	aerial deposition from irrigation multiplier	Isotope-specific	Calculated
Bv _{wet}	Soil to Plant Transfer Factor - wet (pCi/g-	Radionuclide-	Hierarchy selection in
	fresh plant per pCi/g-dry soil)	specific	Section 2.3.2
F	Irrigation Period (unitless)	0.25	Personal
			communication
$I_{\rm f}$	Interception Fraction (unitless)	0.42	Miller, C. W. 1980

## Table G-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
Ir	Irrigation Rate (L/m ² )	3.62	Personal
			communication
$\lambda_{ m HL}$	Soil Leaching Rate (1/day)	0.000027	NCRP 1996
$\lambda_i$	decay (1/day)	0.693/TR -	NCRP 1996
		radionuclides	
$\lambda_{\rm E}$	Decay for Removal on Produce (1/day)	$\lambda_i + (0.693/t_w)$	NCRP 1996
$\lambda_{\rm B}$	Effective Rate for Removal (1/day)	$λ_{HL}$ - $λ_i$	NCRP 1996
Т	Translocation Factor (unitless)	1	NCRP 1996
t _b	Long Term Deposition and Buildup (day)	10950	NCRP 1996
t _v	Above Ground Exposure Time (day)	60	NCRP 1996
t _w	Weathering Half-life (day)	14	NCRP 1996
Y _v	Plant Yield - wet (kg/m ² )	2	NCRP 1996
Р	Area Density for Root Zone (kg/m ² )	240	Hoffman, F. O., R. H. Gardner, and K. F. Eckerman. 1982; Peterson, H. T., Jr. 1983; McKone, T. E. 1994
MLF _{produce}	Produce Plant Mass Loading Factor (unitless)	0.26 x 0.052 = 0.0135	Hinton, 1992. U.S. EPA SSG 1996 table G-1. Dry weight to wet weight conversion equation from section 4.10.7.
$\mathrm{IFW}_{\mathrm{far-adj}}$	Farmer Water Ingestion Fraction - age- adjusted (L)	31,388	Calculated using the age-adjusted intake factors equation.
IRW _{far-a}	Farmer Water Ingestion Rate - adult (L/day)	2.5	U.S. EPA 2011a, Tables 3-15 and 3-33; weighted average of 90th percentile consumer- only ingestion of drinking water (21+)
IRW _{far-c}	Farmer Water Ingestion Rate - child (L/day)	0.78	U.S. EPA 2011a, Tables 3-15 and 3-33; weighted average of 90th percentile consumer- only ingestion of drinking water (birth to <6 years)
$\mathrm{IFA}_{\mathrm{far-adj}}$	Farmer Inhalation Rate - age-adjusted (m ³ )	259,000	Calculated using the age-adjusted intake factors equation.
$\mathrm{DFA}_{\mathrm{far-adj}}$	Farmer Immersion Factor - age-adjusted (hours)	9583	Calculated using the age-adjusted intake factors equation.
IRA _{far-a}	Farmer Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{far-c}	Farmer Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
$\mathrm{EF}_{\mathrm{far}}$	Farmer Exposure Frequency (days/year)	350	U.S. EPA 1991a (pg. 15)

## Table G-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
EF _{far-a}	Farmer Exposure Frequency - adult	350	U.S. EPA 1991a (pg.
	(days/year)		15)
EF _{far}	Farmer Exposure Frequency - child	350	U.S. EPA 1991a (pg.
	(days/year)		15)
$\mathrm{ED}_{\mathrm{far}}$	Farmer Exposure Duration (years)	40	U.S. EPA 2005 (Table
			6-3)
ED _{far-a}	Farmer Exposure Duration - adult (years)	34	U.S. EPA 1994a
ED _{far-c}	Farmer Exposure Duration - child (years)	6	U.S. EPA 2005 (Table
			6-3)
ET _{event-far-c}	Farmer Tap Water Exposure Time - Child (hours/day)	0.54	U.S. EPA 1997a
ET _{event-far-a}	Farmer Tap Water Exposure Time - Adult	0.71	U.S. EPA 1997a
	(hours/day)		
EV _{far-a}	Number of bathing events per day - adult	1	U.S. EPA 2004 Exhibit
	farmer (events/day)		3-2
EV _{far-c}	Number of bathing events per day - child	1	U.S. EPA 2004 Exhibit
	farmer (events/day)		3-2

## Table G-14. Farmer Tap Water

Symbol	Definition (units)	Default	Reference
CDI _{res-air-rad-inh-decay}	Resident Air Radionuclide Inhalation w/	Contaminant-	Determined in this
	Decay (pCi)	specific	calculator
CDIres-air-rad-sub-decay	Resident Air Radionuclide Submersion w/	Contaminant-	Determined in this
	Decay (pCi-year/m ³ )	specific	calculator
CDI _{res-air-rad-inh-}	Resident Air Radionuclide Inhalation	Contaminant-	Determined in this
nodecay	w/out Decay (pCi)	specific	calculator
CDI _{res-air-rad-sub-}	Resident Air Radionuclide Submersion	Contaminant-	Determined in this
nodecay	w/out Decay (pCi-year/m ³ )	specific	calculator
t _{res}	Time - resident (years)	26	U.S. EPA 2011a, Table 16-108; 90th percentile or current residence time.
IFA _{res-adj}	Resident Inhalation Rate - age-adjusted (m ³ )	161,100	Calculated using the age-adjusted intake factors equation.
IRA _{res-a}	Resident Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg. 15)
IRA _{res-c}	Resident Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5- 11)
EF _{res}	Resident Exposure Frequency - (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-c}	Resident Exposure Frequency - child (days/year)	350	U.S. EPA 1991a (pg. 15)
EF _{res-a}	Resident Exposure Frequency - adult (days/year)	350	U.S. EPA 1991a (pg. 15)
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table 16-108; 90th percentile or current residence time.
ED _{res-a}	Resident Exposure Duration - adult (years)	20	ED _{res} (26 years) - ED _{res-} c (6 years)
ED _{res-c}	Resident Exposure Duration - child (years)	6	U.S. EPA 1991a, Pages 6 and 15
ET _{res}	Resident Exposure Time (hours/day)	24	24 Hours per 24 hour Day
ET _{res-a}	Resident Exposure Time - adult (hours/day)	24	24 Hours per 24 hour Day
ET _{res-c}	Resident Exposure Time - child (hours/day)	24	24 Hours per 24 hour Day

Table G-15. Resident Air

Symbol	Definition (units)	Default	Reference
CDI _{iw-air-rad-inh-decay}	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
CDIiw-air-rad-sub-decay	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi-year/m ³ )	specific	calculator
CDI _{iw-air-rad-inh-}	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
CDI _{iw-air-rad-sub-}	Indoor Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Submersion w/out Decay (pCi-year/m ³ )	specific	calculator
IRA _{iw}	Indoor Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24		11)
	hours)		
$EF_{iw}$	Indoor Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{iw}	Indoor Worker Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ET _{iw}	Indoor Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

### Table G-16. Indoor Worker Air

#### Table G-17. Outdoor Worker Air

Symbol	Definition (units)	Default	Reference
CDI _{ow-air-rad-inh-decay}	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
-	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
CDIow-air-rad-sub-decay	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi-year/m ³ )	specific	calculator
CDI _{ow-air-rad-inh-}	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
CDI _{ow-air-rad-sub-}	Outdoor Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Submersion w/out Decay (pCi-year/m ³ )	specific	calculator
t _{ow}	Time - outdoor worker (years)	25	U.S. EPA 1991a (pg. 15)
IRA _{ow}	Outdoor Worker Inhalation Rate (m ³ /day;	60	U.S. EPA 1997a (pg. 5-
	based on a rate of 2.5 m ³ /hour for 24		11)
	hours)		
EFow	Outdoor Worker Exposure Frequency	225	U.S. EPA 1991a (pg. 15)
	(days/year)		
ED _{ow}	Outdoor Worker Exposure Duration	25	U.S. EPA 1991a (pg. 15)
	(years)		
ET _{ow}	Outdoor Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

Symbol	Definition (units)	Default	Reference
CDI _{w-air-rad-inh-decay}	Composite Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
CDIw-air-rad-sub-decay	Composite Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi-year/m ³ )	specific	calculator
CDI _{w-air-rad-inh-}	Composite Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
CDIw-air-rad-sub-	Composite Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Submersion w/out Decay (pCi-year/m ³ )	specific	calculator
tw	Time - worker (years)	25	U.S. EPA 1991a (pg. 15)
IRAw	Composite Worker Inhalation Rate	60	U.S. EPA 1997a (pg. 5-
	$(m^{3}/day; based on a rate of 2.5 m^{3}/hour for$		11)
	24 hours)		
$EF_w$	Composite Worker Exposure Frequency	250	U.S. EPA 1991a (pg. 15)
	(days/year)		
EDw	Composite Exposure Duration (years)	25	U.S. EPA 1991a (pg. 15)
ETw	Composite Worker Exposure Time	8	Eight Hours per 24 hour
	(hours/day)		Day

Table G-18.	Composite	Worker	Air
-------------	-----------	--------	-----

#### Table G-19. Excavation Worker Air

Symbol	Definition (units)	Default	Reference
CDI _{ew-air-rad-inh-decay}	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
CDIew-air-rad-sub-decay	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi-year/m ³ )	specific	calculator
CDI _{ew-air-rad-inh-}	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
CDIew-air-rad-sub-	Excavation Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Submersion w/out Decay (pCi-year/m ³ )	specific	calculator
t _{ew}	Time - excavation worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRA _{ew}	Excavation Worker Inhalation Rate	60	U.S. EPA 1997a (pg. 5-
	$(m^3/day; based on a rate of 2.5 m^3/hour for$		11)
	24 hours)		
EF _{ew}	Excavation Worker Exposure Frequency	20	
	(days/year)		
ED _{ew}	Excavation Worker Exposure Duration	1	U.S. EPA 2002 Exhibit
	(years)		5-1
ET _{ew-o}	Excavation Worker Exposure Time	8	Eight Hours per 24
	(hours/day)		hour Day

Symbol	Definition (units)	Default	Reference
CDI _{cw-air-rad-inh-decay}	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
CDIcw-air-rad-sub-decay	Construction Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi-year/m ³ )	specific	calculator
CDI _{cw-air-rad-inh-}	Construction Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
CDIcw-air-rad-sub-	Construction Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Submersion w/out Decay (pCi-year/m ³ )	specific	calculator
t _{cw}	Time - construction worker (years)	1	U.S. EPA 2002 Exhibit
			5-1
IRA _{cw}	Construction Worker Inhalation Rate	60	U.S. EPA 1997a (pg. 5-
	$(m^3/day; based on a rate of 2.5 m^3/hour for$		11)
	24 hours)		
EF _{cw}	Construction Worker Exposure Frequency	250	U.S. EPA 2002 Exhibit
	(days/year)		5-1
$EW_{cw}$	Construction Worker Exposure Frequency	50	U.S. EPA 2002 Exhibit
	(weeks/year)		5-1
$DW_{cw}$	Construction Worker Exposure Frequency	5	U.S. EPA 2002 Exhibit
	(days/week)		5-1
ED _{cw}	Construction Worker Exposure Duration	1	U.S. EPA 2002 Exhibit
	(years)		5-1
ET _{cw}	Construction Worker Exposure Time	8	Eight Hours per 24
	(hours/day)		hour Day

## Table G-20. Construction Worker Air

Symbol	Definition (units)	Default	Reference
CDI _{rec-air-rad-inh-decay}	Recreator Worker Air Radionuclide	Contaminant-	Determined in this
-	Inhalation w/ Decay (pCi/m ³ )	specific	calculator
CDI _{rec-air-rad-sub-decay}	Recreator Worker Air Radionuclide	Contaminant-	Determined in this
	Submersion w/ Decay (pCi-year/m ³ )	specific	calculator
CDI _{rec-air-rad-inh-}	Recreator Worker Air Radionuclide	Contaminant-	Determined in this
nodecay	Inhalation w/out Decay (pCi/m ³ )	specific	calculator
CDIrec-air-rad-sub-	Recreator Air Radionuclide Submersion	Contaminant-	Determined in this
nodecay	w/out Decay (pCi-year/m ³ )	specific	calculator
t _{rec}	Time - recreator (years)	Site-specific	Site-specific
IFA _{rec-adj}	Recreator Inhalation Fraction - age-	1,437.5	Calculated using the
	adjusted (m ³ )		age-adjusted intake
			factors equation.
IRA _{rec-a}	Recreator Inhalation Rate - adult (m ³ /day)	20	U.S. EPA 1991a (pg.
			15)
IRA _{rec-c}	Recreator Inhalation Rate - child (m ³ /day)	10	U.S. EPA 1997a (pg. 5-
			11)
EF _{rec}	Recreator Exposure Frequency -	75	Reasonable estimate
	(days/year)		
EF _{rec-a}	Recreator Exposure Frequency - adult	75	Reasonable estimate
	(days/year)		
EF _{rec-c}	Recreator Exposure Frequency - child	75	Reasonable estimate
	(days/year)		
ED _{rec}	Recreator Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.
ED _{rec-a}	Recreator Exposure Duration - adult	20	ED _{res} (26 years) - ED _{res-}
	(years)		_c (6 years)
ED _{rec-c}	Recreator Exposure Duration - child	6	U.S. EPA 1991a, Pages
	(years)		6 and 15
ET _{rec}	Recreator Exposure Time (hours/day)	1	Reasonable estimate
ET _{rec-a}	Recreator Exposure Time - adult	1	Reasonable estimate
	(hours/day)		
ET _{rec-c}	Recreator Exposure Time - child	1	Reasonable estimate
	(hours/day)		

Table	G-21.	Recreator	Air
-------	-------	-----------	-----

Symbol	Definition (units)	Default	Reference
CDI _{res-fsh-rad-ing}	Resident Fish Radionuclide (pCi)	Contaminant-	Determined in this
		specific	calculator
CDI _{res-fshw-rad-ing}	Resident Surface Water Fish Radionuclide	Contaminant-	Determined in this
	(pCi)	specific	calculator
BCF	Fish Transfer Factor (L/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
IRF _{res}	Resident Fish Ingestion Rate (g/day)	54	U.S. EPA 1991a (page
			15)
EF _{res}	Resident Exposure Frequency - (days/year)	350	U.S. EPA 1991a (pg.
			15)
ED _{res}	Resident Exposure Duration (years)	26	U.S. EPA 2011a, Table
			16-108; 90th percentile
			or current residence
			time.

Table	G-22.	Resident	Fish	Consumption
-------	-------	----------	------	-------------

Symbol	Definition (units)	Default	Reference
CDI _{rec-fowl-rad-ing}	Recreator Fowl Radionuclide Ingestion	Contaminant-	Determined in this
6	(pCi)	specific	calculator
CDI _{soil-rec-fowl-rad-ing}	Recreator Fowl Radionuclide Back-	Contaminant-	Determined in this
Ũ	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi)	-	
CDIwater-rec-fowl-rad-	Recreator Fowl Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Water	specific	calculator
-	Ingestion (pCi)	-	
CDI _{rec-game-rad-ing}	Recreator Game Radionuclide Ingestion	Contaminant-	Determined in this
с с	(pCi)	specific	calculator
CDI _{soil-rec-game-rad-ing}	Recreator Game Radionuclide Back-	Contaminant-	Determined in this
0 0	calculated Concentration in Soil Ingestion	specific	calculator
	(pCi)	1	
CDIwater-rec-game-rad-	Recreator Game Radionuclide Back-	Contaminant-	Determined in this
ing	calculated Concentration in Water	specific	calculator
0	Ingestion (pCi)	1	
CF _{rec-game}	Game Contaminated Fraction - farmer	1	Developed for
-	(unitless)		Radionuclide Soil
			Screening calculator
CF _{rec-fowl}	Fowl Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
Bv _{dry}	Soil to Plant Transfer Factor - dry (pCi/g-	Radionuclide-	Hierarchy selection in
,	dry plant per pCi/g-dry soil)	specific	Section 2.3.2
R _{upp}	Dry root uptake for pasture multiplier	Radionuclide-	Hierarchy selection in
••	(dimensionless)	specific (=Bv _{dry} )	Section 2.3.2
TF _{beef}	Game Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
		specific	Section 2.3.2
TF _{poultry}	Fowl Transfer Factor (day/kg)	Radionuclide-	Hierarchy selection in
1 9		specific	Section 2.3.2
Q _{w-game}	Game Water Intake Rate (L/day)	Site-specific	-
Q _{w-fowl}	Fowl Water Intake Rate (L/day)	Site-specific	-
Q _{p-game}	Game Fodder Intake Rate (kg/day)	Site-specific	-
Q _{p-fowl}	Fowl Fodder Intake Rate (kg/day)	Site-specific	-
Q _{s-game}	Game Soil Intake Rate (kg/day)	Site-specific	-
Qs-fowl	Fowl Soil Intake Rate (kg/day)	Site-specific	-
f _{p-game}	Fraction of Time Animal is On-Site - game	Site-specific	-
P Same	(unitless)		
f _{p-fowl}	Fraction of Time Animal is On-Site - fowl	Site-specific	-
L 10.11	(unitless)	1	
f _{s-game}	Fraction of Animal's Food from Site when	Site-specific	-
-s-game	On-Site - game (unitless)	specific	
f _{s-fowl}	Fraction of Animal's Food from Site when	Site-specific	_
+9-10WI	On-Site - fowl (unitless)	Site specifie	
EF _{rec}	Recreator Exposure Frequency -	75	Reasonable estimate
L'I rec	(days/year)	15	Reasonable estimate
ED _{rec}	Recreator Exposure Duration (years)	26	Reasonable estimate

Table G-23	Recreator	Game and	Fowl Consi	umption
14010 0 20	i i i i i i i i i i i i i i i i i i i	Guine and	I OWI COUST	mpnon

1

Symbol	Definition (units)	Default	Reference
$\mathrm{CDI}_{\mathrm{far} ext{-produce-rad-ing}}$	Farmer Produce Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi)	specific	calculator
CDI far-poultry-rad-ing	Farmer Poultry Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi)	specific	calculator
CDI _{far-egg-rad-ing}	Farmer Egg Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
		specific	calculator
CDI _{far-beef-rad-ing}	Farmer Beef Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
-		specific	calculator
CDI far-dairy-rad-ing	Farmer Dairy Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
		specific	calculator
CDI _{far-swine-rad-ing}	Farmer Swine Radionuclide Ingestion	Contaminant-	Determined in this
· · ·	(pCi)	specific	calculator
CDI _{far-fish-rad-ing}	Farmer Fish Radionuclide Ingestion (pCi)	Contaminant-	Determined in this
		specific	calculator
CF _{far-produce}	Produce Contaminated Fraction - farmer	1	U.S. EPA 1994c. U.S.
1	(unitless)		EPA. 1998. (pg. C-9)
CF _{far-poultry}	Poultry Contaminated Fraction - farmer	1	Developed for
1 5	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-egg}	Egg Contaminated Fraction - Farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-beef}	Beef Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-dairy}	Dairy Contaminated Fraction - farmer	1	Developed for
2	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-swine}	Swine Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
CF _{far-fish}	Fish Contaminated Fraction - farmer	1	Developed for
	(unitless)		Radionuclide Soil
			Screening calculator
IFV _{far-adj}	Farmer Vegetable Ingestion Fraction - age-	1,583,400	Calculated using the
v	adjusted (g)		age-adjusted intake
			factors equation
IRV _{far-a}	Farmer Vegetable Ingestion Rate - adult	125.7	U.S. EPA 2011 (Table
	(g/day)		13-10)
IRV _{far-c}	Farmer Vegetable Ingestion Rate - child	41.7	U.S. EPA 2011 (Table
	(g/day)		13-10)
IFF _{far-adj}	Farmer Fruit Ingestion Rate - age-adjusted	2,246,930	Calculated using the
5	(g)		age-adjusted intake
			factors equation
IRF _{far-a}	Farmer Fruit Ingestion Rate - adult (g/day)	176.8	U.S. EPA 2011 (Table
			13-5)
IRF _{far-c}	Farmer Fruit Ingestion Rate - child (g/day)	68.1	U.S. EPA 2011 (Table
			13-5)
IFP _{far-adj}	Farmer Poultry Ingestion Fraction - age-	1,318,100	Calculated using the
	adjusted (g)	,, **	age-adjusted intake
		1	

## Table G-24. Farmer Direct Ingestion

Symbol	Definition (units)	Default	Reference
IRP _{far-a}	Farmer Poultry Ingestion Rate - adult	106.6	U.S. EPA 2011 (Table
	(g/day)		13-52)
IRP _{far-c}	Farmer Poultry Ingestion Rate - child	23.6	U.S. EPA 2011 (Table
	(g/day)		13-52)
IFE _{far-adj}	Farmer Egg Ingestion Rate - age-adjusted	658,455	Calculated using the
	(g)		age-adjusted intake
			factors equation
IRE _{far-a}	Farmer Egg Ingestion Rate - adult (g/day)	53.4	U.S. EPA 2011 (Table
			13-40)
IRE _{far-c}	Farmer Egg Ingestion Rate - child (g/day)	10.95	U.S. EPA 2011 (Table
			13-40)
$IFB_{far-adj}$	Farmer Beef Ingestion Fraction - age-	2,202,410	Calculated using the
	adjusted (g)		age-adjusted intake
IDD		170.0	factors equation
IRB _{far-a}	Farmer Beef Ingestion Rate - adult (g/day)	178.0	U.S. EPA 2011 (Table
IDD		40.1	13-33)
IRB _{far-c}	Farmer Beef Ingestion Rate - child (g/day)	40.1	U.S. EPA 2011 (Table
IED		( 02( 500	13-33)
$IFD_{far-adj}$	Farmer Dairy Ingestion Fraction - age-	6,036,590	Calculated using the
	adjusted (g)		age-adjusted intake factors equation
IRD _{far-a}	Farmer Dairy Ingestion Rate - adult	445.6	U.S. EPA 2011 (Table
IKD _{far-a}	(g/day)	445.0	11-4)
IRD _{far-c}	Farmer Dairy Ingestion Rate - child	349.5	U.S. EPA 2011 (Table
IKD far-c	(g/day)	5-7.5	11-4)
IFSW _{far-adj}	Farmer Swine Ingestion Fraction - age-	1,203,860	Calculated using the
II O W lar-adj	adjusted (g)	1,205,000	age-adjusted intake
			factors equation
IRSW _{far-a}	Farmer Swine Ingestion Rate - adult	97.9	U.S. EPA 2011 (Table
	(g/day)		13-51)
IRSW _{far-c}	Farmer Swine Ingestion Rate - child	18.5	U.S. EPA 2011 (Table
-	(g/day)		13-51)
IFFI _{far-adj}	Farmer Fish Ingestion Fraction - age-	1,918,140	Calculated using the
, i i i i i i i i i i i i i i i i i i i	adjusted (g)		age-adjusted intake
			factors equation
IRFI _{far-a}	Farmer Fish Ingestion Rate - adult (g/day)	155.4	U.S. EPA 2011 (Table
			13-20)
IRFI _{far-c}	Farmer Fish Ingestion Rate - child (g/day)	32.8	U.S. EPA 2011 (Table
			13-20)
CDI _{far} -produce-rad-ing	Farmer Produce Radionuclide Ingestion	Contaminant-	Determined in this
	(pCi)	specific	calculator

## Table G-24. Farmer Direct Ingestion

Symbol	Definition (units)	Default	Reference
Cw	Target soil leachate concentration (pCi/L)	Nonzero MCL or	U.S. EPA. 2002
		$RSL \times DAF$	Equation 4-14
DAF	Dilution attenuation factor (unitless)	20 (or site-specific)	U.S. EPA. 2002
			Equation 4-11
$ED_{gw}$	Exposure duration	70	U.S. EPA. 2002
-			Equation 4-14
Ι	Infiltration Rate (m/year)	0.18	U.S. EPA. 2002
			Equation 4-11
L	Source length parallel to ground water	Site-specific	U.S. EPA. 2002
	flow (m)	-	Equation 4-11
i	Hydraulic gradient (m/m)	Site-specific	U.S. EPA. 2002
		-	Equation 4-11
Κ	Aquifer hydraulic conductivity (m/year)	Site-specific	U.S. EPA. 2002
		-	Equation 4-11
$\theta_{\rm w}$	Water-filled soil porosity (L _{water} /L _{soil} )	0.3	U.S. EPA. 2002
			Equation 4-10
$\theta_a$	Air-filled soil porosity (Lair/Lsoil)	$= n - \theta_w$	U.S. EPA. 2002
			Equation 4-10
n	Total soil porosity (L _{pore} /L _{soil} )	$= 1 - (\rho_b / \rho_s)$	U.S. EPA. 2002
			Equation 4-10
ρ _s	Soil particle density (Kg/L)	2.65	U.S. EPA. 2002
			Equation 4-10
$\rho_b$	Dry soil bulk density (kg/L)	1.5	U.S. EPA. 2002
			Equation 4-10
K _d	Soil-water partition coefficient (L/kg)	$= K_{oc} * f_{oc}$ for	U.S. EPA. 2002
		organics	Equation 4-10
da	Aquifer thickness (m)	Site-specific	U.S. EPA. 2002
		-	Equation 4-10
ds	Depth of source (m)	Site-specific	U.S. EPA. 2002
	· · · · ·	·	Equation 4-10
d	Mixing zone depth (m)	Site-specific	U.S. EPA. 2002
			Equation 4-12

Table G-25. Soil to Groundwater SSL Factor Variables
------------------------------------------------------

Symbol	Definition (units)	Default	Reference
PEFw	Particulate Emission Factor - Minneapolis	1.36 x 10 ⁹ (region-	U.S. EPA 2002 Exhibit
	$(m^3/kg)$	specific)	D-2
Q/C _{wind}	Inverse of the Mean Concentration at the	93.77 (region-	U.S. EPA 2002 Exhibit
	Center of a 0.5-Acre-Square Source $(g/m^2-s \text{ per } kg/m^3)$	specific)	D-2
V	Fraction of Vegetative Cover (unitless)	0.5	U.S. EPA. 2002
			Equation 4-5
Um	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA. 2002
			Equation 4-5
Ut	Equivalent Threshold Value of Wind	11.32	U.S. EPA. 2002
	Speed at 7 m (m/s)		Equation 4-5
F(x)	Function Dependent on U _m /U _t (unitless)	0.194	U.S. EPA. 2002
			Equation 4-5
А	Dispersion constant unitless	PEF and region-	U.S. EPA 2002 Exhibit
		specific	D-2
As	Areal extent of the site or contamination	0.5 (range 0.5 to	U.S. EPA 2002 Exhibit
	(acres)	500)	D-2
В	Dispersion constant unitless	PEF and region-	U.S. EPA 2002 Exhibit
		specific	D-2
С	Dispersion constant unitless	PEF and region-	U.S. EPA 2002 Exhibit
		specific	D-2

Table G-26. Wind Particulate Emission Factor Variables

Symbol	Definition (units)	Default	Reference
PEF _{sc}	Particulate Emission Factor -	(Site-specific)	U.S. EPA 2002
	subchronic (m ³ /kg)		Equation 5-5
Q/C _{sr}	Inverse of the ratio of the 1-h geometric	23.02 (for 0.5 acre site)	U.S. EPA 2002
	mean concentration to the emission flux		Equation 5-5
	along a straight road segment bisecting		
	a square site $(g/m^2$ -s per kg/m ³ )		
F _D	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation 5-5
Т	Total time over which construction	7,200,000	U.S. EPA 2002
	occurs (s)		Equation 5-5
A _R	Surface area of contaminated road	$(A_R = L_R \times W_R \times$	U.S. EPA 2002
	segment (m ² )	0.092903 m ² /ft ² )	Equation 5-5
L _R	Length of road segment (ft)	Site-specific	U.S. EPA 2002
			Equation 5-5
W _R	Width of road segment (ft)	20	U.S. EPA 2002
			Equation E-18
W	Mean vehicle weight (tons)	(Number of cars x	U.S. EPA 2002
		tons/car + number of	Equation 5-5
		trucks x tons/truck) /	
		total vehicles)	
р	Number of days with at least 0.01	Site-specific	U.S. EPA 2002
	inches of precipitation (days/year)		Exhibit 5-2
$\sum VKT$	Sum of fleet vehicle kilometers traveled	$\sum VKT = total vehicles$	U.S. EPA 2002
	during the exposure duration (km)	x distance (km/day) x	Equation 5-5
		frequency (weeks/year)	
		x (days/year)	
А	Dispersion constant unitless	12.9351	U.S. EPA 2002
			Equation 5-6
As	Areal extent of site surface soil	0.5 (range 0.5 to 500)	U.S. EPA 2002
	contamination (acres)		Equation 5-6
В	Dispersion constant unitless	5.7383	U.S. EPA 2002
			Equation 5-6
С	Dispersion constant unitless	71.7711	U.S. EPA 2002
			Equation 5-6

Table G-27. Mechanical Particulate Emission Factor Variables from Vehicle Traffic

Table G-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
PEF'sc	Particulate Emission Factor - subchronic	(Site-specific)	U.S. EPA 2002
	$(m^3/kg)$		Equation E-26
Q/C _{sa}	Inverse of the ratio of the 1-h geometric	Site-specific	U.S. EPA 2002
	mean air concentration and the emission		Equation E-15
	flux at the center of the square emission		
	source $(g/m^2$ -s per kg $/m^3)$		
FD	Dispersion correction factor (unitless)	0.185	U.S. EPA 2002
			Equation E-16
А	Dispersion constant unitless	2.4538	U.S. EPA 2002
			Equation E-15
В	Dispersion constant unitless	17.5660	U.S. EPA 2002
			Equation E-15

Symbol	Definition (units)	Default	Reference
С	Dispersion constant unitless	189.0426	U.S. EPA 2002
	1		Equation E-15
As	Areal extent of site surface soil	(Range 0.5 to 500)	U.S. EPA 2002
	contamination (acres)	(Italige 0.5 to 500)	Equation E-15
J' _T (g/m ² -s)	Total time-averaged $PM_{10}$ unit emission	Site-specific	U.S. EPA 2002
57 (g/m -s)	flux for construction activities other than	Site-specific	Equation E-25
			Equation E-25
N CPC	traffic on unpaved roads		
M ^{PC} _{wind}	Unit mass emitted from wind erosion (g)	Site-specific	U.S. EPA 2002
<b>T</b> 7			Equation E-20
V	Fraction of Vegetative Cover (unitless)	0	U.S. EPA 2002
			Equation E-20
U _m	Mean Annual Wind Speed (m/s)	4.69	U.S. EPA 2002
			Equation E-20
Ut	Equivalent Threshold Value of Wind Speed	11.32	U.S. EPA 2002
	at 7 m (m/s)		Equation E-20
F(x)	Function Dependent on U _m /U _t (unitless)	0.194	U.S. EPA 2002
			Equation E-20
A _{surf}	Areal extent of site surface soil	(Range 0.5 to 500)	U.S. EPA 2002
	contamination $(m^2)$		Equation E-20
ED	Exposure duration (years)	Site-specific	U.S. EPA 2002
20	Linpositio unitation (Jenus)	sine specific	Equation E-20
M _{excav}	Unit mass emitted from excavation soil	Site-specific	U.S. EPA 2002
1. Lexcav	dumping (g)	She speenie	Equation E-21
0.35	PM ₁₀ particle size multiplier (unitless)	0.35	U.S. EPA 2002
0.35	1 W10 particle size multiplier (unitiess)	0.55	Equation E-21
I	Mean annual wind speed during	4.69	U.S. EPA 2002
U _m		4.09	
М	construction (m/s)	12/14 1 6	Equation E-21
M _{m-excav}	Gravimetric soil moisture content (%)	12 (Mean value for	U.S. EPA 2002
		municipal landfill	Equation E-21
		cover)	
$\rho_{soil}$	In situ soil density (includes water) (mg/m ³ )	1.68	U.S. EPA 2002
			Equation E-21
A _{excav}	Areal extent of excavation (m ² )	(Range 0.5 to 500)	U.S. EPA 2002
			Equation E-21
d _{excav}	Average depth of excavation (m)	Site-specific	U.S. EPA 2002
			Equation E-21
N _{A-dump}	Number of times soil is dumped (unitless)	2	U.S. EPA 2002
-			Equation E-21
M _{doz}	Unit mass emitted from dozing operations	Site-specific	U.S. EPA 2002
	(g)	-	Equation E-22
0.75	$PM_{10}$ scaling factor (unitless)	0.75	U.S. EPA 2002
			Equation E-22
Sdoz	Soil silt content (%)	6.9	U.S. EPA 2002
CUUZ		0.9	Equation E-22
M _{m-doz}	Gravimetric soil moisture content (%)	7.9 (mean value for	U.S. EPA 2002
		overburden)	Equation E-22
TWET	Sum of dozing kilometers traveled (km)	Site-specific	U.S. EPA 2002
$\sum VKT_{doz}$	Sum of dozing knometers traveled (km)	Site-specific	
9		11.4 (	Equation E-22
S _{doz}	Average dozing speed (kph)	11.4 (mean value	U.S. EPA 2002
		for graders)	Equation E-22
N _{A-doz}	Number of times site is dozed (unitless)	Site-specific	U.S. EPA 2002
			Equation E-22

Table G-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

Symbol	Definition (units)	Default	Reference
B _d	Dozer blade length (m)	Site-specific	U.S. EPA 2002 Page E-28
Mgrade	Unit mass emitted from grading operations (g)	Site-specific	U.S. EPA 2002 Equation E-23
0.60	PM ₁₀ scaling factor (unitless)	0.60	U.S. EPA 2002 Equation E-23
$\sum VKT_{grade}$	Sum of grading kilometers traveled (km)		U.S. EPA 2002 Equation E-23
$\mathbf{S}_{\text{grade}}$	Average grading speed (kph)	11.4 (mean value for graders)	U.S. EPA 2002 Equation E-23
N _{A-grade}	Number of times site is graded (unitless)	Site-specific	U.S. EPA 2002 Equation E-23
$\mathrm{B}_{\mathrm{g}}$	Grader blade length (m)	Site-specific	U.S. EPA 2002 Page E-28
M _{till}	Unit mass emitted from tilling operations (g)	Site-specific	U.S. EPA 2002 Equation E-24
S _{till}	Soil silt content (%)	18	U.S. EPA 2002 Equation E-24
Ac-till	Areal extent of tilling (acres)	Site-specific	U.S. EPA 2002 Equation E-24
A _{c-grade}	Areal extent of grading (acres)	Site-specific	Necessary to solve $\sum VKT_{grade}$ in U.S. EPA 2002 Equation E- 23
A _{c-doz}	Areal extent of dozing (acres)	Site-specific	Necessary to solve $\sum VKT_{doz}$ in U.S. EPA 2002 Equation E-22
N _{A-till}	Number of times soil is tilled (unitless)	2	U.S. EPA 2002 Equation E-24

Table G-28. Mechanical Particulate Emission Factor Variables from other than Vehicle Traffic

APPENDIX H. RADIONUCLIDE CDI AND RISK EQUATIONS

# APPENDIX H. RADIONUCLIDE CDI AND RISK EQUATIONS

## **Resident Soil CDI Equations**

Soil Ingestion

$$\begin{split} & \text{CDI}_{\text{res-sol-ing}}(\text{pCi}) = \left(\text{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \text{IFS}_{\text{res-adj}}(1, 120, 000 \text{ mg}) \times \left(\frac{\text{g}}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - \exp^{-\lambda}\left(\frac{1}{\text{yr}}\right) \times \text{t(yr)}\right)}{\text{t(yr)} \times \lambda\left(\frac{1}{\text{yr}}\right)}\right) \\ & \text{where:} \\ & \text{IFS}_{\text{res-adj}}(1, 120, 000 \text{ mg}) = \begin{bmatrix} \left(\text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRS}_{\text{res-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRS}_{\text{res-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right)\right) \end{bmatrix} \end{split}$$

Soil Inhalation

$$\begin{split} & \text{CDI}_{\text{res-sol-inh}}(\text{pCi}) = \left( \begin{array}{c} \text{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \text{IFA}_{\text{res-adj}}\left(161,000 \text{ m}^{3}\right) \times \frac{1}{\text{PEF}}\left(\frac{\text{m}^{3}}{\text{kg}}\right) \times \left(\frac{1000 \text{ g}}{\text{kg}}\right) \right) \times \left(\frac{\left(1 - \exp^{-\lambda}\left(\frac{1}{\text{yr}}\right) \times \text{t(yr)}\right)}{\text{t(yr)} \times \lambda\left(\frac{1}{\text{yr}}\right)}\right) \\ & \text{where:} \\ & \text{IFA}_{\text{res-adj}}\left(161,000 \text{ m}^{3}\right) = \left[ \left( \text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{ET}_{\text{res-c}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{res-c}}\left(\frac{10 \text{ m}^{3}}{\text{day}}\right) \right) + \left[ \left( \text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{ET}_{\text{res-a}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{res-a}}\left(\frac{20 \text{ m}^{3}}{\text{day}}\right) \right) \right] \end{split}$$

Soil External Exposure

$$CDI_{res-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-sv} \times \\ \left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-sv}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{\sqrt{1-v}}\right) \times t(yr)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

٦

# Soil Contribution to Produce Ingestion

$$\begin{split} & \text{CDI}_{\text{res-sol-produce-ing}}(\text{pCi}) = \left(\text{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times (\text{R}_{\text{upv}} + \text{R}_{\text{es}}) \times (\text{IFF}_{\text{res-adj}}(1,462,510 \text{ g}) + \text{IFV}_{\text{res-adj}}(989,870 \text{ g})) \times \text{CF}_{\text{res-produce}}(0.25)\right) \times \left(\frac{\left(\frac{1-\text{exp}^{-\lambda}\left(\frac{1}{\text{yr}}\right) \times \text{t}(\text{yr})\right)}{\text{t}(\text{yr}) \times \lambda\left(\frac{1}{\text{yr}}\right)}\right) \\ & \text{where:} \\ & \text{R}_{\text{upv}} = \text{BV}_{\text{wet}}\left(\frac{\text{pCi} / \text{g} - \text{fresh-plant}}{\text{pCi} / \text{g} - \text{fresh-plant}}\right); \text{R}_{\text{es}} = \text{MLF}_{\text{produce}}\left(\frac{0.0135 \text{ g} - \text{dry} - \text{soil}}{\text{g} - \text{fresh-plant}}\right) \\ & \text{and:} \\ & \text{IFF}_{\text{res-adj}}(1,462,510 \text{ g}) = \left[ \left(\frac{\text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRF}_{\text{res-a}}\left(\frac{188.5 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRF}_{\text{res-a}}\left(\frac{11.7 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-adj}}\left(989,870 \text{ g}\right) = \left[ \left(\frac{\text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRV}_{\text{res-c}}\left(\frac{41.7 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-ad}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRV}_{\text{res-a}}\left(\frac{128.9 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRV}_{\text{res-a}}\left(\frac{128.9 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRV}_{\text{res-a}}\left(\frac{128.9 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRV}_{\text{res-a}}\left(\frac{128.9 \text{ g}}{\text{day}}\right)\right) \right) \\ \end{array}$$

٦

٦

# Direct Produce Ingestion

$$\begin{split} & \text{CDI}_{\text{res-produce-ing}}(\text{pCi}) = \left( \mathsf{C}_{\text{produce}} \left( \frac{\text{pCi}}{\text{g}} \right) \times \left( \text{IFF}_{\text{res-adj}}(1,462,510 \text{ g}) + \text{IFV}_{\text{res-adj}}(989,870 \text{ g}) \right) \times \text{CF}_{\text{res-produce}}(0.25) \right) \\ & \text{where:} \\ & \text{IFF}_{\text{res-adj}}(1,462,510 \text{ g}) = \begin{bmatrix} \left( \text{EF}_{\text{res-c}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRF}_{\text{res-c}} \left( \frac{68.1 \text{ g}}{\text{day}} \right) \right) + \\ \left( \text{EF}_{\text{res-a}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRF}_{\text{res-a}} \left( \frac{188.5 \text{ g}}{\text{day}} \right) \right) \right) \\ & \text{and:} \\ & \text{IFV}_{\text{res-adj}}(989,870 \text{ g}) = \begin{bmatrix} \left( \text{EF}_{\text{res-c}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRV}_{\text{res-c}} \left( \frac{41.7 \text{ g}}{\text{day}} \right) \right) + \\ \left( \text{EF}_{\text{res-a}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRV}_{\text{res-a}} \left( \frac{128.9 \text{ g}}{\text{day}} \right) \right) \end{bmatrix} \end{split}$$

# **Resident Alternate External Sources CDI Equations**

Direct External Exposure (sv)

$$CDI_{res-sol-sv}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-sv} \times \\ \left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-sv}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (1 cm)

$$CDI_{res-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-1cm} \times \\ \left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{yr} - \lambda\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (5 cm)

$$CDI_{res-sol-5cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-5cm} \times \\ \left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-5cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) = \frac{1}{2} \left(\frac{1}{24 \text{ hrs}}\right) \times \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}}\right) = \frac{1}{2} \left(\frac{1}{24 \text{ hrs}}\right) \times \left(\frac{1}{24 \text{ hrs}}\right)$$

Direct External Exposure (15 cm)

$$CDI_{res-sol-15cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-15cm} \times \\ \left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-15cm}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

٦

# Direct External Exposure (ground plane)

$$CDI_{res-sol-gp}\left(\frac{pCi-yr}{cm^{2}}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{cm^{2}}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ACF_{ext-gp} \times \\ \left[\left(ET_{res-o}\left(\frac{1.752 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-gp}\right) + \left(ET_{res-i}\left(\frac{16.416 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{yr}^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### **Resident Air CDI Equations**

Air Inhalation

$$\begin{split} \text{CDI}_{\text{res-air-inh}}(\text{pCi}) &= \left( \mathsf{C}_{\text{air}} \left( \frac{\text{pCi}}{\text{m}^3} \right) \times \text{IFA}_{\text{res-adj}} \left( 161,000 \text{ m}^3 \right) \right) \times \left( \frac{\left( 1 - \exp^{-\lambda} \left( \frac{1}{yr} \right) \times \text{t(yr)} \right)}{\text{t(yr)} \times \lambda \left( \frac{1}{yr} \right)} \right) \end{split}$$
where:
$$\begin{aligned} \text{IFA}_{\text{res-adj}} \left( 161,000 \text{ m}^3 \right) &= \begin{bmatrix} \left( \mathsf{EF}_{\text{res-c}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{\text{res-c}}(6 \text{ yr}) \times \mathsf{ET}_{\text{res-c}} \left( \frac{24 \text{ hrs}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times \text{IRA}_{\text{res-c}} \left( \frac{10 \text{ m}^3}{\text{day}} \right) \right) + \\ \left( \mathsf{EF}_{\text{res-a}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{\text{res-a}}(20 \text{ yr}) \times \mathsf{ET}_{\text{res-a}} \left( \frac{24 \text{ hrs}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times \text{IRA}_{\text{res-a}} \left( \frac{20 \text{ m}^3}{\text{day}} \right) \right) \end{bmatrix} \end{aligned}$$

#### Air Submersion

$$CDI_{res-air-sub}\left(\frac{pCi-yr}{m^{3}}\right) = \left(C_{air}\left(\frac{pCi}{m^{3}}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{a}(1.0)\right) \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Air Inhalation (without decay)

$$\begin{split} \text{CDI}_{\text{res-air-inhnd}}(\text{pCi}) &= \left( \mathsf{C}_{\text{air}} \times \left( \frac{\text{pCi}}{\text{m}^3} \right) \times \text{IFA}_{\text{res-adj}} \left( 161,000 \text{ m}^3 \right) \right) \\ \text{where:} \\ \text{IFA}_{\text{res-adj}} \left( 161,000 \text{ m}^3 \right) &= \begin{bmatrix} \left( \mathsf{EF}_{\text{res-c}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{\text{res-c}}(6 \text{ yr}) \times \mathsf{ET}_{\text{res-c}} \left( \frac{24 \text{ hrs}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times \text{IRA}_{\text{res-c}} \left( \frac{10 \text{ m}^3}{\text{day}} \right) \right) + \\ \left( \mathsf{EF}_{\text{res-a}} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{\text{res-a}}(20 \text{ yr}) \times \mathsf{ET}_{\text{res-a}} \left( \frac{24 \text{ hrs}}{\text{day}} \right) \times \left( \frac{1 \text{ day}}{24 \text{ hrs}} \right) \times \text{IRA}_{\text{res-a}} \left( \frac{20 \text{ m}^3}{\text{day}} \right) \right) \end{bmatrix} \end{split}$$

#### Air Submersion (without decay)

$$CDI_{res-air-subnd}\left(\frac{pCi-yr}{m^3}\right) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{res}(26 \text{ yr}) \times ET_{res}\left(\frac{24 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)\right)$$

## **Resident Tap Water CDI Equations**

Tap Water Ingestion

$$\begin{aligned} \text{CDI}_{\text{res-wat-ing}}(\text{pCi}) &= \left( \mathsf{C}_{\text{water}}\left(\frac{\text{pCi}}{\text{L}}\right) \times \text{IFW}_{\text{res-adj}}(19, 138 \text{ L}) \right) \\ \text{where:} \\ \text{IFW}_{\text{res-adj}}(19, 138 \text{ L}) &= \begin{bmatrix} \left( \mathsf{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{IRW}_{\text{res-c}}\left(\frac{0.78 \text{ L}}{\text{day}}\right) \right) + \\ \left( \mathsf{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{IRW}_{\text{res-a}}\left(\frac{2.5 \text{ L}}{\text{day}}\right) \right) \end{bmatrix} \end{aligned}$$

Tap Water Inhalation

$$\begin{split} & \text{CDI}_{\text{res-wat-inh}}(\text{pCi}) = \left( \text{C}_{\text{water}}\left(\frac{\text{pCi}}{\text{L}}\right) \times \text{IFA}_{\text{res-adj}}\left(161,000 \text{ m}^3\right) \times \text{K}\left(\frac{0.5 \text{ L}}{\text{m}^3}\right) \right) \\ & \text{where:} \\ & \text{IFA}_{\text{res-adj}}\left(161,000 \text{ m}^3\right) = \begin{bmatrix} \left( \text{EF}_{\text{res-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-c}}(6 \text{ yr}) \times \text{ET}_{\text{res-c}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{res-c}}\left(\frac{10 \text{ m}^3}{\text{day}}\right) \right) + \\ & \left( \text{EF}_{\text{res-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{res-a}}(20 \text{ yr}) \times \text{ET}_{\text{res-a}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{res-a}}\left(\frac{20 \text{ m}^3}{\text{day}}\right) \right) \end{bmatrix} \end{split}$$

Tap Water Immersion

$$\begin{split} & \mathsf{CDI}_{\mathsf{res-wat-imm}}\left(\frac{\mathsf{pCi}-\mathsf{yr}}{\mathsf{L}}\right) = \left(\mathsf{C}_{\mathsf{water}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) \times \left(\frac{1\ \mathsf{yr}}{8,760\ \mathsf{hrs}}\right) \times \mathsf{DFA}_{\mathsf{res-adj}}\left(6,104\ \mathsf{hrs}\right)\right) \\ & \mathsf{where:} \\ & \mathsf{DFA}_{\mathsf{res-adj}}\left(6,104\ \mathsf{hrs}\right) = \begin{bmatrix} \left(\mathsf{EF}_{\mathsf{res-c}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-c}}\left(6\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{res-c}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-res-c}}\left(\frac{0.54\ \mathsf{hrs}}{\mathsf{event}}\right)\right) + \\ & \left(\mathsf{EF}_{\mathsf{res-a}}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{res-a}}\left(20\ \mathsf{yr}\right) \times \mathsf{EV}_{\mathsf{res-a}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-res-a}}\left(\frac{0.71\ \mathsf{hrs}}{\mathsf{event}}\right)\right) \end{bmatrix} \end{split}$$

Tap Water Contribution to Produce Ingestion

$$CDI_{res-wat-produce-ing}(pCi) = \begin{bmatrix} C_{water}\left(\frac{pCi}{L}\right) \times \left(IFF_{res-adj}(1,462,510 \text{ g}) + IFV_{res-adj}(989,870 \text{ g})\right) \times CF_{res-produce}(0.25) \\ \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \times \left(Irr_{rup}\left(\frac{L}{\text{ kg}}\right) + Irr_{res}\left(\frac{L}{\text{ kg}}\right) + Irr_{dep}\left(\frac{L}{\text{ kg}}\right) \right) \end{bmatrix}$$

where:

$$\begin{split} Irr_{rup}\left(\frac{L}{kg}\right) &= \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times MLF_{produce}\left(\frac{0.0135 \ g-dry-soil}{g-fresh-plant}\right) \times \left[1-exp\left(-\left(\frac{\lambda_{B}}{day}\right) \times t_{b}\left(days\right)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)} \\ Irr_{res}\left(\frac{L}{kg}\right) &= \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times BV_{wet}\left(\frac{pCi \, / \, g-fresh-plant}{pCi \, / \, g-dry-soil}\right) \times \left[1-exp\left(-\left(\frac{\lambda_{B}}{day}\right) \times t_{b}\left(days\right)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)} \end{split}$$

and:

$$Irr_{dep}\left(\frac{L}{kg}\right) \ = \ \frac{I_r\left(\frac{L}{m^2 - day}\right) \times F \times I_f \times T \times \left[1 - exp\left(-\left(\frac{\lambda_E}{day}\right) \times t_v\left(days\right)\right)\right]}{Y_v\left(\frac{kg}{m^2}\right) \times \left(\frac{\lambda_E}{day}\right)}$$

and:

$$IFF_{res-adj}(1,462,510 \text{ g}) = \begin{bmatrix} \left( EF_{res-c} \left( \frac{350 \text{ days}}{yr} \right) \times ED_{res-c} \left( 6 \text{ yr} \right) \times IRF_{res-c} \left( \frac{68.1 \text{ g}}{day} \right) \right) + \left( EF_{res-a} \left( \frac{350 \text{ days}}{yr} \right) \times ED_{res-a} (20 \text{ yr}) \times IRF_{res-a} \left( \frac{188.5 \text{ g}}{day} \right) \right) \end{bmatrix}$$

and:

$$IFV_{res-adj}(989,870 \text{ g}) = \begin{bmatrix} \left( EF_{res-c} \left( \frac{350 \text{ days}}{yr} \right) \times ED_{res-c}(6 \text{ yr}) \times IRV_{res-c} \left( \frac{41.7 \text{ g}}{day} \right) \right) + \\ \left( EF_{res-a} \left( \frac{350 \text{ days}}{yr} \right) \times ED_{res-a}(20 \text{ yr}) \times IRV_{res-a} \left( \frac{128.9 \text{ g}}{day} \right) \right) \end{bmatrix}$$

Direct Produce Ingestion

$$\begin{split} & \text{CDI}_{\text{res-produce-ing}}(\text{pCi}) = \left( \mathsf{C}_{\text{produce}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \left(\text{IFF}_{\text{res-adj}}(1,462,510\text{ g}) + \text{IFV}_{\text{res-adj}}(989,870\text{ g})\right) \times \text{CF}_{\text{res-produce}}(0.25)\right) \\ & \text{where:} \\ & \text{IFF}_{\text{res-adj}}(1,462,510\text{ g}) = \begin{bmatrix} \left(\mathsf{EF}_{\text{res-c}}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{res-c}}(6\text{ yr}) \times \text{IRF}_{\text{res-c}}\left(\frac{68.1\text{ g}}{\text{day}}\right)\right) + \\ \left(\mathsf{EF}_{\text{res-a}}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{res-a}}(20\text{ yr}) \times \text{IRF}_{\text{res-a}}\left(\frac{188.5\text{ g}}{\text{day}}\right)\right) \end{bmatrix} \\ & \text{and:} \\ & \text{IFV}_{\text{res-adj}}(989,870\text{ g}) = \begin{bmatrix} \left(\mathsf{EF}_{\text{res-c}}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{res-c}}(6\text{ yr}) \times \text{IRV}_{\text{res-c}}\left(\frac{41.7\text{ g}}{\text{day}}\right)\right) + \\ \left(\mathsf{EF}_{\text{res-a}}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{res-a}}(20\text{ yr}) \times \text{IRV}_{\text{res-a}}\left(\frac{128.9\text{ g}}{\text{day}}\right) \right) \end{bmatrix} \end{split}$$

# **Resident Fish CDI Equations**

Direct Fish Ingestion

$$CDI_{res-fish-ing}(pCi) = \left(C_{fish}\left(\frac{pCi}{g}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times IRFI_{res-a}\left(\frac{54,000 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right) \times CF_{res-fish}(1)\right)$$

Surface Water Contribution to Fish Ingestion

$$CDI_{res-fish-ingw}\left(\frac{pCi}{L}\right) = \left(C_{water} \times \left(\frac{pCi}{L}\right) \times EF_{res}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{res}(26 \text{ yr}) \times IRFI_{res-a}\left(\frac{54,000 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right) BCF\left(\frac{L}{kg}\right) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \times CF_{res-fish}(1)\right)$$

# **Indoor Worker Soil CDI Equations**

Soil Ingestion

$$\mathsf{CDI}_{ind-sol-ing}(pCi) = \left(\mathsf{C}_{soil}\left(\frac{pCi}{g}\right) \times \mathsf{EF}_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \mathsf{ED}_{ind}(25 \text{ yr}) \times \mathsf{IRS}_{ind}\left(\frac{50 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - \exp^{-\lambda \left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda \left(\frac{1}{yr}\right)}\right)$$

Soil Inhalation

$$CDI_{ind-sol-inh}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \\ \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{ind}\left(\frac{60 \text{ m}^3}{day}\right) \times \frac{1}{PEF\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \left(\frac{\left(1 - \exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Soil External Exposure

$$CDI_{ind-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}\left(25 \text{ yr}\right) \times \\ ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{i-total} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Indoor Worker Alternate External Sources CDI Equations

#### Direct External Exposure (sv)

$$CDI_{ind-sol-sv}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times \\ ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{i-total} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Direct External Exposure (1 cm)

$$CDI_{ind-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times \\ ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{i-total} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (5 cm)

$$CDI_{ind-sol-5cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times \\ ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-5cm} \times GSF_{i-total} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (15 cm)

$$CDI_{ind-sol-15cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times \\ ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-15cm} \times GSF_{i-total} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{yr} -\lambda\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Direct External Exposure (ground plane)

$$CDI_{ind-sol-gp}\left(\frac{pCi-yr}{cm^{2}}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{cm^{2}}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}\left(25 \text{ yr}\right) \times \\ ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-gp} \times GSF_{i-total} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \end{pmatrix}$$

٦

### **Indoor Worker Air CDI Equations**

#### Air Inhalation

$$CDI_{ind-air-inh}(pCi) = \left(C_{air}\left(\frac{pCi}{m^3}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{ind}\left(\frac{60 \text{ m}^3}{day}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Air Submersion

$$CDI_{ind-air-sub}\left(\frac{pCi-yr}{m^{3}}\right) = \left(C_{air}\left(\frac{pCi}{m^{3}}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{a}(1.0)\right) \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Air Inhalation (without decay)

$$CDI_{ind-air-inhnd}(pCi) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{ind}\left(\frac{60 \text{ m}^3}{day}\right)\right)$$

Air Submersion (without decay)

$$CDI_{ind-air-subnd}\left(\frac{pCi-yr}{m^3}\right) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)\right)$$

#### **Indoor Worker Tap Water CDI Equations**

Tap Water Ingestion

$$\mathsf{CDI}_{ind-wat-ing}(\mathsf{pCi}) = \left(\mathsf{C}_{water}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) \times \mathsf{EF}_{ind}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{ind}(25 \text{ yr}) \times \mathsf{IRW}_{ind-a}\left(\frac{1.25 \text{ L}}{\mathsf{day}}\right)\right)$$

Tap Water Inhalation

$$CDI_{ind-wat-inh}(pCi) = \left(C_{water}\left(\frac{pCi}{L}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{ind}(25 \text{ yr}) \times ET_{ind}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{ind-a}\left(\frac{60 \text{ m}^3}{day}\right) \times K\left(\frac{0.5 \text{ L}}{\text{m}^3}\right)\right)$$

Tap Water Immersion

$$CDI_{ind-wat-imm}\left(\frac{pCi-yr}{L}\right) = \left(C_{water}\left(\frac{pCi}{L}\right) \times EF_{ind}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{ind}(25 \text{ yr}) \times EV_{ind}\left(\frac{1 \text{ events}}{day}\right) \times ET_{event-ind-a}\left(\frac{0.71 \text{ hrs}}{event}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right)\right)$$

### **Outdoor Worker Soil CDI Equations**

Soil Ingestion

$$CDI_{out-sol-ing}(pCi) = \left(C_{soil}\left(\frac{pCi}{g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times IRS_{out}\left(\frac{100 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Soil Inhalation

$$CDI_{out-sol-inh}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \\ \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{out}\left(\frac{60 \text{ m}^3}{day}\right) \times \frac{1}{PEF\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \begin{pmatrix} \left(\frac{1 - \exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)} \end{pmatrix}$$

Soil External Exposure

$$CDI_{out-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times \\ ET_{out}\left(\frac{8 \text{ hrs}}{\text{ day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### **Outdoor Worker Alternate External Sources CDI Equations**

Direct External Exposure (sv)

$$CDI_{out-sol-sv}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times \\ ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

٦

Direct External Exposure (1 cm)

$$CDI_{out-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times \\ ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{1-exp} -\lambda\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (5 cm)

$$CDI_{out-sol-5cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times \\ ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-5cm} \times GSF_{o-ext-5cm} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{yr}-\lambda\left(\frac{1}{yr}\right)\times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (15 cm)

$$CDI_{out-sol-15cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times \right) \\ ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-15cm} \times GSF_{o-ext-15cm} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{yr}-\lambda\left(\frac{1}{yr}\right)\times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (ground plane)

$$CDI_{out-sol-gp}\left(\frac{pCi-yr}{cm^{2}}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{cm^{2}}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times \\ ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-gp} \times GSF_{o-ext-gp} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### **Outdoor Worker Air CDI Equations**

Air Inhalation

$$CDI_{out-air-inh}(pCi) = \left(C_{air}\left(\frac{pCi}{m^3}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{out}\left(\frac{60 \text{ m}^3}{day}\right)\right) \times \left(\frac{\left(1 - \exp^{-\lambda \left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda \left(\frac{1}{yr}\right)}\right)$$

Air Submersion

$$CDI_{out-air-sub}\left(\frac{pCi-yr}{m^3}\right) = \left(C_{air}\left(\frac{pCi}{m^3}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)\right) \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Air Inhalation (without decay)

$$CDI_{out-air-inhnd}(pCi) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{out}\left(\frac{225 \text{ days}}{yr}\right) \times ED_{out}(25 \text{ yr}) \times ET_{out}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{out}\left(\frac{60 \text{ m}^3}{day}\right)\right)$$

Air Submersion (without decay)

$$\mathsf{CDI}_{out-air-subnd}\left(\frac{\mathsf{pCi}-\mathsf{yr}}{\mathsf{m}^3}\right) = \left(\mathsf{C}_{air} \times \left(\frac{\mathsf{pCi}}{\mathsf{m}^3}\right) \times \mathsf{EF}_{out}\left(\frac{225 \text{ days}}{\mathsf{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{out}(25 \text{ yr}) \times \mathsf{ET}_{out}\left(\frac{8 \text{ hrs}}{\mathsf{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{a}(1.0)\right)$$

## **Composite Worker Soil CDI Equations**

Soil Ingestion

$$\mathsf{CDI}_{\mathsf{com-sol-ing}}(\mathsf{pCi}) = \left(\mathsf{C}_{\mathsf{soil}}\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) \times \mathsf{EF}_{\mathsf{com}}\left(\frac{250 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{com}}(25 \text{ yr}) \times \mathsf{IRS}_{\mathsf{com}}\left(\frac{100 \text{ mg}}{\mathsf{day}}\right) \times \left(\frac{\mathsf{g}}{\mathsf{1000 \text{ mg}}}\right)\right) \times \left(\frac{\left(1 - \exp^{-\lambda}\left(\frac{1}{\mathsf{yr}}\right) \times \mathsf{t}(\mathsf{yr})\right)}{\mathsf{t}(\mathsf{yr}) \times \lambda\left(\frac{1}{\mathsf{yr}}\right)}\right)$$

Soil Inhalation

$$CDI_{com-sol-inh}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \\ \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{com}\left(\frac{60 \text{ m}^3}{day}\right) \times \frac{1}{\mathsf{PEF}\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \begin{pmatrix} \left(\frac{1 - \exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)} \end{pmatrix} \end{pmatrix}$$

#### Soil External Exposure

$$CDI_{com-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ACF_{ext-sv} \times \\ \left[\left(ET_{com-o}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-sv}\right) + \left(ET_{com-i}\left(\frac{0 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1 \text{ day}}{yr}\right) \times \left(\frac{1 \text{ day}}{yr}\right)$$

#### **Composite Worker Alternate External Sources CDI Equations**

## Direct External Exposure (sv)

$CDI_{com-sol-sv}\left(\frac{pCi-yr}{g}\right) = \left($	$C_{\text{soil}}\left(\frac{p\text{Ci}}{g}\right) \times \text{EF}_{\text{com}}\left(\frac{250 \text{ days}}{\text{yr}}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \text{ED}_{\text{com}}\left(25 \text{ yr}\right) \times \text{ACF}_{\text{ext-sv}} \times 0$	$\left( \left( 1 - \exp^{-\lambda \left( \frac{1}{yr} \right) \times t(yr)} \right) \right)$
	$ \begin{array}{c} C_{\text{soil}}\left(\frac{p\text{Ci}}{g}\right) \times \text{EF}_{\text{com}}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \text{ED}_{\text{com}}\left(25 \text{ yr}\right) \times \text{ACF}_{\text{ext-sv}} \times \\ \left[\left(\text{ET}_{\text{com-o}}\left(\frac{8 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{GSF}_{\text{o-ext-sv}}\right) + \left(\text{ET}_{\text{com-i}}\left(\frac{0 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{GSF}_{\text{i-total}}\right)\right] \right) \end{array} $	$ \sum_{i=1}^{n} \left( \frac{1}{t(yr) \times \lambda\left(\frac{1}{yr}\right)} \right) $

٦

Direct External Exposure (1 cm)

$$CDI_{com-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ACF_{ext-1cm} \times \\ \left[\left(ET_{com-o}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-1cm}\right) + \left(ET_{com-i}\left(\frac{0 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{\sqrt{1-exp}} -\lambda\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Direct External Exposure (5 cm)

$$CDI_{com-sol-5cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ACF_{ext-5cm} \times \\ \left[\left(ET_{com-o}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-5cm}\right) + \left(ET_{com-i}\left(\frac{0 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) = \frac{1}{2} \left[\left(\frac{1}{24 \text{ hrs}}\right) \times \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}\right) + \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}\right) + \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}\right) = \frac{1}{2} \left[\left(\frac{1}{24 \text{ hrs}}\right) \times \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}\right) + \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}\right) + \left(\frac{1}{24 \text{ hrs}}\right) \times GSF_{i-total}\right) = \frac{1}{2} \left[\left(\frac{1}{24 \text{ hrs}}\right) \times \left(\frac{1}{24 \text{ hrs}}\right) + \left(\frac{1}{24 \text{ hrs}}\right) \times \left(\frac{1}{24 \text{ hrs}}\right)$$

#### Direct External Exposure (15 cm)

$$CDI_{com-sol-15cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ACF_{ext-15cm} \times \\ \left[\left(ET_{com-o}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-15cm}\right) + \left(ET_{com-i}\left(\frac{0 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{yr} - \lambda\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

# Direct External Exposure (ground plane)

$$CDI_{com-sol-gp}\left(\frac{pCi-yr}{cm^{2}}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{cm^{2}}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ACF_{ext-gp} \times \\ \left[\left(ET_{com-o}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-gp}\right) + \left(ET_{com-i}\left(\frac{0 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1}{24 \text{ hrs}}\right) \times \frac{1}{24 \text{ hrs}}\right) \times \frac{1}{24 \text{ hrs}}\right) \times \frac{1}{24 \text{ hrs}}$$

## **Composite Worker Air CDI Equations**

Air Inhalation

$$CDI_{com-air-inh}(pCi) = \left(C_{air}\left(\frac{pCi}{m^3}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{com}\left(\frac{60 \text{ m}^3}{day}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

## Air Submersion

$$CDI_{com-air-sub}\left(\frac{pCi-yr}{m^3}\right) = \left(C_{air}\left(\frac{pCi}{m^3}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)\right) \times \left(\frac{\left(1-\exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Air Inhalation (without decay)

$$CDI_{com-air-inhnd}(pCi) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times ED_{com}(25 \text{ yr}) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{com}\left(\frac{60 \text{ m}^3}{day}\right)\right)$$

#### Air Submersion (without decay)

$$CDI_{com-air-subnd}\left(\frac{pCi-yr}{m^3}\right) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{com}\left(\frac{250 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{com}\left(25 \text{ yr}\right) \times ET_{com}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)\right)$$

#### **Excavation Worker Soil CDI Equations**

#### Soil Ingestion

$$CDI_{exc-sol-ing}(pCi) = \left(C_{soil}\left(\frac{pCi}{g}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times IRS_{exc}\left(\frac{330 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Soil Inhalation

$$CDI_{exc-sol-inh}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \\ \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{exc}\left(\frac{60 \text{ m}^3}{day}\right) \times \frac{1}{PEF\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \left(\frac{\left(\frac{1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Soil External Exposure

$$CDI_{exc-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{exc}(1 \text{ yr}) \times \\ ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### **Excavation Worker Air CDI Equations**

Air Inhalation

$$CDI_{exc-air-inh}(pCi) = \left(C_{air}\left(\frac{pCi}{m^{3}}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{exc}\left(\frac{60 \text{ m}^{3}}{day}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Air Submersion

$$CDI_{exc-air-sub}\left(\frac{pCi-yr}{m^{3}}\right) = \left(C_{air}\left(\frac{pCi}{m^{3}}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{a}(1.0)\right) \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

# Air Inhalation (without decay)

$$CDI_{exc-air-inhnd}(pCi) = \left(C_{air}\left(\frac{pCi}{m^3}\right) \times EF_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times ED_{exc}(1 \text{ yr}) \times ET_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{exc}\left(\frac{60 \text{ m}^3}{day}\right)\right)$$

Air Submersion (without decay)

$$\mathsf{CDI}_{exc-air-subnd}\left(\frac{pCi-yr}{m^3}\right) = \left(\mathsf{C}_{air}\left(\frac{pCi}{m^3}\right) \times \mathsf{EF}_{exc}\left(\frac{20 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \mathsf{ED}_{exc}(1 \text{ yr}) \times \mathsf{ET}_{exc}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \mathsf{GSF}_{a}(1.0)\right)$$

#### **Construction Worker Soil Exposure to Unpaved Road Traffic CDI Equations**

Soil Ingestion - Unpaved Road Traffic

$$CDI_{con-sol-ing}(pCi) = \left(C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times IRS_{con}\left(\frac{330 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Soil Inhalation - Unpaved Road Traffic

$$CDI_{con-sol-inh}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times \\ ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{con}\left(\frac{60 \text{ m}^3}{day}\right) \times \frac{1}{PEF_{sc}\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \left(\frac{1(yr) \times \lambda\left(\frac{1}{yr}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Soil External Exposure - Unpaved Road Traffic

$$CDI_{con-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{\sqrt{yr}}\right) \times t(yr)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1}{\sqrt{yr}}\right) \times \left(\frac{1}{\sqrt{yr}}\right) \times L_{con}\left(\frac{1}{\sqrt{yr}}\right) \times L_{con}\left$$

#### **Construction Worker Soil Exposure to Other Construction Activities CDI Equations**

Soil Ingestion - Other Construction Activities

$$CDI_{con-sol-ingsa}(pCi) = \left(C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times IRS_{con}\left(\frac{330 \text{ mg}}{day}\right) \times \left(\frac{g}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Soil Inhalation - Other Construction Activities

$CDI_{con-sol-inhsa}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times ED_{con}(1 \text{ yr}) \times \\ ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{con}\left(\frac{60 \text{ m}^3}{day}\right) \times \frac{1}{PEF_{sc}'\left(\frac{m^3}{kg}\right)} \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) + exp^{-\lambda}\left(\frac{1}{yr}\right)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)} \times \left(\frac{1}{yr}\right) \times \left(1$	$\left(\frac{x + t(yr)}{r}\right)$
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	------------------------------------

#### Soil External Exposure - Other Construction Activities

$$CDI_{con-sol-extsa}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(\frac{1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1 \text{ day}}{yr}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix}$$

#### **Construction Worker Soil Alternate External Sources CDI Equations**

Direct External Exposure (sv)

$$CDI_{con-sol-sv}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1}{yr}\right) \times \left(\frac{1}{y$$

#### Direct External Exposure (1 cm)

$$CDI_{con-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{v}-\lambda\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1 \text{ day}}{v}\right) \times \left(\frac{1 \text{ d$$

Direct External Exposure (5 cm)

$$CDI_{con-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm} \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{v}-\lambda\left(\frac{1}{yr}\right)\times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \left(\frac{1 \text{ day}}{yr}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm} \end{pmatrix} \times \left(\frac{1 \text{ day}}{v}\right) \times \left(\frac{1 \text{$$

Direct External Exposure (15 cm)

#### Direct External Exposure (ground plane)

$$CDI_{con-sol-gp}\left(\frac{pCi-yr}{cm^{2}}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{cm^{2}}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-gp} \times GSF_{o-ext-gp} \end{pmatrix} \times \begin{pmatrix} \left(\frac{1 \text{ -exp}}{\sqrt{1 \text{ yr}}}\right) \times t(yr) \\ t(yr) \times \lambda\left(\frac{1}{yr}\right) \end{pmatrix} \end{pmatrix}$$

### **Construction Worker Air CDI Equations**

Air Inhalation

$$CDI_{con-air-inh}(pCi) = \begin{pmatrix} C_{air}\left(\frac{pCi}{m^{3}}\right) EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{con}\left(\frac{60 \text{ m}^{3}}{day}\right) \end{pmatrix} \times \left(\frac{1 \text{ (yr)} \times \lambda\left(\frac{1}{yr}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \end{pmatrix}$$

#### Air Submersion

$$CDI_{con-air-sub}\left(\frac{pCi-yr}{m^{3}}\right) = \begin{pmatrix} C_{air}\left(\frac{pCi}{m^{3}}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con}\left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{a}(1.0) \end{pmatrix} \times \begin{pmatrix} \left(\frac{1 \text{ exp}^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \times \\ \end{pmatrix}$$

Air Inhalation (without decay)

$$CDI_{con-air-inhnd}(pCi) = \begin{pmatrix} C_{air} \times \left(\frac{pCi}{m^3}\right) EF_{con} \left(EW_{con} \left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con} \left(\frac{5 \text{ days}}{wk}\right)\right) \times \\ ED_{con}(1 \text{ yr}) \times ET_{con} \left(\frac{8 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{con} \left(\frac{60 \text{ m}^3}{day}\right) \end{pmatrix} \end{pmatrix}$$

# Air Submersion (without decay)

$$CDI_{con-air-subnd}\left(\frac{pCi-yr}{m^{3}}\right) = \begin{pmatrix} C_{air} \times \left(\frac{pCi}{m^{3}}\right) \times EF_{con}\left(EW_{con}\left(\frac{50 \text{ wks}}{yr}\right) \times DW_{con}\left(\frac{5 \text{ days}}{wk}\right)\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times BE_{con}\left(\frac{1 \text{ yr}}{yr}\right) \times DW_{con}\left(\frac{1 \text{ day}}{wk}\right) \times \left(\frac{1 \text{ day}}{365 \text{ days}}\right) \times BE_{con}\left(\frac{1 \text{ yr}}{yr}\right) \times BE_{con}\left(\frac{1 \text{ yr}}{yr}\right)$$

## **Recreator Soil CDI Equations**

Soil Ingestion

$$\begin{split} & \text{CDI}_{\text{rec-sol-ing}}(\text{pCi}) = \left( \mathsf{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \text{IFS}_{\text{rec-adj}}(240,000 \text{ mg}) \times \left(\frac{\text{g}}{1000 \text{ mg}}\right) \right) \times \left(\frac{\left(1 - \exp^{-\lambda}\left(\frac{1}{\text{yr}}\right) \times \text{t(yr)}\right)}{\text{t(yr)} \times \lambda\left(\frac{1}{\text{yr}}\right)} \right) \end{split}$$
 where:  
$$& \text{IFS}_{\text{rec-adj}}(240,000 \text{ mg}) = \begin{bmatrix} \left(\mathsf{EF}_{\text{rec-c}}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{rec-c}}(6 \text{ yr}) \times \text{IRS}_{\text{rec-a}}\left(\frac{200 \text{ mg}}{\text{day}}\right) \right) + \\ \left(\mathsf{EF}_{\text{rec-a}}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{\text{rec-a}}(20 \text{ yr}) \times \text{IRS}_{\text{rec-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right) \right) \end{bmatrix} \end{split}$$

## Soil Inhalation

$$CDI_{rec-sol-inh}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times IFA_{rec-adj}\left(1,437.5 \text{ m}^{3}\right) \times \frac{1}{PEF}\left(\frac{m^{3}}{kg}\right) \times \left(\frac{1000 \text{ g}}{kg}\right) \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \end{pmatrix}$$
  
where:  
$$IFA_{rec-adj}\left(1,437.5 \text{ m}^{3}\right) = \begin{bmatrix} \left(EF_{rec-c}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-c}(6 \text{ yr}) \times ET_{rec-c}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{rec-c}\left(\frac{10 \text{ m}^{3}}{day}\right)\right) + \\ \left(EF_{rec-a}\left(\frac{75 \text{ days}}{yr}\right) \times ED_{rec-a}(20 \text{ yr}) \times ET_{rec-a}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times IRA_{rec-a}\left(\frac{20 \text{ m}^{3}}{day}\right)\right) \end{bmatrix}$$

Soil External Exposure

$$CDI_{rec-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times \\ ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### **Recreator Alternate External Sources CDI Equations**

#### Direct External Exposure (sv)

$$CDI_{rec-sol-sv}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times \\ ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-sv} \times GSF_{o-ext-sv} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (1 cm)

$$CDI_{rec-sol-1cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times \\ ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-1cm} \times GSF_{o-ext-1cm} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Direct External Exposure (5 cm)

$$CDI_{rec-sol-5cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times \\ ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-5cm} \times GSF_{o-ext-5cm} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

#### Direct External Exposure (15 cm)

$$CDI_{rec-sol-15cm}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times \\ ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-15cm} \times GSF_{o-ext-15cm} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

Direct External Exposure (ground plane)

$$CDI_{rec-sol-gp}\left(\frac{pCi-yr}{cm^{2}}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{cm^{2}}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times \\ ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times ACF_{ext-gp} \times GSF_{o-ext-gp} \end{pmatrix} \times \left(\frac{\left(1-exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

٦

## **Recreator Air CDI Equations**

Air Inhalation

$$\begin{split} \text{CDI}_{\text{rec-air-inh}}(\text{pCi}) &= \left( \mathsf{C}_{\text{air}}\left(\frac{\text{pCi}}{\text{m}^3}\right) \times \text{IFA}_{\text{rec-adj}}\left(1,437.5\text{ m}^3\right) \right) \times \left(\frac{\left(1-\exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right) \\ \text{where:} \\ \text{IFA}_{\text{rec-adj}}\left(1,437.5\text{ m}^3\right) &= \begin{bmatrix} \left(\mathsf{EF}_{\text{rec-c}}\left(\frac{75\text{ days}}{yr}\right) \times \mathsf{ED}_{\text{rec-c}}(6\text{ yr}) \times \mathsf{ET}_{\text{rec-c}}\left(\frac{1\text{ hrs}}{\text{day}}\right) \times \left(\frac{1\text{ day}}{24\text{ hrs}}\right) \times \text{IRA}_{\text{rec-c}}\left(\frac{10\text{ m}^3}{\text{day}}\right) \right) + \\ \left(\mathsf{EF}_{\text{rec-a}}\left(\frac{75\text{ days}}{yr}\right) \times \mathsf{ED}_{\text{rec-a}}(20\text{ yr}) \times \mathsf{ET}_{\text{rec-a}}\left(\frac{1\text{ hrs}}{\text{day}}\right) \times \left(\frac{1\text{ day}}{24\text{ hrs}}\right) \times \text{IRA}_{\text{rec-a}}\left(\frac{20\text{ m}^3}{\text{day}}\right) \right) \end{bmatrix} \end{split}$$

## Air Submersion

$$CDI_{rec-air-sub}\left(\frac{pCi-yr}{m^{3}}\right) = \left(C_{air}\left(\frac{pCi}{m^{3}}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{a}(1.0)\right) \times \left(\frac{\left(1-\exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

## Air Inhalation (without decay)

$$\begin{split} & \text{CDI}_{\text{rec-air-inhnd}}(\text{pCi}) = \left(\text{C}_{\text{air}} \times \left(\frac{\text{pCi}}{\text{m}^3}\right) \times \text{IFA}_{\text{rec-adj}}\left(1,437.5 \text{ m}^3\right)\right) \\ & \text{where:} \\ & \text{IFA}_{\text{rec-adj}}\left(1,437.5 \text{ m}^3\right) = \begin{bmatrix} \left(\text{EF}_{\text{rec-c}}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-c}}(6 \text{ yr}) \times \text{ET}_{\text{rec-c}}\left(\frac{1 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{rec-c}}\left(\frac{10 \text{ m}^3}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{rec-a}}\left(\frac{75 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{rec-a}}(20 \text{ yr}) \times \text{ET}_{\text{rec-a}}\left(\frac{1 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{rec-a}}\left(\frac{20 \text{ m}^3}{\text{day}}\right)\right) \end{bmatrix} \end{split}$$

### Air Submersion (without decay)

$$CDI_{rec-air-subnd}\left(\frac{pCi-yr}{m^3}\right) = \left(C_{air} \times \left(\frac{pCi}{m^3}\right) \times EF_{rec}\left(\frac{75 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{rec}(26 \text{ yr}) \times ET_{rec}\left(\frac{1 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_a(1.0)\right)$$

## **Recreator Consumption of Fowl and Game CDI Equations**

**Direct Fowl Ingestion** 

$$\mathsf{CDI}_{\mathsf{rec-fowl-ing}}(\mathsf{pCi}) = \left(\mathsf{C}_{\mathsf{fowl}} \times \mathsf{EF}_{\mathsf{rec}}\left(\frac{\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec}}(\mathsf{26}\;\mathsf{yr}) \times \mathsf{IRGF}_{\mathsf{rec}}\left(\frac{\mathsf{g}}{\mathsf{day}}\right) \times \mathsf{CF}_{\mathsf{rec-fowl}}(\mathsf{1})\right)$$

Soil Contribution to Fowl Ingestion

$$CDI_{rec-sol-fowl-ing}(pCi) = \begin{bmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{days}{yr}\right) \times ED_{rec}(yr) \times IRGF_{rec}\left(\frac{g}{day}\right) \times CF_{rec-fowl}(1) \times \left[ IRGF_{rec}\left(\frac{g}{day}\right) \times CF_{rec-fowl}\left(\frac{g}{day}\right) \times CF_{rec-fowl}(1) \times CF$$

where:

 $R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right); R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$ 

Surface Water Contribution to Fowl Ingestion

$$CDI_{rec-wat-fowl-ing}(pCi) = \begin{pmatrix} C_{water}\left(\frac{pCi}{L}\right) \times TF_{fowl}\left(\frac{day}{kg}\right) \times Q_{w-fowl}\left(\frac{L}{day}\right) \times f_{w-fowl}(1) \times \left(\frac{1 \ kg}{1000 \ g}\right) \times g_{w-fowl}(1) \times g_{$$

Direct Land Game Ingestion

$$CDI_{rec-game-ing}(pCi) = \left(C_{game} \times EF_{rec}\left(\frac{days}{yr}\right) \times ED_{rec}(26 \text{ yr}) \times IRGL_{rec}\left(\frac{g}{day}\right) \times CF_{rec-game}(1)\right)$$

Soil Contribution to Land Game Ingestion

$$CDI_{rec-sol-game-ing}(pCi) = \begin{bmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{rec}\left(\frac{days}{yr}\right) \times ED_{rec}(yr) \times IRGF_{rec}\left(\frac{g}{day}\right) \times CF_{rec-game}(1) \times \\ TF_{game}\left(\frac{day}{kg}\right) \times \begin{bmatrix} \left(Q_{p-game}\left(\frac{kg}{day}\right) \times f_{p-game}(1) \times f_{s-game}(1) \times (R_{upp} + R_{es})\right) + \\ & \left(Q_{s-game}\left(\frac{kg}{day}\right) \times f_{p-game}(1)\right) \end{bmatrix} \end{bmatrix}$$

where:

$$R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right); R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$$

#### Surface Water Contribution to Land Game Ingestion

$$CDI_{rec-wat-game-ing}(pCi) = \begin{pmatrix} C_{water}\left(\frac{pCi}{L}\right) \times TF_{game}\left(\frac{day}{kg}\right) \times Q_{w-game}\left(\frac{L}{day}\right) \times \times f_{w-game}(1)\left(\frac{1 \ kg}{1000 \ g}\right) \times BF_{rec}\left(\frac{days}{yr}\right) \times ED_{rec}(yr) \times IRGL_{rec}\left(\frac{g}{day}\right) \times CF_{rec-game}(1) \end{pmatrix}$$

## **Recreator Surface Water CDI Equations**

#### Surface Water Ingestion

$$\begin{split} & \text{CDI}_{\text{rec-wat-ing}}(\text{pCi}) = \left( \mathsf{C}_{\text{water}} \left( \frac{\text{pCi}}{\text{L}} \right) \times \text{IFW}_{\text{rec-adj}}(131.4 \text{ L}) \right) \\ & \text{where:} \\ & \text{IFW}_{\text{rec-adj}}(131.4 \text{ L}) = \begin{bmatrix} \left( \mathsf{EF}_{\text{rec-c}} \left( \frac{45 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{\text{rec-c}}(6 \text{ yr}) \times \mathsf{EV}_{\text{rec-c}} \left( \frac{1 \text{ events}}{\text{day}} \right) \times \mathsf{ET}_{\text{event-rec-c}} \left( \frac{1 \text{ hrs}}{\text{event}} \right) \times \text{IRW}_{\text{rec-c}} \left( \frac{0.12 \text{ L}}{\text{day}} \right) \right) + \\ & \left( \mathsf{EF}_{\text{rec-a}} \left( \frac{45 \text{ days}}{\text{yr}} \right) \times \mathsf{ED}_{\text{rec-a}}(20 \text{ yr}) \times \mathsf{EV}_{\text{rec-a}} \left( \frac{1 \text{ events}}{\text{day}} \right) \times \mathsf{ET}_{\text{event-rec-a}} \left( \frac{1 \text{ hrs}}{\text{event}} \right) \times \text{IRW}_{\text{rec-a}} \left( \frac{0.11 \text{ L}}{\text{day}} \right) \right) \end{bmatrix} \end{split}$$

Surface Water Immersion

$$\begin{split} & \mathsf{CDI}_{\mathsf{rec-wat-imm}}\left(\frac{\mathsf{pCi}-\mathsf{yr}}{\mathsf{L}}\right) = \left(\mathsf{C}_{\mathsf{water}}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) \times \left(\frac{1\ \mathsf{yr}}{8,760\ \mathsf{hrs}}\right) \times \mathsf{DFA}_{\mathsf{rec-adj}}\left(1,170\ \mathsf{hrs}\right)\right) \\ & \mathsf{where:} \\ & \mathsf{DFA}_{\mathsf{rec-adj}}\left(1,170\ \mathsf{hrs}\right) = \begin{bmatrix} \left(\mathsf{EF}_{\mathsf{rec-c}}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-c}}(6\ \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-c}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-rec-c}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right) \right) + \\ & \left(\mathsf{EF}_{\mathsf{rec-a}}\left(\frac{45\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{\mathsf{rec-a}}(20\ \mathsf{yr}) \times \mathsf{EV}_{\mathsf{rec-a}}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-rec-a}}\left(\frac{1\ \mathsf{hrs}}{\mathsf{event}}\right) \right) \end{bmatrix} \end{split}$$

#### Farmer Direct Consumption of Agricultural Products CDI Equations

Direct Produce Ingestion

$$\begin{split} & \text{CDI}_{far-produce-ing}(\text{pCi}) = \left( \mathsf{C}_{produce}\left(\frac{\text{pCi}}{\text{g}}\right) \times \left(\text{IFF}_{far-adj}(2,246,930\text{ g}) + \text{IFV}_{far-adj}(1,583,400\text{ g})\right) \times \text{CF}_{far-produce}(1) \right) \\ & \text{where:} \\ & \text{IFF}_{far-adj}(2,246,930\text{ g}) = \begin{bmatrix} \left( \mathsf{EF}_{far-c}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-c}(6\text{ yr}) \times \text{IRF}_{far-c}\left(\frac{68.1\text{ g}}{\text{day}}\right) \right) + \\ \left( \mathsf{EF}_{far-a}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-a}(34\text{ yr}) \times \text{IRF}_{far-a}\left(\frac{176.8\text{ g}}{\text{day}}\right) \right) \end{bmatrix} \\ & \text{and:} \\ & \text{IFV}_{far-adj}(1,583,400\text{ g}) = \begin{bmatrix} \left( \mathsf{EF}_{far-c}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-c}(6\text{ yr}) \times \text{IRV}_{far-c}\left(\frac{41.7\text{ g}}{\text{day}}\right) \right) + \\ \left( \mathsf{EF}_{far-a}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-a}(34\text{ yr}) \times \text{IRV}_{far-c}\left(\frac{41.7\text{ g}}{\text{day}}\right) \right) + \end{bmatrix} \end{split}$$

Direct Egg Ingestion

$$\begin{split} & \mathsf{CDI}_{far-egg-ing}(\mathsf{pCi}) = \left(\mathsf{C}_{egg}\!\left(\frac{\mathsf{pCi}}{\mathsf{g}}\right) \times \mathsf{IFE}_{far-adj}(658,455~\mathsf{g}) \times \mathsf{CF}_{far-egg}(1)\right) \\ & \text{where:} \\ & \mathsf{IFE}_{far-adj}(658,455~\mathsf{g}) = \begin{bmatrix} \left(\mathsf{EF}_{far-c}\left(\frac{350~\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(6~\mathsf{yr}) \times \mathsf{IRE}_{far-c}\left(\frac{10.95~\mathsf{g}}{\mathsf{day}}\right)\right) + \\ & \left(\mathsf{EF}_{far-a}\left(\frac{350~\mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34~\mathsf{yr}) \times \mathsf{IRE}_{far-a}\left(\frac{53.4~\mathsf{g}}{\mathsf{day}}\right)\right) \end{bmatrix} \end{split}$$

Direct Poultry Ingestion

$$CDI_{far-poultry-ing}(pCi) = \left(C_{poultry}\left(\frac{pCi}{g}\right) \times IFP_{far-adj}(1,318,100 \text{ g}) \times CF_{far-poultry}(1)\right)$$

where:

$$IFP_{far-adj}(1,318,100 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRP_{far-c} \left( \frac{23.6 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRP_{far-a} \left( \frac{106.6 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

**Direct Fish Ingestion** 

$$CDI_{far-fish-ing}(pCi) = \left(C_{fish}\left(\frac{pCi}{g}\right) \times IFFI_{far-adj}(1,918,140 \text{ g}) \times CF_{far-fish}(1)\right)$$

where:

$$IFFI_{far-adj}(1,918,140 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRFI_{far-c} \left( \frac{32.8 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRFI_{far-a} \left( \frac{155.4 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Direct Beef Ingestion

$$\label{eq:cdifference} \begin{split} & \text{CDI}_{far-beef-ing}(pCi) = \left( \mathsf{C}_{beef}\!\left(\frac{pCi}{g}\right) \times \text{IFB}_{far-adj}(2,202,410\text{ g}) \times \text{CF}_{far-beef}(1) \right) \\ & \text{where:} \end{split}$$

$$IFB_{far-adj}(2,202,410 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c} (6 \text{ yr}) \times IRB_{far-c} \left( \frac{40.1 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a} (34 \text{ yr}) \times IRB_{far-a} \left( \frac{178 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Direct Dairy Ingestion

$$CDI_{far-dairy-ing}(pCi) = \left(C_{dairy}\left(\frac{pCi}{g}\right) \times IFD_{far-adj}(6,036,590 \text{ g}) \times CF_{far-dairy}(1)\right)$$

where:

$$IFD_{far-adj}(6,036,590 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRD_{far-c} \left( \frac{349.5 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRD_{far-a} \left( \frac{445.6 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Direct Swine Ingestion

$$CDI_{far-swine-ing}(pCi) = \left(C_{swine}\left(\frac{pCi}{g}\right) \times IFSW_{far-adj}(1, 203, 860 \text{ g}) \times CF_{far-swine}(1)\right)$$

where:

$$IFSW_{far-adj}(1, 203, 860 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRSW_{far-c} \left( \frac{18.5 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRSW_{far-a} \left( \frac{97.9 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

## Farmer Direct Consumption of Agricultural Products - Back-calculated to Soil CDI Equations

Soil Ingestion

$$\begin{split} & \text{CDI}_{\text{far-sol-ing}}(\text{pCi}) = \left(\text{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \text{IFS}_{\text{far-adj}}(1,610,000 \text{ mg}) \times \left(\frac{\text{g}}{1000 \text{ mg}}\right)\right) \times \left(\frac{\left(1 - \exp^{-\lambda}\left(\frac{1}{yr}\right) \times \text{t(yr)}\right)}{\text{t(yr)} \times \lambda\left(\frac{1}{yr}\right)}\right) \end{split}$$
 where:  
 
$$& \text{IFS}_{\text{far-adj}}(1,610,000 \text{ mg}) = \begin{bmatrix} \left(\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRS}_{\text{far-c}}\left(\frac{200 \text{ mg}}{\text{day}}\right)\right) + \\ \left(\text{EF}_{\text{far-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRS}_{\text{far-a}}\left(\frac{100 \text{ mg}}{\text{day}}\right)\right) \end{bmatrix} \end{split}$$

Soil Inhalation

$$\begin{split} \text{CDI}_{\text{far-sol-inh}}(\text{pCi}) &= \left( \begin{array}{c} \text{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \text{IFA}_{\text{far-adj}}\left(259,000 \text{ m}^3\right) \times \frac{1}{\text{PEF}}\left(\frac{\text{m}^3}{\text{kg}}\right) \times \left(\frac{1000 \text{ g}}{\text{kg}}\right) \right) \times \left(\frac{\left(1 - \exp^{-\lambda}\left(\frac{1}{\text{yr}}\right) \times \text{t(yr)}\right)}{\text{t(yr)} \times \lambda\left(\frac{1}{\text{yr}}\right)}\right) \end{split}$$
where:
$$IFA_{\text{far-adj}}\left(259,000 \text{ m}^3\right) &= \left[ \left( \text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{ET}_{\text{far-c}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{far-c}}\left(\frac{10 \text{ m}^3}{\text{day}}\right) \right) + \left( \left( \text{EF}_{\text{far-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{ET}_{\text{far-a}}\left(\frac{24 \text{ hrs}}{\text{day}}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times \text{IRA}_{\text{far-a}}\left(\frac{20 \text{ m}^3}{\text{day}}\right) \right) \right] \end{split}$$

Soil External Exposure

$$CDI_{far-sol-ext}\left(\frac{pCi-yr}{g}\right) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times EF_{far}\left(\frac{350 \text{ days}}{yr}\right) \times \left(\frac{1 \text{ yr}}{365 \text{ days}}\right) \times ED_{far}(40 \text{ yr}) \times ACF_{ext-sv} \times \\ \left[\left(ET_{far-o}\left(\frac{12.168 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{o-ext-sv}\right) + \left(ET_{far-i}\left(\frac{10.008 \text{ hrs}}{day}\right) \times \left(\frac{1 \text{ day}}{24 \text{ hrs}}\right) \times GSF_{i-total}\right)\right] \end{pmatrix} \times \left(\frac{\left(\frac{1-exp}{\sqrt{1-exp}}\right) \times \left(\frac{1}{\sqrt{1-exp}}\right) \times \left(\frac{1}{\sqrt{1-ex}}\right) \times \left(\frac{1}{\sqrt{1-exp}}\right) \times \left(\frac$$

Soil Contribution to Produce Ingestion

$$CDI_{far-sol-produce-ing}(pCi) = \left(C_{soll}\left(\frac{pCi}{g}\right) \times (R_{upv} + R_{es}) \times (IFF_{far-adj}(2, 246, 930 \text{ g}) + IFV_{far-adj}(1, 583, 400 \text{ g})) \times CF_{far-produce}(1)\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$
where:
$$R_{upv} = BV_{wet}\left(\frac{pCi / g - fresh - plant}{pCi / g - dry - soil}\right); R_{es} = MLF_{produce}\left(\frac{0.0135 \text{ g} - dry - soil}{g - fresh - plant}\right)$$
and:
$$IFF_{far-adj}(2, 246, 930 \text{ g}) = \begin{bmatrix}\left(EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-c}(6 \text{ yr}) \times IRF_{far-a}\left(\frac{176.8 \text{ g}}{day}\right)\right) + \\\left(EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRF_{far-a}\left(\frac{41.7 \text{ g}}{day}\right)\right) + \\\left(EF_{far-adj}(1, 583, 400 \text{ g}) = \begin{bmatrix}\left(EF_{far-c}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRV_{far-a}\left(\frac{41.7 \text{ g}}{day}\right)\right) + \\\left(EF_{far-a}\left(\frac{350 \text{ days}}{yr}\right) \times ED_{far-a}(34 \text{ yr}) \times IRV_{far-a}\left(\frac{125.7 \text{ g}}{day}\right)\right) \end{bmatrix}$$

## Direct Produce Ingestion

$$\begin{split} & \text{CDI}_{far-produce-ing}(p\text{Ci}) = \left(\text{C}_{produce}\left(\frac{p\text{Ci}}{g}\right) \times \left(\text{IFF}_{far-adj}(2,246,930\text{ g}) + \text{IFV}_{far-adj}(1,583,400\text{ g})\right) \times \text{CF}_{far-produce}(1)\right) \\ & \text{where:} \\ & \text{IFF}_{far-adj}(2,246,930\text{ g}) = \begin{bmatrix} \left(\text{EF}_{far-c}\left(\frac{350\text{ days}}{yr}\right) \times \text{ED}_{far-c}(6\text{ yr}) \times \text{IRF}_{far-c}\left(\frac{68.1\text{ g}}{day}\right)\right) + \\ \left(\text{EF}_{far-a}\left(\frac{350\text{ days}}{yr}\right) \times \text{ED}_{far-a}(34\text{ yr}) \times \text{IRF}_{far-a}\left(\frac{176.8\text{ g}}{day}\right)\right) \end{bmatrix} \\ & \text{and:} \\ & \text{IFV}_{far-adj}(1,583,400\text{ g}) = \begin{bmatrix} \left(\text{EF}_{far-c}\left(\frac{350\text{ days}}{yr}\right) \times \text{ED}_{far-c}(6\text{ yr}) \times \text{IRV}_{far-c}\left(\frac{41.7\text{ g}}{day}\right)\right) + \\ \left(\text{EF}_{far-a}\left(\frac{350\text{ days}}{yr}\right) \times \text{ED}_{far-a}(34\text{ yr}) \times \text{IRV}_{far-c}\left(\frac{41.7\text{ g}}{day}\right)\right) + \end{bmatrix} \end{split}$$

Soil Contribution to Egg Ingestion

$$CDI_{far-sol-egg-ing}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times IFE_{far-adj}(658, 455 \text{ g}) \times CF_{far-egg}(1) \times TF_{egg}\left(\frac{day}{kg}\right) \times \\ \left[ \left(Q_{p-poultry}\left(\frac{0.2 \text{ kg}}{day}\right) \times f_{p-poultry}(1) \times f_{s-poultry}(1) \times (R_{upp} + R_{es})\right) + \\ \left(Q_{s-poultry}\left(\frac{0.022 \text{ kg}}{day}\right) \times f_{p-poultry}(1)\right) \end{pmatrix} \end{pmatrix}$$

where:

$$R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right); R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$$

and:

$$IFE_{far-adj}(658,455 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRE_{far-c} \left( \frac{10.95 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRE_{far-a} \left( \frac{53.4 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Soil Contribution to Poultry Ingestion

$$CDI_{far-sol-poultry-ing}(pCi) = \begin{pmatrix} C_{soil}\left(\frac{pCi}{g}\right) \times IFP_{far-adj}(1,318,100 \text{ g}) \times CF_{far-poultry}(1) \times TF_{poultry}\left(\frac{day}{kg}\right) \times \\ \left[ \begin{pmatrix} Q_{p-poultry}\left(\frac{0.2 \text{ kg}}{day}\right) \times f_{p-poultry}(1) \times f_{s-poultry}(1) \times (R_{upp} + R_{es}) \end{pmatrix} + \\ & \left( Q_{s-poultry}\left(\frac{0.022 \text{ kg}}{day}\right) \times f_{p-poultry}(1) \end{pmatrix} \end{bmatrix} \end{pmatrix}$$

where:

$$R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right); R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$$

$$IFP_{far-adj}(1,318,100 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRP_{far-c} \left( \frac{23.6 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRP_{far-a} \left( \frac{106.6 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Soil Contribution to Fish Ingestion

$$\begin{split} \text{CDI}_{far-sol-fish-ing}(pCi) &= \frac{\mathsf{C}_{soil}\left(\frac{pCi}{g}\right) \times \mathsf{BCF}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)}{\mathsf{K}_{d}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right)} \times \text{IFFI}_{far-adj}(1,918,140\text{ g}) \times \mathsf{CF}_{far-fish}(1) \end{split}$$
 where:

$$IFFI_{far-adj}(1,918,140 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRFI_{far-c} \left( \frac{32.8 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRFI_{far-a} \left( \frac{155.4 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Soil Contribution to Beef Ingestion

$$\label{eq:CDI_far-sol-beef-ing} \text{CDI}_{far-sol-beef-ing}(pCi) = \begin{pmatrix} \mathsf{C}_{soil}\left(\frac{pCi}{g}\right) \times \text{IFB}_{far-adj}(2,202,410\ g) \times \mathsf{CF}_{far-beef}(1) \times \mathsf{TF}_{beef}\left(\frac{day}{kg}\right) \times \\ \\ \left[ \begin{pmatrix} \mathsf{Q}_{p-beef}\left(\frac{11.77\ kg}{day}\right) \times \mathsf{f}_{p-beef}(1) \times \mathsf{f}_{s-beef}(1) \times (\mathsf{R}_{upp}\ +\ \mathsf{R}_{es}) \end{pmatrix} + \\ \\ \\ \begin{pmatrix} \mathsf{Q}_{s-beef}\left(\frac{0.5\ kg}{day}\right) \times \mathsf{f}_{p-beef}(1) \end{pmatrix} \end{pmatrix} \end{pmatrix}$$

where:

$$R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right); R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$$

$$IFB_{far-adj}(2,202,410 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRB_{far-c} \left( \frac{40.1 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRB_{far-a} \left( \frac{178 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Soil Contribution to Dairy Ingestion

$$\begin{split} \text{CDI}_{\text{far-sol-dairy-ing}}(\text{pCi}) &= \begin{pmatrix} \text{C}_{\text{soil}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \text{IFD}_{\text{far-adj}}(6,036,590 \text{ g}) \times \text{CF}_{\text{far-dairy}}(1) \times \text{TF}_{\text{dairy}}\left(\frac{\text{day}}{\text{L-milk}}\right) \times \rho_m \left(\frac{1.03 \text{ kg}}{\text{L-milk}}\right)^{-1} \times \\ & \left[ \begin{pmatrix} \text{Q}_{\text{p-dairy}}\left(\frac{20.3 \text{ kg}}{\text{day}}\right) \times f_{\text{p-dairy}}(1) \times f_{\text{s-dairy}}(1) \times (\text{Rupp} + \text{Res}) \end{pmatrix} + \\ & \left( \text{Q}_{\text{s-dairy}}\left(\frac{0.4 \text{ kg}}{\text{day}}\right) \times f_{\text{p-dairy}}(1) \end{pmatrix} \\ \end{split}$$
where:  

$$\text{R}_{\text{upp}} = \text{BV}_{\text{dry}}\left(\frac{\text{pCi} / \text{g-dry-plant}}{\text{pCi} / \text{g-dry-soil}}\right); \text{R}_{\text{es}} = \text{MLF}_{\text{pasture}}\left(\frac{0.25 \text{ g-dry-soil}}{\text{g-dry-plant}}\right) \\ \text{and:} \\ \text{IFD}_{\text{far-adj}}(6,036,590 \text{ g}) = \begin{bmatrix} \left(\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRD}_{\text{far-c}}\left(\frac{349.5 \text{ g}}{\text{day}}\right) \right) + \\ & \left(\text{EF}_{\text{far-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRD}_{\text{far-a}}\left(\frac{445.6 \text{ g}}{\text{day}}\right) \end{pmatrix} \end{bmatrix}$$

Soil Contribution to Swine Ingestion

$$\label{eq:cdispersive} \begin{split} \text{CDI}_{far-sol-swine-ing}(pCi) = \begin{pmatrix} \mathsf{C}_{soil}\left(\frac{pCi}{g}\right) \times \text{IFSW}_{far-adj}(1,203,860 \text{ g}) \times \mathsf{CF}_{far-swine}(1) \times \mathsf{TF}_{swine}\left(\frac{day}{kg}\right) \times \\ & \left[ \begin{pmatrix} \mathsf{Q}_{p-swine}\left(\frac{4.7 \text{ kg}}{day}\right) \times \mathsf{f}_{p-swine}(1) \times \mathsf{f}_{s-swine}(1) \times (\mathsf{R}_{upp} \ + \ \mathsf{R}_{es}) \right) \ + \\ & \left( \mathsf{Q}_{s-swine}\left(\frac{0.37 \text{ kg}}{day}\right) \times \mathsf{f}_{p-swine}(1) \end{pmatrix} \end{split}$$

where:

$$R_{upp} = BV_{dry} \left( \frac{pCi / g - dry - plant}{pCi / g - dry - soil} \right) ; R_{es} = MLF_{pasture} \left( \frac{0.25 g - dry - soil}{g - dry - plant} \right)$$

$$IFSW_{far-adj}(1, 203, 860 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRSW_{far-c} \left( \frac{18.5 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRSW_{far-a} \left( \frac{97.9 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

## Farmer Direct Consumption of Agricultural Products - Back-calculated to Water CDI Equations

Tap Water Ingestion

$$\begin{split} & \mathsf{CDI}_{far-wat-ing}(\mathsf{pCi}) = \left(\mathsf{C}_{water}\!\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) \times \mathsf{IFW}_{far-adj}(\mathsf{31},\mathsf{388 L})\right) \\ & \text{where:} \\ & \mathsf{IFW}_{far-adj}(\mathsf{31},\mathsf{388 L}) = \left[ \begin{pmatrix} \mathsf{EF}_{far-c}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(\mathsf{6} \text{ yr}) \times \mathsf{IRW}_{far-c}\left(\frac{0.78 \text{ L}}{\mathsf{day}}\right) \right) + \\ & \left(\mathsf{EF}_{far-a}\left(\frac{350 \text{ days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(\mathsf{34} \text{ yr}) \times \mathsf{IRW}_{far-a}\left(\frac{2.5 \text{ L}}{\mathsf{day}}\right) \right) \right] \end{split}$$

Tap Water Inhalation

$$\begin{split} & \text{CDI}_{far-wat-inh}(\text{pCi}) = \left(\text{C}_{water}\left(\frac{\text{pCi}}{\text{L}}\right) \times \text{IFA}_{far-adj}\left(259,000\text{ m}^3\right) \times \text{K}\left(\frac{0.5\text{ L}}{\text{m}^3}\right)\right) \\ & \text{where:} \\ & \text{IFA}_{far-adj}\left(259,000\text{ m}^3\right) = \begin{bmatrix} \left(\text{EF}_{far-c}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \text{ED}_{far-c}(6\text{ yr}) \times \text{ET}_{far-c}\left(\frac{24\text{ hrs}}{\text{day}}\right) \times \left(\frac{1\text{ day}}{24\text{ hrs}}\right) \times \text{IRA}_{far-c}\left(\frac{10\text{ m}^3}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{far-a}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \text{ED}_{far-a}(34\text{ yr}) \times \text{ET}_{far-a}\left(\frac{24\text{ hrs}}{\text{day}}\right) \times \left(\frac{1\text{ day}}{24\text{ hrs}}\right) \times \text{IRA}_{far-a}\left(\frac{20\text{ m}^3}{\text{day}}\right)\right) \end{bmatrix} \end{split}$$

Tap Water Immersion

$$\begin{split} & \mathsf{CDI}_{far-wat-imm}\left(\frac{\mathsf{pCi}-\mathsf{yr}}{\mathsf{L}}\right) = \left(\mathsf{C}_{water}\left(\frac{\mathsf{pCi}}{\mathsf{L}}\right) \times \left(\frac{1\ \mathsf{yr}}{8,760\ \mathsf{hrs}}\right) \times \mathsf{DFA}_{far-adj}\left(9,583\ \mathsf{hrs}\right)\right) \\ & \mathsf{where:} \\ & \mathsf{DFA}_{far-adj}\left(9,583\ \mathsf{hrs}\right) = \begin{bmatrix} \left(\mathsf{EF}_{far-c}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}\left(6\ \mathsf{yr}\right) \times \mathsf{EV}_{far-c}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-far-c}}\left(\frac{0.54\ \mathsf{hrs}}{\mathsf{event}}\right)\right) + \\ & \left(\mathsf{EF}_{far-a}\left(\frac{350\ \mathsf{days}}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34\ \mathsf{yr}) \times \mathsf{EV}_{far-a}\left(\frac{1\ \mathsf{events}}{\mathsf{day}}\right) \times \mathsf{ET}_{\mathsf{event-far-a}}\left(\frac{0.71\ \mathsf{hrs}}{\mathsf{event}}\right)\right) \end{bmatrix} \end{split}$$

Tap Water Contribution to Produce Ingestion

$$CDI_{far-wat-produce-ing}(pCi) = \begin{bmatrix} C_{water}\left(\frac{pCi}{L}\right) \times \left(IFF_{far-adj}(2,246,930 \text{ g}) + IFV_{far-adj}(1,583,400 \text{ g})\right) \times CF_{far-produce}(1) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \times \left(Irr_{rup}\left(\frac{L}{kg}\right) + Irr_{res}\left(\frac{L}{kg}\right) + Irr_{dep}\left(\frac{L}{kg}\right) \right) \end{bmatrix}$$

where:

$$Irr_{rup}\left(\frac{L}{kg}\right) = \frac{Ir\left(\frac{L}{m^{2}-day}\right) \times F \times MLF_{produce}\left(\frac{0.0135 \text{ g}-dry-soil}{g-fresh-plant}\right) \times \left[1-exp\left(-\left(\frac{\lambda_{B}}{day}\right) \times t_{b}\left(days\right)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)}$$

$$Irr_{res}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times BV_{wet}\left(\frac{pCi / g - fresh - plant}{pCi / g - dry - soil}\right) \times \left[1 - exp\left(-\left(\frac{\lambda_{B}}{day}\right) \times t_{b} \left(days\right)\right)\right]}{P\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{B}}{day}\right)}$$

and:

$$Irr_{dep}\left(\frac{L}{kg}\right) = \frac{I_{r}\left(\frac{L}{m^{2}-day}\right) \times F \times I_{f} \times T \times \left[1-exp\left(-\left(\frac{\lambda_{E}}{day}\right) \times t_{v}\left(days\right)\right)\right]}{Y_{v}\left(\frac{kg}{m^{2}}\right) \times \left(\frac{\lambda_{E}}{day}\right)}$$

$$\begin{split} & \operatorname{IFF}_{far-adj}(2,246,930\ g) = \begin{bmatrix} \left( \operatorname{EF}_{far-c}\left(\frac{350\ days}{yr}\right) \times \operatorname{ED}_{far-c}\left(6\ yr\right) \times \operatorname{IRF}_{far-c}\left(\frac{68.1\ g}{day}\right) \right) + \\ & \left( \operatorname{EF}_{far-a}\left(\frac{350\ days}{yr}\right) \times \operatorname{ED}_{far-a}\left(34\ yr\right) \times \operatorname{IRF}_{far-a}\left(\frac{176.8\ g}{day}\right) \right) \end{bmatrix} \\ & \text{and:} \\ & \operatorname{IFV}_{far-adj}(1,583,400\ g) = \begin{bmatrix} \left( \operatorname{EF}_{far-c}\left(\frac{350\ days}{yr}\right) \times \operatorname{ED}_{far-c}\left(6\ yr\right) \times \operatorname{IRV}_{far-c}\left(\frac{41.7\ g}{day}\right) \right) + \\ & \left( \operatorname{EF}_{far-a}\left(\frac{350\ days}{yr}\right) \times \operatorname{ED}_{far-a}\left(34\ yr\right) \times \operatorname{IRV}_{far-c}\left(\frac{41.7\ g}{day}\right) \right) + \\ & \left( \operatorname{EF}_{far-a}\left(\frac{350\ days}{yr}\right) \times \operatorname{ED}_{far-a}\left(34\ yr\right) \times \operatorname{IRV}_{far-a}\left(\frac{125.7\ g}{day}\right) \right) \end{bmatrix} \end{split}$$

Direct Produce Ingestion

$$\begin{split} & \text{CDI}_{far-produce-ing}(\text{pCi}) = \left( \mathsf{C}_{\text{produce}}\left(\frac{\text{pCi}}{\text{g}}\right) \times \left(\text{IFF}_{far-adj}(2,246,930\text{ g}) + \text{IFV}_{far-adj}(1,583,400\text{ g})\right) \times \text{CF}_{far-produce}(1) \right) \\ & \text{where:} \\ & \text{IFF}_{far-adj}(2,246,930\text{ g}) = \begin{bmatrix} \left( \mathsf{EF}_{far-c}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-c}(6\text{ yr}) \times \text{IRF}_{far-c}\left(\frac{68.1\text{ g}}{\text{day}}\right) \right) + \\ \left( \mathsf{EF}_{far-a}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-a}(34\text{ yr}) \times \text{IRF}_{far-a}\left(\frac{176.8\text{ g}}{\text{day}}\right) \right) \end{bmatrix} \\ & \text{and:} \\ & \text{IFV}_{far-adj}(1,583,400\text{ g}) = \begin{bmatrix} \left( \mathsf{EF}_{far-c}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-c}(6\text{ yr}) \times \text{IRV}_{far-c}\left(\frac{41.7\text{ g}}{\text{day}}\right) \right) + \\ \left( \mathsf{EF}_{far-a}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \mathsf{ED}_{far-a}(34\text{ yr}) \times \text{IRV}_{far-a}\left(\frac{125.7\text{ g}}{\text{day}}\right) \right) \end{bmatrix} \end{split}$$

## Tap Water Contribution to Egg Ingestion

$$\begin{split} & \text{CDI}_{far-wat-egg-ing}(p\text{Ci}) = \text{C}_{water}\left(\frac{p\text{Ci}}{L}\right) \times \text{IFE}_{far-adj}(658,455\text{ g}) \times \text{CF}_{far-egg}(1) \times \text{TF}_{egg}\left(\frac{day}{kg}\right) \times \text{Q}_{w-poultry}\left(\frac{0.4\text{ L}}{day}\right) \times f_{w-poultry}(1) \times \left(\frac{1\text{ kg}}{1000\text{ g}}\right) \\ & \text{where:} \\ & \text{IFE}_{far-adj}(658,455\text{ g}) = \begin{bmatrix} \left(\text{EF}_{far-c}\left(\frac{350\text{ days}}{yr}\right) \times \text{ED}_{far-c}(6\text{ yr}) \times \text{IRE}_{far-c}\left(\frac{10.95\text{ g}}{day}\right)\right) + \\ & \left(\text{EF}_{far-a}\left(\frac{350\text{ days}}{yr}\right) \times \text{ED}_{far-a}(34\text{ yr}) \times \text{IRE}_{far-a}\left(\frac{53.4\text{ g}}{day}\right) \right) \end{bmatrix} \end{split}$$

## Tap Water Contribution to Poultry Ingestion

$$\begin{split} & \mathsf{CDI}_{far-wat-poultry-ing}(p\mathsf{Ci}) = \mathsf{C}_{water}\left(\frac{p\mathsf{Ci}}{\mathsf{L}}\right) \times \mathsf{IFP}_{far-adj}(1, 318, 100 \ g) \times \mathsf{CF}_{far-poultry}(1) \times \mathsf{TF}_{poultry}\left(\frac{day}{kg}\right) \times \mathsf{Q}_{w-poultry}\left(\frac{0.4 \ \mathsf{L}}{day}\right) \times \mathsf{f}_{w-poultry}(1) \times \left(\frac{1 \ kg}{1000 \ g}\right) \\ & \text{where:} \\ & \mathsf{IFP}_{far-adj}(1, 318, 100 \ g) = \left[ \left(\mathsf{EF}_{far-c}\left(\frac{350 \ days}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-c}(6 \ \mathsf{yr}) \times \mathsf{IRP}_{far-c}\left(\frac{23.6 \ g}{day}\right)\right) + \left(\mathsf{EF}_{far-a}\left(\frac{350 \ days}{\mathsf{yr}}\right) \times \mathsf{ED}_{far-a}(34 \ \mathsf{yr}) \times \mathsf{IRP}_{far-a}\left(\frac{106.6 \ g}{day}\right)\right) \right] \end{split}$$

## Tap Water Contribution to Fish Ingestion

$$\begin{split} & \text{CDI}_{far-wat-fish-ing}(\text{pCi}) = \text{C}_{water}\left(\frac{\text{pCi}}{\text{L}}\right) \times \text{BCF}\left(\frac{\text{L}}{\text{kg}}\right) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \times \text{IFFI}_{far-adj}(1,918,140 \text{ g}) \times \text{CF}_{far-fish}(1) \\ & \text{where:} \\ & \text{IFFI}_{far-adj}(1,918,140 \text{ g}) = \begin{bmatrix} \left(\text{EF}_{far-c}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{far-c}(6 \text{ yr}) \times \text{IRFI}_{far-c}\left(\frac{32.8 \text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{far-a}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{far-a}(34 \text{ yr}) \times \text{IRFI}_{far-a}\left(\frac{155.4 \text{ g}}{\text{day}}\right)\right) \end{bmatrix} \end{split}$$

#### Tap Water Contribution to Beef Ingestion

 $\begin{aligned} & \text{CDI}_{\text{far-wat-beef-ing}}(\text{pCi}) = \text{C}_{\text{water}}\left(\frac{\text{pCi}}{\text{L}}\right) \times \text{IFB}_{\text{far-adj}}(2,202,410\text{ g}) \times \text{CF}_{\text{far-beef}}(1) \times \text{TF}_{\text{beef}}\left(\frac{\text{day}}{\text{kg}}\right) \times \text{Q}_{\text{w-beef}}\left(\frac{53\text{ L}}{\text{day}}\right) \times f_{\text{w-beef}}(1) \times \left(\frac{1\text{ kg}}{1000\text{ g}}\right) \\ & \text{where:} \\ & \text{IFB}_{\text{far-adj}}(2,202,410\text{ g}) = \begin{bmatrix} \left(\text{EF}_{\text{far-c}}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6\text{ yr}) \times \text{IRB}_{\text{far-c}}\left(\frac{40.1\text{ g}}{\text{day}}\right)\right) + \\ & \left(\text{EF}_{\text{far-a}}\left(\frac{350\text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34\text{ yr}) \times \text{IRB}_{\text{far-a}}\left(\frac{178\text{ g}}{\text{day}}\right)\right) \end{bmatrix} \end{aligned}$ 

Tap Water Contribution to Dairy Ingestion

$$CDI_{far-wat-dairy-ing}(pCi) = \\ TF_{dairy}\left(\frac{day}{L-milk}\right) \times \rho_m \left(\frac{1.03 \text{ kg}}{L-milk}\right)^{-1} \times Q_{w-dairy}\left(\frac{92 \text{ L}}{day}\right) \times f_{w-dairy}(1) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \\ \text{where:}$$

$$IFD_{far-adj}(6,036,590 \text{ g}) = \begin{bmatrix} \left( EF_{far-c} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-c}(6 \text{ yr}) \times IRD_{far-c} \left( \frac{349.5 \text{ g}}{\text{day}} \right) \right) + \\ \left( EF_{far-a} \left( \frac{350 \text{ days}}{\text{yr}} \right) \times ED_{far-a}(34 \text{ yr}) \times IRD_{far-a} \left( \frac{445.6 \text{ g}}{\text{day}} \right) \right) \end{bmatrix}$$

Tap Water Contribution to Swine Ingestion

$$\begin{aligned} \text{CDI}_{\text{far-wat-swine-ing}}(\text{pCi}) &= C_{\text{water}}\left(\frac{\text{pCi}}{\text{L}}\right) \times \text{IFSW}_{\text{far-adj}}(1,203,860 \text{ g}) \times \text{CF}_{\text{far-swine}}(1) \times \text{TF}_{\text{swine}}\left(\frac{\text{day}}{\text{kg}}\right) \times \text{Q}_{\text{w-swine}}\left(\frac{11.4 \text{ L}}{\text{day}}\right) \times \text{f}_{\text{w-swine}}(1) \times \left(\frac{1 \text{ kg}}{1000 \text{ g}}\right) \\ \text{where:} \\ \text{IFSW}_{\text{far-adj}}(1,203,860 \text{ g}) &= \begin{bmatrix} \left(\text{EF}_{\text{far-c}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-c}}(6 \text{ yr}) \times \text{IRSW}_{\text{far-c}}\left(\frac{18.5 \text{ g}}{\text{day}}\right)\right) + \\ \left(\text{EF}_{\text{far-a}}\left(\frac{350 \text{ days}}{\text{yr}}\right) \times \text{ED}_{\text{far-a}}(34 \text{ yr}) \times \text{IRSW}_{\text{far-a}}\left(\frac{97.9 \text{ g}}{\text{day}}\right) \right) \end{bmatrix} \end{aligned}$$

#### **Soil to Groundwater CDI Equations**

Method 1: Concentration in Groundwater from Concentration in Soil

$$C_{water}\left(\frac{pCi}{L}\right) = \frac{C_{soil}\left(\frac{pCi}{g}\right)}{\left[DAF \times \left(\frac{kg}{1,000 \text{ g}}\right) \times \left(K_{d}\left(\frac{L}{kg}\right) + \frac{\theta_{w}\left(\frac{0.3 \text{ L}_{water}}{L_{soil}}\right)}{\rho_{b}\left(\frac{1.5 \text{ kg}}{L}\right)}\right)\right]} \times \left(\frac{\left(\frac{\left(1 - exp^{-\lambda\left(\frac{1}{yr}\right) \times t(yr)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)}$$

Method 2: Concentration in Groundwater from Concentration in Soil

$$C_{water}\left(\frac{pCi}{L}\right) = \left(\frac{C_{soil}\left(\frac{pCi}{g}\right) \times \left(\frac{1,000 \text{ g}}{kg}\right) \times \rho_{b}\left(\frac{1.5 \text{ kg}}{L}\right) \times d_{s}\left(\frac{mg}{kg}\right)}{I\left(\frac{0.18 \text{ m}}{yr}\right) \times \text{ED}(70 \text{ yr}) \times \text{DAF}}\right) \times \left(\frac{\left(1 - exp^{-\lambda}\left(\frac{1}{yr}\right) \times t(yr)\right)}{t(yr) \times \lambda\left(\frac{1}{yr}\right)}\right)$$

**APPENDIX I. SUPPORTING EQUATIONS** 

## **APPENDIX I. SUPPORTING TABLES**

General excess lifetime cancer risk (ELCR) equation

$$\text{ELCR} = \text{CDI}\left(\frac{\mu g}{m^3}\right) \times \text{IUR}\left(\frac{\mu g}{m^3}\right)$$

General hazard quotient (HQ) equation

$$HQ = \frac{CDI\left(\frac{mg}{m^3}\right)}{RfC\left(\frac{mg}{m^3}\right)}$$

## **Miscellaneous Equations**

Determination of the Dilution Attenuation Factor (DAF)

Dilution Attenuation Factor (DAF) = 1 + 
$$\frac{K\left(\frac{m}{yr}\right) \times i\left(\frac{m}{m}\right) \times d(m)}{I\left(\frac{0.18 \text{ m}}{yr}\right) \times L(m)}$$
where:  
$$d(m) = \left(0.0112 \times L^{2}(m)\right)^{0.5} + d_{a}(m) \times \left[1 - \exp\left(\frac{-L(m) \times I\left(\frac{0.18 \text{ m}}{yr}\right)}{K\left(\frac{m}{yr}\right) \times i\left(\frac{m}{m}\right) \times d_{a}(m)}\right)\right]$$

Soil Saturation Limit (Csat) Equation

$$\begin{split} & \mathsf{C}_{\mathsf{sat}}\left(\frac{\mathsf{mg}}{\mathsf{kg}}\right) = \frac{\mathsf{s}\left(\frac{\mathsf{mg}}{\mathsf{L}}\right)}{\mathsf{p}_{\mathsf{b}}\left(\frac{1.5\ \mathsf{g}}{\mathsf{cm}^{3}}\right)} \times \left(\mathsf{K}_{\mathsf{d}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) \times \mathsf{p}_{\mathsf{b}}\left(\frac{1.5\ \mathsf{g}}{\mathsf{cm}^{3}}\right) + \theta_{\mathsf{w}}\left(\frac{0.15\ \mathsf{L}_{\mathsf{water}}}{\mathsf{L}_{\mathsf{soil}}}\right) + \mathsf{H}' \times \theta_{\mathsf{a}}\left(\frac{0.28\ \mathsf{L}_{\mathsf{air}}}{\mathsf{L}_{\mathsf{soil}}}\right)\right) \end{split}$$
  
where:  
$$& \mathsf{K}_{\mathsf{d}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) = \mathsf{f}_{\mathsf{oc}}\left(\frac{0.006\ \mathsf{g} - \mathsf{carbon}}{\mathsf{g} - \mathsf{soil}}\right) \times \mathsf{K}_{\mathsf{oc}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right), \text{ for organic compounds;} \end{aligned}$$
  
$$& \mathsf{K}_{\mathsf{d}}\left(\frac{\mathsf{L}}{\mathsf{kg}}\right) \text{ values for inorganic compounds are listed in the user guide.} \end{aligned}$$
  
$$& \theta_{\mathsf{a}}\left(\frac{0.28\ \mathsf{L}_{\mathsf{air}}}{\mathsf{L}_{\mathsf{soil}}}\right) = \mathsf{n}\left(\frac{0.43\ \mathsf{L}_{\mathsf{pore}}}{\mathsf{L}_{\mathsf{soil}}}\right) - \theta_{\mathsf{w}}\left(\frac{0.15\ \mathsf{L}_{\mathsf{water}}}{\mathsf{L}_{\mathsf{soil}}}\right) \text{ and: }\mathsf{n}\left(\frac{0.43\ \mathsf{L}_{\mathsf{pore}}}{\mathsf{L}_{\mathsf{soil}}}\right) = \mathsf{1} - \frac{\mathsf{p}_{\mathsf{b}}\left(\frac{1.5\ \mathsf{g}}{\mathsf{cm}^{3}}\right)}{\mathsf{p}_{\mathsf{s}}\left(\frac{2.65\ \mathsf{g}}{\mathsf{cm}^{3}}\right)}$$

Soil to plant transfer factor-wet (BV_{wet}) Equation

$$BV_{wet} = BV_{dry} \times \left(\frac{100 - MC}{100}\right)$$
  
where:  
MC = percent moisture content (%)

Soil to plant transfer factor-dry (BV_{dry}) Equation

$$BV_{dry} = BV_{wet} \times \left(\frac{100}{100 - MC}\right)$$
  
where:  
MC = percent moisture content (%)

Trichloroethylene Adjustment Factor Derivation Equations

$$CAF_{0}(0.804) = \frac{CSF_{0}\left(\frac{3.7 \times 10^{-2} \text{ mg}}{\text{kg}-\text{day}}\right)^{-1} \text{ NHL + Liver Oral Slope Factor}}{CSF_{0}\left(\frac{4.6 \times 10^{-2} \text{ mg}}{\text{kg}-\text{day}}\right)^{-1} \text{ Adult - Based Oral Slope Factor}}; MAF_{0}(0.202) = \frac{CSF_{0}\left(\frac{9.3 \times 10^{-3} \text{ mg}}{\text{kg}-\text{day}}\right)^{-1} \text{ Kidney Oral Slope Factor}}{CSF_{0}\left(\frac{4.6 \times 10^{-2} \text{ mg}}{\text{kg}-\text{day}}\right)^{-1} \text{ Adult - Based Oral Slope Factor}}; MAF_{0}(0.202) = \frac{CSF_{0}\left(\frac{9.3 \times 10^{-3} \text{ mg}}{\text{kg}-\text{day}}\right)^{-1} \text{ Adult - Based Oral Slope Factor}}{CSF_{0}\left(\frac{4.6 \times 10^{-2} \text{ mg}}{\text{kg}-\text{day}}\right)^{-1} \text{ Adult - Based Oral Slope Factor}}; MAF_{1}(0.244) = \frac{IUR\left(\frac{1.0 \times 10^{-6} \text{ \mug}}{\text{kg}-\text{day}}\right)^{-1} \text{ Kidney Unit Risk Estimate}}{IUR\left(\frac{4.1 \times 10^{-6} \text{ \mug}}{\text{kg}-\text{day}}\right)^{-1} \text{ Adult - Based Unit Risk Estimate}}; MAF_{1}(0.244) = \frac{IUR\left(\frac{4.1 \times 10^{-6} \text{ \mug}}{\text{kg}-\text{day}}\right)^{-1} \text{ Kidney Unit Risk Estimate}}{IUR\left(\frac{4.1 \times 10^{-6} \text{ \mug}}{\text{kg}-\text{day}}\right)^{-1} \text{ Adult - Based Unit Risk Estimate}}};$$

## Particulate Emission Factor (PEF)

Wind Particulate Emission Factor (PEF) Equation

$$\mathsf{PEF}\left(\frac{\mathsf{m}_{\mathsf{air}}^3}{\mathsf{kg}_{\mathsf{soil}}}\right) = \frac{\frac{\mathsf{Q}}{\mathsf{C}_{\mathsf{wind}}} \left(\frac{\left(\frac{\mathsf{g}}{\mathsf{m}^2-\mathsf{s}}\right)}{\left(\frac{\mathsf{kg}}{\mathsf{m}^3}\right)}\right) \times \left(\frac{3,600 \, \mathsf{s}}{\mathsf{hr}}\right)}{0.036 \times (1 - \mathsf{V}) \times \left(\frac{\mathsf{U}_{\mathsf{m}}\left(\frac{\mathsf{m}}{\mathsf{s}}\right)}{\mathsf{U}_{\mathsf{t}}\left(\frac{\mathsf{m}}{\mathsf{s}}\right)}\right)^3 \times \mathsf{F}(\mathsf{x})}$$

where:

$$\frac{Q}{C_{wind}} \left( \frac{\left(\frac{g}{m^2 - s}\right)}{\left(\frac{kg}{m^3}\right)} \right) = A \times exp \left[ \frac{\left(\ln (A_s(acre)) - B\right)^2}{C} \right]$$

and:

$$\begin{split} &\text{if $x$} < 2, \ &\text{F}(x) = 1.91207 - 0.0278085 + 0.48113x^2 - 1.09871x^3 + 0.335341x^4$ \\ &\text{if $x$} \geq 2, \ &\text{F}(x) = 0.18 \left( 8x^3 + 12x \right) e^{(-x^2)} \end{split}$$

where:

$$x = 0.886 \times \left( \frac{U_t \left( \frac{m}{s} \right)}{U_m \left( \frac{m}{s} \right)} \right)$$

Vehicle traffic-driven Particulate Emission Factor (PEF_{sc})

$$\mathsf{PEF}_{\mathsf{sc}}\left(\frac{m_{\mathsf{air}}^{3}}{\mathsf{kg}_{\mathsf{soil}}}\right) = \left[\frac{\frac{Q}{\mathsf{C}_{\mathsf{sr}}}\left(\frac{\left(\frac{\mathsf{g}}{\mathsf{m}^{2}-\mathsf{s}}\right)}{\left(\frac{\mathsf{kg}}{\mathsf{m}^{3}}\right)}\right) \times \frac{1}{\mathsf{F}_{\mathsf{D}}(\mathsf{0.18584})} \times \mathsf{T}_{\mathsf{t}}(\mathsf{7},\mathsf{200,000\ s}) \times \mathsf{A}_{\mathsf{R}}\left(\mathsf{m}^{2}\right)}{\frac{2.6 \times \left(\frac{\mathsf{s}}{\mathsf{12}}\right)^{0.8} \times \left(\frac{\mathsf{W}(\mathsf{tons})}{\mathsf{3}}\right)^{0.4}}{\left(\frac{\mathsf{M}_{\mathsf{dry}}}{\mathsf{0.2}}\right)^{0.3}} \times \frac{\left(\frac{\mathsf{365\ days}}{\mathsf{yr}}\right) - \mathsf{p}\left(\frac{\mathsf{days}}{\mathsf{yr}}\right)}{\left(\frac{\mathsf{365\ days}}{\mathsf{yr}}\right)} \times \mathsf{281.9} \times \mathsf{\Sigma}\mathsf{V}\mathsf{KT}\left(\mathsf{km}\right)}\right]$$

where:  

$$\frac{Q}{C_{sr}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) = A \times exp\left[\frac{\left(\ln(A_{s}(acre)) - B\right)^{2}}{C}\right]$$

$$A_{R}\left(m^{2}\right) = L_{R}\left(ft\right) \times W_{R}\left(20\ ft\right) \times 0.092903\left(\frac{m^{2}}{ft^{2}}\right)$$

$$W(tons) = \frac{\left(number\ of\ cars \times \frac{tons}{car} + number\ of\ trucks \times \frac{tons}{truck}\right)}{total\ vehicles}$$

$$\sum VKT(km) = total\ vehicles \times distance\left(\frac{km}{day}\right) \times EW_{con}\left(\frac{50\ wk}{yr}\right) \times DW_{con}\left(\frac{7\ days}{wk}\right)$$

$$T_{t}(7,200,000\ s) = ED_{con}(1\ year) \times EF_{con}\left(\frac{250\ days}{yr}\right) \times ET_{con}\left(\frac{8\ hrs}{day}\right) \times \left(\frac{3,600\ s}{hr}\right)$$

$$F_{D}(0.18584) = 0.1852 + \left(\frac{5.3537}{t_{c}\left(8,400\ hrs\right)}\right) + \left(\frac{-9.6318}{t_{c}\left(8,400\ hrs\right)^{2}}\right)$$

$$t_{c}(8,400\ hrs) = ED_{con}(1\ year) \times EW_{con}\left(\frac{50\ wk}{yr}\right) \times \left(\frac{7\ days}{wk}\right) \times \left(\frac{24\ hr}{day}\right)$$

 $\underline{Other \ than \ vehicle \ traffic-driven \ Particulate \ Emission \ Factor \ (PEF'_{sc})}$ 

$$\begin{split} & \mathsf{PEF}_{\mathsf{fc}}^{\mathsf{fc}}\left(\frac{\mathsf{m}^{3}}{\mathsf{kg}}\right) = \frac{\mathsf{Q}}{\mathsf{cas}}\left(\frac{\left(\frac{\mathsf{m}^{2}}{\mathsf{m}^{3}}\right)}{\left(\frac{\mathsf{kg}}{\mathsf{m}^{3}}\right)}\right) \times \frac{1}{\mathsf{F_{D}}(0.18584)} \times \frac{1}{\mathsf{cJ_{f}} \times \left(\frac{\mathsf{g}}{\mathsf{m}^{2}-\mathsf{s}}\right)} \\ & \text{where:} \\ & \frac{\mathsf{Q}}{\mathsf{cas}}\left(\frac{\left(\frac{\mathsf{g}}{\mathsf{m}^{2}-\mathsf{s}}\right)}{\left(\frac{\mathsf{m}}{\mathsf{m}^{3}}\right)}\right) = \mathsf{A} \times \mathsf{exp}\left[\frac{(\mathsf{ln}(\mathsf{A}\mathsf{c}(\mathsf{acre})) - \mathsf{B})^{2}}{\mathsf{C}}\right] \\ & <\mathsf{J}_{f}^{\mathsf{r}} \times \left(\frac{\mathsf{g}}{\mathsf{m}^{2}-\mathsf{s}}\right) = \frac{\mathsf{M}_{\mathsf{wind}}^{\mathsf{lcd}}(\mathsf{g}) + \mathsf{M}_{\mathsf{excar}}(\mathsf{g}) + \mathsf{M}_{\mathsf{dot}}(\mathsf{g}) + \mathsf{M}_{\mathsf{grade}}(\mathsf{g}) + \mathsf{M}_{\mathsf{glif}}(\mathsf{g})}{\mathsf{A}_{\mathsf{surf}}(\mathsf{m}^{2}) \times \mathsf{T}(7,200,000 \ \mathsf{s})} \\ & \mathsf{M}_{\mathsf{wind}}^{\mathsf{exc}}(\mathsf{g}) = \mathsf{0.036} \times (\mathsf{1} - \mathsf{V}) \times \left(\frac{\mathsf{Um}\left(\frac{\mathsf{m}}{\mathsf{s}}\right)}{\mathsf{U}\left(\frac{\mathsf{m}}{\mathsf{s}}\right)}\right)^{1/3} \times \mathsf{P}_{\mathsf{soll}}\left(\frac{\mathsf{mg}}{\mathsf{m}^{3}}\right) \times \mathsf{A}_{\mathsf{sccar}}\left(\mathsf{m}^{2}\right) \times \mathsf{d}_{\mathsf{excar}}(\mathsf{m}) \times \mathsf{N}_{\mathsf{dump}} \times \left(\frac{\mathsf{1},000 \ \mathsf{g}}{\mathsf{kg}}\right) \\ & \mathsf{M}_{\mathsf{excar}}(\mathsf{g}) = \mathsf{0.35} \times \mathsf{0.0016} \times \frac{\left(\frac{\mathsf{UM}(\mathsf{m}(\mathsf{m})}{\mathsf{s}}\right)}{(\mathsf{M}\mathsf{m}-\mathsf{eccar}(\mathsf{W}))^{1/3}} \times \mathsf{P}_{\mathsf{soll}}\left(\frac{\mathsf{mg}}{\mathsf{m}^{3}}\right) \times \mathsf{A}_{\mathsf{excar}}\left(\mathsf{m}^{2}\right) \times \mathsf{d}_{\mathsf{excar}}(\mathsf{m}) \times \mathsf{N}_{\mathsf{dump}} \times \left(\frac{\mathsf{1},000 \ \mathsf{g}}{\mathsf{kg}}\right) \\ & \mathsf{M}_{\mathsf{doc}}(\mathsf{g}) = \mathsf{0.56} \times \mathsf{0.0056} \times \mathsf{S}_{\mathsf{grade}}(\mathsf{km})^{-2} \times \sum \mathsf{V}\mathsf{V}\mathsf{T}_{\mathsf{grade}}(\mathsf{km}) \times \left(\frac{\mathsf{1},000 \ \mathsf{g}}{\mathsf{kg}}\right) \\ & \mathsf{M}_{\mathsf{grade}}(\mathsf{g}) = \mathsf{0.60} \times \mathsf{0.0056} \times \mathsf{S}_{\mathsf{grade}}\left(\mathsf{km}^{\mathsf{m}}\right)^{2} \times \sum \mathsf{V}\mathsf{V}\mathsf{T}_{\mathsf{grade}}(\mathsf{km}) \times \left(\frac{\mathsf{1},000 \ \mathsf{g}}{\mathsf{kg}}\right) \\ & \mathsf{M}_{\mathsf{uil}}(\mathsf{g}) = \mathsf{1.1} \times \mathsf{s}_{\mathsf{ull}}(\mathsf{N})^{\mathsf{0.6}} \times \mathsf{A}_{\mathsf{c-till}}(\mathsf{acres}) \times \left(\frac{\mathsf{4047} \ \mathsf{m}^{2}}{\mathsf{acre}}\right) \times \frac{\mathsf{1}}{\mathsf{B}_{\mathsf{l}-\mathsf{grade}}(\mathsf{m}) \times \left(\frac{\mathsf{1},000 \ \mathsf{g}}{\mathsf{kg}}\right) \times \mathsf{N}\mathsf{A}_{\mathsf{u}} \\ \\ & \mathsf{V}\mathsf{T}_{\mathsf{foc}}(\mathsf{km}) = \mathsf{A}_{\mathsf{c}-\mathsf{d}}\mathsf{d}(\mathsf{acres}) \times \left(\frac{\mathsf{4047} \ \mathsf{m}^{2}}{\mathsf{acre}}\right) \times \mathsf{E}_{\mathsf{foc}}(\mathsf{m}) \times \left(\frac{\mathsf{1},000 \ \mathsf{m}}{\mathsf{km}}\right) \times (\frac{\mathsf{3},600 \ \mathsf{s}}{\mathsf{h}_{\mathsf{r}}}) \\ \\ & \mathsf{L}(\mathsf{g},4000 \mathsf{h}\mathsf{h}^{2} \times \mathsf{L}(\mathsf{g},\mathsf{d},\mathsf{d}\mathsf{d}\mathsf{h}\mathsf{h}^{2}) \times \left(\frac{\mathsf{250} \mathsf{d}}{\mathsf{kg}}\right) \times \mathsf{C}(\frac{\mathsf{240} \mathsf{h}\mathsf{m}}{\mathsf{kg}}) \times \left(\frac{\mathsf{24} \mathsf{h}\mathsf{h}^{2}}{\mathsf{kg}}\right) \\ \\ & \mathsf{L}(\mathsf{g},400 \mathsf{h}\mathsf{h}^{2}) \times \mathsf{L}(\mathsf{g},\mathsf{d}\mathsf{d}\mathsf{h}^{2}) \times \left$$

## Volatilization Factor (VFulim)

Unlimited Source Volatilization Factor (VFulim) Equation

$$VF_{s}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) = \frac{\frac{Q}{C_{vol}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) \times \left(3.14 \times D_{A}\left(\frac{cm^{2}}{s}\right) \times T(s)\right)^{1/2} \times \left(\frac{10^{-4} m^{2}}{cm^{2}}\right)}{2 \times \rho_{b}\left(\frac{1.5 g}{cm^{3}}\right) \times D_{A}\left(\frac{cm^{2}}{s}\right)}$$

where:

$$\frac{Q}{C_{vol}} \left( \frac{\left( \frac{g}{m^2 - s} \right)}{\left( \frac{kg}{m^3} \right)} \right) \ = \ A \times exp \left[ \frac{\left( ln \left( A_s \left( acre \right) \right) \ - \ B \right)^2}{C} \right]$$

and:

$$D_{A}\left(\frac{cm^{2}}{s}\right) = \frac{\left(\theta_{a}\left(\frac{0.28 \text{ }L_{air}}{L_{soil}}\right)^{10/3} \times D_{ia}\left(\frac{cm^{2}}{s}\right) \times H' + \theta_{w}\left(\frac{0.15 \text{ }L_{water}}{L_{soil}}\right) \times D_{iw}\left(\frac{cm^{2}}{s}\right)\right) \middle/ n^{2}\left(\frac{0.43 \text{ }L_{pore}}{L_{soil}}\right)}{\rho_{b}\left(\frac{1.5 \text{ }g}{cm^{3}}\right) \times K_{d}\left(\frac{cm^{2}}{g}\right) + \theta_{w}\left(\frac{0.15 \text{ }L_{water}}{L_{soil}}\right) + \theta_{a}\left(\frac{0.28 \text{ }L_{air}}{L_{soil}}\right) \times H'}$$

where:

$$\theta_{a}\left(\frac{0.28 \text{ }L_{air}}{\text{L}_{soil}}\right) = n\left(\frac{0.43 \text{ }L_{pore}}{\text{L}_{soil}}\right) - \theta_{w}\left(\frac{0.15 \text{ }L_{water}}{\text{L}_{soil}}\right) \text{ and: } n\left(\frac{0.43 \text{ }L_{pore}}{\text{L}_{soil}}\right) = 1 - \frac{\rho_{b}\left(\frac{1.5 \text{ }g}{\text{ }cm^{3}}\right)}{\rho_{s}\left(\frac{2.65 \text{ }g}{\text{ }cm^{3}}\right)}$$

$$K_d\left(\frac{cm^2}{g}\right) = f_{oc}\left(\frac{0.006 \text{ g-carbon}}{\text{g-soil}}\right) \times K_{oc}\left(\frac{cm^3}{g}\right) \text{ only for organics.}$$

Diffusivity in Water (D_{iw})

$$D_{iw}\left(\frac{cm^2}{s}\right) = 0.0001518 \times \left(\frac{T^{\circ}C + 273.16}{298.16}\right) \times \left(\frac{MW\left(\frac{g}{mole}\right)}{\rho\left(\frac{g}{cm^3}\right)}\right)^{-0.6}$$

where:

T typically = 25°C

If density is not available use,

$$D_{iw}\left(\frac{cm^2}{s}\right) = 0.000222 \times \left(MW\left(\frac{g}{mole}\right)^{-(2/3)}\right)$$

$$D_{ia}\left(\frac{cm^2}{s}\right) = \frac{0.00229 \times (T^{\circ}C + 273.16)^{1.5} \times \sqrt{0.034 + \left(\frac{1}{\mathsf{MW}\left(\frac{g}{\mathsf{mole}}\right)}\right) \times \mathsf{MW}_{cor}}}{\left(\left(\frac{\mathsf{MW}\left(\frac{g}{\mathsf{mole}}\right)}{2.5 \times \rho\left(\frac{g}{\mathsf{cm}^3}\right)}\right)^{0.333} + 1.8\right)^2}$$

where:

T typically = 25°C

$$MW_{cor} = \left(1 - 0.000015 \times MW \left(\frac{g}{mole}\right)^2\right)$$

If  $MW_{cor}$  is less than 0.4, then  $MW_{cor}$  is set to 0.4.

If density is not available use,

$$D_{ia}\left(\frac{cm^2}{s}\right) = 1.9 \times \left(MW\left(\frac{g}{mole}\right)^{-(2/3)}\right)$$

For dioxins, furans, and dioxin-like PCBs always use,

$$D_{ia}\left(\frac{cm^{2}}{s}\right) = \left(\frac{154\left(\frac{g}{mole}\right)}{MW\left(\frac{g}{mole}\right)}\right)^{0.5} \times 0.068\left(\frac{cm^{2}}{s}\right)$$

## **Volatilization Factor (VF)**

Mass-limit Chronic Volatilization Factor (VF_{mlim})

$$\begin{split} VF_{s}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) &= \frac{\frac{Q}{C_{vol}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) \times \left(T(yr)\left(3.15\times\left(\frac{10^{7}\ s}{yr}\right)\right)\right)}{\rho_{b}\left(\frac{mg}{m^{3}}\right) \times d_{s}(m)\times\left(\frac{10^{6}\ g}{Mg}\right)} \end{split}$$
 where:  
$$\frac{Q}{C_{vol}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) &= A\times exp\left[\frac{\left(\ln(A_{s}(acre)) - B\right)^{2}}{C}\right] \end{split}$$

С

Unlimited Source Subchronic Volatilization Factor for Construction Worker (VF_{ulim-sc})

$$VF_{sc}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) = \frac{\frac{Q}{C_{sa}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) \times \frac{1}{F_{D}\left(0.18584\right)} \times \left(3.14 \times D_{A}\left(\frac{cm^{2}}{s}\right) \times T(s)\right)^{1/2} \times \left(\frac{10^{-4} m^{2}}{cm^{2}}\right)}{2 \times \rho_{b}\left(\frac{1.5 g}{cm^{3}}\right) \times D_{A}\left(\frac{cm^{2}}{s}\right)}$$

where:

$$\begin{split} & \frac{Q}{C_{sa}} \left( \frac{\left(\frac{g}{m^2 - s}\right)}{\left(\frac{kg}{m^3}\right)} \right) = A \times exp \left[ \frac{\left(\ln(A_s(acre)) - B\right)^2}{C} \right] \\ & D_A \left( \frac{cm^2}{s} \right) = \frac{\left(\theta_a \left(\frac{0.28 \ L_{air}}{L_{soil}}\right)^{10/3} \times D_{ia} \left(\frac{cm^2}{s}\right) \times H' + \theta_w \left(\frac{0.15 \ L_{water}}{L_{soil}}\right) \times D_{iw} \left(\frac{cm^2}{s}\right) \right) \right) / n^2 \left(\frac{0.43 \ L_{pore}}{L_{soil}}\right)}{\rho_b \left(\frac{1.5 \ g}{cm^3}\right) \times K_d \left(\frac{cm^2}{g}\right) + \theta_w \left(\frac{0.15 \ L_{water}}{L_{soil}}\right) + \theta_a \left(\frac{0.28 \ L_{air}}{L_{soil}}\right) \times H'} \right) \\ & \theta_a \left(\frac{0.28 \ L_{air}}{L_{soil}}\right) = n \left(\frac{0.43 \ L_{pore}}{L_{soil}}\right) - \theta_w \left(\frac{0.15 \ L_{water}}{L_{soil}}\right) and: n \left(\frac{0.43 \ L_{pore}}{L_{soil}}\right) = 1 - \frac{\rho_b \left(\frac{1.5 \ g}{cm^3}\right)}{\rho_s \left(\frac{2.65 \ g}{cm^3}\right)} \\ & K_d \left(\frac{cm^2}{g}\right) = f_{oc} \left(\frac{0.006 \ g - carbon}{g - soil}\right) \times K_{oc} \left(\frac{cm^3}{g}\right) only for organics. \\ & T(30, 240, 000 \ s) = ED_{con}(1 \ year) \times EW_{con} \left(\frac{50 \ wk}{yr}\right) \times \left(\frac{7 \ days}{wk}\right) \times \left(\frac{24 \ hr}{day}\right) \times \left(\frac{3,600 \ s}{hr}\right) \\ & F_D(0.18584) = 0.1852 + \left(\frac{5.3537}{t_c(8,400 \ hrs)}\right) + \left(\frac{-9.6318}{t_c(8,400 \ hrs)^2}\right) \\ & t_c (8,400 \ hrs) = ED_{con}(1 \ year) \times EW_{con} \left(\frac{50 \ wk}{yr}\right) \times \left(\frac{7 \ days}{wk}\right) \times \left(\frac{24 \ hr}{day}\right) \end{split}$$

 $\underline{Mass-limit\ Subchronic\ Volatilization\ Factor\ for\ Construction\ Worker\ (VF_{mlim-sc})$ 

$$VF_{sc}\left(\frac{m_{air}^{3}}{kg_{soil}}\right) = \frac{\frac{Q}{C_{sa}}\left(\frac{\left(\frac{g}{m^{2}-s}\right)}{\left(\frac{kg}{m^{3}}\right)}\right) \times \frac{1}{F_{D}(0.18584)} \times T(s)}{\rho_{b}\left(\frac{mg}{m^{3}}\right) \times d_{s}(m) \times \left(\frac{10^{6} \text{ g}}{Mg}\right)}$$

where:

$$\begin{split} & \frac{Q}{C_{sa}} \left( \frac{\left(\frac{g}{m^2 - s}\right)}{\left(\frac{kg}{m^3}\right)} \right) = A \times exp \left[ \frac{\left(\ln\left(A_s\left(acre\right)\right) - B\right)^2}{C} \right] \\ & T(30, 240, 000 \text{ s}) = ED_{con}\left(1 \text{ year}\right) \times EW_{con}\left(\frac{50 \text{ wk}}{\text{yr}}\right) \times \left(\frac{7 \text{ days}}{\text{wk}}\right) \times \left(\frac{24 \text{ hr}}{\text{day}}\right) \times \left(\frac{3, 600 \text{ s}}{\text{hr}}\right) \\ & F_D(0.18584) = 0.1852 + \left(\frac{5.3537}{t_c\left(8,400 \text{ hrs}\right)}\right) + \left(\frac{-9.6318}{t_c\left(8,400 \text{ hrs}\right)^2}\right) \\ & t_c\left(8,400 \text{ hrs}\right) = ED_{con}\left(1 \text{ year}\right) \times EW_{con}\left(\frac{50 \text{ wk}}{\text{yr}}\right) \times \left(\frac{7 \text{ days}}{\text{wk}}\right) \times \left(\frac{24 \text{ hr}}{\text{day}}\right) \end{split}$$

## **Dermal Contact with Water Supporting Equations**

 $\begin{array}{l} \mbox{Effective Predictive Domain (EPD)} \\ \hline \mbox{EPD boundaries of MW and log } K_{ow} : \\ \mbox{-}0.06831 \leq -5.103 \times 10^{-4} \times MW + 0.05616 \times \log K_{ow} \leq 0.5577 \\ \mbox{and:} \\ \mbox{-}0.06831 \leq -5.103 \times 10^{-4} \times MW + 0.05616 \times \log K_{ow} \leq 0.1758 \\ \mbox{where:} \\ \mbox{log } K_{ow} = \log \mbox{octanol/water partition coefficient (dimensionless);} \\ \mbox{MW = Molecular Weight } \Big( \frac{g}{mole} \Big) \\ \end{array}$ 

```
Dermal permeability constant (K<sub>p</sub>)
```

$$\begin{split} & \mathsf{K}_p = 10^{\log \, \mathsf{K}_p} \\ & \text{where:} \\ & \log \, \mathsf{K}_p = -2.805063 \, + \, r^2 \times \log \, \mathsf{K}_{ow} \, - 0.0056118 \times MW \\ & \text{where:} \\ & \log \, \mathsf{K}_p = \log \, dermal \, permeability \, coefficient \, of \, compound \, in \, water \, \Big( \frac{cm}{hr} \Big); \\ & r^2 = 0.6645865 \end{split}$$

Fraction absorbed water (FA)

$$\begin{split} & \text{If } B \leq 0.1, \\ & \text{FA} = 0.9589849087 - (0.0163393790 \times \log B) - \left(0.1451565908 \times \log \tau_{event}\left(\frac{hrs}{event}\right)\right) - \left(0.0534664095 \times \log B \times \log \tau_{event}\left(\frac{hrs}{event}\right)\right); \\ & \text{If } B > 0.1 \text{ and } \leq 1, \\ & \text{FA} = 1.051232292 + (0.091016187 \times \log B) - \left(0.286735467 \times \log \tau_{event}\left(\frac{hrs}{event}\right)\right) - \left(0.180504367 \times \log B \times \log \tau_{event}\left(\frac{hrs}{event}\right)\right); \\ & \text{If } B > 1, \\ & \text{FA} = 0.992336792 + (0.479643809 \times \log B) - \left(0.114381522 \times \log \tau_{event}\left(\frac{hrs}{event}\right)\right) - \left(1.263647642 \times \log B \times \log \tau_{event}\left(\frac{hrs}{event}\right)\right); \\ & \text{where:} \\ & \tau_{event}\left(\frac{hrs}{event}\right) = 10^{\left(\frac{12}{6}c(cm)}{\left(\frac{hr}{hr}\right)}\right); \\ & \text{ is } B = 10^{\left(K_{p}\left(\frac{cm}{hr}\right) \times \frac{\sqrt{MW\left(\frac{g}{mole}\right)}{2.6}\right)} \\ & \text{MW} = \text{Molecular Weight}\left(\frac{g}{mole}\right) \\ & \text{and:} \\ & \text{If } FA \geq 1, \text{ then } FA = 1; \\ & \text{If } FA < 0, \text{ then } FA = 0; \\ & \text{Ese, FA is rounded to the nearest tenth.} \end{split}$$

The dimensionless value (B)

$$\begin{split} & \mathsf{B} = \frac{\mathsf{K}_p\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right)}{\mathsf{K}_{p,ve}\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right)} \approx \mathsf{K}_p\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right) \times \frac{\sqrt{\mathsf{MW}\left(\frac{\mathsf{g}}{\mathsf{mole}}\right)}}{2.6} \text{ (as an approximation)} \\ & \text{where:} \\ & \mathsf{K}_{p,ve}\left(\frac{\mathsf{cm}}{\mathsf{hr}}\right) = \frac{\mathsf{K}_{ew} \times \mathsf{D}_e\left(\frac{\mathsf{cm}^2}{\mathsf{hr}}\right)}{\mathsf{L}_e(\mathsf{cm})} \\ & \text{where:} \\ & \mathsf{K}_{ew} = 1 \text{ (assuming epidermis behaves essentially as water);} \\ & \mathsf{L}_e(\mathsf{cm}) = 10^{-2} \text{ (cm)} \\ & \mathsf{D}_e\left(\frac{\mathsf{cm}^2}{\mathsf{hr}}\right) = \frac{7.1 \times 10^{-6} \left(\frac{\mathsf{cm}^2}{\mathsf{s}}\right)}{\sqrt{\mathsf{MW}\left(\frac{\mathsf{g}}{\mathsf{mole}}\right)}} \text{ (assumes } \mathsf{D}_e = 10^{-6} \left(\frac{\mathsf{cm}^2}{\mathsf{s}}\right) \text{ when } \mathsf{MW} = 50 \end{split}$$

 $t^* = Time to reach steady-state$ 

If B 
$$\leq$$
 0.6, then t* (hrs) = 2.4  $\times \tau_{event} \left(\frac{hrs}{event}\right)$   
or:  
If B > 0.6, then t* (hrs) =  $6 \times \tau_{event} \left(\frac{hrs}{event}\right) \times \left(b - \sqrt{b^2 - c^2}\right)$   
where:  
 $b = \frac{2 \times (1 + B)^2}{\pi} - c$  and  $c = \frac{1 + 3 \times B + 3 \times B^2}{3 \times (1 + B)}$ 

 $\tau_{\text{event}} = \text{Lag time per event}$ 

$$\begin{split} \tau_{event}\left(\frac{hrs}{event}\right) &= \frac{I_{sc}^2(cm)}{6 \times D_{sc}\left(\frac{cm^2}{hr}\right)} \\ \text{where:} \\ &\log \frac{D_{sc}\left(\frac{cm^2}{hr}\right)}{I_{sc}^2(cm)} = -2.80 - 0.0056 \times \text{MW}\left(\frac{g}{mole}\right) \text{ or } \frac{D_{sc}\left(\frac{cm^2}{hr}\right)}{I_{sc}^2(cm)} = 10^{-2.80 - 0.0056 \times \text{MW}\left(\frac{g}{mole}\right)} \\ \text{thus:} \\ &I_{sc}^2(cm) = \frac{10^{-2.80 - 0.0056 \times \text{MW}\left(\frac{g}{mole}\right)}}{D_{sc}\left(\frac{cm^2}{hr}\right)} \text{ and } D_{sc}\left(\frac{cm^2}{hr}\right) = I_{sc}^2(cm) \times 10^{-2.80 - 0.0056 \times \text{MW}\left(\frac{g}{mole}\right)} \end{split}$$

Mass Loading Factor (MLF) Conversion Equations

MLFdry

$$MLF_{dry} = MLF_{wet} \times \left(\frac{100}{100 - MC}\right)$$
  
where:  
MC = percent moisture content (%)

MLFwet

$$\label{eq:MLFwet} \begin{array}{l} \mathsf{MLF}_{wet} = \ \mathsf{MLF}_{dry} \times \left( \frac{100 \ - \ \mathsf{MC}}{100} \right) \\ \\ \\ \text{where:} \\ \\ \\ \mathsf{MC} = \text{percent moisture content (\%)} \end{array}$$

## <u>Henry's Law Constant and Vapor Pressure Determination at Temperature Other Than 25°C</u> <u>Equations</u>

Derivation of Henry's Law Constant (H')

$$H'T_{gw}(K) = \left(\frac{exp\left[-\frac{\Delta H_{v,gw}\left(\frac{cal}{mol}\right)}{R_{c}\left(1.9872\left(\frac{cal}{mol-k}\right)\right)} \times \left(\frac{1}{T_{gw}(K)} - \frac{1}{T_{R}(298.15\ K)}\right)\right]}{R\left(8.205E - 05\left(\frac{atm - m^{3}}{mol - k}\right)\right) \times T_{gw}(K)}\right)$$

where:

 $T_{gw}$  (K) = °C + 273.15

$$\Delta H_{v,gw}\left(\frac{cal}{mol}\right) = \Delta H_{v,b}\left(\frac{cal}{mol}\right) \times \left[\frac{1 - T_{gw}(K) \Big/ T_{c}(K)}{1 - T_{b}(K) \Big/ T_{c}(K)}\right]^{n}$$

where:

$$\begin{split} & \text{If } T_{b} \ (\text{K}) \Big/ T_{c} \ (\text{K}) \ < \ 0.57 \ , \ n \ = \ 0.3 \ , \\ & \text{If } T_{b} \ (\text{K}) \Big/ T_{c} \ (\text{K}) \ > \ 0.71 \ , \ n \ = \ 0.41 \ , \\ & \text{If } \left( 0.57 \ < \ T_{b} \ (\text{K}) \Big/ T_{c} \ (\text{K}) \ \le \ 0.71 \right) \ , \ n \ = \ \left( 0.74 \times T_{b} \ (\text{K}) \Big/ T_{c} \ (\text{K}) \ - \ 0.116 \right) \end{split}$$

Derivation of Vapor Pressure (VP'T_{gw})

$$\begin{split} & \left[ -\frac{\Delta H_{v,gw}\!\left(\frac{cal}{mol}\right)}{R_{c}\left(1.9872\left(\frac{cal}{mol-k}\right)\right)} \!\times\! \left(\frac{1}{T_{gw}\left(K\right)} - \frac{1}{T_{R}\left(298.15\,K\right)}\right) \right] \\ & \text{where:} \\ & T_{gw}\left(K\right) = \ ^{\circ}C \ + \ 273.15 \\ & \Delta H_{v,gw}\!\left(\frac{cal}{mol}\right) = \Delta H_{v,b}\!\left(\frac{cal}{mol}\right) \times \left[\frac{1 - T_{gw}\left(K\right)\!\left/T_{c}\left(K\right)}{1 - T_{b}\left(K\right)\!\left/T_{c}\left(K\right)}\right]^{n} \\ & \text{where:} \\ & \text{If } T_{b}\left(K\right)\!\left/T_{c}\left(K\right) < \ 0.57 \ , \ n \ = \ 0.3 \ , \\ & \text{If } T_{b}\left(K\right)\!\left/T_{c}\left(K\right) > \ 0.71 \ , \ n \ = \ 0.41 \ , \\ & \text{If } \left(0.57 < T_{b}\left(K\right)\!\left/T_{c}\left(K\right) \le \ 0.71\right) \ , \ n \ = \ \left(0.74 \times T_{b}\left(K\right)\!\left/T_{c}\left(K\right) - \ 0.116\right) \end{split}$$

APPENDIX J. EQUATION AND MODEL REFERENCE DOCUMENTS

## APPENDIX J. EQUATION AND MODEL REFERENCE DOCUMENTS

This appendix consists of a list of documents that contain the source of the equations and models used in RAIS PRG and risk calculations.

Year	Reference Document
1985	Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants in Surface and Ground Water-Part I. EPA/600/6-85/002a. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30613. Revised September 1985.
1986	Guidelines for Mutagenicity Risk Assessment. EPA/630/R-98/003. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. September 24 1986.
1986	Guidelines for the Health Risk Assessment of Chemical Mixtures. EPA/630/R-98/002. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. September 24 1986.
1988	Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA (Interim Final). OSWER Directive 9355.3-01. EPA/540/G-89/004. Office of Emergency and Remedial Response. U.S. Environmental Protection Agency, Washington, D.C. October 1988.
1988	Superfund Exposure Assessment Manual. EPA/540/1-88/001, OSWER directive 9285.5- 1. Office of Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. 1988.
1989	Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part A) (Interim Final). EPA/540/1-89/002. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. December 1989.
1991	Alpha 2u-Globulin: Association with Chemically Induced Renal Toxicity and Neoplasia in the Male Rat. EPA/625/3-91/019F. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. September 1991.
1991	Guidance for Data Useability in Risk Assessment (Part A). EPA/540/R-92/003. Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C. December 1991.
1991	Guidelines for Developmental Toxicity Risk Assessment. EPA/600/FR-91/001. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. December 5 1991.
1991	Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual Supplemental Guidance Standard Default Exposure Factors (Interim Final). OSWER Directive 9285.6-03. Office of Emergency and Remedial Response, Toxics Integration Branch, U.S. Environmental Protection Agency, Washington D.C. March 25, 1991.
1991	Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part B, Development of Risk-based Preliminary Remediation Goals) (Interim). OSWER Directive 9285.7-01B. EPA/540/R-92/003. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. December 1991.
1991	Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part C, Risk Evaluation of Remedial Alternatives) (Interim). OSWER Directive 9285.7- 01C. EPA/540/R-92/003. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. December 1991.
1992	Dermal Exposure Assessment: Principles and Application (Interim Report). EPA/600/8- 91/011B. Exposure Assessment Group, Office of Health and Environmental Assessment, U.S. Environmental Protection Agency, Washington, D.C. January 1992.

Year	Reference Document
1992	Guidance for Data Useability in Risk Assessment (Part B). Publication 9285.7-09B,
	PB92-963362. Office of Emergency and Remedial Response, U.S. Environmental
	Protection Agency, Washington, D.C. May 1992.
1992	Guidelines for Exposure Assessment. EPA/600/Z-92/001. Risk Assessment Forum, U.S.
	Environmental Protection Agency, Washington, D.C. May 29 1992.
1992	Supplemental Guidance to RAGS: Calculating the Concentration Term, Intermittent
	Bulletin, Volume 1, Number 1. Publication Number 9285.7-08I. Office of Solid Waste
	and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C.
	May 1992.
1993	U.S. EPA. Provisional Guidance for Quantitative Risk Assessment of Polycyclic
	Aromatic Hydrocarbons (PAH). U.S. Environmental Protection Agency, Office of
	Research and Development, Office of Health and Environmental Assessment,
	Washington, DC, EPA/600/R-93/089 (NTIS PB94116571).
1994	Guidance for Performing Screening Level Risk Analyses at Combustion Facilities
	Burning Hazardous Wastes Attachment C (Draft). PX #175. Office of Emergency and
	Remedial Response, Office of Solid Waste, U.S. Environmental Protection Agency,
1004	Washington, D.C. December 14, 1994.
1994	Radiation Site Cleanup Regulations: Technical Support Document For The Development
	Of Radionuclide Cleanup Levels For Soil (Review Draft). EPA 402-R-96-011A. Office of
	Radiation and Indoor Air, U.S. Environmental Protection Agency, Washington, DC.
	September 1994. View PDF here: https://epa-
	prgs.ornl.gov/radionuclides/RadiationRegulations.pdf; View Appendix C here: https://epa-prgs.ornl.gov/radionuclides/APPC.pdf.
1994	Region 8 Superfund Technical Guidance: Evaluating and Identifying Contaminants of
1994	Concern for Human Health. SOP# 8RA-03. Region 8, U.S. Environmental Protection
	Agency, Washington, D.C. September 1994.
1994	Region 8 Superfund Technical Guidance: Model Site Conceptual Model for RI/FS
	Baseline Risk Assessments of Human and Ecological Health. SOP# 8RA-05. Region 8,
	U.S. Environmental Protection Agency, Washington, D.C. December 1994.
1994	Region 8 Superfund Technical Guidance: Model Statement of Work for RI/FS Baseline
	Risk Assessments of Human Health. SOP# 8RA-01. Region 8, U.S. Environmental
	Protection Agency, Washington, D.C. September 1994.
1995	Region 8 Superfund Technical Guidance: Criteria for Evaluating Blood Lead Data
	Quality and Use. SOP# 8RA-07. Region 8, U.S. Environmental Protection Agency,
	Washington, D.C. September 1995.
1995	Region 8 Superfund Technical Guidance: Estimating Site-Specific Exposure to
	Contaminants in Indoor Dust. SOP# 8RA-06. Region 8, U.S. Environmental Protection
	Agency, Washington, D.C. September 1995.
1996	Guidelines for Reproductive Toxicity Risk Assessment. EPA/630/R-96/009. Risk
	Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. October
1000	31, 1996.
1996	NCRP 1996. Screening Models for Releases of Radionuclides to Atmosphere, Surface
	Water, and Ground, Vols. 1 and 2, NCRP Report No. 123. National Council on Radiation
1006	Protection and Measurements.
1996	Sampling Manual for IEUBK Model (Draft). Prepared for US Environmental Protection
1006	Agency Region 8 by Roy F. Weston Inc. December 31, 1996.
1996	Soil Screening Guidance: Technical Background Document. Publication 9355.4-17A,
	EPA/540/R95/128. Office of Solid Waste and Emergency Response, U.S. Environmental
	Protection Agency, Washington, D.C. May 1996.

Year	Reference Document
1996	Soil Screening Guidance: User's Guide (Second Edition). Publication 9355.4-23.
	EPA/540/R-96/018. Office of Solid Waste and Emergency Response, U.S. Environmental
	Protection Agency, Washington, D.C. July 1996.
1996	U.S. EPA. PCBs: Cancer Dose-Response Assessment and Application to Environmental
	Mixtures (1996). U.S. Environmental Protection Agency, Office of Research and
	Development, National Center for Environmental Assessment, Washington Office,
	Washington, DC, EPA/600/P-96/001F, 1996.
1997	Guidance on Cumulative Risk Assessment: Part 1. Planning and Scoping. Science Policy
	Council, U.S. Environmental Protection Agency, Washington, D.C. July 3, 1997.
1997	Guiding Principles for Monte Carlo Analysis. EPA/630/R-97/001. Risk Assessment
	Forum, U.S. Environmental Protection Agency, Washington, D.C. March 1997.
1997	U.S. EPA (Environmental Protection Agency). 1997. The Parameter Guidance Document.
	A Companion Document to the Methodology for Assessing Health Risks Associated with
	Multiple Pathways Exposure to Combustion Emissions. Internal Draft. NCEA-0238.
	National Center for Environmental Assessment, Cincinnati, OH.
1997	U.S. EPA. Health Effects Assessment Summary Tables (Heast). U.S. Environmental
	Protection Agency, Washington, D.C., 1997.
1998	Framework for Assessing Non-occupational, Non-dietary (Residential) Exposure to
	Pesticides (Draft 12/22/98). U.S. Environmental Protection Agency, Washington, D.C.
1998	Guidelines for Neurotoxicity Risk Assessment. EPA/630/R-95/001F. Risk Assessment
	Forum, U.S. Environmental Protection Agency, Washington, D.C. April 1998.
1998	Research Plan for Endocrine Disruptors. EPA/600/R-98/087. Office of Research and
	Development, U.S. Environmental Protection Agency, Washington, D.C. February 1998
1998	Summary Report for the Workshop on the Relationship Between Exposure Duration and
	Toxicity. EPA/600/R-99/081. National Center for Environmental Assessment, U.S.
	Environmental Protection Agency, Washington, D.C. September 1998.
1998	U.S. EPA. Assessment of Thyroid Follicular Cell Tumors. U.S. Environmental Protection
	Agency, Washington, DC, EPA/630/R-97/002, 1998.
1999	Data Collection for the Hazardous Waste Identification Rule; Section 10: Farm Food
	Chain and Terrestrial Foodweb Data. Office of Solid Waste and Emergency Response,
	U.S. Environmental Protection Agency, Washington, D.C. October 1999.
1999	Guidance for identifying pesticide chemicals and other substances that have a common
	mechanism of toxicity. U.S. Environmental Protection Agency, Washington, D.C. January
	29 1999.
1999	Report of the Workshop on Selecting Input Distributions for Probabilistic Assessments.
	EPA/630/R-98/004. Office of Research and Development, U.S. Environmental Protection
	Agency, Washington, D.C. January 1999.
2000	Available EPA Information on Assessing Exposure to Pesticides in FoodA User's
	Guide. EPA-HQ-OPP-2007-0780-0001. Office of Pesticide Programs, U.S.
	Environmental Protection Agency, Washington, D.C. June 21 2000.
2000	Choosing a percentile of acute dietary exposure as a threshold of regulatory concern.
-	Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C.
	20460. March 16 2000.
2000	Handbook for Non-Cancer Health Effects Valuation. EPA-100-20-002. EPA Science
	Council, U.S. Environmental Protection Agency, Washington, D.C. December 2000.
2000	Risk Characterization Handbook. EPA/100/B-00/002. Office of Science Policy, Office of
_000	Research and Development, U.S. Environmental Protection Agency, Washington, D.C.
	December 2000.
	Determori 2000.

Year	Reference Document
2000	Soil Screening Guidance for Radionuclides: Technical Background Document. Publication 9355.4-16, EPA/540-R-00-006, PB2000 963306. Office of Radiation and
	Indoor Air, Office of Solid Waste and Emergency Response, U.S. Environmental
	Protection Agency, Washington, D.C. October 2000.
2000	Soil Screening Guidance for Radionuclides: User's Guide. Publication 9355.4-16A, EPA/540-R-00-007, PB2000 963307. Office of Radiation and Indoor Air, Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. October 2000.
2000	Summary report for the workshop on issues associated with dermal exposure and uptake. EPA/630/R-00/003; PB2001108368. Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C. December 2000.
2000	Summary Report of the Technical Workshop on Issues Associated with Considering Developmental Changes in Behavior and Anatomy When Assessing Exposure to Children. EPA/630/R-00/005. Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C. December 2000.
2000	The use of data on cholinesterase inhibition for risk assessments of organophosphorus and carbamate pesticides. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. 20460. August 18 2000.
2001	Exploration of Aging and Toxic Response. EPA/630/R-01/003. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. February 15 2001.
2001	Exploration of Perinatal Pharmacokinetic Issues. EPA/630/R-01/004. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. May 10 2001.
2001	General Principles for Performing Aggregate Exposure and Risk Assessments. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. November 28 2001.
2001	Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments) (Final). Publication 9285.7-47. Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. December 2001.
2002	Consideration of the FQPA Safety Factor and Other Uncertainty Factors in Cumulative Risk Assessment of Chemicals Sharing a Common Mechanism of Toxicity. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. 20460. February 28 2002.
2002	Determination of the Appropriate FQPA Safety Factor(s) in Assessing Pesticide Tolerances. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. 20460. February 28 2002.
2002	Guidance on Cumulative Risk Assessment of Pesticide Chemicals That Have a Common Mechanism of Toxicity. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. 20460. January 14 2002.
2002	Role of Background in the CERCLA Cleanup Program. OSWER 9285.6-07P. Office of Solid Waste and Emergency Response, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. April 26, 2002.
2002	Sample Analysis and Quality Assurance Plan for Urinary Arsenic and Blood Lead Among Residents of VBI70 Neighborhoods. Region 8, U.S. Environmental Protection Agency, Denver, CO. June 2002.
2002	Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER Directive 9355.4-24. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. December 2002.

2002 U	
1002	S. EPA. A Review of the Reference Dose and Reference Concentration Processes. U.S.
Eı	nvironmental Protection Agency, Risk Assessment Forum, Washington, DC,
E	PA/630/P-02/002F, 2002.
2003 A	Summary of General Assessment Factors for Evaluating the Quality of Scientific and
Τe	echnical Information. EPA 100/B-03/001. Science Policy Council, U.S. Environmental
Pr	rotection Agency, Washington, D.C. June 2003.
2003 U.	S. EPA. Framework for Cumulative Risk Assessment. U.S. Environmental Protection
A	gency, Office of Research and Development, Center for Public Health and
Eı	nvironmental Assessment (CPHEA), formerly known as the National Center for
Er	nvironmental Assessment (NCEA), Washington Office, Washington, DC, EPA/600/P-
	2/001F, 2003.
	otential Implications of Genomics for Regulatory and Risk Assessment Applications at
E	PA. EPA 100/B-04/002. Science Policy Council, U.S. Environmental Protection
	gency, Washington, D.C. December 2004.
	• • •
·	
	· ·
	· · · ·
	ramework for Metals Risk Assessment. EPA 120/R-07/001. Office of the Science
	dvisor, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington,
	O.C. March 2007.
2003       U.         Ai         En         02         2004       Pol         En         02         2004       Pol         En         Ai         2004       Pol         En         Ai         2004       Ri         Pol       En         2005       Gr         2005       Gr         2005       Gr         2005       Hi         Polo5       Gr         2005       U.         2005       U.         2005       U.         Polo5       U.         Polo6       U.         Polo6       U.         Polo6       W.         Pr       ht         Polo6       W.         Pr	<ul> <li>LS. EPA. Framework for Cumulative Risk Assessment. U.S. Environmental Protection gency, Office of Research and Development, Center for Public Health and nvironmental Assessment (CPHEA), formerly known as the National Center for nvironmental Assessment (NCEA), Washington Office, Washington, DC, EPA/600/P- 2/001F, 2003.</li> <li>otential Implications of Genomics for Regulatory and Risk Assessment Applications at PA. EPA 100/B-04/002. Science Policy Council, U.S. Environmental Protection gency, Washington, D.C. December 2004.</li> <li>isk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual art E, Supplemental Guidance for Dermal Risk Assessment) (Final). OSWER Directive 285.7-02EP. Office of Superfund Remediation and Technology Innovation, U.S. nvironmental Protection Agency, Washington, D.C. July 2004.</li> <li>fuidance for Thyroid Assays in Pregnant Animals, Fetuses and Postnatal Animals, and dult Animals. Office of Pesticide Programs, Health Effects Division, U.S. nvironmental Protection Agency, Washington, D.C. October 24 2005.</li> <li>tuidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. Risk Assessment orum, U.S. Environmental Protection Agency, Washington, D.C. March 2005.</li> <li>tuidelines for Carcinogen Risk Assessment Protocol for Hazardous Waste Combustion Facilities "inal). EPA530-R-05-006. Office of Solid Waste and Emergency Response, U.S. nvironmental Protection Agency, Washington, D.C. September 2005.</li> <li>S. Environmental Protection Agency, Washington, D.C. September 2005.</li> <li>S. Environmental Protection Agency, Washington, D.C. EPA/630/P-03/003F. vailable from: National Technical Information Service, Springfield, VA, and online at ttp://epa.gov/ncea.</li> <li>S. EPA. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposur or Carcinogens. U.S. Environmental Protection Agency, Washington, DC, EPA/630/R- 3/003F, 2005.</li> <li>tuide to Considering Children's Health When Developing EPA Acti</li></ul>

Year	Reference Document
2007	Nanotechnology White Paper. EPA 100/B-07/001. Office of the Science Advisor, Science Policy Council, U.S. Environmental Protection Agency, Washington, D.C. February 2007.
2007	<ul> <li>U.S. EPA. Concepts, Methods, and Data Sources For Cumulative Health Risk Assessment of Multiple Chemicals, Exposures and Effects: A Resource Document (Final Report, 2008). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-06/013F, 2007.</li> </ul>
2007	U.S. EPA. Considerations For Developing A Dosimetry-Based Cumulative Risk Assessment Approach For Mixtures of Environmental Contaminants (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/064, 2007.
2008	FORTMANN, R. C. Scientific and Ethical Approaches for Observational Exposure Studies. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-08/062 (NTIS PB2008-112239), 2008.
2009	Revised Risk Assessment Methods for Workers, Children of Workers in Agricultural Fields and Pesticides with No Food Uses. EPA-HQ-OPP-2009-0889-0002. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. December 7 2009.
2009	<ul> <li>Risk Assessment Guidance for Superfund: Volume I - Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment (Final). OSWER</li> <li>Directive 9285.7-82. EPA-540-R-070-002. Office of Superfund Remediation and Technology Innovation, U.S. Environmental Protection Agency, Washington, D.C. January 2009.</li> </ul>
2009	The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals. EPA 100/K-09/001. Office of the Science Advisor, Science Policy Council, U.S. Environmental Protection Agency, Washington, D.C. March 2009.
2010	Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds. EPA/100/R - 10/005. Office of the Science Advisor, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. December 2010.
2011	Expansion of the Traditional Local Lymph Node Assay for the Assessment of Dermal Sensitization Potential of End Use Pesticide Products; and Adoption of a "Reduced" Protocol for the Traditional LLNA (Limit Dose). Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. April 2011.
2011	Recommended Use of Body Weight 3/4 as the Default Method in Derivation of the Oral Reference Dose. EPA/100/R11/0001. Office of the Science Advisor, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. February 2011.
2011	U.S. Environmental Protection Agency (EPA). (2011) Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA, and online at http://www.epa.gov/ncea/efh.
2012	Benchmark Dose Technical Guidance. EPA/100/R-12/001. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. June 2012.
2012	Environmental Protection Agency (EPA) (2012). Microbial Risk Assessment Guideline: Pathogenic Microorganisms with Focus on Food and Water. EPA/100/J-12/001
2012	EPA's Scientific Integrity Policy. Publication Number: 601B17001. U.S. Environmental Protection Agency, Washington, D.C. 2012.

Year	Reference Document
2012	Guidance for Waiving or Bridging of Mammalian Acute Toxicity Tests for Pesticides and Pesticide Products. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. March 1 2012.
2012	Standard Operating Procedures for Residential Pesticide Exposure Assessment. Health Effects Division, Office of Pesticide Programs, Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency, Washington, DC. October 2012.
2013	Conflicts of Interest Review Process for Contractor-Managed Peer Reviews of EPA Highly Influential Scientific Assessment (HISA) and Influential Scientific Information (ISI) Documents. U.S. Environmental Protection Agency, Washington, D.C. March 21 2013.
2013	<ul> <li>Part 158 Toxicology Data Requirements: Guidance for Neurotoxicity Battery, Subchronic</li> <li>Inhalation, Subchronic Dermal and Immunotoxicity Studies. Office of Pesticide</li> <li>Programs, U.S. Environmental Protection Agency, Washington, D.C. May 1 2013.</li> </ul>
2014	EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. EPA/600/R- 14/108. Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C. April 2014.
2014	Framework for Human Health Risk Assessment to Inform Decision Making. EPA/100/R- 14/001. Office of the Science Advisor, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. April 5 2014.
2014	Guidance for Applying Quantitative Data to Develop Data-Derived Extrapolation Factors for Interspecies and Intraspecies Extrapolation. EPA/R-14-002F. Office of the Science Advisor, Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, D.C. September 2014.
2014	Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. OSWER Directive 9200.1-120. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. February 6 2014.
2014	U.S. Environmental Protection Agency (USEPA). 2014. Risk Assessment Forum White Paper: Probabilistic Risk Assessment Methods and Case Studies. EPA/100/R-09/001A. Washington, D.C.: Risk Assessment Forum, Office of the Science Advisor, USEPA.
2015	Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors. OSWER Directive 9285.6-03. Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency, Washington, D.C. September 14 2015.
2015	Indirect Dietary Residential Exposure Assessment Model (IDREAM) Implementation. Office of Pesticide Programs, Antimicrobials Division, U.S. Environmental Protection Agency, Washington, D.C. (version: June 26, 2015).
2015	<ul> <li>Sarah S. Gallagher, Glenn E. Rice, Louis J. Scarano, Linda K. Teuschler, George Bollweg, Lawrence Martin, Cumulative risk assessment lessons learned: A review of case studies and issue papers, Chemosphere, Volume 120, 2015, Pages 697-705, ISSN 0045- 6535, https://doi.org/10.1016/j.chemosphere.2014.10.030.</li> <li>(https://www.sciencedirect.com/science/article/pii/S0045653514012144)</li> </ul>
2015	Science and Technology Policy Council Peer Review Handbook - 4th Edition. EPA/100/B-15/001. Science and Technology Policy Council, U.S. Environmental Protection Agency, Washington, D.C. October 2015.
2015	Use of an Alternate Testing Framework for Classification of Eye Irritation Potential of EPA Pesticide Products. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. March 2 2015.
2016	Process for Establishing & Implementing Alternative Approaches to Traditional in Vivo Acute Toxicity Studies. Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, D.C. February 4 2016.

Year	Reference Document
2019	Guidelines for Human Exposure Assessment. EPA/100/B-19/001. Risk Assessment
	Forum, U.S. Environmental Protection Agency, Washington, D.C. October 2019.
2022	Advances in Genetic Toxicology and Integration of in vivo Testing into Standard Repeat
	Dose Studies. U.S. Environmental Protection Agency, Washington, D.C. Last updated
	August 31, 2022.
2023	Acute Oral Toxicity Up-And-Down Procedure. WeStat, U.S. Environmental Protection
	Agency, Washington, D.C. 2023
2023	Integrated Risk Information System (IRIS). Center for Public Health and Environmental
	Assessment, Office of Research and Development, U.S. Environmental Protection
	Agency, Washington, D.C. 2023.
2023	Occupational Pesticide Handler Exposure Data. U.S. Environmental Protection Agency,
	Washington, D.C. Last updated June 14, 2023.
2023	Occupational Pesticide Post-application Exposure Data. U.S. Environmental Protection
	Agency, Washington, D.C. Last updated April 25, 2023.
2023	Proposed Approach to Efficiently Develop Physiologically Based Pharmacokinetic
	(PBPK) & Physiologically Based Pharmacokinetic-Pharmacodynamic (PBPK-PD)
	Models for Pesticides. U.S. Environmental Protection Agency, Washington, D.C.
	Webpage last updated April 10, 2023.
No date	Using Probabilistic Methods to Enhance the Role of Risk Analysis in Decision-Making
	With Case Study Examples (External Review Draft). EPA/100/R-09/001. Risk
	Assessment Forum, Office of the Science Advisor, U.S. Environmental Protection
	Agency, Washington, D.C.