

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 1 5 2015

PPPO-03-2790131-15

Ms. Maria Galanti Site Coordinator Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138

Dear Ms. Galanti:

FINAL SOIL BACKGROUND REPORT FOR THE PORTSMOUTH GASEOUS DIFFUSION PLANT, PIKETON, OHIO (DOE/PPPO/03-0667&D1)

Enclosed for your review and approval, please find the *Final Soil Background Report for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (DOE/PPPO/03-0667&D1). Included is a compact disc containing the data input files for ProUCL 5.0 discussed in Appendix G. This final soil background report presents the soil background data sets and naturally occurring and/or ubiquitous anthropogenic soil background constituent concentrations developed for the Portsmouth Gaseous Diffusion Plant (PORTS).

The soil background data sets were developed using soil samples collected in accordance with the *Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* that was approved by the Ohio Environmental Protection Agency (Ohio EPA) on March 1, 2012, and implemented at PORTS in the spring and summer of 2012. Sampling data collected from selected background locations were used to calculate concentrations for naturally occurring constituents in background soils. The purpose of the report is to provide, in accordance with the approved sampling and analysis plan, representative background data for each major soil formation on the U.S. Department of Energy (DOE) reservation, on property easements, and DOE-leased property off the DOE reservation.

If you have any questions or require additional information, please contact Amy Lawson of my staff at (740) 897-2112.

Sincerely,

Joel B. Bradburne Portsmouth Site Lead Portsmouth/Paducah Project Office

Ms. Galanti

Enclosure:

D1 Final Soil Background Report for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio (including compact disc)

cc w/enclosure:

Vince.Adams@lex.doe.gov, PPPO/PORTS Jud.Lilly@lex.doe.gov, PPPO/PORTS Bert.Gawthorp@lex.doe.gov, PPPO/LEX Amy.Lawson@lex.doe.gov, PPPO/PORTS Kristi.Wiehle@lex.doe.gov, PPPO/PORTS Randy.Tormey@emcbc.doe.gov, EMCBC Jim.Sferra@epa.ohio.gov, Ohio EPA Ed.Gortner@epa.ohio.gov, Ohio EPA Marcus.Glasgow@epa.ohio.gov, Ohio EPA Justin.Burke@epa.ohio.gov, Ohio EPA Mardi.Enderle@epa.ohio.gov, Ohio EPA Dennis.Carr@fbports.com, FBP/PORTS Marc.Jewett@fbports.com, FBP/PORTS Jyh-Dong.Chiou@fbports.com, FBP/PORTS Rosemary.Richmond@lex.doe.gov, RSI/PORTS ETS.Support@lex.doe.gov RMDC@WEMS-LLC.com (RCRA AR Files)

FINAL SOIL BACKGROUND REPORT FOR THE PORTSMOUTH GASEOUS DIFFUSION PLANT, PIKETON, OHIO

U.S. Department of Energy DOE/PPPO/03-0667&D1

April 2015

This document has been approved for public release:

Sam Eldridge (signature on file)	4/9/15
Classification & Information Office	Date
Sam Elduidae (cieneture on file)	4/9/15
Sam Eldridge (signature on file)	4/9/13
Export Controlled Information Office	Date

This page is intentionally left blank.

FINAL SOIL BACKGROUND REPORT FOR THE PORTSMOUTH GASEOUS DIFFUSION PLANT, PIKETON, OHIO

U.S. Department of Energy DOE/PPPO/03-0667&D1

April 2015

Prepared for U.S. Department of Energy

Prepared by Fluor-B&W Portsmouth LLC, Under Contract DE-AC30-10CC40017 FBP-ER-RCRA-WD-RPT-0189, Revision 1 This page is intentionally left blank.

CONTENTS

Page

FIGUI	RES	iii
TABL	LES	iii
ACRC	ONYMS	v
EXEC	CUTIVE SUMMARY	ES-1
1. IN 1. 1. 1.	2 PREVIOUS BACKGROUND STUDIES	1 3
2. EN 2.2 2.2 2.2 2.4 2.4 2.4 2.6	 2 METEOROLOGY	5 6 7 7
3. DI	EFINITION AND SELECTION OF BACKGROUND SAMPLING AREAS	19
4. IN 4.2 4.2 4.2	 DATA COLLECTION, REVIEW, ANALYSIS AND QUALITY ASSURANCE	21 21 22 22 23 24 24 25 25
5. DA 5 5	 5.1.1 Soil Background Constituents	27 27 27 28 28 28 29 29 29 31

Page

		5.2.2	Geologic Justification for Background Soil Groupings	32
		5.2.3	Preliminary Data Statistics	
		5.2.4	Quantile-quantile Plots	
		5.2.5	Outlier Testing	
			5.2.5.1 Rosner and Dixon Outlier tests	
			5.2.5.2 Regression analysis and scatter plots	
			5.2.5.3 Order of magnitude test	
		5.2.6	Goodness of Fit Testing	
		5.2.7	Hypothesis Testing	
	5.0	5.2.8	Data Grouping Results	.42
	5.3	STATIST	TICAL METHODOLOGY FOR BACKGROUND CALCULATIONS	.43
6.	BACK	GROUND	CALCULATION RESULTS	.47
7.	CONC	LUSIONS		. 53
8.	REFER	ENCES		55
AP	PENDD	X A: SAM	PLE AREA MAP	A-1
AP	PENDIX	K B: SOIL	BORING SUMMARY	B-1
AP	PENDIX	K C: GEOI	LOGIC CROSS-SECTIONS AND SOIL BORING LOGS	C-1
AP	PENDIX	K D: LOC	ATION MAPS	D-1
AP	PENDIX	K E: SURV	/EILLANCE REPORT	E-1
AP	PENDIX	K F: FIELI	O CHANGE NOTICES	F-1
AP	PENDIX	K G: PROU	JCL INPUT DATA FILES	G-1
AP	PENDIX	K H: OUT	LIER SUPPORTING DOCUMENTATION	H-1
AP	PENDIX	K I: PORT	S FINAL BACKGROUND DATA TABLES	.I-1
AP	PENDIX		GROUND CONCENTRATION DEVELOPMENT SUPPORTING	. J-1

FIGURES

Page

ES.1.	Background Study Areas, A through J	ES-3
ES.2.	Background Value Tree	
1	Wind Deep from 1005 2001	6
1.	Wind Rose from 1995-2001	
2.	Surface Water Features at PORTS	8
3.	Schematic Block Diagram Showing Geological Relationships at PORTS	9
4.	Generalized Stratigraphy at PORTS	
5.	Location of Ancestral River Systems in Relation to PORTS	13
6.	Generalized Groundwater Divides and Flow Directions for the Gallia	15
7.	Generalized Groundwater Divides and Flow Directions for the Berea Sandstone	16
8.	Background Study Areas, A through J	20
9.	Dry Weight versus Wet Weight Graphs: Surface Soil (0 to 1 ft) Areas A through J	
	Aluminum and Barium	30
10.	Q-Q Plot Example, Aluminum in Areas D, E, F, and G, Unsaturated Minford Clay Surface	
	Soils (0 to 1 ft bgs)	33
11.	Q-Q Plot Example, Copper in Areas A and B, Area C, and Areas D, E, F, and G Surface	
	Soils (0 to 1 ft bgs)	39
12.	Background Value Tree	46

TABLES

Evaluation of Background Area Data Sets	ES-4
Final Background Area Data Groupings	ES-5
Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio	ES-7
Soil Background Areas	24
Evaluation of Background Area Data Sets	
Areas A and B Correlation Values and Hypothesis Test Results	
Areas D, E, F, and G Correlation Values and Hypothesis Test Results	35
Areas E, F, and G Correlation Values	
Gallia Areas D, E, F, and G Correlation Values	
Areas H, I, and J Correlation Values	
Final Background Area Data Groupings	43
Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous	
Diffusion Plant, Piketon, Ohio	47
Metals and Radionuclide Concentrations in Ohio Soils	
Comparison of PORTS Soil Background Values to Concentrations of Metals and	
Radionuclides in Ohio Soils	50
	 Final Background Area Data Groupings Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio Soil Background Areas Evaluation of Background Area Data Sets Areas A and B Correlation Values and Hypothesis Test Results Areas D, E, F, and G Correlation Values and Hypothesis Test Results Areas E, F, and G Correlation Values Gallia Areas D, E, F, and G Correlation Values Gallia Areas D, E, F, and G Correlation Values Final Background Area Data Groupings Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio Metals and Radionuclide Concentrations in Ohio Soils Comparison of PORTS Soil Background Values to Concentrations of Metals and

This page is intentionally left blank.

ACRONYMS

AMSL	above mean sea level
ASL	analytical support level
bgs	below ground surface
CMS	Corrective Measures Study
D&D	decontamination and decommissioning
DOE	U.S. Department of Energy
DQO	data quality objective
DU	deferred unit
EPA	U.S. Environmental Protection Agency
FRL	final remediation level
GEL	General Engineering Laboratories
GIS	geographical information system
GOF	Goodness of Fit
ICP/MS	inductively-coupled plasma/mass spectrometry
KM	Kaplan-Meier
Ohio EPA	Ohio Environmental Protection Agency
OLS	ordinary least squares
PAH	polycyclic aromatic hydrocarbon
PAL	Portsmouth Analytical Laboratory
PCB	polychlorinated biphenyl
PORTS	Portsmouth Gaseous Diffusion Plant
PRG	preliminary remediation goal
Q-Q	quantile-quantile
RFI	Resource Conservation and Recovery Act of 1976, as amended, Facility Investigation
ROS	regression on order statistics
SAP	sampling and analysis plan
SVOC	semivolatile organic compound
UTL	upper tolerance limit

This page is intentionally left blank.

EXECUTIVE SUMMARY

A soil background investigation was completed at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide, in accordance with an approved sampling and analysis plan (SAP), representative background data for each major soil formation on the U.S. Department of Energy (DOE) reservation, on property easements, and DOE-leased property off the DOE reservation, as of April 2015. This investigation builds on background studies completed earlier and addresses limitations of those earlier studies.

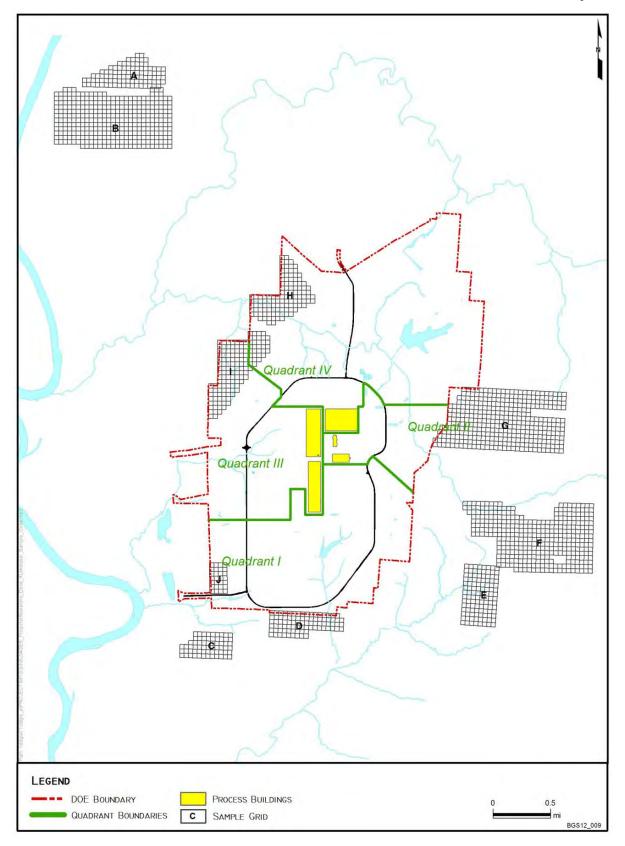
"Background" refers to substances or locations that are not influenced by the releases from a site, and are usually described as naturally occurring or anthropogenic. Background sampling is often conducted to help distinguish site-related contamination from naturally occurring or other non-site-related chemicals. This information is useful in evaluating whether operations or activities at a site have impacted the surrounding environment.

The background study for PORTS was designed to characterize concentrations of naturally occurring or ubiquitous anthropogenic constituents in surface and subsurface soils in and around PORTS. Soil background samples were analyzed for radionuclides, metals, and organic chemicals; however, only metals and radionuclides, which are naturally occurring, were retained for evaluation and subsequent calculation of background concentrations in soil.

Results of the soil background investigation will be used during development of the Deferred Units (DU) Resource Conservation and Recovery Act of 1976, as amended, Facility Investigation (RFI)/Corrective Measures Study (CMS) report and during development of other projects where the results of this investigation are useful. As part of the development of the DU RFI/CMS report, natural levels and/or ubiquitous anthropogenic levels of metals and radionuclides in background soils unimpacted by facility operations will be compared to concentrations observed in PORTS soils. Characterization of naturally occurring or ubiquitous anthropogenic soil background concentrations of constituents from this study will provide reference data for a determination of the extent of soil contamination, support development of risk-based soil preliminary remediation goals (PRGs) under the 1989 Ohio Consent Decree and U.S. Environmental Protection Agency (EPA) Administrative Consent Order, and support real property transfer under Section 120 (h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. During remediation activities, it is common practice to clean up to risk-based values, but not to levels less than background concentrations. Therefore, some of the background concentrations developed in this soil background report may be used as PRGs, and ultimately final remediation levels, when risk-based values are less than background concentrations.

This final soil background report presents the soil background data sets used to define the naturally occurring and ubiquitous anthropogenic soil background constituent concentrations for PORTS. The soil background data sets were developed using soil samples collected in accordance with the *Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (referred to hereafter as the SAP) that was approved by the Ohio Environmental Protection Agency (Ohio EPA) on March 1, 2012, and implemented at PORTS in the spring and summer of 2012. Sampling data collected from selected background locations were used to calculate concentrations for naturally occurring constituents in background soils.

This report builds on a previous preliminary report entitled, *Preliminary Soil Background Study Sampling* and Analysis Report at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, that provided a preliminary statistical evaluation of the data sets to assist in further data evaluation. Following Ohio EPA review of this preliminary report, DOE and Ohio EPA agreed that additional meetings were necessary to begin discussion to evaluate the data and establish background values. This final soil background report reflects decisions made concerning evaluation of the background data during additional meetings between DOE and Ohio EPA in 2013 and 2014.


Soil samples were collected from 10 study areas (Areas A through J; Figure ES.1) selected and sampled using the following fundamental criteria:

- Similar environment of deposition and geologic source material as found at PORTS
- Unimpacted by site operations where the geologic formations of interest are present
- In reasonable proximity to PORTS.

The selection of soil background sampling locations included locations in the Scioto River Valley that were deposited during the same depositional event as the materials in the area that contain the DOE pump houses and pipe lines. Other selected soil background sampling locations included additional off-site areas that have similar geologic source areas as PORTS, and are unaffected by PORTS or other significant sources of contamination. These additional off-site areas were selected for the sampling of upwind, upland deposits as well as deposits representative of soils observed at PORTS, including the Minford silt and clay and the Gallia sand and gravel. The upland areas on the western side of the DOE reservation were selected for soil background sample collection because prevailing winds from the west may have contributed to the deposition of radiological constituents originating from historical nuclear testing in the western United States.

To obtain representative samples of Scioto River Valley soils, sample locations were selected in Areas A, B, and C; to obtain representative samples of off-site Minford soils and Gallia deposits, sample locations were selected in Areas D, E, F, and G; and to obtain representative samples of upwind, upland surface soils, sample locations were selected in Areas H, I, and J. The Gallia deposits extend to a depth of 90 ft below ground surface (bgs) in some areas as a result of channel migration and erosion of the underlying bedrock. Soil samples were collected from the following formations and depths:

- Unsaturated Minford clay surface soils (0 to 1 ft bgs)
- Unsaturated Minford clay (1 to 16 ft bgs)
- Saturated Minford clay/silt (16 to 30 ft bgs immediately above the Minford/Gallia interface)
- Saturated Gallia deposits (variable from 14 to 90 ft bgs immediately below the Minford clay/silt)
- Surface and subsurface soils in the unconsolidated, unsaturated Scioto River Valley immediately west of the DOE reservation
- Surface soils in upland area along western on-site boundary (0 to 1 ft bgs).

The data for this study were collected, analyzed, and reported at the highest possible analytical support level, as indicated by the SAP. The background study for PORTS was designed to characterize concentrations of naturally occurring or ubiquitous anthropogenic constituents in surface and subsurface soils in and around PORTS. Soil background samples were submitted for laboratory analysis of radionuclides, metals, semivolatile organic compounds, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and herbicides; however, during meetings with Ohio EPA, it was decided that this report will not contain analysis of constituents not ubiquitously anthropogenic or not naturally occurring, such as PCBs and PAHs. Only metals and radionuclides, which are naturally occurring, were retained for evaluation and subsequent calculation of background concentrations in soil.

The background soil data was initially reviewed to establish the grouping of the data from different sampling areas and depths to create data sets that are comparable and representative of the various soil formations observed at PORTS, in nearby upland areas, and at locations within the floodplain area of the Scioto River Valley. Data sets comprised of comparable background data were then used to calculate background concentrations for naturally occurring metals and radionuclides at PORTS. Statistical and graphical evaluation of data for the purpose of determining background soil concentrations was performed using EPA's ProUCL software.

To establish comparable background data sets, multiple lines of evidence were reviewed, including site geology, preliminary data statistics, quantile-quantile plots, outlier tests, goodness of fit tests, and hypothesis tests. The purpose of each of these evaluation tools is listed in Table ES.1.

Evaluation Element	Purpose
Geology at PORTS	 Assess geology to identify comparable lithologic formations within background area data sets
Preliminary Data Statistics	• Aid in the development of further statistical tests
Quantile-Quantile Plots	 Evaluate the normal, linear distribution of detected values Visually identify potential outliers
Outlier Test	 Assess the presence of more than a single population within a data set Evaluate the data sets for sampling, laboratory, or reporting error in the data to explain the presence of potential outliers
	• Identify observations within a data set needing further investigation for being a possible outlier using Rosner and Dixon outlier tests and regression analysis scatter plots
	• Using the Order of Magnitude test, determine if an observation is an outlier and should be removed from the final PORTS background data set
Goodness of Fit Test	• Determine the most representative distribution (i.e., normal, lognormal, or gamma) of each study area data set by assessing the correlation values for each distribution
Hypothesis Test	• Compare data from different depths within a single background study area to determine if depth intervals are comparable

Table ES.1. Evaluation of Background Area Data Sets

PORTS = Portsmouth Gaseous Diffusion Plant

After reviewing the geology of the background study areas and the statistical results of the evaluations listed in Table ES.1, final data groupings were established, as listed in Table ES.2. All data sets have 12 or more samples, which meets EPA recommended minimum number of samples per data set used for statistical evaluation.

Soil Sampling Area	Depth (ft bgs)	Description ^{<i>a</i>}	Number of Soil Samples
Areas A and B	0 to 1	Surface soil, Scioto River Valley	25
Areas A and B	1 to 10	Subsurface soil, Scioto River Valley	25
Areas D, E, F, and G	0 to 1	Surface soil, PORTS site	30
Areas D, E, F, and G	1 to 16	Unsaturated Minford, PORTS site	187
Areas E, F, and G	16 to 30	Saturated Minford, PORTS site	12
Areas D, E, F, and G	14 to 90	Gallia, PORTS site	34
Areas H, I, and J	0 to 1	Surface soil, PORTS upland area	58

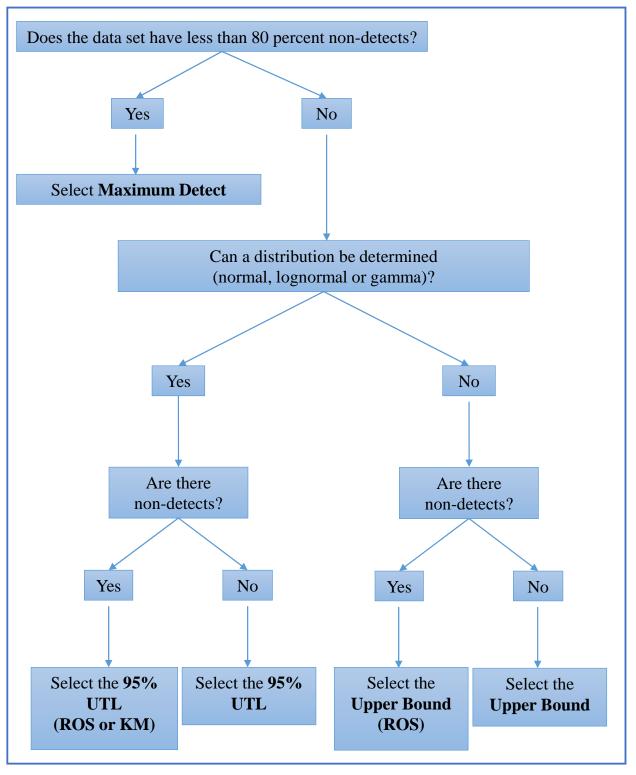
Table ES.2. Final Background Area Data Groupings

^aPORTS site = off-site areas representative of lithology observed on site at PORTS.

bgs = below ground surface

PORTS = Portsmouth Gaseous Diffusion Plant

Per the approved SAP, surface and subsurface soil samples were collected in Area C to obtain soils representative of the Scioto River Valley; however, statistical tests and review of the lithologic data from the background study areas indicate that soil from Area C is not fully representative of the same depositional conditions as observed in other background areas (i.e., Areas A and B). Therefore, surface and subsurface soil samples from five locations in Area C were excluded from the PORTS data set used to determine background soil concentrations.


Soil data collected from sampling areas listed in Table ES.2 were used to calculate background concentrations for PORTS. Soil background concentrations represent one of the following three statistics:

- 95% Upper Tolerance Limit (UTL)
- Upper Bound (per 2004 Ohio EPA guidance)
- Maximum detected value of the data set.

A 95% UTL represents a statistic such that 95 percent of observations (current and future) from the target population (i.e., background) will be less than or equal to the 95% UTL. An upper bound concentration is a data limit calculated using data percentiles, and this data limit can be used as the background concentration per Ohio EPA guidance.

The final selection of a background concentration is dependent on the detection frequency of the constituent and the distribution of the data. The distribution of the data was determined using tests and methods provided in ProUCL. A decision tree for selection of background concentrations at PORTS is shown in Figure ES.2. A brief explanation of the background value decision process is as follows:

- If greater than 80 percent of the data are non-detected results, the maximum detected value is selected as the background concentration. If 80 percent or less of the data are non-detected results, the distribution of the data is determined.
- If the data distribution is determined to be normal, lognormal, or gamma and there are no non-detected results in the data set, the 95% UTL that best fits the data distribution is selected as the background concentration.

UTL = Upper Tolerance Limit ROS = Regression on Order Statistics KM = Kaplan-Meier

Figure ES.2. Background Value Tree

- If the data distribution is determined to be normal, lognormal, or gamma and there are non-detected results in the data set, the data is imputed to include regression on order statistics (ROS) or Kaplan-Meier estimates to account for the non-detected values, and then the 95% UTL that best fits the data distribution is selected as the background concentration.
- If no data distribution can be determined and there are no non-detected results in the data set, the upper bound is selected as the background concentration. If no data distribution can be determined and there are non-detected results in the data set, the upper bound calculated using ROS methodology to account for the non-detected results is selected as the background concentration.

Table ES.3 summarizes the calculated background concentrations for metals and radionuclides in the background sampling areas and soil units listed in Table ES.2. The majority of the background concentrations represent upper bound or 95% UTL calculations; two results represent maximum detected values (mercury in Areas A and B subsurface soil, and silver in Areas H, I, and J surface soil).

	Scioto Valley		PORTS Site				PORTS Upland Area
Parameter	Surface Soil (0-1 ft) Areas AB	Subsurface Soil (1-10 ft) Areas AB	Surface Soil (0-1 ft) Areas DEFG	Unsaturated Minford (1-16 ft) Areas DEFG	Saturated Minford (16-30 ft) Areas EFG	Gallia Areas DEFG	Surface Soil (0-1 ft) Areas HIJ
			Metals (mg/kg	g Dry)			
Aluminum	16,100	11,800	24,500	20,700	12,700	13,400	18,000
Antimony	1.88	1.29	2.05	1.83	3.51	8.43	4.06
Arsenic	14.4	11.8	30.8	29.0	85.6	129	19.8
Barium	165	92.8	114	136	72.1	99.9	182
Beryllium	0.995	0.858	1.25	1.60	1.17	1.51	1.70
Cadmium	0.527	0.328	0.241	0.282	0.688	2.00	0.858
Chromium	19.4	17.7	32.4	29.4	24.6	28.9	23.4
Cobalt	13.1	10.1	28.5	37.4	18.6	26.5	37.4
Copper	25.5	22.2	18.5	26.2	23.1	27.5	15.9
Iron	27,200	22,700	86,100	62,800	56,400	155,000	29,000
Lead	18.1	13.1	33.0	22.6	12.7	37.5	44.2
Lithium	56.9	59.6	113	123	120	97.3	116
Manganese	1,130	760	1,860	1,490	465	2,560	1,920
Mercury	0.0400	0.0470	0.0600	0.0520	0.0410	0.0674	0.0938
Nickel	30.3	25.0	22.6	50.3	52.7	78.2	29.1
Selenium	1.13	2.49	1.79	0.639	0.637	0.564	2.39
Silver	2.06	6.44	11.0	7.48	3.66	14.1	3.84
Thallium	1.31	0.964	0.327	0.359	0.821	0.501	2.93
Total Uranium	5.50	3.52	4.05	4.73	7.19	7.30	4.26

Table ES.3. Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

	Scioto Valley		PORTS Site				PORTS Upland Area
Parameter	Surface Soil (0-1 ft) Areas AB	Subsurface Soil (1-10 ft) Areas AB	Surface Soil (0-1 ft) Areas DEFG	Unsaturated Minford (1-16 ft) Areas DEFG	Saturated Minford (16-30 ft) Areas EFG	Gallia Areas DEFG	Surface Soil (0-1 ft) Areas HIJ
		Metal	s (mg/kg Dry)	(continued)			
Vanadium	43.7	39.5	78.0	58.0	65.1	87.6	52.0
Zinc	111	80.2	93.1	117	148	244	85.7
	-	Ra	dionuclides (p	Ci/g Dry)			
Thorium-228	1.31	1.08	1.64	1.88	1.56	1.73	1.52
Thorium-230	2.59	1.81	1.59	1.74	2.42	2.52	1.70
Thorium-232	1.37	1.21	1.56	1.91	1.63	1.73	1.46
Uranium-233/234	1.76	1.23	1.30	1.57	2.36	2.34	1.37
Uranium-235/236	0.142	0.0558	0.0987	0.119	0.170	0.171	0.115
Uranium-238	1.85	1.18	1.36	1.59	2.41	2.45	1.40
all non-detects							
Maximum Detect							
95% UTL							
Upper Bound							

Table ES.3. Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio (Continued)

PORTS = Portsmouth Gaseous Diffusion Plant UTL = upper tolerance limit

Specific conclusions developed in this soil background report are summarized as follows:

- The quality and coverage of the samples collected in each background sampling area are adequate for use in this background investigation. A sufficient number of samples were collected from these locations to adequately characterize the background concentrations of naturally occurring and anthropogenic constituents in soil.
- Soil samples collected in Areas A and B provide data representative of soil background conditions for property in the Scioto Valley floodplain, including easements and DOE-leased property, as of April 2015.
- Soil samples collected in Areas D, E, F, and G provide data representative of surface, unsaturated, and saturated subsurface soil background conditions similar to those observed in on-site Minford and Gallia soils.
- Statistical testing and data evaluation indicated that soil samples collected in Areas H, I, and J exhibited weak correlation within themselves and identified outliers in the data set. Based on these findings, it is concluded that the data set may not be fully representative of on-site surface soil background conditions in upland areas undisturbed by present and historic site operations.

• A comparison to the results from similar background investigations of soils in Ohio, including the 1996 PORTS background investigation, indicates inorganic and radionuclide constituents detected in this study are comparable to concentrations reported for similar Ohio soils.

This page is intentionally left blank.

1. INTRODUCTION

A soil background investigation was completed at the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio, to provide, in accordance with an approved sampling and analysis plan (SAP), representative background data for each major soil formation on the U.S. Department of Energy (DOE) reservation, on property easements, and DOE-leased property off the DOE reservation, as of April 2015. This investigation builds on background studies completed earlier and addresses limitations of those earlier studies. This introductory chapter presents the purpose and rationale of the investigation, a brief explanation of previous background studies at PORTS, and the organization for this report, which presents the evaluation and final results of the soil background investigation initiated in 2012.

1.1 PURPOSE AND RATIONALE OF INVESTIGATION

"Background" refers to substances or locations that are not influenced by the releases from a site, and are usually described as naturally occurring or anthropogenic (U.S. Environmental Protection Agency [EPA] 2002).

- Naturally occurring substances present in the environment in forms that have not been influenced by human activity.
- Anthropogenic natural and human-made substances present in the environment as a result of human activities, not specifically related to the site in question (in this case, PORTS).

The ideal background area would have the same distribution of concentrations for chemicals of concern as those which would be expected on the site if the site had never been impacted. Some chemicals may be present in background as a result of both natural and man-made conditions (EPA 2002). Background sampling is often conducted to help distinguish site-related contamination from naturally occurring or other non-site-related chemicals. This information is useful in evaluating whether a site has impacted various media (e.g., soil, groundwater, surface water, sediment, etc.) and in evaluating and selecting a remedy for the site.

The background study for PORTS was designed to characterize concentrations of naturally occurring or ubiquitous anthropogenic constituents in surface and subsurface soils in and around PORTS. Soil background samples were submitted for laboratory analysis of radionuclides, metals, semivolatile organic compounds (SVOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and herbicides; however, during meetings with the Ohio Environmental Protection Agency (Ohio EPA), it was decided that this report will not contain analysis of constituents not ubiquitously anthropogenic or not naturally occurring, such as PCBs and PAHs. Only metals and radionuclides, which are naturally occurring, were retained for evaluation and subsequent calculation of background concentrations in soil.

This final soil background report presents the soil background data sets used to define the naturally occurring and ubiquitous anthropogenic soil background constituent concentrations for PORTS. The soil background data sets were developed using soil samples collected in accordance with the *Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (referred to hereafter as the SAP) (DOE 2012a) that was approved by the Ohio EPA on March 1, 2012 and implemented at PORTS in the spring and summer of 2012. Sampling data collected from selected background locations were used to calculate concentrations for naturally occurring or ubiquitous anthropogenic constituents in background soils. The purpose of the report is to provide, in

accordance with the approved SAP, representative background data for each major soil formation on the DOE reservation, and on property easements and DOE-leased property off the DOE reservation.

There are many ways to establish background, including using the Ohio EPA recommended method of calculating an upper bound (Ohio EPA 2004), or by using the mean, median, upper control limit, or upper tolerance limit (UTL). Determination of a UTL was the selected method for a 1996 background investigation at PORTS (DOE 1996). A combination of methods may be used to establish site background concentrations. It may be appropriate in some cases to perform hypothesis testing of the population of the background data set compared to the population of the investigation data to determine if they are the same or different. Regional literature sources may also be used, although this method is not recommended (EPA 2002, Ohio EPA 2009).

Characterization of naturally occurring and/or ubiquitous anthropogenic soil background concentrations of constituents from this study will provide reference data for a determination of the extent of soil contamination, support development of risk-based soil preliminary remediation goals (PRGs) under the 1989 Ohio Consent Decree and EPA Administrative Consent Order, and support real property transfer under Section 120 (h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980. The SAP provided the technical approach to sampling soils, approximate locations of the samples to be collected, type of samples to be collected, sampling regimen, and laboratory analytical methods. The results of this study are specific to the laboratory analytical methods used to analyze the collected samples.

In addition to the results presented here for naturally-occurring metals, including uranium, the background data set includes detected results for radioactive isotopes (e.g., americium, plutonium, technetium) and some organic constituents that are considered ubiquitous (e.g., PAHs, PCBs, pesticides). Because neither the radioactive isotopes nor the organic constituents are naturally-occurring, data of these anthropogenic constituents are not evaluated in this report. A preliminary analysis of these data is provided in the *Preliminary Soil Background Study Sampling and Analysis Report at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (DOE 2012b). The analysis in that report found that the detected concentrations are low and generally fall below risk-based soil screening levels derived considering the industrial or residential scenarios. Additional statistical analyses of these data may be completed in the future, if necessary, to support risk management decisions.

This final soil background report builds on the previous preliminary report referenced above, which was submitted to Ohio EPA in November 2012; comments were received from Ohio EPA in January 2013. The Ohio EPA comments were incorporated into this final report, as appropriate.

This report incorporates goals and objectives discussed during the data quality objectives (DQO) workshop and technical meetings with the Ohio EPA from June through September 2011. In addition to these meetings, several other meetings were held with Ohio EPA in 2013 and 2014 as soil data groupings and statistical evaluations were developed. Approaches and preliminary results were also discussed with Ohio EPA during this timeframe, thus providing an opportunity to participate in a team environment when developing the final soil background data sets. Results of the soil background investigation will be used during development of the Deferred Units (DU) Resource Conservation and Recovery Act of 1976, as amended, Facility Investigation (RFI)/Corrective Measures Study (CMS) report and during development of other projects where the results of this investigation are useful. The DU RFI/CMS report will present the results of the background evaluation, including the final soil background data sets.

This final report presents a description of the depositional environment for geologic formations at and around the DOE reservation and provides a discussion of more than 152,000 analytical results from 120 sampling locations. Sample locations/areas identified as on-site reference locations/areas are within the DOE-owned property, as of April 2015. Sample locations/areas identified as off-site reference locations/areas are off DOE-owned property, as of April 2015, and are equivalent to the background reference location as identified in Ohio EPA guidance.

1.2 PREVIOUS BACKGROUND STUDIES

An initial background field sampling investigation was conducted at PORTS in 1991 as part of the Quadrant I/Quadrant II Phase I RFI. During this investigation, 12 surface soil samples (0 to 2 ft below ground surface [bgs]) and 14 subsurface soil samples (greater than 2 ft in depth) were collected and analyzed to determine the concentrations of naturally occurring constituents in soils. Surface soil samples were collected near the property boundary of the reservation. These hand-auger surface soil samples, designated as perimeter samples, were collected from bluffs overlooking PORTS. These bluffs are underlain by the Cuyahoga shale (bedrock).

The results of the initial background study were submitted to EPA (Region V) and Ohio EPA in February 1992. During a background study comment and response meeting, EPA and Ohio EPA requested the collection of additional background samples from locations outside of the DOE reservation. The final work plan for collecting additional samples was approved by both agencies in January 1994. The work plan specified that background samples were to be collected from areas where geologic deposits exhibited physical and geological characteristics similar to those of the geologic deposits at PORTS. Soil samples were therefore collected from areas where the silt and clay of the Minford silt member of the Teays Formation was present and had characteristics similar to the Minford deposits on site. Sixteen surface soil samples (0 to 2 ft bgs) and 16 subsurface soil samples (8 to 10 ft bgs) were collected during the study (DOE 1996). Soils were analyzed for the following constituents:

- Target compound list/target analyte list compounds
- Gross alpha/gross beta
- Isotopic uranium (uranium-234, uranium-235, and uranium-238)
- Transuranics (neptunium and plutonium)
- Total uranium
- Technetium
- Sulfate
- Nitrate.

After data validation and data set evaluation were completed, a statistical evaluation of the background data to determine background concentrations of naturally occurring constituents was initiated. This process required the completion of multiple data evaluation and statistical operations, including combining and normalizing the off-site and previously established on-site background data sets, determining the number of populations present within the data, determining adequate sample size for sampling areas, and calculating 95% UTLs.

UTLs for the Minford in the PORTS area were established in the 1996 investigation and represent the maximum concentrations of naturally occurring constituents that would be expected. More specifically, the limits contain a specified proportion of the population (i.e., 95 percent of all possible sample measurements) at a confidence level of 95 percent. UTLs were not necessarily synonymous with cleanup levels or remediation goals and were not used as such. Upper cutoff values calculated for soil with data from this investigation were specific to the geologic formations from which the samples were collected.

A comparison of the results from similar background investigations of soils in the contiguous United States with the UTLs determined during the 1996 investigation indicates that the PORTS UTLs are similar to and well within concentration ranges established during similar investigations referenced in scientific literature. These investigations comprise studies in the United States and the state of Ohio, including the Fernald Environmental Management Project in Fernald, Ohio (DOE 1996).

The background concentrations of uranium in the Minford analyzed during the 1996 study were significantly lower than background concentrations of uranium in local area soil derived from black shales (Sunbury shale and Ohio shale) in the area. Analyses of Gallia soil samples, which possibly contained fragments of eroded Sunbury shale, showed results for uranium that were higher than those for any samples collected from the Minford.

The 1996 study had several limitations which necessitated implementation of the new background study presented in this report. Application of the 1996 background data was limited due to the following reasons:

- Use of small sampling populations
- Collection of samples from locations and depths that were not horizon specific within the Minford lithology and could not be correlated to similar deposits at PORTS
- Collection of samples that are not formation specific (primarily, the Minford was sampled)
- Use of inconsistent sampling methodologies
- Generation of an extensive non-detect data set with a large variation in detection limits.

A 1995 study (Korte et al. 1995) examined the calculation of background concentrations for both Minford and Gallia soils using existing PORTS environmental data collected from contaminated sites (i.e., pre-1995 soil data). Using the method described in the report, the background data population was separated from the contaminant data population. The report concluded that there were insufficient data to determine background concentrations for Gallia soils; however, background concentrations were reported for metals in Minford soils. The Minford soil background concentrations from the 1995 study are not presented in this background report because the results of the 1995 study did not receive final review or publication. However, analytical results for iron concentrations in the Gallia deposits, as reported in the 1995 report, are used to support conclusions in this background report.

1.3 REPORT ORGANIZATION

A discussion of the environmental setting on and off site at PORTS is provided in Section 2. The rationale for the definition and selection of the background sampling areas is provided in Section 3. The investigative approach used in completing this soil background study is presented in detail in Section 4. The data evaluation for the formation of the data sets and the methodology for background statistics are discussed in Section 5. A general discussion of the results is presented in Section 6, and conclusions are provided in Section 7.

2. ENVIRONMENTAL SETTING

PORTS is located on a 3,777-acre federal reservation in a rural area of Pike County, Ohio, approximately 20 miles north of Portsmouth, Ohio. The gaseous diffusion plant and the surrounding federal reservation are owned by DOE. From 1954 until 2001, the PORTS gaseous diffusion process plant enriched uranium for DOE and predecessor agencies, the Naval Nuclear Propulsion Program, and commercial customers. In May 2001 the production facilities were placed into a cold standby mode. During cold standby, the process buildings were maintained with a restart capability as a strategic hedge against a disruption in the nation's supply of enriched uranium. DOE terminated the cold standby program in September 2005 and replaced it with a cold shutdown program, no longer maintaining the gaseous diffusion restart capability.

DOE is currently preparing for decontamination and decommissioning (D&D) of the contaminated process buildings and related infrastructure. Some structures have already been demolished during pre-D&D activities.

2.1 PHYSIOGRAPHIC SETTING

PORTS is located within the Appalachian Plateau physiographic province, approximately 20 miles south of the limit of glaciations in Ohio. As a result, the geologic setting of the site has been heavily influenced by drainage associated with glacial events. PORTS occupies an upland area of southern Ohio with an average land surface elevation of 670 ft above mean sea level (AMSL). The terrain surrounding the plant site consists of marginal farmland and wooded hills, generally with less than 100 ft of relief. PORTS is located within a mile-wide ancient river valley situated 130 ft above the level of the Scioto River (elevation 540 ft AMSL), which lies approximately 1 mile to the west.

2.2 METEOROLOGY

The climate of the PORTS area is humid-continental and is characterized by warm, humid summers and cold, humid winters. Precipitation is distributed relatively evenly throughout the year and averages approximately 40 in. per year. The month with the highest average precipitation for the period of record is August, followed by May. Groundwater recharge and flood potential are greatest during the spring. October is the driest month. Snowfall averages approximately 19 in. per year (Western Regional Climate Center 2009).

Prevailing winds are from the south-southwest at approximately 5 mph. The highest average monthly wind speed of 11 mph typically occurs during the spring. Figure 1 shows a wind rose from 1995-2001 at the 30-m level.

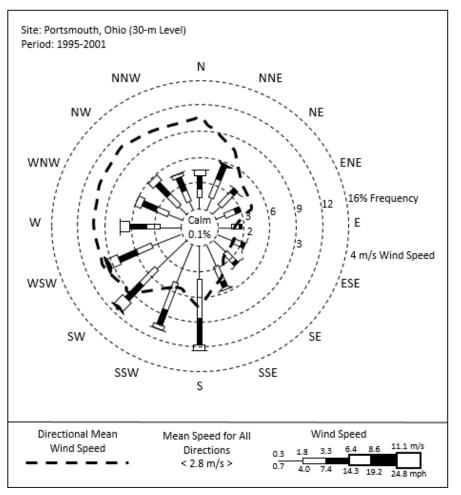


Figure 1. Wind Rose from 1995-2001

2.3 SURFACE FEATURES

PORTS sits in a 1-mile-wide abandoned river valley situated approximately 130 ft above the Scioto River floodplain, which lies to the west. In much of the industrialized area of PORTS, the original topography has been modified and graded for construction of buildings and other facility components. Much of the material that was removed from higher elevations of the plant site was placed in existing drainage valleys and depressions.

The local topography at PORTS is dominated by ancient and recent streams. The predominant landform in the site area is an undulating, broad, sediment-filled, ancient river valley. This valley is oriented north-south and is bounded on the east and west by deeply dissected ridges and low-lying hills. The surface of the ancient river valley is modified by recent streams. A small valley is formed by Little Beaver Creek, which flows in a northwesterly direction across the middle of the site, just north and east of the main industrialized area. Other small valleys formed by streams have cut into the flat-lying unconsolidated deposits on which PORTS is located. One of these valleys is that of a westward-flowing stream, the West Drainage Ditch, which is near the west-central area of the plant site. Two more streams are located in the southern portion of the industrialized area. In the southeast portion of the site, the southerly flowing stream, Big Run Creek, is situated in a relatively broad, gently sloping valley. The Southwestern Drainage Ditch has formed a narrow, steep-walled valley.

2.4 SURFACE WATER HYDROLOGY

PORTS is drained by several small tributaries of the Scioto River (Figure 2). Sources of surface water drainage include storm water runoff, groundwater discharge, and releases from plant processes. The largest stream on the site is Little Beaver Creek, which drains the eastern and northern portions of the site before discharging into Big Beaver Creek. Little Beaver Creek is a small, high-gradient, unmodified stream that receives the majority of its flow from the X-230J7 East Holding Pond discharge through the East Drainage Ditch. Little Beaver Creek also receives effluent via the Northeast Drainage Ditch through the outfall from the X-230J6 Northeast Holding Pond and via the North Drainage Ditch through the outfall from the X-230L North Holding Pond. Substrates are predominantly slab boulders and bedrock at the upper reach to gravel and sand near the mouth of the stream. During parts of the year, intermittent flow conditions exist upstream from the X-230J7 discharge. During the summer/fall low-flow time of the year, the upstream section is composed of shallow, isolated pools with intermittent flow (Ohio EPA 2006). The Northwest Tributary stream corridor begins just southwest of the Don Marquis Substation and flows approximately 3,200 ft before leaving the facility boundary and prior to its confluence with Little Beaver Creek.

2.5 GEOLOGY OF PORTS AND STUDY AREA

The geology of PORTS has been characterized over the years through the installation of more than 1,600 soil borings and wells across the site. Some of the information about the geology of PORTS was summarized from previous PORTS quadrant RFI final reports, and some was provided by PORTS Geographic Information System (GIS) and geologic analysis of PORTS borings and supplementary geological data.

The subsurface in the PORTS area consists of approximately 5 to 45 ft of unconsolidated Pleistocene clastic sediments unconformably overlying Paleozoic bedrock that dips gently toward the east-southeast (Figure 3). As explained in the description of Gallia sediments, the unconsolidated Pleistocene clastic sediments extend to a depth of 90 ft bgs in some areas, which may represent areas of former channel migration and erosion of the underlying bedrock. In stratigraphic order, from oldest to youngest, bedrock is overlain by the fluvial Gallia sand and gravel (Gallia sand member) and by the lacustrine Minford clay and silt (Minford silt member) of the Teays Formation (Figure 4). The erosion and subsequent fill of the Portsmouth River Valley during the Pleistocene was a primary control for the distribution of the shallow geologic units beneath PORTS. A portion of the former Portsmouth River Valley underlies the site, and it is bounded on the east and west by deeply dissected ridges and low-lying hills. Additionally, the surface of the ancestral river valley has been modified by recent streams.

Bedrock beneath PORTS mainly consists of shale, sandstone, and minor siltstone deposited in and along an epeiric (inland) sea during the Late Devonian and Early Mississippian periods (approximately 380 to 345 million years ago) (Coogan 1996). The area was subsequently uplifted and gently folded, and subsequent erosion produced the deeply dissected, knobby terrain that characterizes southern Ohio.

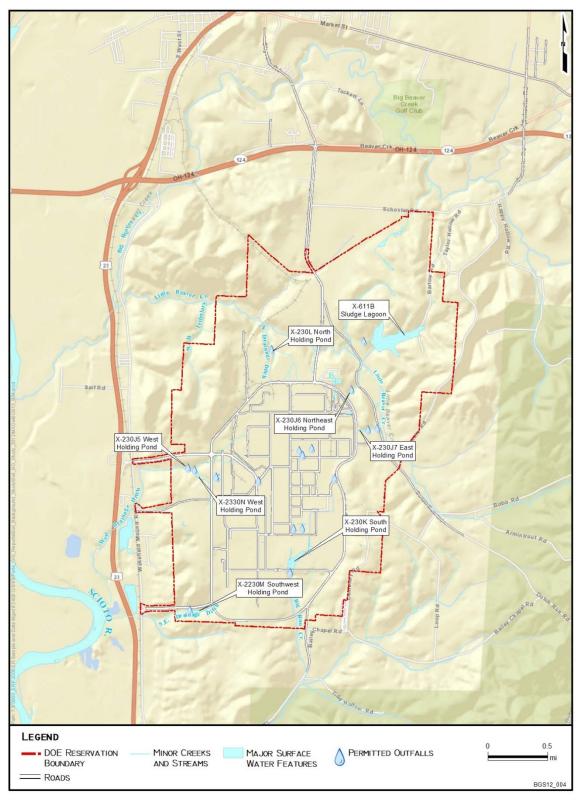


Figure 2. Surface Water Features at PORTS

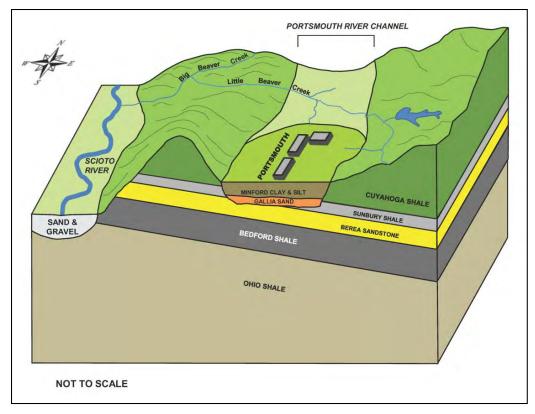


Figure 3. Schematic Block Diagram Showing Geological Relationships at PORTS

Bedrock formations at PORTS (from oldest to youngest) are the Ohio shale, Bedford shale, Berea sandstone, Sunbury shale, and Cuyahoga Formation (Upper Devonian and Lower Mississippian strata). These formations dip gently to the east-southeast at approximately 30 ft/mile. No known geologic faults are located in the immediate area. Two distinct joint sets (fractures) are present in the bedrock, and they are particularly evident in coarse-grained outcrops of the Cuyahoga Formation. The joint sets in the bedrock are regional; rock sections within 1,600 ft of the surface are most affected by progressive unroofing (Engelder 1993).

The Bedford shale is the lowest stratigraphic unit that has been encountered during environmental investigation activities at the site since 1980. The Bedford shale, continuous beneath PORTS, consists of gray to reddish-gray, thinly-bedded shale that often contains abundant sedimentary structures, such as oscillation ripple marks, load casts, and ball-and-pillow structures. The Bedford also contains thin grayish-brown to gray interbeds of hard, fine-grained sandstone and siltstone. In the area of PORTS, the contact between the overlying Berea sandstone and Bedford shale is often difficult to identify because of the similarities in lithologies in the two formations at the contact boundary. The typical depth to the top of the Bedford shale at PORTS is 70 ft bgs in areas in which both the Sunbury shale and Berea sandstone exhibit stratigraphically complete sections. Surface exposures of the Bedford shale are common in the area of Little Beaver Creek in Quadrant IV, within the northwest section of the site boundary. The formation also outcrops in deeply incised streams and valleys within PORTS. The typical section for the Bedford shale at PORTS averages approximately 100 ft in thickness, as shown by Boring 848, which was drilled to a depth of 483.5 ft AMSL on the eastern side of the site in 1977 as part of the Gaseous Diffusion Add-On Plant Study (Law Engineering 1978). The thickness of the Bedford shale in boring 848 was 97.7 ft.

The Berea sandstone is composed of light gray, hard, thick-bedded, sometimes cross-bedded, fine-grained sandstones with thin shale interbeds. The upper 10 to 15 ft of the formation consists of a massive sandstone that generally lacks joints and shale interbeds. The Berea is generally continuous beneath the industrial portion of PORTS, underlying the Sunbury shale on the eastern side of the site and the unconsolidated Minford and Gallia members (Teays Formation) on the western side of the site.

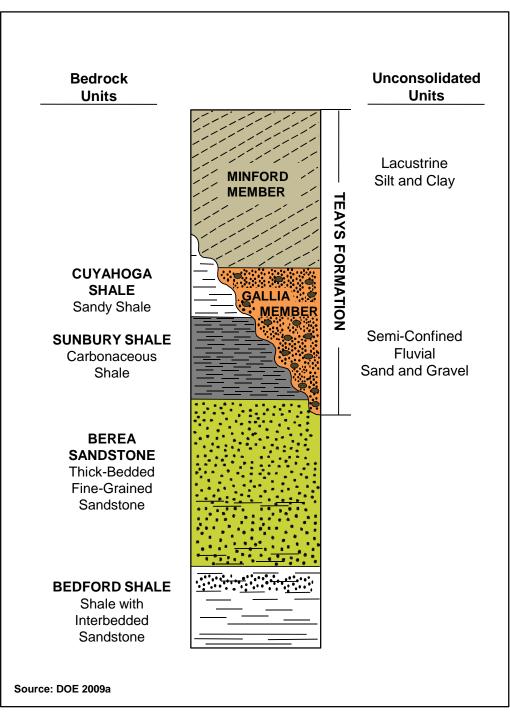


Figure 4. Generalized Stratigraphy at PORTS

On the western side of PORTS, the Berea has experienced various degrees of erosion, and in the area of Little Beaver Creek in Quadrant IV, within the northwest section of the site boundary, the Berea has been completely removed by erosion. The Berea sandstone is inferred to average 30 ft thick in areas in which a PORTS-type section of the Berea is present. The lower 10 ft of the Berea contains numerous shale interbeds similar to those in the underlying Bedford shale. Because of the gradational contact between the Berea sandstone and Bedford shale, it is difficult to determine a precise thickness of the Berea sandstone at PORTS. Regionally, the formation contains naturally occurring hydrocarbons (petroleum) in quantities sufficient for commercial production.

The Sunbury shale is a highly-carbonaceous, competent, fissile, black shale that often contains scattered grains and small nodules of pyrite, suggesting a reducing environment of deposition. Using data analyzed in the GIS for 101 borings at PORTS in which a Sunbury isopach value can be obtained, the Sunbury averages about 11 ft in thickness and ranges from less than a foot to about 30 ft thick. The PORTS type section of the Sunbury, calculated from borings used to investigate locations for the proposed on-site disposal cell, indicates the Sunbury is around 21 ft thick for the type section. The Sunbury is typically the uppermost bedrock unit beneath PORTS, but it thins westward as a result of erosion by the ancient Portsmouth River. The Sunbury shale is absent beneath the western half of the reservation, with the exception of an area west and northwest of the American Centrifuge Project, in which the Sunbury is absent due to erosion in the drainage basin of Little Beaver Creek downstream from the X-611A Old Lime Sludge Lagoons and along most of Big Run Creek, where it has also been removed by erosion. The Sunbury shale underlies the unconsolidated Gallia of the Teays Formation beneath the industrialized, eastern portion of PORTS, and underlies the Cuyahoga Formation outside of the Portsmouth River Valley.

The Cuyahoga Formation, the youngest and uppermost bedrock formation in the geographic area, forms the hills surrounding PORTS; the Cuyahoga is not found beneath the industrial portion of PORTS. It is a moderately-hard, laminated shale that regionally reaches a thickness of approximately 160 ft and has numerous sandstone and siltstone interbeds, some of which have significant lateral extent. The Cuyahoga Formation was deposited during a series of regressive and transgressive marine events in the Early Mississippian, approximately 350 million years ago (Bork and Malcuit 1979a, 1979b). During that time, this area of Ohio was on the coastline of an epeiric sea. To the east were the Acadian Highlands, which were shedding sediment that was transported westward and deposited by a series of fluvial systems. The Cuyahoga Formation is composed of sequences of marine shales and interbedded lobate terrestrial sandstones, the sediment vertical profile resembling modern sediments deposited along prograding shorelines or in deltas (Coleman 1976; Horne and Ferm 1978).

Most of the sandstone layers within the Cuyahoga are very thin (less than 3 in. thick), but occasionally a thicker layer (1 to 5 ft thick) has been encountered in the region. As one moves stratigraphically higher in the Cuyahoga, the rocks are characterized by more frequent sandstone beds and lenses, representing the advancing nearshore environment.

Prior to glaciation, the major drainage system in southern Ohio was the Teays River System. The river flowed northwest and passed about 3 miles north of PORTS. Glacial advances, which occurred periodically between 25,000 to 2 million years ago, eventually dammed the Teays River and caused a huge proglacial lake to form south and southeast of the glacial front, called Proglacial Lake Tight. Lake Tight covered areas of Ohio, Kentucky, and West Virginia, and during the events that formed it, many valleys in southern Ohio were filled with lake and river sediments.

The Portsmouth River, a north-flowing tributary of the Teays, flowed across the area that is now occupied by PORTS (Figure 5). The Portsmouth River caused significant erosion of the bedrock beneath PORTS; the Sunbury was eroded into a wedge that pinched out to the west, exposing the Berea sandstone along a sizeable portion of the western third of the facility. The Portsmouth River also caused some erosion of the Berea sandstone.

As the Portsmouth River meandered across the valley, it deposited quantities of silt, sand, and, gravel. These unconsolidated fluvial deposits formed the Gallia sand member (Gallia) of the Teays Formation. The Gallia averages 5.4 ft in thickness at the site and is characterized as reddish-brown, clayey, medium-to-coarse sand and gravel (the sand and gravel are typically poorly sorted).

Channel migration and variation in depositional environments resulted in the variable thickness and hydraulic properties of the Gallia, which extends to a depth of 90 ft bgs in some areas. The areas of thickest accumulation of Gallia sediments (exceeding 10 ft thick in some places) may represent former channel locations and includes areas south of Perimeter Road, west of the XT-847, northeast of the XT-801, a wide section along the west side of Perimeter Road east of the X-326 and X-330 buildings, southeast and adjacent to the X-326, in and around the X-701B plume, and a broad section of sediments northeast of the X-744W. Gallia deposits in the area of PORTS are generally absent above an elevation of 660 ft AMSL. The valley walls of the ancient Portsmouth River likely formed a natural barrier that limited the deposition of Gallia sediments. In addition, Gallia sediments have since been eroded during the Late Pleistocene and Holocene.

Somewhere between 2 million years to 1 million years ago, depending on sources, an advancing glacier north of PORTS blocked the northwestward flow of the Teays River. Proglacial Lake Tight, filled the valleys of the Teays River and its tributaries, including the Portsmouth River. Lake Tight has been dated to 780,000 years ago, during the Matuyama Reversed Polarity Epoch (Bonnett, Noltimier, and Sanderson, 1991). The Minford Silt member (Minford) of the Teays Formation, consists of lacustrine clays and silts that accumulated in the lake. The Minford, which represents the uppermost stratigraphic unit beneath PORTS, consists of two locally interpreted units with a generally gradational contact. The upper unit, called the Minford clay, is predominantly composed of silty clay with some zones of fat (high plasticity) clay, silt, and very fine-grained sand. The lower unit, called the Minford silt, is chiefly composed of clayey silt with some zones of clay, silty clay, and very fine to fine-grained sand. Typically, the grain size of the Minford silt increases with depth.

Geologic studies conducted to determine the potential seismic hazard for PORTS have determined that only one fault is located within 25 miles of the site (the nearest known fault is the Plum Run Quarry Fault, located approximately 18 miles west of PORTS in northeast Adams County). No seismicity has been recorded on this fault, and no seismic events have occurred within 25 miles of PORTS during the historic period (past 100 years). Based on a 1978 report (Law Engineering 1978), eight earthquakes have occurred within 50 miles of the site, and only one of those was likely felt in the vicinity of PORTS. This event occurred on May 17, 1901, with an epicenter approximately 20 miles from the site and with an estimated magnitude of 4.0 to 4.9. Since 1978, two Ohio earthquakes with a magnitude greater than 3.0 occurred within 50 miles of the site. Also since 1978, three Kentucky earthquakes with a magnitude greater than 3.0 occurred within 50 miles of the site. Also since 1978, three Kentucky earthquakes from the area since 1978 were less than magnitude 4.0. On August 23, 2011, an earthquake with a magnitude of 5.8 occurred in east-central Virginia (approximately 285 miles from PORTS) and was felt throughout Ohio. In 2013, there were three earthquakes with epicenters within 50 miles of those was large enough to be felt (a 3.5 magnitude earthquake occurred on November 20, 2013 approximately 50 miles northeast of PORTS).

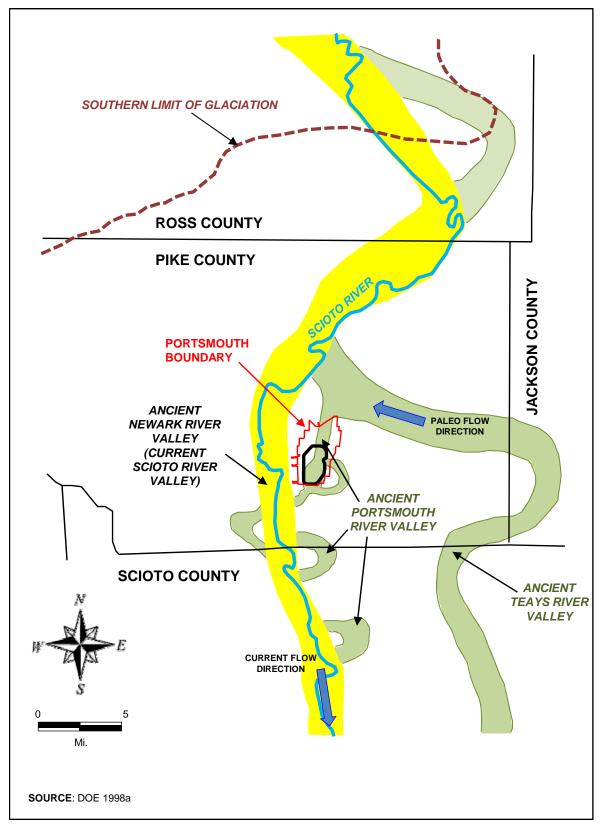


Figure 5. Location of Ancestral River Systems in Relation to PORTS

The Kentucky River Fault Zone and the Lexington Fault System (formerly the Bryant Station-Hickman Creek Fault) are located farther away from PORTS, the latter fault being approximately 60 miles southwest. These faults bound the southern part of a north-northeast trending area of seismicity in central and eastern Ohio. Soil testing for PORTS indicated that the potential for earthquake-induced soil liquefaction at PORTS is relatively low (Law Engineering 1978). The potential for soil-structure interaction (ground motion magnification) is also slight.

2.6 PORTS AND AREA GROUNDWATER HYDROLOGY

The groundwater flow system at PORTS includes the water-bearing units of Berea sandstone and unconsolidated Gallia sand and gravel, along with the aquitards of Sunbury shale and unconsolidated Minford clay and silt. The basal portion of the Minford is generally grouped with the Gallia to form the uppermost and primary water-bearing unit at the facility.

Groundwater recharge and discharge areas at PORTS include both natural and man-made recharge and discharge areas. Natural recharge to the groundwater flow system comes mainly from precipitation, although land use and the presence of the thick upper Minford clay deposits and the Sunbury shale effectively reduce recharge to underlying units. Discharge of groundwater to the surface occurs primarily along streams that transect PORTS. Groundwater recharge and discharge areas also are influenced by man-made features, including the storm sewer system, sanitary sewer system, recirculating cooling water system, water lines, and building sumps. Groundwater flow at the site is significantly affected by the X-700 Chemical Cleaning Facility and X-705 Decontamination Building basement dewatering, extraction wells in the vicinity of X-231B and X-701B, and the groundwater interceptor trenches at X-749 and X-701B.

Four creeks, or drainage channels, drain the facility: Little Beaver Creek drains the eastern and northern portion, Big Run Creek and the Southwestern Drainage Ditch drain the southeastern and southwestern portions, and the West Drainage Ditch drains the western portion. The four creeks and drainage ditches dissect the unconsolidated Minford and Gallia members, bedrock-forming Sunbury shale (where present), and Berea sandstone, resulting in the discharge of groundwater to them. Groundwater flow beneath PORTS is generally toward one of these discharge locations, and groundwater divides form between the discharge locations along areas of highest groundwater elevation.

Groundwater flow at PORTS, at least within the Gallia, can generally be divided into four separate flow regions, or quadrants. Groundwater divides provide the basis for separation of PORTS into quadrants. The groundwater flow divides and general directions of groundwater flow for the Gallia and Berea aquifers are illustrated in Figures 6 and 7, respectively. The groundwater divides generally coincide with topographic highs along the center of the industrial complex (from south to north) and subtle topographic highs radiating outward and separating the predominant surface water features draining the facility. Locations of the flow divides may migrate because of small differences in response to seasonal changes in precipitation and groundwater recharge. In general, groundwater approaches the streams or creeks. Vertical movement of groundwater between the Gallia and Berea is, in general, downward in upland areas of recharge and upward in areas of discharge near streams.

The site-wide median depth to water in the Gallia was approximately 15 ft in 2009. Many factors can affect water table depth at a particular location, including seasonal variations from increased or decreased precipitation, surface coverings such as buildings and parking lots, topography at the location, land use, thickness of the upper clay portion of the Minford member, presence of storm drains, and operation of groundwater remediation processes (e.g., phytoremediation, extraction wells, sumps, and French drains).

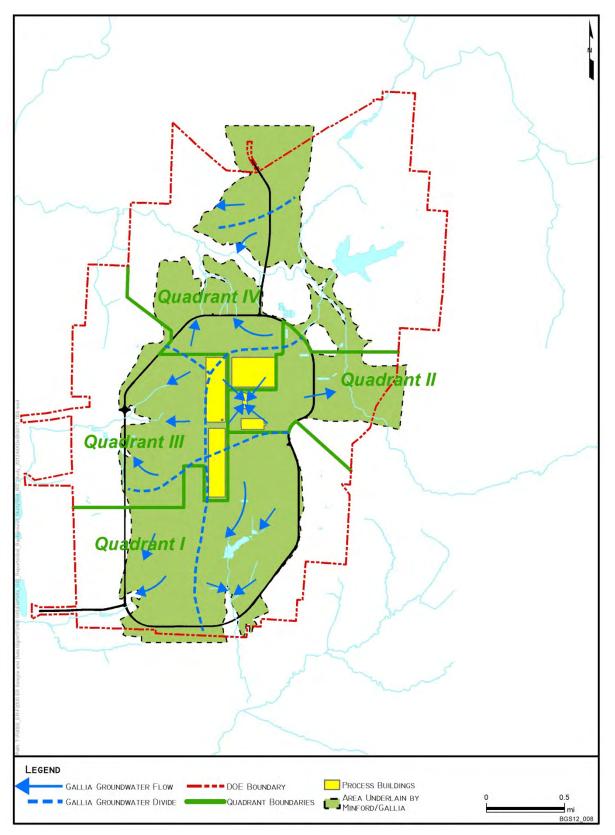


Figure 6. Generalized Groundwater Divides and Flow Directions for the Gallia

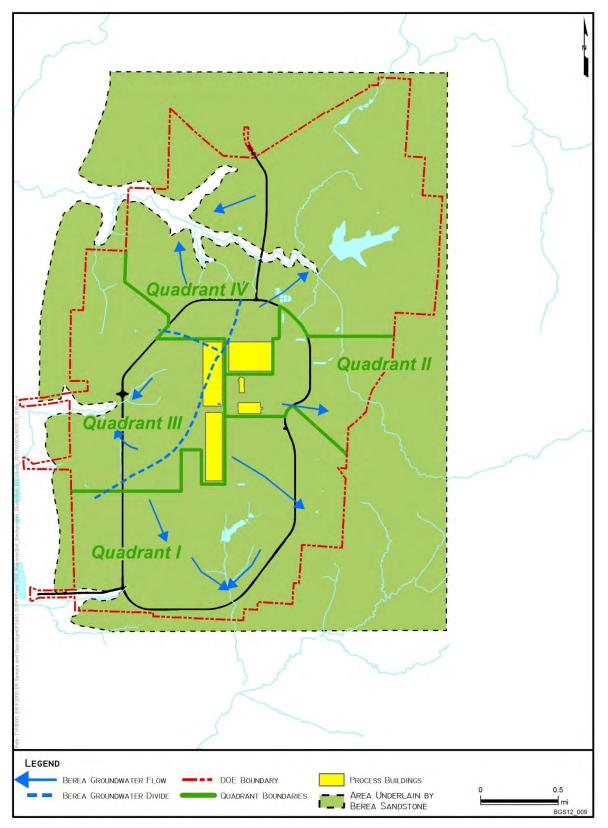


Figure 7. Generalized Groundwater Divides and Flow Directions for the Berea Sandstone

Based on water levels reported in the 2009 groundwater monitoring report (DOE 2010), the water table in the Minford is usually slightly higher than the potentiometric level of the Gallia aquifer.

Groundwater is a supply source for domestic, municipal, and industrial water uses in the vicinity of PORTS. Most municipal and industrial water supplies in Pike County are developed from the Scioto River Valley buried aquifer. Groundwater directly beneath PORTS is not used as a domestic, municipal, or industrial water supply. Domestic water supplies are obtained from unconsolidated deposits in the preglacial buried valley aquifer, major tributaries of the Scioto River, or fractured bedrock encountered during drilling. Domestic wells in the immediate vicinity of PORTS obtain groundwater from the Berea sandstone (Bechtel Jacobs Company LLC 2003).

This page is intentionally left blank.

3. DEFINITION AND SELECTION OF BACKGROUND SAMPLING AREAS

Ten study areas (Figure 8 and Plate 1, Appendix A) were identified as potential soil background sampling locations. The background areas in this study were selected and sampled using the following fundamental criteria:

- Similar environment of deposition and geologic source material as found at PORTS
- Unimpacted by site operations where the geologic formations of interest are present
- In reasonable proximity to PORTS.

The selection of soil background sampling locations included locations in the Scioto River Valley that are in the same depositional environment as the DOE pump houses and pipe lines. Other selected soil background sampling locations included additional off-site areas that have similar geologic source areas as PORTS and are unaffected by PORTS or other significant sources of contamination. These additional off-site areas were selected for the sampling of upwind, upland deposits as well as deposits representative of soils observed at PORTS, including the Minford silt and clay and the Gallia sand and gravel. The upland areas on the western side of the DOE reservation were selected for soil background sample collection because prevailing winds from the west (see Figure 1) may have contributed to the deposition of radiological constituents originating from historical nuclear testing in the western United States. Boundary conditions specific to the soil background study include the consideration that some sampling locations may be limited by access to private properties.

The background sample populations targeted in this study include: (1) upwind, upland surface soils, (2) non-site-impacted Minford soils, (3) non-site-impacted Gallia deposits, and (4) Scioto River Valley soils. To obtain representative samples of upwind, upland surface soils, sample locations were selected in Areas H, I, and J (as shown on Plate 1, Appendix A). To obtain representative samples of off-site Minford soils and Gallia deposits, sample locations were selected in Areas D, E, F, and G; and to obtain representative samples of Scioto River Valley soils, sample locations were selected in Areas A, B, and C.

According to the soil survey of Pike County, 22 soil types occur within the PORTS property boundary. The predominant soil type at the site is Omulga Silt Loam (U.S. Department of Agriculture 1990). Most of the area within the vicinity of PORTS is classified as Urbanland-Omulga complex, which consists of urban land and a deep, nearly level, gently sloping, moderately well-drained Omulga soil in preglacial valleys. The urban land is covered by roads, parking lots, buildings, and railroads. Detailed pedologic descriptions of the varying soil types in the background study areas can be found in the *Preliminary Soil Background Study Sampling and Analysis Report at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio.*

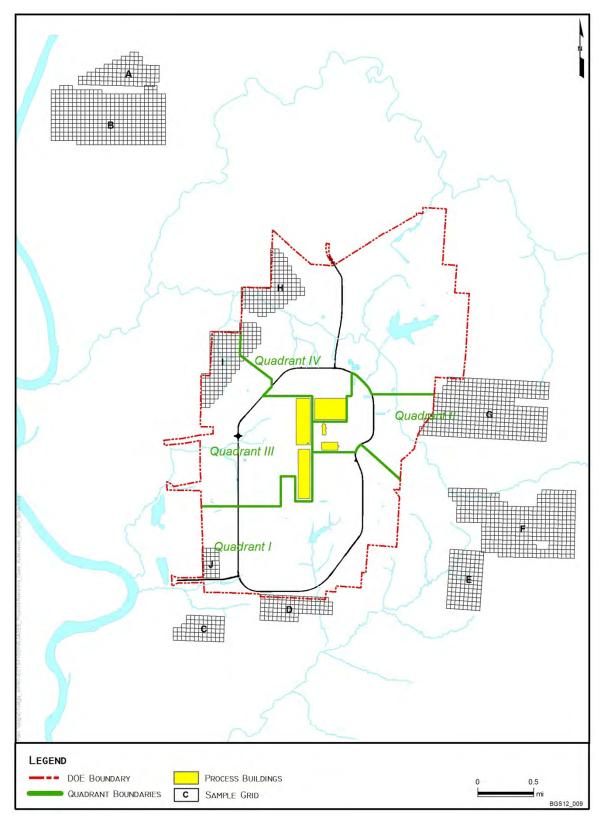


Figure 8. Background Study Areas, A through J

4. INVESTIGATION APPROACH

The investigative approach utilized during this background investigation followed the approved SAP. The SAP specified that the investigation would entail sampling designed to characterize concentrations of naturally occurring or ubiquitous anthropogenic constituents in surface and subsurface soils in and around PORTS. To ensure that these requirements were met, the background areas in this study were selected using criteria described in Section 3, and sampled for radionuclides, metals, SVOCs, PAHs, PCBs, pesticides, and herbicides at various target depths.

4.1 FIELD DETERMINATION OF BACKGROUND SAMPLING LOCATIONS

The previous soil background studies and PORTS site-specific soil and groundwater contaminant data were reviewed and analyzed to help guide selection of new background sampling areas/locations. Published regional geology and hydrogeology source books (U.S. Geological Survey and Ohio Geologic Survey bulletins and soil surveys) were reviewed to assist with identifying background sampling locations in areas of similar geologic material deposition. Currently, DOE has Land Owner Parcel Agreements (parcels) that allow DOE permission to collect samples from a parcel of land for analytical characterization. A number of these off-site parcels met the criteria for inclusion in the soil background study. Plate 1 in Appendix A shows the approved background sampling areas/locations on and around the DOE reservation.

The western boundary of the DOE reservation was chosen for on-site soil background data collection because it is representative of the soil types on the ridges overlooking the facilities within Perimeter Road and has not been disturbed by site activities. As this area is undisturbed, it is also the best opportunity to collect samples to evaluate radiological fallout from historical atmospheric nuclear testing.

4.2 DATA COLLECTION, REVIEW, ANALYSIS AND QUALITY ASSURANCE

During the field sampling program, soil samples were collected for chemical analysis to meet the goals identified during the DQO workshop in July 2011. The methodology for collecting a representative number of soil samples in a specific area was discussed during the DQO workshop with Ohio EPA and was based on guidance from EPA and Ohio EPA. The SAP provided the methodology for determining the number of samples collected. The targeted soil populations listed in the Ohio EPA-approved SAP were a guide for sample collection during the field sampling program. The "cemented" Gallia proposed for sampling in the SAP was not encountered during the field sampling program. Soil samples were collected from the following formations and depths:

- Unsaturated Minford clay surface soils (0 to 1 ft bgs)
- Unsaturated Minford clay (1 to 16 ft bgs)
- Saturated Minford clay/silt (16 to 30 ft bgs, immediately above the Minford/Gallia interface)
- Saturated Gallia deposits (variable from 14 to 90 ft bgs, immediately below the Minford clay/silt)
- Surface and subsurface soils in the unconsolidated, unsaturated Scioto River Valley immediately west of the DOE reservation
- Surface soils in upland area along western on-site boundary (0 to 1 ft bgs).

Soils were collected continuously from all borings and described from 0 to 10 ft bgs in Areas A, B, and C. Samples were collected continuously from the ground surface to bedrock in borings from Areas D, E, F, and G. The maximum depth to bedrock was 90 ft bgs. The soil samples were collected using direct-push technology, sometimes in conjunction with standard hollow-stem auger drilling and split-spoon sampling techniques, and in accordance with the approved SAP. During drilling, all soil samples were described and logged in the field by an experienced on-site geologist at PORTS. Soils were collected from 0 to 1 ft bgs in Areas H, I, and J. No bedrock samples were submitted for laboratory analysis. Tables detailing each sampled soil interval in each background area are presented in Appendix B. Geologic cross-sections and soil boring lithologic logs are included in Appendix C. Soil boring locations at each sample area are shown in Appendix D.

4.2.1 Areas A, B, and C Soil Sampling

Soils encountered in Areas A and B are well-drained soils formed in alluvium on floodplains and in glacial outwash on terraces. The soils are well suited for woodlands, but have typically been cleared of trees and are used as croplands. Flooding in these areas is common, particularly in late winter and early spring. Representative surface and subsurface soil samples of the Scioto River Valley floodplain were collected in Areas A and B west of PORTS (Figures D.1, D.2 and D.3 in Appendix D) to evaluate conditions in the area of the floodplain including property easements or leased property where utility lines that transfer water from the Scioto River to the plant site are present. The *Preliminary Soil Background Study Sampling and Analysis Report* concluded that soil samples in Areas A and B provide data representative of soil background conditions for property in the Scioto Valley floodplain, including easements and DOE-leased property.

Five soil borings were advanced to 10 ft bgs in Area A (BKGDPT-01 through BKGDPT-05), and 20 soil borings were advanced to 10 ft bgs in Area B (BKGDPT-06 through BKGDPT-25). Five surface soil samples and five subsurface samples were collected from the five borings in Area A, and 21 surface soil samples and 20 subsurface samples were collected from the 20 borings in Area B.

Soils encountered in Area C are characterized as well-drained soils that formed on glacial outwash terraces. This area has been mainly cleared of trees and is used for cultivated crops and pasture land. Five soil borings were advanced to 10 ft bgs in Area C, and five surface soil and subsurface samples were collected from these borings.

A summary of the sampling intervals for the borings in Areas A, B, and C is provided in Appendix B.

4.2.2 Areas D, E, F, and G Soil Sampling

Soils encountered in Areas D, E, and F are primarily characterized as well-drained soils that formed in loess, colluviums, and old alluvium in preglacial valleys. These areas are mainly used as cropland and pastureland. Representative samples of surface soil, the unsaturated Minford, and the Gallia were collected in Areas D, E, and F. Representative samples of the saturated Minford were collected in Areas E and F. Soils encountered in Area G are characterized as well-drained to moderately well-drained soil that forms on floodplains in narrow valleys or is present on knolls and side slopes adjacent to drainage ways in pre-glacial valleys. Area G is mainly used as cropland and pasture land. Representative samples of surface soil, the unsaturated Minford, and the Gallia were collected in Area G.

Three soil borings (BKGDPT-31 through BKGDPT-33) were advanced to bedrock in Area D, south of PORTS (Figures D.4 and D.5 in Appendix D). The depth to bedrock in these borings ranged from 6 to 16.5 ft bgs. A surface soil sample and an unsaturated Minford soil sample were sampled from each of the

three borings. A sample of the Gallia was collected from one of the borings, but the Gallia was not encountered in the other two borings. A summary of the sampling intervals for the borings is presented in Appendix B, and a geologic cross-section of the subsurface is presented on Figure C.1.2 of Appendix C.

Four soil borings (BKGDPT-34 through BKGDPT-37) were advanced to bedrock in Area E, east of PORTS (Figure D.6 in Appendix D). The depth to bedrock in these borings ranged from 32 to 52.5 ft bgs. Surface soil, unsaturated and saturated Minford and Gallia samples were collected in all four borings. The depths of the Minford and Gallia sampling intervals are summarized in Appendix B, and a geologic cross-section of the subsurface is presented in Figure C.1.3 of Appendix C.

Ten soil borings (BKGDPT-38 through BKGDPT-47) were advanced to bedrock in Area F, east of PORTS (Figures D.7, D.8, and D.9 in Appendix D). Depths of the borings ranged from 16.5 to 89 ft bgs. Soil samples collected from the surface soil, unsaturated and saturated Minford and Gallia were submitted for analysis. The Gallia was not encountered in three borings. A summary of the sampling intervals for Area F borings is presented in Appendix B and a geologic cross-section of the subsurface is presented on Figures C.1.4 and C.1.5 of Appendix C.

Thirteen soil borings (BKGDPT-48 through BKGDPT-60) were advanced in Area G, east of PORTS (Figure D.10 in Appendix D). Bedrock was encountered at depths ranging from 17.5 to 83.5 ft bgs. Soil samples collected from the surface soil, unsaturated and saturated Minford and Gallia were submitted for analysis. The Gallia was not encountered in boring BKGDPT-52. A summary of the sampling intervals for each encountered unit is presented in Appendix B, and a geologic cross-section of the subsurface is presented on Figures C.1.6, C.1.7, and C.1.8 of Appendix C.

Like the PORTS site, background study areas D, E, F, and G are located within the valley footprint of the ancient Portsmouth River. The *Preliminary Soil Background Study Sampling and Analysis Report* concluded that soil samples from Areas D, E, F, and G provide background data representative of surface, and unsaturated and saturated Minford and Gallia deposits observed on site at PORTS. Cross-sections created using lithologic data collected from Areas D, E, F, and G, and presented in Appendix C, display profiles of the Minford and Gallia deposits that are similar to profiles of subsurface materials at PORTS. On these cross-sections, the Gallia sand and gravel deposits are shown to lay directly above the shale bedrock, and the Gallia is overlain by Minford clays and silts. This stratigraphy is the same as observed at PORTS supports the conclusion that similar depositional environments existed at PORTS and in Areas D, E, F, and G.

4.2.3 Areas H, I, and J Soil Sampling

Soils encountered in Areas H and I are moderately well-drained and are associated with upland areas and elevated slopes, including hillsides, shoulder slopes and higher parts of ridge-tops. Areas H and I are mainly wooded. Soils encountered in Area J are moderately well-drained and were formed on slightly dissected bluffs that are pre-glacial valley remnants along the Scioto River. Area J is partly wooded with areas used for cropland or pasture land.

According to the SAP, background soil samples were collected in the western area of the DOE reservation (Areas H, I, and J) because it is representative of the soil types on the ridges overlooking the facilities within Perimeter Road and has not been disturbed by site activities. Additionally, this area was selected for background sample collection to evaluate any radiological contribution from historical nuclear testing in the western United States as determined by evaluation of recent and historical wind rose diagrams (DOE 2012a).

To evaluate undisturbed surface conditions in upland areas, as well as potential impact from radiological fallout, surface soil samples were collected in Areas H, I, and J (Figures D.10, D.11, and D.12, respectively, in Appendix D). A total of 60 on-site samples (25 in Area H, 30 in Area I, and five in Area J) were collected with a stainless-steel hand auger from 0 to 1 ft bgs. Because surface soil deposits from Areas H, I, and J are from upland areas, they are not expected to be fully comparable to the surface soils that are found beneath the main PORTS Facility.

Table 1 summarizes the representative soil deposits at each background area as well as the number of soil sampling locations selected at each area.

G N A	5	Number of Soil Sampling
Soil Area	Description	Locations
А	Scioto River floodplain deposits west of PORTS	5
В	Scioto River floodplain deposits west of PORTS	20
С	Scioto River floodplain deposits west of PORTS	5
D	Lacustrine and fluvial deposits south of PORTS	3
Е	Lacustrine and fluvial deposits southeast of PORTS	4
F	Lacustrine and fluvial deposits southeast of PORTS	10
G	Lacustrine and fluvial deposits east of PORTS	13
Н	Lacustrine and fluvial deposits along western on-site boundary of PORTS (uplands)	25
I	Lacustrine and fluvial deposits along western on-site boundary of PORTS (uplands)	30
J	Lacustrine and fluvial deposits along western on-site boundary of PORTS (uplands)	5

Table 1. Soil Background Areas

PORTS = Portsmouth Gaseous Diffusion Plant

4.3 AUDITS OF FIELD ACTIVITIES

On May 30, 2012, a field audit was conducted to evaluate the soil sampling activities per the procedures referenced in the approved SAP (Table 1 of the SAP). This audit was performed by an independent Quality Assurance Officer auditor, and the results of this audit are presented in Appendix E. The field supervisor also performed daily surveillances of field activities and reviewed all documentation to ensure completeness and defensibility of the sampling data. Routine surveillances were conducted for all sampling, drilling, chain-of-custody, rinsate blank collection, instrument calibration, and sample bottle-handling activities, and observations were recorded in the project field log books. There were no issues identified during the audit and surveillance activities.

4.4 DATA VERIFICATION AND VALIDATION

The data validation process is an independent, systematic process for evaluating data against previously established criteria to provide confirmation that the data are of sufficient technical quality to support a decision-making process. Validation processes review field measurements, sampling and handling procedures, laboratory analyses and reporting limits, and other quality indicators associated with the data to determine whether the analytical results meet the precision, accuracy, completeness, and comparability requirements established in the DQOs. Data qualifiers are assigned to the analytical data to alert the user to deviations from quality assurance/quality control requirements. The level of quality required depends

upon the intended use of the data. The data for this study were collected, analyzed, and reported at the highest possible analytical support level (ASL), as indicated in the SAP.

The analytical requirements for the soil background study are identified in Table 2 of the SAP. The following subsections (data verification, data validation, and data observations) describe the processes and methodology employed to prepare the soil background study data for statistical evaluation.

4.4.1 Data Verification

All data associated with the soil background study went through a verification process, as specified in Section 5.4 of the SAP. This verification process was performed to ensure that the laboratories analyzed samples and provided data per project requirements identified in the SAP and laboratory statements of work. All data were analyzed at ASL 4 (i.e., full data deliverable and full analytical quality control, 1/20 or 1/batch) as required by the SAP.

4.4.2 Data Validation

Per the SAP, a minimum of 10 percent validation was performed on a randomly selected data set at Validation Support Level D. Because radiological constituents are primary constituents of concern at PORTS, all radiological data (100 percent) were validated. Validation qualifiers have been assigned to all soil background study data that have been validated. Data that have not been validated have been assigned a qualifier of XV.

4.4.3 Data Observations

Analyses for the background samples were performed at the Portsmouth Analytical Laboratory (PAL) and General Engineering Laboratories (GEL). The majority of the analyses were performed at GEL; however, a subset of the metals analyses was performed at PAL (on site). The following observations were identified during the data verification, validation, or reduction process:

- A total of 120 locations for the soil background study were sampled, yielding approximately 152,000 analytical results. Documented field changes of field locations are presented in Appendix F.
- Uranium analysis by inductively-coupled plasma/mass spectrometry (ICP/MS) was performed at PAL and GEL. Both laboratories used the appropriate analytical method (as per the SAP); however, PAL used hydrofluoric acid and nitric acid to digest the sample, and GEL used only nitric acid. The method used by PAL digests more of the silicate minerals to yield higher uranium values than the method used by GEL. Because two digestion methods were used by the laboratories, the method used by GEL (SW-846 Method 3050B) was selected for use in the background data evaluation. The method selection and justification is discussed in Section 5.1.3.

This page is intentionally left blank.

5. DATA EVALUATION

A multi-step data evaluation process used for determining background concentrations for soils at PORTS is detailed in this section. Initial formulation of the background data set is discussed followed by an explanation of the grouping of the background soil data from different sampling areas and depths to create data sets that are comparable. The statistical methodology for calculating background concentrations is then presented.

5.1 FORMULATION OF A COMPREHENSIVE SOIL BACKGROUND DATA SET

Prior to performing statistical and graphical analysis of the soil background data, a soil background data set was created to address the following data issues and concerns. Detailed discussions of these items are presented in the following sections of this report.

- Selection of background data retained for use in statistical analysis
- Selection of duplicate sample results
- Review of uranium digestion methodologies
- Calculation of dry weight concentrations
- Total uranium concentrations unit conversion
- Preliminary data reduction.

Resolution of these items resulted in the compilation of a soil background data set for calculating background concentrations for naturally occurring radionuclides and metals at PORTS.

5.1.1 Soil Background Constituents

Soil background samples were submitted for laboratory analysis of radionuclides, metals, SVOCs, PAHs, PCBs, pesticides, and herbicides. As previously stated, it was decided during meetings with Ohio EPA that this report will only present background concentrations for metals and radionuclides. Metals and radionuclides occur naturally in the environment and are present at background levels, allowing comparison of PORTS site conditions to background conditions in areas that are unimpacted by facility operations.

Although background concentrations are not established for organic chemicals, the results for these constituents were considered during the assessment of the validity of the proposed background locations to confirm that locations are unaffected by anthropogenic sources. Two background sampling locations in Area H, BKG-HA12 and BKG-HA13, exhibited high levels of PAHs, indicating that these two locations are likely not representative of surface soil background conditions. Thus, sample results from these two locations were excluded from soil background evaluations.

In the unsaturated Minford, technetium-99 was detected at one sample location, BKG-DPT57, in Area G at a concentration of 0.428 pCi/g dry weight. Technetium-99 is an anthropogenic compound and was only detected in one sample; therefore, a background value was not established for this constituent.

5.1.2 Selection of Duplicate Sample Results

Per the SAP, field duplicate samples were collected at the soil background areas. During formulation of the background data sets, a review of duplicate sample results was performed to select only one result for each constituent at a single sample location and depth. Duplicate analysis selection for the final data set adhered to the following criteria:

- If the constituent was detected in both the original and duplicate samples, the greater of the two values was selected.
- If the constituent was detected in either the original or duplicate sample, the detected value was selected.
- If the constituent was not detected in either the original or duplicate sample, the sample result with the lowest reporting limit was selected.

Following data evaluation using these criteria, the final background area soil data set contains almost 90 duplicate sample results.

5.1.3 Evaluation of Digestion Method for Metal Samples

During soil analysis for uranium metal, two different laboratories were used, and while both laboratories used ICP/MS, they used two different digestion methods (both EPA-approved methods). Ohio EPA suggested that a single digestion method be selected to represent site background for uranium during the comment period on the preliminary draft results report. The PORTS digestion method selected to represent site background for uranium metal is SW-846 Method 3050B. Method 3050B primarily uses a nitric acid digestion, consistent with the DOE Environmental Measurements Laboratory HASL-300 methodology for digestion of environmental samples for isotopic uranium analysis. Method 3050B states: "While this method is not a total digestion technique for most samples, it is a very strong acid digestion that will dissolve almost all elements that could become 'environmentally available." Based on the fact that this digestion releases uranium that would be environmentally available, it best represents what a receptor would be exposed to from contaminated soils, sediments or solids. For these reasons, this method will produce analytical results which are more appropriate and representative for use in decision-making (risk assessments, etc.) for environmental cleanup. DOE has therefore selected the nitric acid digestion method to represent both uranium metal and isotopic uranium for site background and will utilize this method for data generated in support of the Environmental Remediation Program.

5.1.4 Calculation of Dry Weight Concentrations

Sampling data for this background study were analyzed and reported by the laboratory as wet weight concentrations. To be comparable to historic and planned RFI sampling and to results of future remediation and exposure assessment data, all background data collected for this study were converted to dry weight concentrations. This is consistent with Ohio EPA guidance (Ohio EPA 2012a) concerning wet weight versus dry weight sample analysis that states: "Reporting of soil and or sediment data for use in a human health risk assessment in dry weight is necessary to ensure consistency between the reporting units for the contaminant levels in the environmental medium of concern (soil or sediment) and the exposure factor intake rates." To perform the conversion from wet weight to dry weight concentration, the wet weight concentration and the percent moisture in the sample as provided by the analytical laboratory report were used in the following equation:

$$C_{\rm D} = C_{\rm W} / (100 - \% \text{ Moisture}) \times 100$$

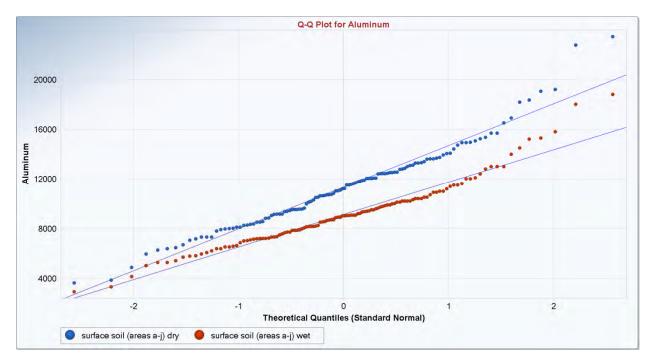
Where: C_D = concentration corrected for dry weight C_W = wet weight concentration.

All of the soil background sample analytical results and detection limits were converted from wet weight concentrations to dry weight concentrations. The percent moisture values for the samples ranged from 3.7 percent to 37.3 percent, with an average of 16.7 percent. Calculated dry weight concentrations are greater than the wet weight concentrations as seen in the example plots of dry weight results versus wet weight results for aluminum and barium from Areas A through J (Figure 9). These plots represent the typical relationship observed between dry weight and wet weight concentrations for soil background samples collected at PORTS.

There were no percent moisture measurements available for two Gallia samples, so dry weight concentrations were not determined for these sample results. Analytical results for these two Gallia samples were removed from the final background data set because they are not comparable to converted dry weight concentrations. Removal of these two samples from the data set does not impact the use of the remaining data or the validity of the statistics derived from the remaining data.

5.1.5 Total Uranium Concentration Conversion

As stated previously, DOE has selected the nitric acid digestion method to represent both uranium metal and isotopic uranium for site background and will utilize this method for data generated in support the Environmental Remediation Program. However, a sample preparation of drying and homogenizing was added to this method during the analysis of the isotopic uranium in the background study, but was not used for the uranium metals analyses. To account for this sample preparation step of drying and homogenization, and to be consistent with comparison of site background values for uranium metal with site sample data, the background values for uranium-238 were converted to units of mg/kg and used to determine background values for uranium metal. This conversion is appropriate to establish site background values for uranium metal because it accounts for the fact that at natural background levels (as in the background sampling areas), uranium-238 represents nearly all (99.32 percent) of the total uranium present. Thus, this conversion method provides an accurate means of calculating the concentration of uranium metal in the background soil samples.


Conversion of uranium-238 results to total uranium concentrations (mg/kg) was completed by multiplying the uranium-238 dry weight concentrations (pCi/g) by a conversion factor of 2.98. Derived values using this approach are consistent with previously reported concentrations for total uranium at PORTS. Total uranium concentrations in units of mg/kg are listed with the metals results on the background tables included in this report.

5.1.6 Preliminary Data Reduction

Per standard practice and in-line with data review guidance (EPA 2013a), the following three steps were performed on the compiled background data set prior to statistical analysis:

- 1. Rejected data (qualified with an "R" during validation) were removed.
- 2. Non-detected chemical results were replaced with the associated detection limit. (Note: Further discussion on the treatment of non-detected results to determine background values is included in Section 5.3.)
- 3. Radiochemical results which were reported at less than their sample-specific minimum detectable concentration or flagged "U" were replaced with the sample-specific minimum detectable concentration.

The data set modified by these data reduction steps is included as the ProUCL input data files presented in Appendix G.

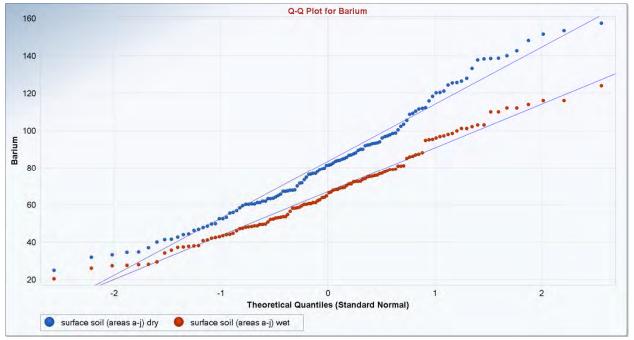


Figure 9. Dry Weight versus Wet Weight Graphs: Surface Soil (0 to 1 ft) Areas A through J Aluminum and Barium

5.2 DATA GROUPING EVALUATION

One objective of the initial review of the background soil data was to establish the grouping of the data from different sampling areas and depths to create data sets that are comparable and representative of the various soil formations observed at PORTS, in nearby upland areas and at locations within the floodplain area of the Scioto River Valley. Data sets comprised of comparable background data were then used to calculate background concentrations for naturally occurring metals and radionuclides at PORTS.

To establish comparable background data sets, multiple lines of evidence were reviewed, including the elements listed in Table 2. These evaluation elements are listed in the order in which they were performed and reviewed. Results of each of the evaluations listed in Table 2 were then used to define the final data groupings.

Evaluation Element	Purpose
Geology at PORTS	• Assess geology to identify comparable lithologic formations within background area data sets
Preliminary Data Statistics	• Aid in the development of further statistical tests
Quantile-Quantile	• Evaluate the normal, linear distribution of detected values
Plots	Visually identify potential outliers
	• Assess the presence of more than a single population within a data set
Outlier Test	• Evaluate the data sets for sampling, laboratory, or reporting error in the data to explain the presence of potential outliers
	• Identify observations within a data set needing further investigation for being a possible outlier using Rosner and Dixon outlier tests and regression analysis scatter plots
	• Using the Order of Magnitude test, determine if an observation is an outlier and should be removed from the final PORTS background data set
Goodness of Fit Test	• Determine the most representative distribution (i.e., normal, lognormal, or gamma) of each study area data set by assessing the correlation values for each distribution
Hypothesis Test	• Compare data from different depths within a single background study area to determine if depth intervals are comparable

Table 2. Evaluation of Background Area Data Sets

PORTS = Portsmouth Gaseous Diffusion Plant

Statistical tests were performed primarily by using EPA's ProUCL software (EPA 2013b). The use of ProUCL is first described below followed by an expanded description of the purpose and application of the statistical tests, along with a brief explanation of test results as they apply to the data grouping evaluation.

5.2.1 ProUCL Software

Statistical and graphical evaluation of data for the purpose of determining background soil concentrations was performed using EPA's ProUCL software. ProUCL was developed to compute estimates of data population parameters (e.g., means, percentiles, etc.) and decision-making statistics (i.e., UTLs) to help ensure that correct decisions are made which are cost-effective and protective of human health and the environment. The background area data sets were formatted for input to ProUCL per the software's specific requirements.

In accordance with Ohio and EPA guidance (Ohio EPA 2004, EPA 2013b), as well as analysis provided in Gilbert (1987), a minimum of 12 samples per data set were used for statistical evaluations in this background study.

5.2.2 Geologic Justification for Background Soil Groupings

Knowledge about the geology at PORTS, comparable formations, sample areas, and depth, as discussed in Sections 2 and 4.2, were used to establish initial study groups. Statistical tests examined and compared the background data set to test and confirm the initial study areas, as set forth in the work plan, to establish the final data groupings. The following are the initial study areas:

- Unsaturated Minford clay surface soils, Areas D, E, F, and G (0 to 1 ft bgs)
- Surface soils, Areas D, E, F, and G (0 to 1 ft bgs)
- Unsaturated Minford clay, Areas D, E, F, and G (1 to 10 ft bgs)
- Saturated Minford clay/silt, Areas E, F, and G (16 to 30 ft bgs)
- Saturated Gallia deposits, Areas D, E, F, and G (variable from 14 to 90 ft bgs)
- Scioto River Valley surface soils, Areas A, B, and C (0 to 1 ft bgs)
- Scioto River Valley subsurface soils, Areas A, B, and C (1 to 10 ft bgs)
- Upland surface soils, Areas H, I, and J (0 to 1 ft bgs).

Representative surface and subsurface soil samples of the Scioto River Valley were expected to be collected in Area C; however, review of the lithologic data from the background study areas indicates that soil from background Area C is not representative of the same depositional conditions as observed in other background areas (i.e., Areas A and B). Quantile-quantile (Q-Q) plots, as described below, were used to further assess the representativeness of Area C as part of the background data set.

5.2.3 Preliminary Data Statistics

For the initial background soil data grouping evaluation, ProUCL was used to generate general statistics (e.g., frequency of detection, means, minimum and maximum detected values, standard deviations, etc.) to aid in the development of further statistical tests. The statistics were generated both including and excluding non-detected results.

5.2.4 Quantile-quantile Plots

Exploratory Q-Q plots described in this report were used to study the normal, linear distribution of detected values, identify potential outliers and assess a data set for the presence of more than a single population. Q-Q plots were generated by choosing not to display the non-detected results. For each parameter within a study area, a Q-Q plot was generated to evaluate the normal, linear correlation of the data set. An example of a Q-Q plot for aluminum in Areas D, E, F, and G in unsaturated Minford clay surface soils (0 to 1 ft bgs) is shown in Figure 10.

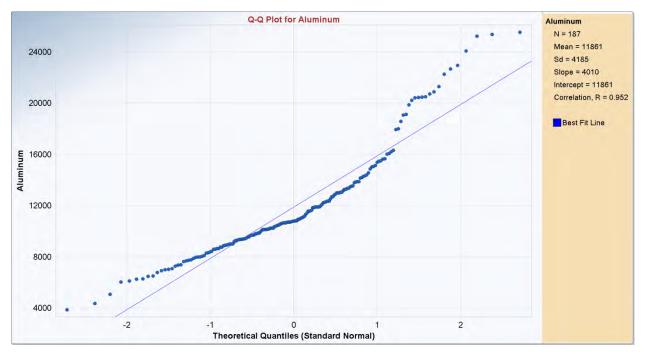


Figure 10. Q-Q Plot Example, Aluminum in Areas D, E, F, and G, Unsaturated Minford Clay Surface Soils (0 to 1 ft bgs)

The correlation value (i.e., R value) listed to the right of the Q-Q plot is reported assuming there is a normal, linear relationship between the data points. Correlation values range from zero to one, with one representing a linear relationship. For each study area tested, the correlation value of the data was recorded in Tables 3 through 7 in the columns identified as normal. The values recorded, which are colorized according to the correlation value range, are not actual sample result values, but the reported correlation value. Average correlation values for the metal and radionuclide parameters are provided for each comparison grouping column as a generalized metric of the overall correlation of the data set.

Additionally, Q-Q plots were used to graphically assess potential outliers. On a normal Q-Q plot, observations that are well separated from the main bulk of the data typically represent a data result needing further investigation for being a possible outlier. Significant shifts and breaks within the data pattern of a normal Q-Q plot are indications of more than a single population of data.

After reviewing the lithologic data from the background study areas, it was determined that soil from background Area C is not representative of the same depositional conditions as observed in other background areas. For surface soils (0 to 1 ft bgs), Q-Q plots were used to compare Area C results to the results from Areas A and B and Areas D, E, F, and G to confirm the conclusion from the lithologic data review. For each metal and radionuclide parameter, a Q-Q plot was generated that displayed each data set as a separate population. An example is provided in Figure 11. Based on the resulting Q-Q plots, it was determined that the three evaluated data groupings, (1) Areas A and B, (2) Area C, and (3) Areas D, E, F, and G, are three separate populations and that Area C is not representative of the same depositional conditions as observed in other background areas.

			Compariso	on Grouping			Areas AB Hypothesis Test
Constituent	Areas AB 0-1 ft bgs (normal)	Areas AB 0-1 ft bgs (adjusted)	Areas AB 1-10 ft bgs (normal)	Areas AB 1-10 ft bgs (adjusted)	Areas AB 0-10 ft bgs (normal)	Areas AB 0-10 ft bgs (adjusted)	0-1 ft bgs = 1-10 ft bgs
Vietals							
Aluminum	0.99	0.99	0.88	0.96	0.97	0.97	N
Antimony	0.97	0.98	0.98	0.98	0.99	0.99	N
Arsenic	0.98	0.98	0.99	0.99	0.99	0.99	N
Barium	0.97	0.97	0.91	0.98	0.96	0.96	N
Beryllium	0.97	0.97	0.96	0.99	0.98	0.98	N
Cadmium	0.99	0.98	0.92	0.97	0.99	0.98	N
Calcium	0.73	0.95	0.97	0.97	0.88	0.96	N
Chromium	0.99	0.99	0.95	0.99	0.99	0.99	N
Cobalt	0.98	0.98	0.91	0.97	0.98	0.98	N
Copper	0.97	0.97	0.94	0.98	0.98	0.99	N
Iron	0.98	0.98	0.95	0.98	0.98	0.98	N
Lead	0.97	0.97	0.94	0.98	0.97	0.97	N
Lithium	0.95	0.98	0.95	0.98	0.98	0.99	N
Magnesium	0.81	0.92	0.97	0.97	0.88	0.98	N
Manganese	0.98	0.98	0.87	0.95	0.96	0.98	N
Mercury	0.96	0.96	NA	NA	0.94	0.94	N
Nickel	0.99	0.99	0.93	0.98	0.98	0.98 0.97	N
Potassium Selenium	0.97	0.98	0.91	0.96	0.97		N Y
Silver	0.98 0.95	0.98	0.98	0.99	0.92	0.98 0.95	Y
Sodium	0.95	0.93	0.97	0.98	0.93	0.93	N I
Thallium	0.90	0.98	0.98	0.98	0.93	0.93	N
Total Uranium	0.99	0.99	0.95	0.98	0.98	0.99	N
Vanadium	0.99	0.99	0.95	0.98	0.98	0.98	N
Zinc	0.99	0.99	0.90	0.99	0.98	0.98	N
Average Distribution	0.96	0.90	0.93	0.98	0.96	0.97	% Y: 8
Radionuclides							
Thorium-228	0.98	0.98	0.90	0.98	0.969	0.969	N
Thorium-230	0.98	0.98	0.96	0.99	0.98	0.98	N
Thorium-232	0.97	0.97	0.94	0.99	0.98	0.975	N
Uranium-233/234	0.99	0.99	0.94	0.99	0.98	0.98	N
Uranium-235/236	0.98	0.98	0.98	0.99	0.96	0.993	N
Uranium-238	. 0.99	0.99	0.95	0.98	0.98	0.98	N
Average Distribution	0.98	0.98	0.94	0.99	0.97	0.98	% Y: 0

Table 3. Areas A and B Correlation Values and Hypothesis Test Results

Correlation Value
Range
1.0 - 0.95
0.949 - 0.90
0.899 - 0.80
0.799 - 0.70
0.699 - 0.0

*Correlation values presented in this table represent the relationship betweeen data sets.

			Compariso	n Grouping			Areas DEFG Hypothesis Test
Constituent	Areas DEFG 0-1 ft bgs (normal)	Areas DEFG 0-1 ft bgs (adjusted)	Areas DEFG 1-16 ft bgs (normal)	Areas DEFG 1-16 ft bgs (adjusted)	Areas DEFG 0-16 ft bgs (normal)	Areas DEFG 0-16 ft bgs (adjusted)	0-1 ft bgs = 1-16ft bgs
Metals			•				
Aluminum	0.94	0.97	0.95	0.99	0.96	0.99	Y
Antimony	0.96	0.96	0.86	0.97	0.91	0.91	Y
Arsenic	0.91	0.98	0.85	0.98	0.85	0.98	Y
Barium	0.99	0.99	0.56	0.90	0.55	0.897	Y
Beryllium	0.98	0.997	0.92	0.99	0.92	0.99	N
Cadmium	0.94	0.94	0.71	0.96	0.64	0.948	Y
Calcium	0.95	0.97	0.69	0.97	0.72	0.97	Y
Chromium	0.96	0.99	0.98	0.998	0.98	0.998	Y
Cobalt	0.93	0.98	0.86	0.995	0.85	0.99	N
Copper	0.94	0.98	0.99	0.998	0.98	0.997	Y
Iron	0.81	0.96	0.86	0.98	0.86	0.99	Ν
Lead	0.80	0.93	0.42	0.92	0.44	0.93	N
Lithium	0.89	0.967	0.94	0.99	0.93	0.93	N
Magnesium	0.91	0.91	0.96	0.96	0.95	0.95	N
Manganese	0.98	0.98	0.61	0.99	0.67	0.996	N
Mercury	0.93	0.93	0.92	0.92	0.94	0.94	N
Nickel	0.94	0.99	0.93	0.999	0.92	0.998	N
Potassium	0.92	0.92	0.91	0.996	0.91	0.995	N
Selenium	0.86	0.894	0.43	0.86	0.49	0.87	N
Silver	0.83	0.96	0.38	0.97	0.84	0.97	Y
Sodium	0.77	0.930	0.91	0.99	0.91	0.98	Ν
Thallium	0.73	0.875	0.31	0.84	0.34	0.85	Y
Total Uranium	0.98	0.99	0.96	0.99	0.96	0.99	N
Vanadium	0.93	0.98	0.92	0.98	0.93	0.99	Y
Zinc	0.76	0.94	0.94	0.97	0.94	0.99	Ν
Average Distribution	0.90	0.96	0.79	0.96	0.81	0.96	% Y: 44
Radionuclides							
Thorium-228	0.97	0.98	0.997	0.997	0.997	0.997	Ν
Thorium-230	0.95	0.97	0.94	0.98	0.94	0.99	N
Thorium-232	0.97	0.99	0.99	0.996	0.99	0.995	Ν
Uranium-233/234	0.98	0.99	0.98	0.996	0.97	0.99	Ν
Uranium-235/236	0.99	0.99	0.98	0.996	0.97	0.996	N
Uranium-238	0.98	0.99	0.96	0.99	0.96	0.99	N
Average Distribution	0.97	0.99	0.98	0.99	0.97	0.99	% Y:0
Notes:							

Table 4. Areas D, E, F, and G Correlation Values and Hypothesis Test Results

Notes:

(adjusted) - correlation values based on data distribution

Correlation Value

Range
1.0 - 0.95
0.949 - 0.90
0.899 - 0.80
0.799 - 0.70
0.699 - 0.0

*Correlation values presented in this table represent the relationship between data sets.

	Comparison Grouping			
Constituent	Areas EFG 16-30 ft bgs (normal)	Areas EFG 16-30 ft bgs (adjusted)		
Metals				
Aluminum	0.96	0.96		
Antimony	0.93	0.98		
Arsenic	0.97	0.97		
Barium	0.95	0.97		
Beryllium	0.99	0.99		
Cadmium	0.93	0.97		
Calcium	0.93	0.95		
Chromium	0.95	0.97		
Cobalt	0.99	0.99		
Copper	0.98	0.98		
Iron	0.91	0.96		
Lead	0.95	0.97		
Lithium	0.95	0.95		
Magnesium	0.97	0.98		
Manganese	0.89	0.95		
Mercury	0.97	0.97		
Nickel	0.96	0.97		
Potassium	0.95	0.95		
Selenium	0.81	0.91		
Silver	0.84	0.84		
Sodium	0.94	0.97		
Thallium	0.75	0.89		
Total Uranium	0.96	0.99		
Vanadium	0.99	0.99		
Zinc	0.96	0.97		
Average Distribution	0.94	0.96		
Radionuclides				
Thorium-228	0.95	0.96		
Thorium-230	0.88	0.93		
Thorium-232	0.98	0.98		
Uranium-233/234	0.95	0.98		
Uranium-235/236	0.99	0.98		
Uranium-238	0.96	0.99		
Average Distribution	0.95	0.97		

Table 5. Areas E, F, and G Correlation Values

(adjusted) - correlation values based on data distribution

Correlation Value
Range
1.0 - 0.95
0.949 - 0.90
0.899 - 0.80
0.799 - 0.70
0.699 - 0.0

*Correlation values presented in this table represent the relationship between data sets.

	Comparison Grouping				
Constituent	Areas DEFG Gallia (normal)	Areas DEFG Gallia (adjusted)			
Metals					
Aluminum	0.94	0.94			
Antimony	0.79	0.99			
Arsenic	0.79	0.98			
Barium	0.97	0.99			
Beryllium	0.94	0.98			
Cadmium	0.89	0.99			
Calcium	0.63	0.95			
Chromium	0.99	0.99			
Cobalt	0.95	0.98			
Copper	0.53	0.53			
Iron	0.98	0.99			
Lead	0.90	0.97			
Lithium	0.81	0.81			
Magnesium	0.92	0.98			
Manganese	0.87	0.98			
Mercury	0.78	0.98			
Nickel	0.94	0.98			
Potassium	0.97	0.99			
Selenium	0.77	0.77			
Silver	0.94	0.98			
Sodium	0.96	0.99			
Thallium	0.89	0.89			
Total Uranium	0.94	0.94			
Vanadium	0.96	0.99			
Zinc	0.90	0.97			
Average Distribution	0.88	0.94			
Radionuclides					
Thorium-228	0.96	0.98			
Thorium-230	0.89	0.95			
Thorium-232	0.97	0.99			
Uranium-233/234	0.93	0.98			
Uranium-235/236	0.97	0.99			
Uranium-238	0.94	0.94			
Average Distribution	0.94	0.97			

Table 6. Gallia Areas D, E, F, and G Correlation Values

Correlation value	Corre	lation	Value
-------------------	-------	--------	-------

Range
1.0 - 0.95
0.949 - 0.90
0.899 - 0.80
0.799 - 0.70
0.699 - 0.0

*Correlation values presented in this table represent the relationship between data sets.

	Comparison Grouping				
Constituent	Areas HIJ 0-1 ft bgs (normal)	Areas HLJ 0-1 ft bgs (adjusted)			
Metals					
Aluminum	0.97	0.97			
Antimony	0.79	0.77			
Arsenic	0.78	0.78			
Barium	0.98	0.99			
Beryllium	0.35	0.988			
Cadmium	0.33	0.70			
Calcium	0.82	0.99			
Chromium	0.78	0.78			
Cobalt	0.85	0.98			
Copper	0.68	0.67			
Iron	0.76	0.76			
Lead	0.90	0.99			
Lithium	0.95	0.994			
Magnesium	0.93	0.93			
Manganese	0.98	0.98			
Mercury	0.86	0.85			
Nickel	0.65	0.63			
Potassium	0.95	0.99			
Selenium	0.37	0.990			
Silver	0.38	0.74			
Sodium	0.83	0.830			
Thallium	0.40	0.927			
Total Uranium	0.89	0.90			
Vanadium	0.85	0.85			
Zinc	0.86	0.83			
Average Distribution	0.75	0.87			
Radionuclides					
Thorium-228	0.97	0.97			
Thorium-230	0.87	0.86			
Thorium-232	0.97	0.97			
Uranium-233/234	0.59	0.91			
Uranium-235/236	0.79	0.98			
Uranium-238	0.89	0.90			
Average Distribution	0.85	0.93			

Table 7. Areas H, I, and J Correlation Values

(adjusted) - correlation values based on data distribution and removal of outliers

Correlation Value Range

*Correlation values presented in this table represent the relationship between data sets.

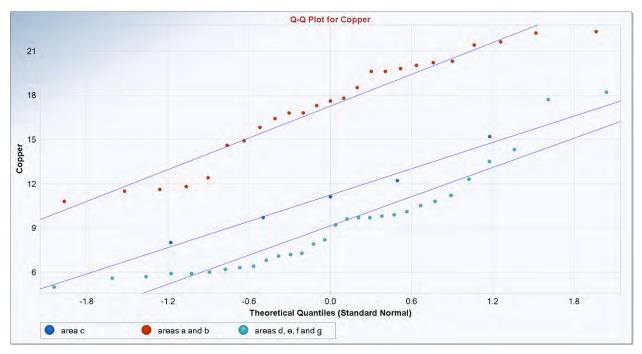


Figure 11. Q-Q Plot Example, Copper in Areas A and B, Area C, and Areas D, E, F, and G Surface Soils (0 to 1 ft bgs)

5.2.5 Outlier Testing

In accordance with EPA guidance (EPA 2009), there is no indication of a sampling, laboratory, or reporting error in the data to explain the presence of potential outliers. Therefore, no observations were removed as an outlier from the PORTS background data set.

Statistical tests were performed to identify outliers as opposed to extreme background measurements. Outlier tests were performed on the study unit data sets and not the PORTS background data set as a whole. Non-detected observations were excluded from the data sets for each test. Similar to the Q-Q plots noted above, Rosner and Dixon Outlier Tests and Regression Analysis Tests highlighted observations within a data set that needed further investigation for being a possible outlier; however, the Order of Magnitude Test was the deciding test to determine if an observation was an outlier and should be removed from the final PORTS background data set. Each test is described below.

5.2.5.1 Rosner and Dixon Outlier tests

Rosner and Dixon Outlier tests, the two classic outlier tests, were performed to test for the existence of one or more outliers in a data set at a 1 percent significance level. For this grouping study, the Rosner Outlier Test was used for data sets having 25 or more samples. The Dixon Outlier Test was used for data sets having 25 or more samples. The Dixon Outlier Test was used for data set without the suspected outliers is normally distributed, as a data set with outliers tends not to follow a normal distribution. The ProUCL Technical Guide notes that a data set without the outliers may still not follow a normal distribution; however, the outlier tests and supportive Q-Q plots represent exploratory tools used for the preprocessing of data, including the identification of potential outliers. The ProUCL Technical Guide further explains that because outlier identification statistics are only used in the identification of high outlying observations and not used in any decision-making calculations, it should not matter how the non-detect observations are treated in the outlier test statistics.

5.2.5.2 Regression analysis and scatter plots

In support of the outlier identification process, ordinary least squares (OLS) regression graphs (i.e., simple linear regression or scatter plots) were generated in ProUCL to show the graphic representation of the relationship between two metals. For each scatter plot, the overall pattern of the relationship was examined for consistency and any obvious deviations from the pattern were noted. The data points that fit the overall pattern are likely to represent natural concentrations of the metals, whereas the outliers are part of a separate population (Battelle Memorial Institute et al. 2002).

When a scatter plot displays a linear relationship, the overall pattern can be described by drawing a straight line through the data point by linear regression. A linear relationship is strong if most of the data points lie close to the regression line, whereas the relationship is weak if they are widely scattered about the line. A calculated 95 percent prediction interval can be plotted to show the probability that the metal concentrations will fall within a certain range. A 95 percent prediction interval is the range within which the target metal concentration that corresponds to a given reference metal concentration is predicted to fall 95 percent of the time. Data points that fall outside of this prediction interval should be investigated as possible data outliers (Battelle Memorial Institute et al. 2002).

5.2.5.3 Order of magnitude test

Ohio EPA guidance (Ohio EPA 2012b) states that if censored data comprise less than 75 percent of the background data set, and if the highest value data point in the background data set exceeds by an order of magnitude the value of the second highest data point, the highest data point should be considered a statistical outlier. Data sets were evaluated for outliers using this magnitude test. Data evaluation was performed using Microsoft Excel.

Within each study set, an order of magnitude limit was calculated for each parameter by multiplying the second highest value by 10 (i.e., an order of magnitude). If the highest recorded value exceeded the calculated order of magnitude limit for a parameter, the highest recorded value was considered to be an outlier. In the PORTS background data set, the following five outliers were detected at location BKGHA-19-03-SS, which is located in the upland surface soils in Area H:

- Beryllium, 61.07 mg/kg
- Cadmium, 57.27 mg/kg
- Selenium, 53.997 mg/kg
- Silver, 53.87 mg/kg
- Thallium, 49.672 mg/kg.

In conclusion, based on technical guidance and statistical testing, five outliers, detected at location BKGHA-19-03-SS in Area H, were identified and were removed from the PORTS background data set prior to performing statistical tests and background calculations. The reason for the extreme values is unknown. Supporting documentation for outlier testing is provided in Appendix H.

5.2.6 Goodness of Fit Testing

In ProUCL, Goodness of Fit (GOF) tests were performed for normal, lognormal, and gamma distributions. The goal was to determine the most representative distribution of each study area data set by assessing the correlation values of each distribution.

GOF tests were run with a 95 percent confidence coefficient, which is the default option in ProUCL. Dependent on the presence of non-detected observations in the study data set, two variations of the GOF tests were used. The variations are described below. The derived correlation values were recorded using

the same method, independent of the variations of the GOF test, which described below the GOF test descriptions.

If the data set had all positive observations (i.e., a full data set with no non-detects), the GOF test was run on the full data set for all GOF statistics. If the data set had non-detected observations, the GOF test was run with non-detected results for all GOF statistics.

Once the GOF statistics were generated, the results for both types of data sets (i.e., both with and without non-detects) were evaluated in the same manner. If the data set appeared to exhibit one or more type of distribution, the highest of the three correlation coefficients was recorded in the adjusted column for that parameter. For example, in the aluminum example above (Figure 10), the data set only appears lognormal; therefore, the value of 0.971 was recorded on the correlation table for the study area. If the data was not normal, lognormal, or gamma at the confidence coefficient of 95 percent, the correlation coefficient of the normal, linear Q-Q plot was used as the default correlation value for that parameter.

GOF tests were performed for the selected study areas. Tables 3 through 7 present the results of these tests in the columns labeled as adjusted. The values are colorized and presented in the same method as those recorded for the normal Q-Q plots, as described in Section 5.2.4.

5.2.7 Hypothesis Testing

A two-sample hypothesis test approach was used to directly compare data from different depths within a single background study area to determine if the data sets are comparable and exhibit similar parameters (e.g., mean, shape, distribution).

Hypothesis tests are formulated by first developing a null hypothesis, which is a statistical representation of the test decision. The result of the hypothesis test is either an acceptance or rejection of a null hypothesis (H_0). For this grouping study, a null hypothesis was selected that states that the mean/median concentration of the first data set is equal to the mean/median of the second data set. The alternative hypothesis (H_A) then states that the mean/median concentration of the first data set. The hypothesis test, a test of the null and alternative hypotheses, is represented as follows:

H₀: Sample 1 μ = Sample 2 μ vs. H_A: Sample 1 μ \neq Sample 2 μ

Where: μ is the sample mean/median.

If the results of the hypothesis test indicate that the null hypothesis should be rejected, the alternative hypothesis is then accepted.

Hypothesis tests were run in ProUCL using untransformed data. Potential outliers were also removed (Area H only). Hypothesis tests run with data sets containing only detected values used the nonparametric Wilcoxon-Mann-Whitney test to evaluate the null hypothesis and determine if a difference was present between the background data sets being compared. Tests run with at least one non-detected result present in one of or both data sets were completed using the nonparametric Gehan test.

The Gehan test is better suited than the Wilcoxon-Mann-Whitney test to perform two-sample tests on data sets consisting of non-detected values. The Gehan test can be used when the data contain multiple non-detected values with varying detection limits, whereas the Wilcoxon-Mann-Whitney test requires that a single detection limit be used to represent non-detected values in the data set. Both

the Wilcoxon-Mann-Whitney and Gehan tests assume that the variabilities (shape) of the two data distributions are comparable. Equality of variances for data sets was assumed for this study based on distributions of the data observed graphically in Q-Q plots.

Both the Wilcoxon-Mann-Whitney and the Gehan tests calculate a p-value to test the null hypothesis. A p-value is the smallest value for which the null hypothesis is rejected in favor of the alternative hypothesis. If the computed p-value is smaller than the specified value of alpha (α , the level of significance), the conclusion is to reject the null hypothesis. Hypothesis tests performed for this background data grouping evaluation were performed assuming a 95 percent confidence coefficient, which resulted in a value of 0.05 for the level of significance. Therefore, the null hypothesis was accepted for any hypothesis test where the p-value was greater than or equal to 0.05.

For this study, hypothesis tests were performed to compare data from the same background areas at different depths to determine if the data sets are comparable and exhibit similar parameters. This statistical test was used to compare Areas A and B surface soil (0 to 1 ft bgs) to Areas A and B subsurface soil (1 to 10 ft bgs), and Areas D, E, F, and G surface soil (0 to 1 ft bgs) to Areas D, E, F, and G subsurface soil (1 to 16 ft bgs).

The hypothesis tests results for Areas A and B, presented in Table 3, indicate that only 8 percent of the metals parameters and none of the radionuclide parameters have comparable data sets. Therefore, although the correlation values for Areas A and B (0 to 10 ft bgs) range between 0.96 and 0.98, as shown above in Sections 5.2.4 and 5.2.6, the data sets are not comparable. Therefore, it was decided that these two data sets, Areas A and B surface soil (0 to 1 ft bgs) and Areas A and B subsurface soil (1 to 10 ft bgs), would be evaluated separately for determination of background concentrations.

The hypothesis tests results for Areas D, E, F, and G, presented in Table 4, indicate that only 44 percent of the metals parameters and none of the radionuclide parameters have comparable data sets. Therefore, although the correlation values for Areas D, E, F, and G (0 to 16 ft bgs) range between 0.81 and 0.99, as shown above in Sections 5.2.4 and 5.2.6, the data sets are not comparable. Therefore, it was decided that these two data sets, Areas D, E, F, and G surface soil (0 to 1 ft bgs) and Areas D, E, F, and G subsurface soil (1 to 16 ft bgs), would be evaluated separately for determination of background concentrations.

5.2.8 Data Grouping Results

After reviewing the geology of the background study areas and evaluating the statistical results, final data groupings were established (Table 8). The sample depths, a description of the area, and the number of samples in each data set is included. All data sets have 12 or more samples, which meets EPA recommended minimum number of samples per data set used for statistical evaluation.

Representative surface and subsurface soil samples of the Scioto River Valley were expected to be collected in Area C; however, review of Q-Q plots (Section 5.2.4) and lithologic data (Area C borings BKG-DPT26 through BKG-DPT30; see Appendix C) indicate that soil from Area C is not representative of the same depositional conditions as observed in other background areas. Therefore, surface and subsurface soil samples from the five locations in Area C were excluded from the PORTS data set used to determine background soil concentrations.

The final background data sets for input to EPA's ProUCL software are provided in digital format in Appendix G. Background data tables for each area grouping are presented in Appendix I.

Soil Sampling Area	Depth (ft bgs)	Description ^{<i>a</i>}	Number of Soil Samples
Areas A and B	0 to 1	Surface soil, Scioto River Valley	25
Areas A and B	1 to 10	Subsurface soil, Scioto River Valley	25
Areas D, E, F, and G	0 to 1	Surface soil, PORTS site	30
Areas D, E, F, and G	1 to 16	Unsaturated Minford, PORTS site	187
Areas E, F, and G	16 to 30	Saturated Minford, PORTS site	12
Areas D, E, F, and G	14 to 90	Gallia, PORTS site	34
Areas H, I, and J	0 to 1	Surface soil, PORTS upland area	58

Table 8. Final Background Area Data Groupings

^aPORTS site = off-site areas representative of lithology observed on site at PORTS

bgs = below ground surface PORTS = Portsmouth Gaseous Diffusion Plant

5.3 STATISTICAL METHODOLOGY FOR BACKGROUND CALCULATIONS

Background concentrations determined for PORTS background soils represent one of the following three statistics:

- 95% UTL
- Upper Bound (per 2004 Ohio EPA guidance)
- Maximum detected value of the data set.

A 95% UTL represents a statistic such that 95 percent of observations (current and future) from the target population (i.e., background) will be less than or equal to the 95% UTL (EPA 2013b). A parametric 95% UTL takes the data variability into account. Like an upper bound value, a 95% UTL should be compared to samples collected on site on a point-by-point basis. UTL calculations for this investigation were performed using a 0.95 confidence coefficient, meaning that 5 percent of background observations are not expected to come from the background population.

ProUCL calculates a 95% UTL for normal, lognormal, or gamma distributed data. Nonparametric 95% UTLs are also determined. The selection of a representative 95% UTL is based on the best distribution of the data. Appropriate mathematical equations and statistical approach for determining 95% UTLs for normal, lognormal and gamma distributed data is provided in the ProUCL Technical Guidance.

As previously stated in Section 5.1.6, non-detected chemical results are represented by the detection limit in the ProUCL input data set. However, rather than simply using detection limits to represent non-detected results, ProUCL can calculate UTLs for normal, lognormal, and gamma data distributions by replacing the non-detected values with imputed values using regression on order statistics (ROS) or Kaplan-Meier (KM) estimates. The ROS method is used to impute values for non-detected results based upon a hypothesized data distribution (EPA 2013b). In this method, the distribution of the detected observations is assessed first, and assuming that the distribution of the non-detected results using an OLS regression line (i.e., ordered detections and hypothesized quantiles). This approach allows for a representation of the data distribution for each non-detected result instead of using standard detection limits that are repeated for multiple non-detected results in the data set. The mathematical approach for using the ROS method is provided in the ProUCL Technical Guidance.

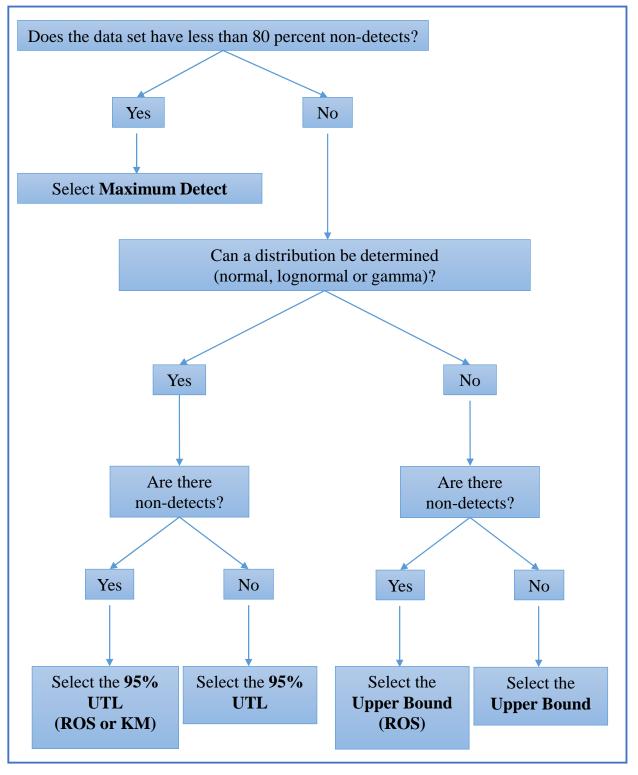
The nonparametric KM method is based upon a distribution function estimate that adjusts for non-detected values. The KM method is widely used in environmental applications to compute the upper limits needed to estimate upper thresholds of background populations. The KM method can be used to estimate the population mean, standard deviation, the standard error of the mean, and the variance for left-censored environmental data. The mathematical approach for using the KM method is provided in the ProUCL Technical Guidance. The calculation of both upper bound and 95% UTL values for this study used ROS and KM methodology, when appropriate, and as described below.

An upper bound concentration is a calculated data limit that can be used as the background concentration and should be compared to samples collected on-site on a point by point basis. The statistical approach for determining the upper bound value of a constituent data set is explained in the Ohio EPA publication, *Background Calculation Methodology* (Ohio EPA 2004). This methodology utilizes data percentiles to calculate an upper limit of the data. Percentiles are defined such that 25 percent of the samples are at or below the 25th percentile, 50 percent of the samples are at or below the 50th percentile (i.e., the median), and 75 percent of the samples are at or below the 75th percentile. The upper bound calculation is a numerical way to tabulate the information found on a box plot, and Ohio EPA has noted that this is a reasonable estimation of an upper bound for a background data set. The upper bound is calculated as follows:

Upper Bound = Q3 + k(Q3-Q1)

Where: Q1 is the 25th percentile value (lower quartile) Q3 is the 75th percentile value (upper quartile) Q3-Q1 is the interquartile range k = 1.5.

The above approach is recommended because it is a robust, nonparametric method that requires no knowledge on the distribution of the data (i.e., normal, lognormal, etc.). The constant "k" can vary from 1.5 to 3; however, Ohio EPA recommends 1.5 for the purpose of calculating background concentrations because k=1.5 best represents the "standard" box plot.


For constituents with all detected results in the data set, statistics were generated for the data set and the Q1 and Q3 values were input into the upper bound equation. For constituents with non-detected values present in the data set, the non-detected values were replaced with imputed values using the ROS method. To determine which of the ROS imputing methods (i.e., normal, lognormal, or gamma) should be used for a data set, GOF tests were performed with non-detected values using normal, lognormal, and gamma ROS estimated values. The distribution with the highest correlation coefficient was selected as the ROS imputing method for the final data set for that constituent.

The final selection of a background concentration is dependent on the detection frequency of the constituent and the distribution of the data. The distribution of the data was determined using tests and methods provided in ProUCL. A decision tree for selection of background concentrations at PORTS is shown in Figure 12. A brief explanation of the background value decision process is as follows:

• If greater than 80 percent of the data are non-detected results, the maximum detected value is selected as the background concentration. If 80 percent or less of the data are non-detected results, the distribution of the data is determined (Helsel 2005).

- If the data distribution is determined to be normal, lognormal, or gamma and there are no non-detected results in the data set, the 95% UTL that best fits the data distribution is selected as the background concentration.
- If the data distribution is determined to be normal, lognormal, or gamma and there are non-detected results in the data set, the data is imputed to include ROS or KM estimates to account for the non-detected values, and then the 95% UTL that best fits the data distribution is selected as the background concentration.
- If no data distribution can be determined and there are no non-detected results in the data set, the upper bound is selected as the background concentration. If no data distribution can be determined and there are non-detected results in the data set, the upper bound calculated using ROS methodology to account for the non-detected results is selected as the background concentration.

Documentation supporting the results of the statistical process used for developing the PORTS background soil concentrations is provided in Appendix J.

UTL = Upper Tolerance Limit ROS = Regression on Order Statistics KM = Kaplan-Meier

Figure 12. Background Value Tree

6. BACKGROUND CALCULATION RESULTS

Background concentrations were determined for metals and radionuclides detected in the background soil sampling areas as defined in Table 8. Table 9 summarizes the calculated background concentrations for metals and radionuclides in these background sampling areas and soil units. The majority of the background concentrations represent upper bound or 95% UTL calculations; two results represent maximum detected values (mercury in Areas A and B subsurface soil, and silver in Areas H, I, and J surface soil). Background concentrations are not presented for the following chemicals that are essential to a well-balanced diet and typically are not considered hazardous to humans: calcium, magnesium, potassium, and sodium. Background concentrations are reported to three significant figures.

	Scioto	Valley		PORTS Upland Area						
Parameter	Surface Soil (0-1 ft) Areas AB	Subsurface Soil (1-10 ft) Areas AB	Surface Soil (0-1 ft) Areas DEFG	Unsaturated Minford (1-16 ft) Areas DEFG	Saturated Minford (16-30 ft) Areas EFG	Gallia Areas DEFG	Surface Soil (0-1 ft) Areas HIJ			
Metals (mg/kg Dry)										
Aluminum	16,100	11,800	24,500	20,700	12,700	13,400	18,000			
Antimony	1.88	1.29	2.05	1.83	3.51	8.43	4.06			
Arsenic	14.4	11.8	30.8	29.0	85.6	129	19.8			
Barium	165	92.8	114	136	72.1	99.9	182			
Beryllium	0.995	0.858	1.25	1.60	1.17	1.51	1.70			
Cadmium	0.527	0.328	0.241	0.282	0.688	2.00	0.858			
Chromium	19.4	17.7	32.4	29.4	24.6	28.9	23.4			
Cobalt	13.1	10.1	28.5	37.4	18.6	26.5	37.4			
Copper	25.5	22.2	18.5	26.2	23.1	27.5	15.9			
Iron	27,200	22,700	86,100	62,800	56,400	155,000	29,000			
Lead	18.1	13.1	33.0	22.6	12.7	37.5	44.2			
Lithium	56.9	59.6	113	123	120	97.3	116			
Manganese	1,130	760	1,860	1,490	465	2,560	1,920			
Mercury	0.0400	0.0470	0.0600	0.0520	0.0410	0.0674	0.0938			
Nickel	30.3	25.0	22.6	50.3	52.7	78.2	29.1			
Selenium	1.13	2.49	1.79	0.639	0.637	0.564	2.39			
Silver	2.06	6.44	11.0	7.48	3.66	14.1	3.84			
Thallium	1.31	0.964	0.327	0.359	0.821	0.501	2.93			
Total Uranium	5.50	3.52	4.05	4.73	7.19	7.30	4.26			
Vanadium	43.7	39.5	78.0	58.0	65.1	87.6	52.0			
Zinc	111	80.2	93.1	117	148	244	85.7			

Table 9. Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

	Scioto	Valley		PORTS Upland Area					
Parameter	Surface Soil (0-1 ft) Areas AB	Subsurface Soil (1-10 ft) Areas AB	Surface Soil (0-1 ft) Areas DEFG	Unsaturated Minford (1-16 ft) Areas DEFG	Saturated Minford (16-30 ft) Areas EFG	Gallia Areas DEFG	Surface Soil (0-1 ft) Areas HIJ		
Radionuclides (pCi/g Dry)									
Thorium-228	1.31	1.08	1.64	1.88	1.56	1.73	1.52		
Thorium-230	2.59	1.81	1.59	1.74	2.42	2.52	1.70		
Thorium-232	1.37	1.21	1.56	1.91	1.63	1.73	1.46		
Uranium-233/234	1.76	1.23	1.30	1.57	2.36	2.34	1.37		
Uranium-235/236	0.142	0.0558	0.0987	0.119	0.170	0.171	0.115		
Uranium-238	1.85	1.18	1.36	1.59	2.41	2.45	1.40		
all non-detects Maximum Detect									
95% UTL	-								

Table 9. Dry Weight Background Values for Metals and Radionuclides Portsmouth Gaseous Diffusion Plant, Piketon, Ohio (Continued)

PORTS = Portsmouth Gaseous Diffusion Plant

UTL = upper tolerance limit

Upper Bound

Table 10 summarizes metals concentrations in soil within the State of Ohio as referenced in scientific literature. A comparison of PORTS soil background concentrations to the results from similar investigations of soils in Ohio (Table 11) indicates inorganic and radionuclide constituents detected in this study are comparable to concentrations reported for similar Ohio soils.

1993 2013 1996 Ohio Ohio 1996 Franklin PORTS County, Farm Agricultural 1993 **Ohio Soils** RFI Range in Soils^b (Cox-Colvin)^d Parameter Soils^a Fernald, OH^c OH^e (Minford)^f Ohio Soils^g Metals (mg/kg) 8,180 11,880 (0-6") 8.180 -Aluminum 15,314 ---------16,100 14,742 (48-54") (max: 16,100) 7.7 (0-6") Antimony 6.7 - 7.7 ---------------6.7 (48-54") 8.45 (0-6") 5.72 20.7 31 5.72 - 56 Arsenic 8.82 (48-54") (max: 56) 126.09 (0-6") 63.4 Barium 163 181 63.4 - 323 98.72 (48-54") (max: 323) 0.60 (0-6") 0.377 Beryllium 1.4 0.377 - 3.15 ------0.63 (48-54") (max: 3.15)

Table 10. Metals and Radionuclide Concentrations in Ohio Soils

Parameter	Ohio Farm Soils ^a	1993 Ohio Agricultural Soils ^b	1993 Fernald, OH ^c	1996 Ohio Soils (Cox-Colvin) ^d	2013 Franklin County, OH ^e	1996 PORTS RFI (Minford) ^f	Range in Ohio Soils ^g
	Domb	Sons	,	g) (continued)	011	(11111014)	
a			0.64 (0-6")	0.507			
Cadmium	0.2	0.357	0.59 (48-54")	(max: 4.40)	0.789	2	0.2 - 4.40
	~		15.5 (0-6")	12.1	1.6.1	20.6	10 00 5
Chromium	12		18.87 (48-54")	(max: 80.5)	16.4	28.6	12 - 80.5
			15.17 (0-6")	6.42		28.2	6 42 52 6
Cobalt			15.68 (48-54")	(max: 53.6)		28.2	6.42 - 53.6
0	10	26.2	16.43 (0-6")	11.8		22.6	11.0 50
Copper	19	26.2	18.55 (48-54")	(max: 58)		32.6	11.8 - 58
T			22,323 (0-6")	18,400		51 100	18,400 -
Iron			27,853 (48-54")	(max: 100,000)		51,180	100,000
Taad	10	19.2	25.57 (0-6")	16.2	41.5	22	12.25 1.47
Lead	19	18.2	13.35 (48-54")	(max: 147)	41.5	32	13.35 - 147
Lithium						35	35
			1,772 (0-6")	459		2,012	450 0.010
Manganese			940 (48-54")	(max: 1,750)			459 - 2,012
		0.30 (0-6")	0.081	0.001	0.049	0.001 1.00	
Mercury	Aercury		0.29 (48-54")	(max: 1.60)	0.081	0.048	0.081 - 1.60
NT: 1 1	Nickel 18	27.1	20.87 (0-6")	14.4	26.4	34	14.4 110
Nickel			28.37 (48-54")	(max: 110)	36.4		14.4 - 110
Q 1 .			0.72 (0-6")		1.07	3	0.61 - 3
Selenium			0.61 (48-54")		1.07		
0.1			2.6 (0-6")			2.5	22.26
Silver			2.2 (48-54")				2.2 - 2.6
TI 11:			0.58 (0-6")		0.742	2.5	0.40.05
Thallium			0.43 (48-54")		0.743	2.5	0.43 - 2.5
			3.706 (0-6")			4.0	2 (92 4 9
Total Uranium			3.683 (48-54")			4.8	3.683 - 4.8
Manadiana			30.37 (0-6")	17.4		50.2	17 4 71
Vanadium			34.97 (48-54")	(max: 71)		50.2	17.4 - 71
7:	75	92.1	59.61 (0-6")	42.7		101	10.5 100
Zinc	75	82.1	59.19 (48-54")	(max: 190)		101	42.7 - 190
			Radionucl	ides (pCi/g)			
Thorium 228			1.560 (0-6")				1.5 - 1.6
Thorium-228			1.475 (48-54")				1.3 - 1.6
Thorium-230			2.175 (0-6")				2.15 - 2.17
11011011-230			2.153 (48-54")				
Thorium-232			1.362 (0-6")				1.4 - 1.6
111011u111-232			1.458 (48-54")				
Uranium-			1.244 (0-6")				1.1 - 1.2
233/234			1.061 (48-54")				

Table 10. Metals and Radionuclide Concentrations in Ohio Soils (Continued)

Parameter	Ohio Farm Soils ^a	1993 Ohio Agricultural Soils ^b	1993 Fernald, OH ^c Radionuclides (p	1996 Ohio Soils (Cox-Colvin) ^d Ci/g) (continued)	2013 Franklin County, OH ^e	1996 PORTS RFI (Minford) ^f	Range in Ohio Soils ^g
Uranium- 235/236			0.148 (0-6") 0.125 (48-54")				0.13 - 0.15
Uranium-238			1.222 (0-6") 1.218 (48-54")				1.2

Table 10. Metals and Radionuclide Concentrations in Ohio Soils (Continued)

^aThe Ohio State University 1983. Values represent means.

^bHomgren et al., 1993. Values represent geometric means.

^cDOE 1993. Values represent 95% UTL.

^dCox-Colvin & Assoc. 1996. Values represent geometric mean.

^eOhio EPA 2013. Values represent VAP UL or 95% UPL.

^fDOE 1996. Values represent 95% UTL.

^gRange in Ohio Soils represents the minimum and maximum background concentrations reported in the studies presented in this table.

DOE = U.S. Department of Energy

Ohio EPA = Ohio Environmental Protection Agency

PORTS = Portsmouth Gaseous Diffusion Plant

RCRA = Resource Conservation and Recovery Act of 1976

RFI = RCRA Facility Investigation UPL = Upper Prediction Limit UTL = Upper Tolerance Limit VAP UL = Voluntary Action Program Upper Limit

Table 11. Comparison of PORTS Soil Background Values to Concentrations of Metals and Radionuclides in Ohio Soils

	Sciot	o Valley		PORTS	PORTS Upland Area	Ohio		
Parameter	Surface Soil (0-1 ft) Areas AB	Subsurface Soil (1-10 ft) Areas AB	Surface Soil (0-1 ft) Areas DEFG	Unsaturated Minford (1-16 ft) Areas DEFG	Saturated Minford (16-30 ft) Areas EFG	Gallia Areas DEFG	Surface Soil (0-1 ft) Areas HIJ	Range in Soil ^a
			Me	tals (mg/kg Dry	7)			
Aluminum	16,100	11,800	24,500	20,700	12,700	13,400	18,000	8,180 – 16,100
Antimony	1.88	1.29	2.05	1.83	3.51	8.43	4.06	6.7 - 7.7
Arsenic	14.4	11.8	30.8	29.0	85.6	129	19.8	5.72 - 56
Barium	165	92.8	114	136	72.1	99.9	182	63.4 - 323
Beryllium	0.995	0.858	1.25	1.60	1.17	1.51	1.70	0.377 - 3.15
Cadmium	0.527	0.328	0.241	0.282	0.688	2.00	0.858	0.2 - 4.40
Chromium	19.4	17.7	32.4	29.4	24.6	28.9	23.4	12 - 80.5
Cobalt	13.1	10.1	28.5	37.4	18.6	26.5	37.4	6.42 - 53.6
Copper	25.5	22.2	18.5	26.2	23.1	27.5	15.9	11.8 - 58
Iron	27,200	22,700	86,100	62,800	56,400	155,000	29,000	18,400 – 100,000
Lead	18.1	13.1	33.0	22.6	12.7	37.5	44.2	13.35 - 147
Lithium	56.9	59.6	113	123	120	97.3	116	35

	Sciot	o Valley		PORTS	Site		PORTS Upland Area	Ohio
Parameter	Surface Soil (0-1 ft) Areas AB	Subsurface Soil (1-10 ft) Areas AB	Surface Soil (0-1 ft) Areas DEFG	Unsaturated Minford (1-16 ft) Areas DEFG	Saturated Minford (16-30 ft) Areas EFG	Gallia Areas DEFG	Surface Soil (0-1 ft) Areas HIJ	Range in Soil⁴
	•		Metals (r	ng/kg Dry) (con	tinued)			•
Manganese	1,130	760	1,860	1,490	465	2,560	1,920	459 - 2,012
Mercury	0.0400	0.0470	0.0600	0.0520	0.0410	0.0674	0.0938	0.081 - 1.60
Nickel	30.3	25.0	22.6	50.3	52.7	78.2	29.1	14.4 - 110
Selenium	1.13	2.49	1.79	0.639	0.637	0.564	2.39	0.61 - 3
Silver	2.06	6.44	11.0	7.48	3.66	14.1	3.84	2.2 - 2.6
Thallium	1.31	0.964	0.327	0.359	0.821	0.501	2.93	0.43 - 2.5
Total Uranium	5.50	3.52	4.05	4.73	7.19	7.30	4.26	3.683 - 4.8
Vanadium	43.7	39.5	78.0	58.0	65.1	87.6	52.0	17.4 - 71
Zinc	111	80.2	93.1	117	148	244	85.7	42.7 - 190
			Radio	nuclides (pCi/g	Dry)			
Thorium-228	1.31	1.08	1.64	1.88	1.56	1.73	1.52	1.5 - 1.6
Thorium-230	2.59	1.81	1.59	1.74	2.42	2.52	1.70	2.15 - 2.17
Thorium-232	1.37	1.21	1.56	1.91	1.63	1.73	1.46	1.4 - 1.6
Uranium- 233/234	1.76	1.23	1.30	1.57	2.36	2.34	1.37	1.1 - 1.2
Uranium- 235/236	0.142	0.0558	0.0987	0.119	0.170	0.171	0.115	0.13 - 0.15
Uranium-238	1.85	1.18	1.36	1.59	2.41	2.45	1.40	1.2

Table 11. Comparison of PORTS Soil Background Values to Concentrations of Metals and Radionuclides in Ohio Soils (Continued)

Notes:

--- = all non-detects

^{*a*}Represents the minimum and maximum

background concentrations reported in the

studies presented in Table 10.

Within Ohio soil range

Within +/-10 percent of Ohio soil range

PORTS = Portsmouth Gaseous Diffusion Plant

The PORTS background concentration for iron in the Gallia (155,228 mg/kg) exceeds the maximum concentration reported for iron in Ohio soils (100,000 mg/kg). The Gallia data set for this background study contained five concentrations that were greater than 100,000 mg/kg. In a 1995 background study, similar concentrations were reported for iron samples representing the non-contaminated population of on-site Gallia deposit soil data (Korte et al. 1995). In the 1995 study, iron concentrations in the Gallia ranged from 12,000 mg/kg to 160,000 mg/kg, with five of the sample results greater than 100,000 mg/kg. Hence, elevated iron concentrations appear to be common for the PORTS Gallia deposits. Although the background concentration for iron in this current study exceeds the maximum Ohio soil iron concentration, the background iron concentration appears to be representative of PORTS Gallia deposits.

7. CONCLUSIONS

A soil background investigation was completed at PORTS to provide, in accordance with an approved SAP, representative background data for each major soil formation on the DOE reservation, on property easements, and DOE-leased property off the DOE reservation, as of April 2015. This investigation builds on background studies completed earlier and addresses limitations of those earlier studies.

The investigation was designed to characterize concentrations of naturally occurring or ubiquitous anthropogenic constituents in surface and subsurface soil in and around PORTS. Soil samples collected from selected background locations were analyzed for radionuclides, metals, and organic chemicals; however, only metals and radionuclides, which are naturally occurring, were retained for evaluation and subsequent calculation of background concentrations.

In addition to the results presented here for naturally-occurring metals, including uranium, the background data set includes detected results for radioactive isotopes (e.g., americium, plutonium, technetium) and some organic constituents that are considered ubiquitous (e.g., PAHs, PCBs, pesticides). Because neither the radioactive isotopes nor the organic constituents are naturally-occurring, data of these anthropogenic constituents are not evaluated in this report. A preliminary analysis of these data is provided in the *Preliminary Soil Background Study Sampling and Analysis Report at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (DOE 2012b). The analysis in that report found that the detected concentrations are low and generally fall below risk-based soil screening levels derived considering the industrial or residential scenarios. Additional statistical analyses of these data may be completed in the future, if necessary, to support risk management decisions.

Surface and subsurface soil units were identified in the 10 soil background sampling areas (A through J), as described in Table 1. Representative upper bounds or 95% UTLs were generated for the data to provide background values for metals and radionuclides in the formation-specific surface and subsurface soils at PORTS.

Once approved by Ohio EPA, site background values will be compared to soil sample results collected at PORTS to determine if the results are greater than background concentrations. Site background values will also play an important role in development of risk-based soil PRGs. PRGs will be published in the DU RFI/CMS final report and used to develop corrective actions analyses. PRG concentrations developed for the DU RFI/CMS final report will be used to identify areas within each deferred unit requiring corrective action, assist in calculation of contaminated media volumes, and assist in preparation of cost estimates associated with the corrective action alternatives analysis. After the PRGs have been presented to the public for review in the Preferred Plan and the public comments have been addressed, the PRGs will be designated as final remediation levels (FRLs) in Ohio EPA's Decision Document. The FRLs will be established to ensure protection of human health and the environment and will be used in the Corrective Measures Implementation during site remediation. During remediation activities, it is common practice to clean up to risk-based values, but not to levels less than background concentrations. Therefore, some of the background concentrations listed in this soil background report (Table 9) may be used as PRGs, and ultimately FRLs, when risk-based values are less than background concentrations.

Specific conclusions developed in this soil background report are summarized as follows:

- The quality and coverage of the samples collected in each background sampling area are adequate for use in this background investigation. A sufficient number of samples were collected from these locations to adequately characterize the background concentrations of naturally occurring and anthropogenic constituents in soil.
- Soil samples collected in Areas A and B provide data representative of soil background conditions for DOE property in the Scioto Valley floodplain, including easements and DOE-leased property, as of April 2015.
- Soil samples collected in Areas D, E, F, and G provide data representative of surface, unsaturated, and saturated subsurface soil background conditions similar to those observed in on-site Minford and Gallia soils.
- Statistical testing and data evaluation indicated that soil samples collected in Areas H, I, and J exhibited weak correlation within themselves and identified outliers in the data set. Based on these findings, it is concluded that the data set may not be fully representative of on-site surface soil background conditions in upland areas undisturbed by present and historic site operations.
- A comparison to the results from similar background investigations of soils in Ohio (Table 10), including the 1996 PORTS background investigation, indicates inorganic and radionuclide constituents detected in this study are comparable to concentrations reported for similar Ohio soils.

8. **REFERENCES**

Battelle Memorial Institute, Earth Tech, Inc., and NewFields, Inc. 2002, *Guidance for Environmental Background Analysis: Volume I – Soil*, Naval Facilities Engineering Command, April 2002, UG-2049-ENV.

Bechtel Jacobs Company LLC 2003, *Identification and Screening of Candidate Sites for a Potential On-site Waste Disposal Facility at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio*, BJC/PORTS-448, Bechtel Jacobs Company LLC, April.

Bonnett, B. B., Noltimier, H. C., and Sanderson, D. D., 1991, A paleomagnetic study of the early Pleistocene Minford Silt member, Teays Formation, West Virginia in Melhorn, W. and Kempton, J., eds., Geology and hydrogeology of the Teays-Mahomet Bedrock Valley Systems, Boulder, Colorado, Geological Society of America Special Paper 258, p. 9-18.

Bork, B. K, Malcuit, R. J., 1979a, Paleoenvironments of the Cuyahoga and Logan Formations (Mississippian) of Central Ohio: Summary, Geological Society of America Bulletin, Part I, v. 90, p. 1091-1094.

Bork, B. K, Malcuit, R. J., 1979b, Paleoenvironments of the Cuyahoga and Logan Formations (Mississippian) of Central Ohio, Geological Society of America Bulletin, Part II, v. 90, p. 1782-1838.

Coleman, J. M., 1976, *Deltas: Processes of Deposition and Models for Exploration*: Champaign, Illinois, Continuing Education Publication Company, Inc., 102 p.

Coogan, Alan H. 1996, *Ohio's Surface Rocks and Sediments*, modified from Chapter 3 of *Fossils of Ohio*, Ohio Division of Geological Survey Bulletin 70.

Cox-Colvin & Assoc. 1996, Evaluation of Background Metal Concentrations in Ohio Soils.

DOE 2012a, Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, DOE/PPPO/02-0250&D1, U.S. Department of Energy, Piketon, OH, January.

DOE 2012b, Preliminary Soil Background Study Sampling and Analysis Report at the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio, DOE/PPPO/03-0423&D1, U.S. Department of Energy, Piketon, OH, November.

DOE 2010, 2009 Groundwater Monitoring Report for the Portsmouth Gaseous Diffusion Plant, DOE/PPPO/03-0121&D1, U.S. Department of Energy, Piketon, OH, March.

DOE 1996, Background Sampling Investigation of Soil and Groundwater Final Report, Portsmouth Gaseous Diffusion Plant, Piketon, DOE/OR/11-1323&D6, U.S. Department of Energy, Piketon, OH, July.

DOE 1993, CERCLA/RCRA Background Soil Study, Fernald Environmental Management Project, Fernald, Ohio, U.S. Department of Energy, Fernald, OH.

Engelder, T., 1993, *Stress regimens in the lithosphere*: Princeton University Press, Princeton, New Jersey, 457 p.

EPA 2013a, National Functional Guidelines for Inorganic Superfund Data Review, OSWER 9200.2-133, EPA-540-R-013-001, U.S. Environmental Protection Agency, Washington, D.C., October.

EPA 2013b, ProUCL Version 5.0.00 *Technical Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations*, EPA/600/R-07/041, U.S. Environmental Protection Agency, Washington, D.C., September.

EPA 2009, *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities*, EPA530/R-09-0007, Unified Guidance, Office of Resource Conservation and Recovery Program Implementation and Information Division, U.S. Environmental Protection Agency, Washington, D.C., March.

EPA 2002, *Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites*, EPA 540-R-01-003, OSWER 9285.7-41, Office of Emergency and Remedial Response, U.S. Environmental Protection Agency, September.

Gilbert, Richard O. 1987, *Statistical Methods for Environmental Pollution Monitoring*, Van Nostrand Reinhold.

Hansen, Michael C. 2007, *Earthquakes in Ohio, Ohio Division of Geological Survey*, Educational Leaflet No. 9.

Helsel, Dennis R. 2005, *Nondetects and Data Analysis: Statistics for Censored Environmental Data*, John Wiley & Sons, Inc., p. 78.

Homgren et al., 1993, Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the US of America.

Horne, J. C., and Ferm, J. C., 1978, Carbonaceous Depositional Environments: Eastern Kentucky and Southern West Virginia: Columbia, South Carolina, University of South Carolina, Department of Geology, 151 p.

Korte, Nic, Jim Davidson, and John Wilson 1995, *Background Values for Chemical and Radiochemical Analytes for the Minford and Gallia Soils at the Portsmouth Gaseous Diffusion Plant*, Draft, Oak Ridge National Laboratory, Grand Junction Office, Grand Junction, CO, August.

Law Engineering 1978, *Final Report Gas Centrifuge Enrichment Plant Geotechnical Investigation, Piketon, Ohio*, Law Engineering, Marietta, GA.

Ohio EPA 2013, Evaluation of Background Metal Soil Concentrations in Franklin County - Columbus Area, Summary Report, Ohio Environmental Protection Agency, Columbus, OH, October.

Ohio EPA 2012a, *Soil and Sediment Sampling: Wet Weight versus Dry Weight*, Technical Guidance Compendium, VA30007.12.001, Ohio Environmental Protection Agency, Columbus, OH, December.

Ohio EPA 2012b, *Evaluation of Statistical Outliers and Statistically Significant Trends in Ground Water Quality Data*, DMWM and DDAGE Guidance Document #715, Ohio Environmental Protection Agency, Columbus, OH, September.

Ohio EPA 2009, *Closure Plan Review Guidance for RCRA Facilities*, Ohio Environmental Protection Agency, Columbus, OH, October.

Ohio EPA 2006, *Biological and Water Quality Study of Portsmouth Gaseous Diffusion Plant Streams*, Ohio EPA Report EAS/2006-10-4, Ohio Environmental Protection Agency, November.

Ohio EPA 2004, Division of Emergency and Remedial Response, *Background Calculation Methodology*, DERR-00-RR-039P, Ohio Environmental Protection Agency, June 30.

The Ohio State University 1983, *Background Levels of Heavy Metals in Ohio Farm Soils*, Research Circular 275-83, The Ohio State University, Columbus, Ohio.

U.S. Department of Agriculture 1990, *Soil Survey of Pike County Ohio*, U.S. Department of Agriculture, Washington D.C.

Western Regional Climate Center 2009, *Waverly, Ohio, National Climate Data Center*, Western Regional Climate Center, available at <u>http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?oh8830</u>.

APPENDIX A: SAMPLE AREA MAP

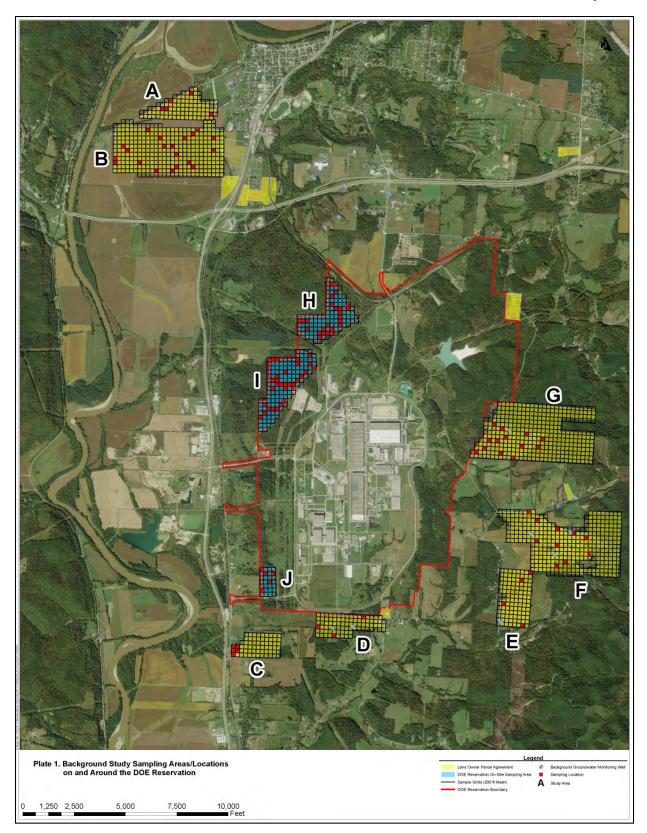


Plate 1. Sample Area Map

APPENDIX B: SOIL BORING SUMMARY

Soil	Soil Horizon			Area A		
Unit		BKGDPT-01	BKGDPT-02	BKGDPT-03	BKGDPT-04	BKGDPT-05
1	Scioto River Valley Surface	0 - 1 ft				
2	Scioto River Valley Subsurface	1 - 10 ft				
3A	On-Site Western Boundary Surface Soil	NA	NA	NA	NA	NA
3B	Off-Site Minford Surface Soil	NA	NA	NA	NA	NA
4A	Unsaturated Minford Subsurface Brown	NA	NA	NA	NA	NA
4B	Unsaturated Minford Subsurface Grey	NA	NA	NA	NA	NA
4C	Unsaturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA
5A	Saturated Minford Subsurface Brown	NA	NA	NA	NA	NA
5B	Saturated Minford Subsurface Grey	NA	NA	NA	NA	NA
5C	Saturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA
6	Gallia	NA	NA	NA	NA	NA
Depth to	Water	NA	NA	NA	NA	NA
Bedrock		NA	NA	NA	NA	NA

Soil Boring l	Locations
---------------	-----------

NA = not applicable

a #	a										Ar	ea B									
Soil Unit	Soil Horizon	BKGDPT -06	BKGDPT -07	BKGDPT -08	BKGDPT -09	BKGDPT -10	BKGDPT -11	BKGDPT -12	BKGDPT -13	BKGDPT -14	BKGDPT -15	BKGDPT -16	BKGDPT -17	BKGDPT -18	BKGDPT -19	BKGDPT -20	BKGDPT -21	BKGDPT -22	BKGDPT -23	BKGDPT -24	BKGDPT -25
1	Scioto River Valley Surface	0 - 1 ft																			
2	Scioto River Valley Subsurface	1 - 10 ft																			
3A	On-Site Western Boundary Surface Soil	NA																			
3B	Off-Site Minford Surface Soil	NA																			
4A	Unsaturated Minford Subsurface Brown	NA																			
4B	Unsaturated Minford Subsurface Grey	NA																			
4C	Unsaturated Minford Subsurface Dark Grey	NA																			
5A	Saturated Minford Subsurface Brown	NA																			
5B	Saturated Minford Subsurface Grey	NA																			
5C	Saturated Minford Subsurface Dark Grey	NA																			
6	Gallia	NA																			
Depth	o Water	NA																			
Bedroc	k	NA																			

NA = not applicable

Soil Unit	Soil Horizon –			Area C		
Son Ont	500 1101 1200	BKGDPT-26	BKGDPT-27	BKGDPT-28	BKGDPT-29	BKGDPT-30
1	Scioto River Valley Surface	0 - 1 ft				
2	Scioto River Valley Subsurface	1 - 10 ft				
3A	On-Site Western Boundary Surface Soil	NA	NA	NA	NA	NA
3B	Off-Site Minford Surface Soil	NA	NA	NA	NA	NA
4A	Unsaturated Minford Subsurface Brown	NA	NA	NA	NA	NA
4B	Unsaturated Minford Subsurface Grey	NA	NA	NA	NA	NA
4C	Unsaturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA
5A	Saturated Minford Subsurface Brown	NA	NA	NA	NA	NA
5B	Saturated Minford Subsurface Grey	NA	NA	NA	NA	NA
5C	Saturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA
6	Gallia	NA	NA	NA	NA	NA
Depth to Wa	ter	NA	NA	NA	NA	NA
Bedrock		NA	NA	NA	NA	NA

NA = not applicable

G 111 1			Area D	
Soil Unit	Soil Horizon –	BKGDPT-31	BKGDPT-32	BKGDPT-33
Elevation (ft)		643.71	652.68	688.15
1	Scioto River Valley Surface	NA	NA	NA
2	Scioto River Valley Subsurface	NA	NA	NA
3A	On-Site Western Boundary Surface Soil	NA	NA	NA
3B	Off-Site Minford Surface Soil	0 - 2 ft	0 - 2 ft	0 - 2 ft
4A	Unsaturated Minford Subsurface Brown	2 - 6 ft	2 - 14 ft	2 - 8 ft
4B	Unsaturated Minford Subsurface Grey	NA	NA	NA
4C	Unsaturated Minford Subsurface Dark Grey	NA	NA	NA
5A	Saturated Minford Subsurface Brown	NA	NA	NA
5B	Saturated Minford Subsurface Grey	NA	NA	NA
5C	Saturated Minford Subsurface Dark Grey	NA	NA	NA
6	Gallia	NA	14 - 16.5 ft	NA
Depth to Wat	er	DRY	12.11 ft	DRY
Bedrock		6 ft	16.5 ft	8 ft

NA = not applicable

Soil Unit	Soil Horizon —		Are	ea E	
Son Omt		BKGDPT-34	BKGDPT-35	BKGDPT-36	BKGDPT-37
Elevation (ft)		697.54	679.11	675.78	698.3
1	Scioto River Valley Surface	NA	NA	NA	NA
2	Scioto River Valley Subsurface	NA	NA	NA	NA
3A	On-Site Western Boundary Surface Soil	NA	NA	NA	NA
3B	Off-Site Minford Surface Soil	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft
4A	Unsaturated Minford Subsurface Brown	2 - 46 ft	2 - 16 ft	2 - 20 ft	2 - 38 ft
4B	Unsaturated Minford Subsurface Grey	NA	NA	NA	NA
4C	Unsaturated Minford Subsurface Dark Grey	NA	NA	NA	NA
5A	Saturated Minford Subsurface Brown	NA	16 -24 ft	20 - 22 ft	38 - 46 ft
5B	Saturated Minford Subsurface Grey	NA	NA	NA	NA
5C	Saturated Minford Subsurface Dark Grey	NA	NA	NA	NA
6	Gallia	46 - 50.5 ft	24 - 30.5 ft	22 - 32 ft	46 - 52.5 ft
Depth to Wat	er	NM	3.16 ft	12.57 ft	29.1 ft
Bedrock		50.5 ft	30.5 ft	32 ft	52.5 ft

NA = not applicable NM = not measured

				501	I DOI IIIg LO		iniliaca)				
Soil	Soil						ea F				
Unit		BKGDPT -38	BKGDPT -39	BKGDPT -40	BKGDPT -41	BKGDPT -42	BKGDPT -43	BKGDPT -44	BKGDPT -45	BKGDPT -46	BKGDPT -47
Eleva	tion (ft)	688.02	692.59	723.82	750.46	745.3	700.15	723.39	790.97	726.18	715.68
1	Scioto River Valley Surface	0 - 1 ft									
2	Scioto River Valley Subsurface	1 - 10 ft									
3A	On-Site Western Boundary Surface Soil	NA									
3B	Off-Site Minford Surface Soil	NA									
4A	Unsaturated Minford Subsurface Brown	NA									
4B	Unsaturated Minford Subsurface Grey	NA									
4C	Unsaturated Minford Subsurface Dark Grey	NA									
5A	Saturated Minford Subsurface Brown	NA									
5B	Saturated Minford Subsurface Grey	NA									
5C	Saturated Minford Subsurface Dark Grey	NA									
6	Gallia	NA									
Depth	n to Water	NA									
Bedro	ock	NA									
NA = r	not applicable										

NA = not applicable

						8	Locations (Col							
Soil Unit	Soil Horizon	DICODDE 40			DICODDE 51		DICODDE 53	Area G	BRODE 55			DIZODDE 50	DECODE 50	
-	(C L)	BKGDPT-48	BKGDPT-49	BKGDPT-50	BKGDPT-51	BKGDPT-52	BKGDPT-53	BKGDPT-54	BKGDPT-55	BKGDPT-56	BKGDPT-57	BKGDPT-58	BKGDPT-59	BKGDPT-60
Elevatio		696.48	714.65	724.95	692.02	715.41	683.99	688.55	705.03	700.7	675.89	688.94	675.93	679.86
I	Scioto River Valley Surface	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
2	Scioto River Valley Subsurface	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3A	On-Site Western Boundary Surface Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3B	Off-Site Minford Surface Soil	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft	0 - 2 ft
4A	Unsaturated Minford Subsurface Brown	2 ft - 38 ft	2 ft - 60 ft	2 ft - 70 ft	2 ft - 34 ft	2 ft - 18 ft	2 ft - 32 ft	2 ft - 30 ft	2 ft - 38 ft	2 ft - 44 ft	2 ft - 16 ft	2 ft - 34 ft	2 ft - 28 ft	2 ft - 30 ft
4B	Unsaturated Minford Subsurface Grey	NA	60 ft - 62 ft 64 ft - 71 ft	70 ft - 74 ft	NA	NA	NA	NA	38 ft - 56 ft	NA	NA	NA	NA	NA
4C	Unsaturated Minford Subsurface Dark Grey	NA	62 ft - 64 ft	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5A	Saturated Minford Subsurface Brown	NA	NA	NA	34 ft - 42 ft	NA	NA	30 ft - 40 ft	NA	44 ft - 52 ft	16 ft - 24 ft	NA	NA	NA
5B	Saturated Minford Subsurface Grey	NA	NA	74 ft - 80 ft	NA	NA	NA	NA	56 ft - 60 ft	NA	NA	NA	NA	NA
5C	Saturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6	Gallia	38 ft - 50 ft	71 ft - 78 ft	80 ft - 83.5 ft	42 ft - 47.5 ft	NA	32 ft to 40 ft	40 ft - 47.5	60 ft - 66 ft	52 ft - 57 ft	24 ft - 29.5 ft	34 ft - 44 ft	28 ft - 31.5 ft	30 ft - 33 ft
Depth to	o Water	DRY	NM	69.5 ft	30.55 ft	DRY	NM/Dry	27.90 ft	46.92 ft	38.97 ft	20.81 ft	30.55 ft	DRY	17.3 ft
Bedrock	k	50 ft	78 ft	83.5 ft	47.5 ft	17.5 ft	40 ft	47.5 ft	66 ft	57 ft	29.5 ft	44 ft	31.5 ft	33 ft

NA = not applicable NM = not measured

															Area H											
Soil Unit	Soil Horizon	BKGHA- 01	BKGHA- 02	BKGHA- 03	BKGHA- 04	BKGHA- 05	BKGHA- 06	BKGHA- 07	BKGHA- 08	BKGHA- 09	BKGHA- 10	BKGHA- 11	BKGHA- 12	BKGHA- 13	BKGHA- 14	BKGHA- 15	BKGHA- 16	BKGHA- 17	BKGHA- 18	BKGHA- 19	BKGHA- 20	BKGHA- 21	BKGHA- 22	BKGHA- 23	BKGHA- 24	BKGHA- 25
1	Scioto River Valley Surface	NA																								
2	Scioto River Valley Subsurface	NA																								
3A	On-Site Western Boundary Surface Soil	0 – 1 ft	0-1 ft	0 – 1 ft	0 – 1 ft	0 – 1 ft	0 – 1 ft																			
3B	Off-Site Minford Surface Soil	NA																								
4A	Unsaturated Minford Subsurface Brown	NA																								
4B	Unsaturated Minford Subsurface Grey	NA																								
4C	Unsaturated Minford Subsurface Dark Grey	NA																								
5A	Saturated Minford Subsurface Brown	NA																								
5B	Saturated Minford Subsurface Grey	NA																								
5C	Saturated Minford Subsurface Dark Grey	NA																								
6	Gallia	NA																								
Depth t	o Water	NA																								
Bedroc	k	NA																								

NA = not applicable

																			Area I											
Soil Unit Soil Horizon	BKGHA-26	BKGHA-27	BKGHA-28	BKGHA-29	BKGHA-30	BKGHA-31	BKGHA-32	BKGHA-33	BKGHA-34	BKGHA-35	BKGHA-36	BKGHA-37	BKGHA-38	BKGHA-39	BKGHA-40	BKGHA-41	BKGHA-42	BKGHA-43	BKGHA-44	BKGHA-45	BKGHA-46	BKGHA-47	BKGHA-48	BKGHA-49	BKGHA-50	BKGHA-51	BKGHA-52	BKGHA-53	BKGHA-54	BKGHA-55
1 Scioto River Valley Surface	NA																													
2 Scioto River Valley Subsurface	NA																													
3A On-Site Western Boundary Surface Soil	0 – 1 ft																													
3B Off-Site Minford Surface Soil	NA																													
4A Unsaturated Minford Subsurface Brown		NA																												
4B Unsaturated Minford Subsurface Grey		NA																												
4C Unsaturated Minford Subsurface Dark Grey	I NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
5A Saturated Minford Subsurface Brown	NA																													
5B Saturated Minford Subsurface Grey	NA																													
5C Saturated Minford Subsurface Dark Grey	NA																													
6 Gallia	NA																													
Depth to Water	NA																													
Bedrock	NA																													

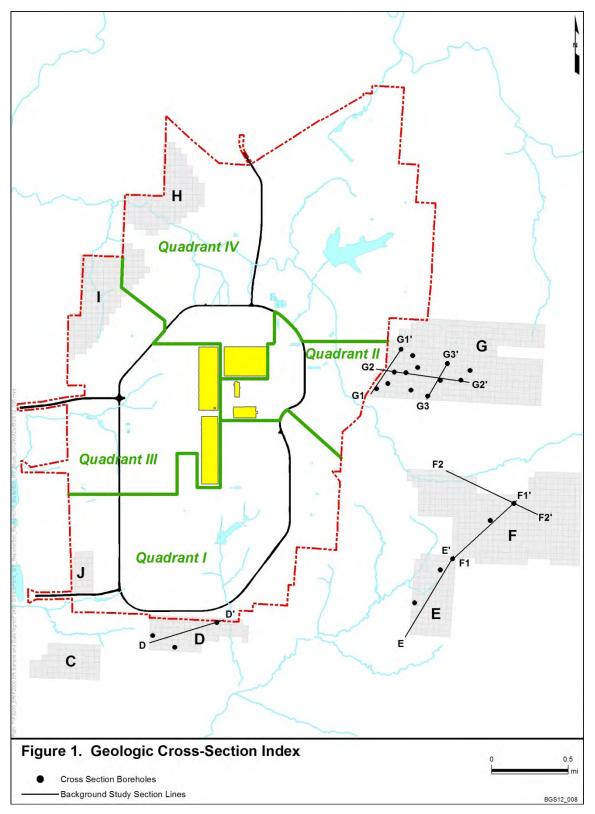
NA = not applicable

Soil Unit	Soil Horizon —			Area J		
Son Cint		BKGHA-56	BKGHA-57	BKGHA-58	BKGHA-59	BKGHA-60
1	Scioto River Valley Surface	NA	NA	NA	NA	NA
2	Scioto River Valley Subsurface	NA	NA	NA	NA	NA
3A	On-Site Western Boundary Surface Soil	0 – 1 ft	0-1 ft			
3B	Off-Site Minford Surface Soil	NA	NA	NA	NA	NA
4A	Unsaturated Minford Subsurface Brown	NA	NA	NA	NA	NA
4B	Unsaturated Minford Subsurface Grey	NA	NA	NA	NA	NA
4C	Unsaturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA
5A	Saturated Minford Subsurface Brown	NA	NA	NA	NA	NA
5B	Saturated Minford Subsurface Grey	NA	NA	NA	NA	NA
5C	Saturated Minford Subsurface Dark Grey	NA	NA	NA	NA	NA
6	Gallia	NA	NA	NA	NA	NA
Depth to Wa	ter	NA	NA	NA	NA	NA
Bedrock		NA	NA	NA	NA	NA

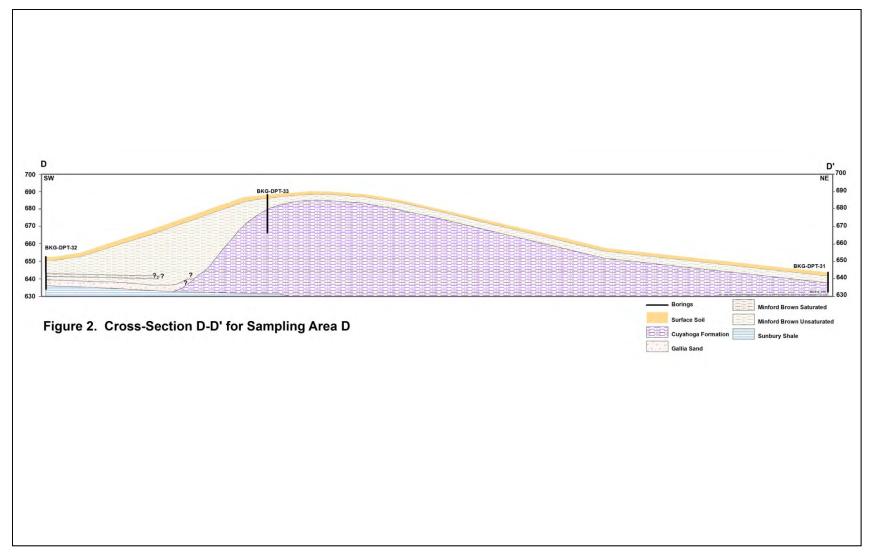
NA = not applicable

APPENDIX C: GEOLOGIC CROSS-SECTIONS AND SOIL BORING LOGS

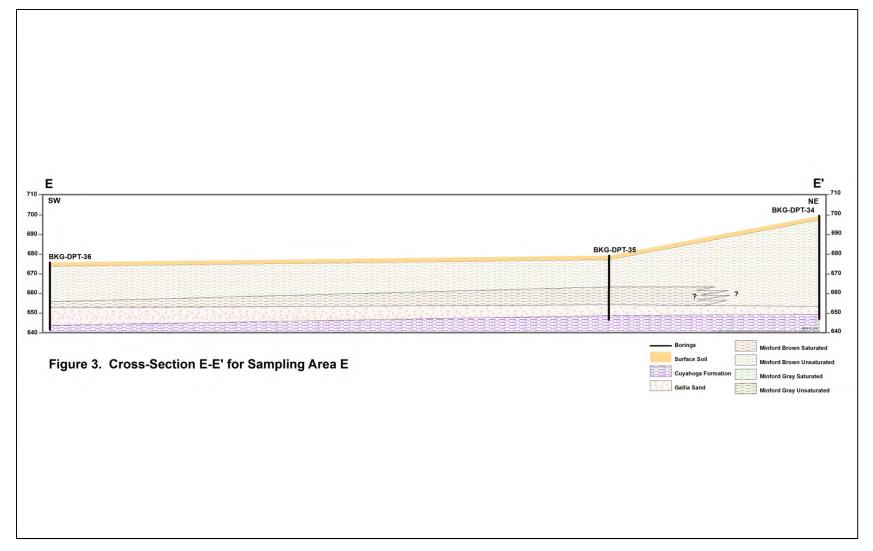

ATTACHMENT C.1: GEOLOGIC CROSS-SECTIONS

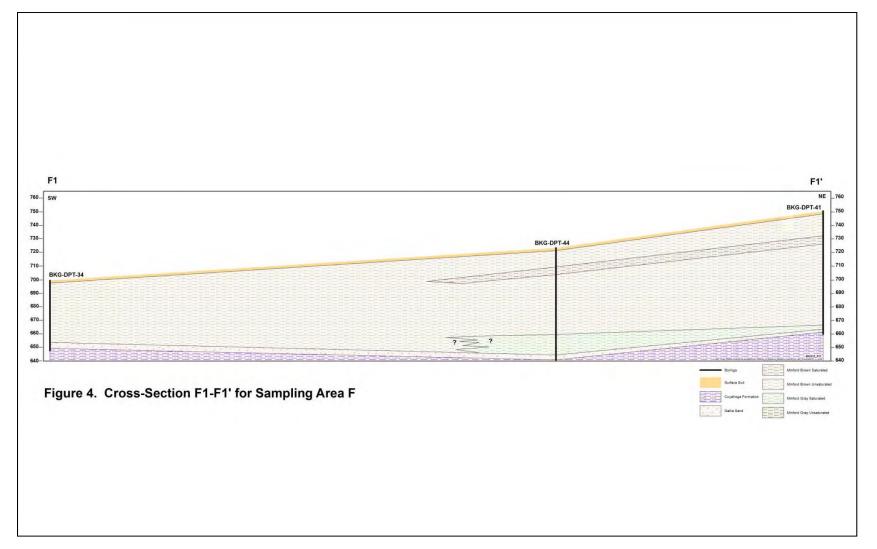

LIST OF FIGURES

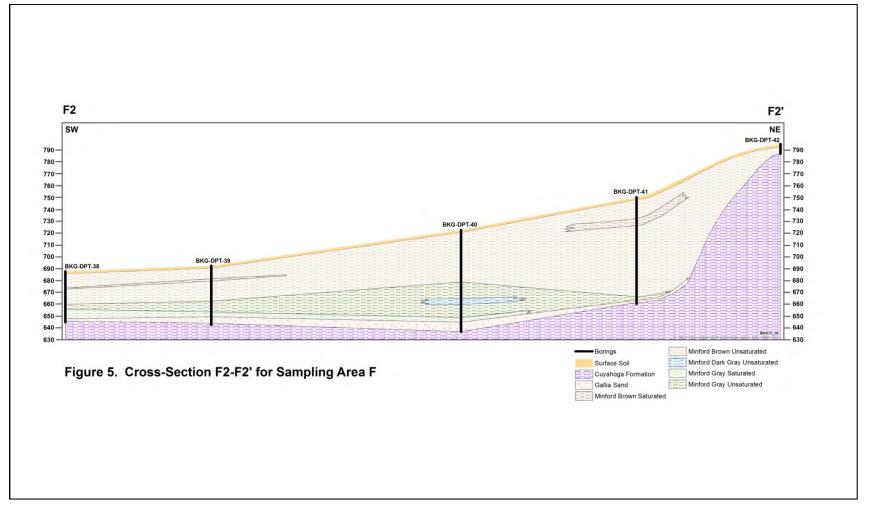
Section

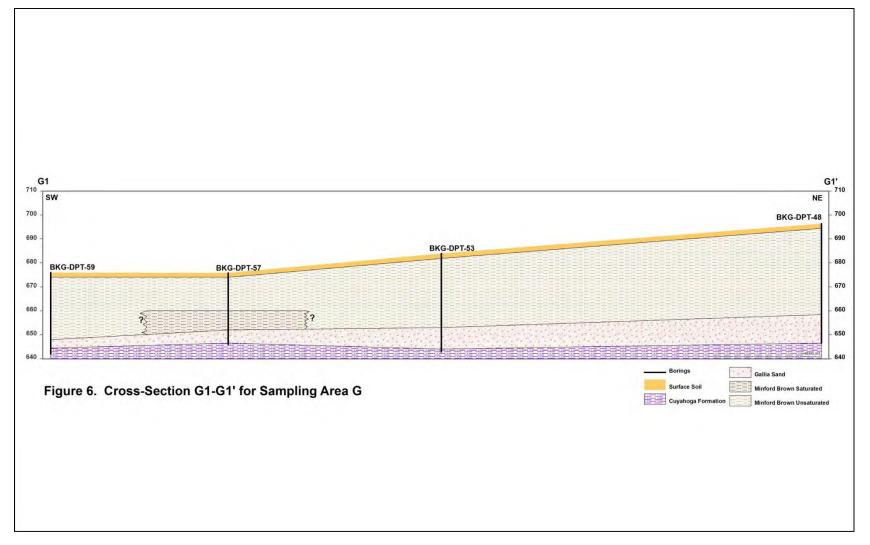

Page

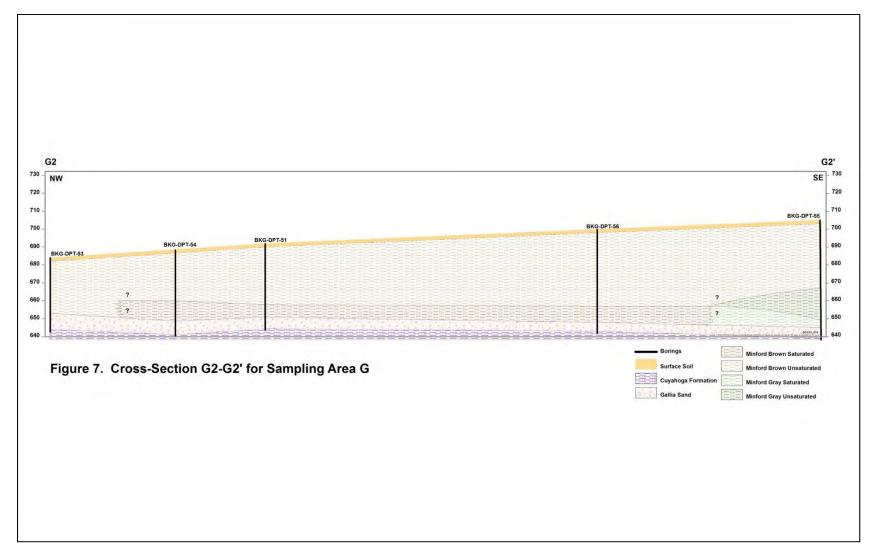
C.1.1.	Figure 1. Geologic Cross-Section Index	C.1-3
C.1.2.	Figure 2. Cross-Section D-D' for Sampling Area D	C.1-4
C.1.3.	Figure 3. Cross-Section E-E' for Sampling Area E	
C.1.4.	Figure 4. Cross-Section F1-F1' for Sampling Area F	
C.1.5.	Figure 5. Cross-Section F2-F2' for Sampling Area F	
C.1.6.	Figure 6. Cross-Section G1-G1' for Sampling Area G	
C.1.7.	Figure 7. Cross-Section G2-G2' for Sampling Area G	C.1-9
C.1.8.	Figure 8. Cross-Section G3-G3' for Sampling Area G	

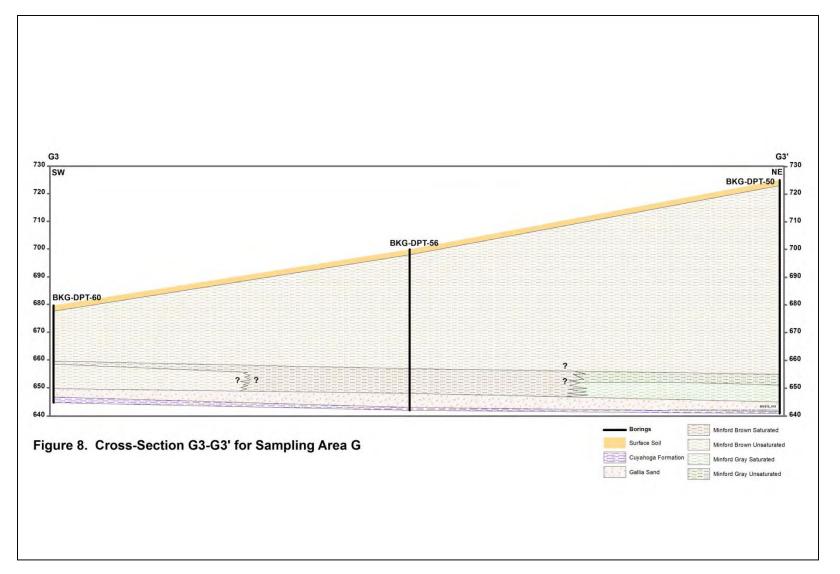



C.1.1. Figure 1. Geologic Cross-Section Index


C.1.2. Figure 2. Cross-Section D-D' for Sampling Area D


C.1.3. Figure 3. Cross-Section E-E' for Sampling Area E


C.1.4. Figure 4. Cross-Section F1-F1' for Sampling Area F


C.1.5. Figure 5. Cross-Section F2-F2' for Sampling Area F

C.1.6. Figure 6. Cross-Section G1-G1' for Sampling Area G

C.1.7. Figure 7. Cross-Section G2-G2' for Sampling Area G

C.1.8. Figure 8. Cross-Section G3-G3' for Sampling Area G

ATTACHMENT C.2: SOIL BORING LOGS

This page is intentionally left blank.

							FBP-ER-RCRA-	-WD-RP1-0189 Revision 1
	e.l	1.50%				FBP Soil Boring Log		April 2015
Soil Bo	ring No.	EKG	DPT	01		Drilling Date: 5/16/2012	Sheet of	
Project			velle		đ	Project No: WBS 03.01.01.02.01	Date Started: 5	115/12
Well N		NA			×	Drillers: MEW Drilling		115/12
	By: W	Ilia	in R.	e.d		Rig: Geoprohe 7730 APT	Total Depth: [oft-
Weath		clea	25	70	14			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (IIA	Descrip		
		2_{-} 3_{-} 4_{-} 5_{-} 6_{-} 7_{-} 8_{-} 9_{-} 10_{-} 11_{-} 12_{-} 13_{-} 14_{-}	23 21 21 13 17		W IKC S 16 12	Muist Brown IOYR 5/3 5 gravel, becoming yellowish at 14" and becoming sand. Moist, yellowish brown 5 sand, erum bly, dense Very muist yellowish bro trace sand, med plashe, in brown 7.5 YR 4/4 sand Silt dense to 8" your sof Muist to damp brown 5 then very moist sand (f "Stivine Moist to damp brown 5 coarse liftle fine	it, some it, some it, some it, some it, some in silt, s Un conforma i, it ie s i, it ie s and, little Gue formed	clay little clay little ome clay bly overlying it trace clay fiche es, It to 3" dium)
		15 _ 16 _ 17			•			
		- 18 _ 19 _ 20 _					, 1	

1.1.00

		-					DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	Revision 1 April 2015
Project Well N		1/1A 1/1A 1/1A 1/1	con m Fly	Gran	0	Drilling Date: 5/16 (2012) Project No: WBS 03.01.01.02.01 Drillers: MEW Prilling Rig: Geoprobe 7730 DPT Breezy 70°	Sheet (of Date Started: 5 (16 (2012 12 2) Date Ended: 5 / 16 / 2012 12 2 Total Depth: 12 .f.t
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	' Descrij	
		1_{-} 2_{-} 3_{-} 4_{-} 5_{-} 6_{-} 7_{-} 8_{-} 9_{-} 10_{-} 11_{-} 12_{-} 13_{-} 14_{-} 15_{-} 16_{-} 17_{-} 18_{-} 19_{-} 20_{-}	222" 21 22 15		WINE STILLIE	Moist, dark yellowish brod some clay, trace of brown @ 118" mark, 10 Moist, Shff, brown 7. Clay, frace sand, 6" same as above 9r yellowish brown 10 yr 5 11the clay. Soft moist silt, som same as above. 24" soft moist, silt, and over lying unconformably sand, some silt them into sand and 1 grave Earn of	Syr 514, Silt and Shahtiy plastic adina into softer The silt, some sand, some sand, little clay some sand, little clay some shall brown, 10 YR 5/3 Built shall brown sand, gradin (last zir

								PO/03-0667&D1 A-WD-RPT-0189			
1	ada.	dia hatini				EPD Soil Boring Log		Revision 1			
1.1	_	-				FBP Soil Boring Log	Chart Lat /	April 2015			
	oring No.				1	Drilling Date: <u>5//6//2</u> Project No: WBS 03.01.01.02.01	Date Started: 5	116/2012 9:44			
Well N	t: Soic	1	A		4	Drillers: MEW Drilling	Date Ended: 5				
	By: W	Tha	ma	e.d		Rig: Geoprobe 1730 DPT	Total Depth:	10 fr			
Weath	er: 5	unn	1,6	00							
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery, S	Blow Count	(mqq) (IIA	Description					
	whe XX SIUTIZ	1_ 2_ 3_ 4_	19 18 16			Moist, brown 104R 4/3 crumbly, trace grain Moist, yellowish brown Medium sand, well s Moist, strong brown T sand, rearsening with to depth, loose. Moist brown sund to some fine gravel coar cobbles bottom z'' of Moist to damp, light ye gravel, some cobble	10 YR 516 orted., trace 15 YR 516, depth, 5th 5 9" then sening with	fine to medium fine to medium exting a f 9" sand and deptn, some			
12		11 = 12 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 20 = 20 = 100				END OF 1	BORING-				

			1		FBP-ER-RCRA-WD-RPT-0189 Revision 1
				FBP Soil Boring Log	April 2015
	BKGOPTOL			Drilling Date: 5/16/2012	Sheet of Date Started: 5/16/AZ 1015
oject: Soi	1 Backge	revnel		Project No: WBS 03.01.01.02.01	Date Started: 5/16/02 1015 Date Ended: 5/16/02 1028
cu ito.		A 1		Drillers: MEW Dr. / I.m. Rig: DPT 7730 BEOPROBE	Total Depth: 10 fr
		Reid	!	Rig: DPT 7730 DEOPROBE	
Sample No. Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery (in)	Blow Count	PID (ppm)	Descri	ption
San Pen (1)	$\begin{array}{c c} 1 & 1 \\ 1 & 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$		ω HTT 5/16/12	Moist, dark, yellowish brow sand 3 little grand , ove yellowish brown 10 yrs Maist, yellowish brown Sand. Moist Horst yellowish br sand. Motsame asabove to 12 sand. Motsame asabove to 12 some silt, the brown silt , sugary texture w Alternating medium sand silt Jaminge to B" overlying fine sand 10 yr coarse Sand, some of END OF	10 YR 5/6, fine to med rown fine to med. um medicum, some fine 11 yuan 11 sand with 7.5 YR 5/4 sand, little with clear quartz grains

<u> </u>					_		FBP-ER-RCKA-WD-RP1-0189
1	::2KB	Manapran				FBP Soil Boring Log	Revision 1 April 2015
Soil Bori	ingNo	Becar	PTOS			DrillingDate: 5/16/2012	Sheet / of /
Project:				ROUNTI	2	Project No: WBS03.01.01.02.01	Date Started: 5/16 (2012 13-22
Well No:		NA				Drillers: Miles DRUSING	Date Ended: 5/16/2012 1355
Logged I	By: W	1.LL	Am	REI	D	Rig: Groproh 7730 DPT	Total Depth: 10 4
Weather	: f	anti	-1 (10	oudy.	70		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrip	
		23 4	19 19 184 17			Moist, Strong brown 7.5 Yr little clay, crumbly. Moist, strong brown sil clay dense top 7" Sand cantent increasid. @ 15 'sand; some silt and 4" Moist, silt scied & gra light yellowish brown mothing shad and gravel, 75 YR Slightly moist sand and fining to sand and pea to bottom, mostly rounded, som so gang thetore 7.5 YR silv Moist light brown 7.5 YR Some Cobbles poorly so	t i Some sand little less dense with dipte g @ 10" silt and sand quavels well some brown and 7.54 6/3, then brown 5/4, little cobbies. " quavel, trace cobbies quavel starting at 12" mangular grains 1" to 8," 10 YR 6/3 bottom 9"

		1					DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
-						FBP Soil Boring Log	Revision 1 April 2015
oil Bor	ing No. B	K (m f	PT O			Drilling Date: 5/15/2012	Sheet (of /
	SOIL					Project No: WBS 03.01.01.02.01	Date Started: 5/15/2012 9:00
Vell No		TA				Drillers: MEW DRILLING	Date Ended: 5/15/2012 0925
ogged	By: Wit	rita	n RE	10		Rig: Geoprote 7730 OPT	Total Depth: 10 fr
Veather			570	Hu	H TUDI	A-1 7B	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descri	
		1_	17			Moist brown 7.5 YR 4/3 Sand. trace gravel, cri	silt some clay little umbly,
						Moist brun 7.542 4/4	1
		3_	21			12" Muist yellowish brown Clay stiff grading and organics them 2	5/15/12
		4_					10YR 4/6 Silt some
		10	23			12" Muist ypllowish brown	15" silt some sand
		5_	- ,	-		Clay shift grading	" I silt and sand.
		alter 1	1.16		S	and ac 300 yrun 2	of -
		6_	-	-	with	4unware 5/15/2012	-
		1218	10		5 [15]	Prading into medium to	12 Ell fine sand (5)
		7_	18	-	1.	Sudia into in advisión to	CALLER Sund IN YR 4/4
		1 minut	1	-			
		8_				(fining upward)	-
	1.1	N. State of State			{	Damp to bet, strong	brown 7.5 YR 5/6
		9_	15	-		course sand will a	2 · · · · · · · · · · · · · · · · · · ·
	1.4	10	15	-		Damp to wet, strong coarse sand, little a	ravel to s, then
		10_		-			
	1.00	Shiriet?	0.00			END OF BORIN	J G
		11_	i	-			
		10		-	-		
	1	12 _	1.1	-			
		Reference.	-				
		1 12					
		13_		-	1		
		21 (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)			1		
		13 _ 14 _					ب.
		14 _					± ^k ₩
		21 (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)			-		-1
		14 15			-		
		14 _			-		** *
		14 15 16			-		-\ +
		14 15			-		Ť
		14 _ 15 _ 16 _ 17 _					in the second seco
		14 15 16					-\ +
		14 _ 15 _ 16 _ 17 _ 18 _					-** *
		14 _ 15 _ 16 _ 17 _					÷.
		14 _ 15 _ 16 _ 17 _ 18 _					**

ų,

	1		-				DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189	
	¢					FBP Soil Boring Log	Revision 1 April 2015	
Project: Well No: Logged I	By: W	Bo	ickg	Leid	d 1 y 75	Drilling Date: 5/15/2012 Sheet of 1 Project No: WBS 03.01.01.02.01 Date Started: 5/15/2012 1445 Drillers: M& W Dr. 11000 Date Ended: 5/15/2012 166 Rig: Group rube 7736 Total Depth: 16 16		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery-	Blow Count	PID (ppm)	Descript		
		1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20	15 17 29 16 16		4	Moist, brown 75 YR 4/2 5 Grading into mottle brown 31 Sand, with 77.5 YR \$/4 mottle Danse, Moist, yellowish bro some sand and cley the More dense, moist yellowis Silt and clay trace san plustic, becoming soft Si Moist yellowish brown silt into (4-10, 14thoust brow to 7.5 YR 4/14 Damp, brown, fine to med END of Boring	unbly, trace organics a brown 10 YR 5/4 and grand, slightly 11- some sand last 2 t and sand, grading a fine to medium sand	

. .

-		-	_	-	-	EDD Coll Doning Log	FBP-ER-RCRA-WD-RPT-0189 Revision 1
						FBP Soil Boring Log	April 2015
il Bori	ing No. B	KGD	PT8			Drilling Date: 5/15/2019	Sheet (of (
	SOIL			ouro	/	Project No: WBS 03.01.01.02.01	Date Started: 5/15/12 1515
ell No:		NA				Drillers: MEW Prilling	Date Ended: 5/15/12 (550
	By: L	REDD				Rig: Geographe DPT 7730	Total Depth: 10 F+
ather	: Pa	thy	Cio	11.1	70		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrij	
		1_ 2_ 3 4_ 5 6_	20 71 24			Moist, brown 7.5 YR 4/2 SI Sand; grading into bri clay, dense, slightly f Moist, strong brown Silt 7.5 YR 5/c, crumbly, t Plastic grading into (8- brown Silt, some sand brown 7.5 YR 1/4 sand,	and clay, little sand race organics, Shift, silt and clay, slight - 16) soft strong
		7 _ 8 _ 9 _ 10 _ 11 _ 12 _	23			Soft yellowish brown (10 damp 1 som little class organics stistiz Moist, sherky silt, some a then silt and sand (1 mothing to 12" then 10, then fine to medium br	VR 516) soft 311+, and shad, some clay, little sand to 5' oyrs/c) some 10 yrs/
		13 _ 14 _ 15 _ 16 _ 17 _					4 **
		18_ 19_ 20					

1

C.2-8

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189	
		-		-		FBP Soil Boring Log	Revision 1 April 2015	
Project: Well No.	By: Wil	Ba NI Ian	ekor A	d		Drilling Date:5/10/2012Sheet lofProject No:WBS 03.01.01.02.01Date Started:5/10/2012Drillers:MetuDrillingDate Ended:5/10/2012Rig:Creprope7730PPTTotal Depth:10 +Brenzed		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	lon	
		1_ 2_ 3 _ 4 _ 5 _ 6 _ 7 _ 8 _ 9 _ 10 _ 11 _ 12 _ 13 _ 14 _ 15 _ 14 _ 15 _ 14 _ 15 _ 14 _ 15 _ 18 _ 19 _ 20 _	22 22 20 17 19			12" Moist, dense byown Some clay trace sand, moist, brown silt some mottled, Moist dense, brown silt, sand trace organics is Moist medium dense brown and clay, slightly plashe "To ya 4/3 Damp brown 7.5 YR 5/3 5 Sugary texture. Moist, brown 10 YR 5/3, tayture well sorthd. END OF BORI.	unconformably over clay to 7:5 YR 5/4 some clay, little lightly plactic TSYR 5/4 silt with stioliz e Silt grading into and, medium grain Medium sand, sugary	

							DOE/PPP FBP-ER-RCRA-	O/03-0667&D1 WD-RPT-0189	
-		-				FBP Soil Boring Log		Revision 1 April 2015	
Soil Bori Project: Well No: Logged E		Ba	DPTIC Kgr	zunu		Drilling Date:5/15/17_Sheet /of (Project No:WBS 03.01.01.02.01Date Started:5/1Drillers:M2W DRILLINGGDate Ended:5/1Rig:Groprobe7730DFTTotal Depth:10			15798 1602
Weather			+14 0		ty .	7015			_
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Description			
Sam	Pene	$\begin{bmatrix} a \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	23 22 27 27 20 20	Blo	PIL	Moist brown silt, some sam dense Moist, dense yellowish bro and clay, slight ly plastic Or moist, dense yellowish bro grading into soften yellow clay little sand to 21, 4 becoming shifter Or soft yellowish brown sil sand unconformably over Sandi fine to medium we lor of damp brown silts som prouv fine -medium sand	in 10 1.44re ioun si li ish brock han cla brown il sorteb in - fine a he sched,	YIZ 416 SI sand. It and cli an, silt, s iy increas clay lith 7.5 YR 1 frace Sand. the	1+ 1+ 100000 10000 14/4 51/4
-		20_		12.33	1				

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	ant 1 al 224	e=0.				FBP Soil Boring Log	Revision 1 April 2015
	N. QL	11 1	0-11	_		Drilling Date: 5/15/2017	Sheet / of \
	ng No. RK				./	Project No: WBS 03.01.01.02.01	Date Started: 5/15/2012. (1.66
roject: Vell No:	SOIL	NA	J	roun	a	Drillers: M&W PRILLING	Date Ended: 5/15/2012
	y: WI		De	21	1	Rig: Geoprohe 1730 DP+	Total Depth: 10 f-
eather:		1.+1.	10	lova	4 7	0'5	1
Sample No.	H	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (IIY	Descrip	
~		1_ 2_ 3_ 4_ 	18 18 19 19 19 19		W HM 5/15/17	2" topso. 1 the Moist harstiff s and 10 YR 716 mothed some sitt and grand cr Moist, shift, brown 7.5 Y same clay, little gran crumbly , little gran is remby , little gran light yellowish brown and Silt, some sand, little cobbles, "Tis liz 4" same ous aborgh unconfi brown sand, come go prorly sorted with Jistliz " Maint Light yellowish brow	R5/4 silt and sand rel, voot strands, nconformably over brown 7.5 4R5/4 mottled clay gravel and mably over 7.5 4R5/4 avel, 114/2 silt
5		10 11 _ 12 _ 13 _ 14 _			1 1 1 1	END OF BORING	<u>st 3, «</u>
	× -	15 _ 16 _ 17 _ 18 _ 19 _ 20 _					

Kp -

		4 .ge				DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189			
1.00					FBP Soil Boring Log	Revision 1 April 2015			
Soil Bori Project: Well No:	Soil	GDPT 12 BACKGRO	- 00,00		Drilling Date: 5/15/2012 Sheet / of / Project No: WBS 03.01.01.02.01 Date Started: 5/13 / 2012 Drillers: ME(4) DS1/1010 Date Ended: 5/15 / 2012				
	By: W.1		Re.c	l	Rig: Geoprobe DAT 7730	Total Depth: 10 f-f			
Sample No.	1	Depth (ft) 5 Sample Recovery 6 (in)	Blow Count	PID (ppm)	Description				
	Δ.	$ \begin{array}{c} $			Crumbly Bome brick fragm 19" Moist dk yellowish b Some clay, little sand die yellowish brown silt Moist dk yellowish brown trace gravel, damp	rown 10 YR 4/6 sill- , crumbly grading into and sand, damp. M sand, little silt at depth. grading into morst G silt little sand then sand, some silt (yerlows o YR 5/6 sand and silt into wellowsh brown			

						DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189	
-			0	~~~~	FBP Soil Boring Log	Revision 1 April 2015	
Project: Well No Logged	By: W.	1A L.Am	RED .	ሙማ ሃ	Drilling Date: 5/10/2012 Project No: WBS 03.01.01.02.01 Drillers: ME W DRILLING Rig: GEDRADSE 7730	Sheet of Date Started: 5/10/2012 08:35 Date Ended: 5/10/2012 9:05 Total Depth: 10'	
Sample No.	Veather: SUNNY 650				Description		
		1_ 20 2 3_ 2.4 4 5_ 1 6			Moist yellowsk brown silt, soli Hiccicy itrace gravely of """ Moist, brown silt, liftle TS YR 4/4 crumbly With liz Moist, less dense (soft liftle sand, slightly pla Norst, less dense (soft liftle sand, slightly pla iverlying 75485/c sand w STIOIR II Damp brown 7.5 YR overlying 7.5 YR S/4110 grevel poorly sorted; END OF Bor	little ciay 7.542 4/3, lense, crumbly. sand, trace clay solt, some clay she 75885/2 with Show clay and silt, little clay 5/2 silt and sand sht brown sand end little cobbles.	

	-					FDD Soil Poring Log	FBP-FR-RCRA-WD-RPT-0189 Revision 1		
	-47:					FBP Soil Boring Log	April 2015		
	ing No. 🥙				,	Drilling Date: 5/10/2012	Sheet of (
	Soil		Kara	vuno	1	Project No: WBS 03.01.01.02.01	Date Started: 5/10/2012 1427		
Well No			- 11	1		Drillers: MEW Drilling	Date Ended: 5/10/2012 1446 Total Depth: 10 f+		
Logged By: William (led) Weather: Partly Lioudy 60						Rig: Cuprobe 7730 DPT	Total Depth: YO TF		
weather	- run	1410	21000	1	60				
Sample No. Penetrometer (kg/cm ²) Depth (ft) Depth (ft) Sample Recovery (in) Blow Count PID (ppm)					PID (ppm)	Description			
		1 2 3 4 5 6	s 19 18 17" 18			Slightly moist, dark gray 7. clay, dense, crumbly Opcon- brown sand, some silt Moist, strong brown 7.5 silt, trace clay 10" 7.5 YR 41c Moist, strong brown sand, clay grading into light sand, some gravel, trace Moist light brown 75 YI gravel, Mcdrum - coarse 1.the combles same as above	YR 4/6 sund, some some silt, trace of brown 7.5 YR 6/3		

¥.

						I DI "LIN"NUN	A-WD-RPT-0189	
				Revision 1 April 2015				
oil Dom	ing No. 0 i		15		Drilling Date: 5/15/2012	r		
	Soil				Project No: WBS 03.01.01.02.01	Sheet of Date Started:	5/15/2012	094
Vell No		NA			Drillers: M&W Drilling	Date Ended:	61 - A.	1010
	By: W,	11 Cr Lin	D. I		Rig: Geoprobe 7730	DP Total Depth:	10 ft	
Veather		G	5					
cather	1 10			1				
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery	(III) Blow Count	PID (ppm)	Descr	ription		
		1_ 16 2 3_ 19 4 5_ 1.5			9" Moist, silt and sand, brown 7:5 YR 3/2 Union durk brown silt, some a Moist, dense, yellowish br from previous sample to 3" Sand, (10 YR 5/6), 10" same as above, gra to yellowish brown, fine	oun silt,) the some shistic cling into e should be	(color gran clay little (z' transit tt (= Silt.	ding rom)
		6 7 12 8 9 1 ,		51.51	Frading into coarse s gravely graves increasing 4" moist dark gellowish little cobbles, grading i Sand, some gravel (fin	brown sa	ind and q	ranel se
		7 - 12 8 - 12 9 - 12 10 - 12		51.51	Moist, dark yellowish bre grading into coarse s gravely gravel increasing 4" moist dark yellowish little cobbles, grading is Sand, some gravel (fin END OF BORING	brown sa into medic er)	ind and q	ranel se
		7 - 12 8		51.51	4" moist dark gellowish little cobbles, grading i Band, some gravel (fin	brown sa into medic er)	ind and q	ravel se
		7 12 8 9 1 10 11 12 13		51.51	4" moist dark gellowish little cobbles, grading i Band, some gravel (fin	brown sa into medic er)	ind and q	ravel se
		7 - 12 8 - 17 9 - 17 10 - 11 11 - 12 13 - 14 -		- with - 51.51	4" moist dark gellowish little cobbles, grading i Band, some gravel (fin	brown sa into medic er)	nd and g	ranel Se
		7 - 12 8 - 12 9 - 1 - 12 10 - 11 - 12 13 - 14 - 15 - 15 - 12		- with 51.51	4" moist dark gellowish little cobbles, grading i Band, some gravel (fin END OF BORING	brown sa into medic er)	nd and g	ranel Se
		7 - 12 8 - 12 9 - 1 - 12 10 - 11 11 - 12 13 - 14 15 - 16 - 16 - 16		- with - 51.51	4" moist dark gellowish little cobbles, grading i Band, some gravel (fin END OF BORING	brown sa into medic er)	nd and g	ranel Se
		7 - 12 8 - 12 9 - 1 - 12 10 - 11 11 - 12 13 - 14 - 15 - 16 - 17 - 17 - 17 - 17 - 17 - 17 - 17		- with 51.51	4" moist dark gellowish little cobbles, grading i Band, some gravel (fin END OF BORING	brown sa into medic er)	nd and g	ranel Se

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	Revision 1 April 2015
Soil Bori	ing No. B	Viet	DT IL.	-	_	Drilling Date: 5/10/2012	Sheet (of \
	SOIL			AL		Project No: WBS 03.01.01.02.01	Date Started: 5/10/2012 925
Well No:			In Gien	UND		Drillers: MEW PRICLING	Date Ended: 5 / 10 / 2012 9.50
		. 1	ma P	ETA		Rig: Leoprobre 7730	Total Depth: 10 ft
Weather: SUNNY 60'S							
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	ery		(mqq) (IIA	Descrip س ۱۹۹۵	
						Moist renyellowish brown SI	It. little sand and
		1	22.5		0.0	Moist read yellowish brown Si Clay. Trace rock fragment,	Crumbly, dense
		2				Pamp, brown silt and san slightly plastic, becoming s depth	WIN EINIZ
		D-C				Dama brown silt and san	d, stigt little change
		3	()	1.1.1	0.0	shahily plastic hermine a	and some silt at
		17:5	13	1.1	1	depth	
1 8		4		1			w 42 5/10/12
		S.S.H				12" moist, yellowish red s sand sand, some silt, "sugary" sand, light brown 10" moist, yellowish red s grading into light brown well sorted.	5 YR 5/1 silt and
		5			00	ie woisi, yeiner it	5/10 5/6 5/11 1.1
		ROUGH)	17	-	in	sand, some silt,	becoming well sorted
		6			W SI.UI	"sugary" sand, light brown	15 Y12 6/4
ê l				-			No the read and all
		622930			6.0	10 moist, yellowish red S	The STG SUME SITT
		7	18		0,0	grading into light brown	175 YR 614 Sand
		CE MAD	1	-		well sorted.	
		8_		-		W51.0112	1 alt maken 3" last
1 1		EMIN	100		1 1	" yellowish red sits and an	a site over lying s light
		9	0	-	0.0	brown sand, then 2" yellow	ish red sand and silt
		5.34K	1	-		well sorted. Williams 2" yellowish red sits and and brown sand, then 2" yellow (rhymite) them 10" light sorted	brown sand, woll
		10_			· · · ·	surted	
		(2) (法) (3) (法)				END OF FORING	
		11_				END OUR PORTOG	
		10.00					
		12 _	64 <u>-</u> 1				
		1	21.11	1			
		13_					
				1			
		14 _	17.0				
		風油					2
		15_					
		i ha i	1				
		16_	1.1				
		17 _	1.1				
			10.00				
		18_					
		的现在					
		19	N				
	1	1221					
		20			1		
		當加			1		

						DOE/PPPO FBP-ER-RCRA-W	/03-0667&D1 VD-RPT-0189	
-					FBP Soil Boring Log		Revision 1 April 2015	11
	Av	CNOTI	1	_	Drilling Date: 5/10/2017	Sheet /of !		
Soil Bor	ing No. DR	GOPTI	1	1	Project No: WBS 03.01.01.02.01		5/10/2012	- 1351
		Backbri	une		Drillers: MEW Drylling		5/10 12012	
Well No	By: Wi	1	Re.	1	Rig: Geoprube 7736 DPT	Total Depth:	10 ft	
Weather		the	La ide	RY	eez1, 60°			
Sample No.	-	C C C Copth (ft)	Blow Count		2" Topso. 1th yhan moist d little clay and shad	ark yellowish then Uncon ilt, some cl 4/6 Oren	tormably o lag trace	sa-d sa-d
7		6_ 7_19 8_ 9_18^4			Some as abore	stining of Bund a rfed, pawiti	and grad	vel,
		10 11 12 13 14 15 16 17 18 19 20			END OF BOR	ZING	Ť	

							FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	Revision 1 April 2015
O.U Par	ring No. 3	K166.	NOTIF	<u>م</u>		Drilling Date: 5/9/2012	Sheet lof
	: Soir (Project No: WBS 03.01.01.02.01	Date Started: 5/9/2012 11:24
Well No		1/4	Conce.	10		Drillers: MEW Drilling	Date Ended: 5 /9 /2012 11-44
Logged 1	By: W.	11/14	im R	2eid		Rig: Geoprobe 7730 DPT	Total Depth: 10
Weather	r: Par	1+14	Sunn	14 6	80	r v r	
		\Box'	ery				
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		ription
		1_ 2 3_ 4 5_ 6 7_ 8	22" 19" 21 19" 19" 18"		0.0	Same as above, shightly Softer/less dense Same as above to slass brown silt and sand, bottom 6 "moist brown silt and yellowish brown and white poorty sorted from dark ye Sand, little clay, little c	8' then damp, reddish trace of clay to
×		11 _ 12 _ 13 _ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 _				ENDDE	BURING

				DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
and the second s			FBP Soil Boring Log	Revision 1 April 2015
Soil Boring No. REG	NPT 19		Drilling Date: 5/9/2012	Sheet (of (
roject: SOIL BA		N	Project No: WBS 03.01.01.02.01	Date Started: 5/9/2012 10 40
Vell No: N/A		4	Drillers: MEW DRILLING	Date Ended: 5/9/2012 11:05
ogged By: Will,		, I	Rig: Geoprobe 7730 DPT	Total Depth: 10f+
Veather: Partly	Sunny	680	1	
Sample No. Penetrometer (kg/cm ²) Depth (ft)	Sample Recovery (in)	Blow Count PID (ppm)	Descrij	ption
1955 1 3 4	21"	#	Moist brown (10 Y12 Y/3) Sil gravel, and sand, arumb Moist brown (10 Y12 5/3) Si Sand, Slightly plastic	It, some clay, trace
9 9-10' 10	(7 " 17 '' 15 ''	0.0	3" Moist brown Livir ST becoming moist fellowish I little clay and sand to Moist reddish brown and to 6'8" them 2" silt and to which i brown sand to (is YR STAT) Muist yellowish brown Ewn Poor ly Sorted, rounded	Brown (10412 5/4) Silt 5-5 then moist sand, some white, poorly surfed Sand, sand seam, then back 7.5' min silt, sand & grave

END OF Boring

J

	autorio.	-			DOE/PPPO/03-0667&D1 FBP-FR-RCRA-WD-RPT-0189			
					FBP Soil Boring Log Revision 1			
-		1.000				April 2015		
		GOPT 20			Drilling Date: 5/10/2017	Date Started: 5/10/2012		
		ACREBRUU.	V9	-	Project No: WBS 03.01.01.02.01 Drillers: M&W Delling	Date Ended: 5/10/2012 1037		
Well No:		Linn 1	247 -		Rig: Geoprone DPT 7730	Total Depth: 10 FF		
		thy Clu		1.0	Mg. Ocopy and provide	1 12		
Sample No.	H	Depth (ft) Sample Recovery (in)	Blow Count	(mqq) UIY	Descrip			
10.72		$ \begin{array}{c} $	-	0.0	Moist, dense silt, little so SAME AS ABOVE, CRUMBL 4" same as above grading is becoming samply sitty sam brown with sitty sam brown 75 YR 5/4, Uncontornably over fine 75 YR 5/6 stray brown Light brown 75 YR 6/4 Well sorted. END OF BOR	The te medium sand		

							FBP-ER-RCRA-WD-RPT-0189
	10 - 24 - 41	- 0	+			FBP Soil Boring Log	Revision 1 April 2015
Soil Box	ing No. B	Sheet / of <					
						Drilling Date: 5/15/2012 Project No: WBS 03.01.01.02.01	Date Started: 5/15/2012 10 3
Project: Boin Backgound Well No: NA						Drillers: MEW Dr. lling	Date Ended: 5 [15/2017 10'5]
	By: W. (ligm	Ro	.d		Rig: Groprobe 7730 APT	Total Depth: 16f+
Weathe		-060	Y 4		_		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Description Description שייש שייש שייש שייש שייש שייש שייש שי	on
F.		1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_	Zo 12'' 12'' 15''			Moist brown to 7.5712 5/4 trace clay grading into 4/3 Silt and sand, crum Moist yellowish brown 10 y clay and sand, trace gra 5" same as above, vucenform coarse sand, some gravel 13" Moist brown silt, Sand, cobbles, overlying medic Moist brown sand and a cobbles.	12 574 Sill some vel, slightly plastic mably over brown tote 7.5 YR 5/4 slishe and gravel, liffie m sand, some gravel
		10 11 12 13 14 15 16 17				END OF BURING	

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
				Revision 1 April 2015			
oil Bori	ing No. B	146-0	PT 2	2		Drilling Date: 5 /10 /2012	Sheet of
Soil Boring No. BKG-DAT 22						Project No: WBS 03.01.01.02.01	Date Started: 5/10/2012 13-15-
Project: SOIL BACKGround Well No: NA						Drillers: ME W Prilling	Date Ended: 5/10/2012 1334
ogged By: William Reid						Rig: Geoprobe 7730 PPT	Total Depth: (O.F.+
eather		_	cla	1 du	60		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	tion
		1世代177 (33) (33) 1	21		An	1" Topsoil, then C" dark gr	french by over dense
		2	· •		0.0	yellowish brown with sholiz	1/4 silt, some clay.
		NO REAL			1	of the set of the some	clas train sand
		3_	20		0.0	Soft, brown silt, some to bettom.	
		Elate a				to bettom.	7.5
		4	-	1000		6" brown, silt and sund, over 7.5 YR 5/4 sand,	with 5/10/12 1
		5_	16		0.0	over 75 YR SILL end	marching to coarse
		ALL AL					
		6_		-		fining opward.	I was alt and sand
		7		-		same as above with	a"
		动震观	15			lens between 6.5 and	I then some grann
		8_		1	5/0/12	at tothern in sand to bo.	ttem
	6					lenst between 6.5" and noist, light brown, sugar	y sand, medium
		9_	16			grain, little gravel, tra	
	0	10 _	100	-			
		Sales H	-		1		
		11_				END OF BORING	
		20					
		12 _					
		SIL-35			1		
		13_					
		然最					
		14_					
				1.3			2
		15_			1		
		2350		1			
		16			1		
		5743			1		
		17			1		
1		19 10			1		
		10	1000	-			
		18_		-			
		States.					
		19_		-			
		学行	1.1	-	-		
	10	20_		-			
	-	0					

			DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189		
		FBP Soil Boring Log	Revision 1 April 2015		
Soil Boring No. BKGDPT Project: Soil Back Well No: NA Logged By: William R Weather: SUNNY 70	-d	Drilling Date: 5/15/2012 Project No: WBS 03.01.01.02.01 Drillers: MEW PRIMING Rig: Gropping 7730 PPT	Sheet of Date Started: 5/15/2012 1/20 Date Ended: 5/15/12 1/40 Total Depth: /0++		
Sample No. Penetrometer (kg/cm ²) Depth (ft) Depth (ft)	Blow Count PID (ppm)	Description			
$ \begin{array}{c} $		brown produm to coarse 3 some clear quartz grain same as above, , som	with sliz and sand, trace clay yellowish red (STR 416) which clay yellowish red (STR 416) which conformably over and, sugary texture, 10 yR 5/3 5115/12		

	Sauren 1	-	FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015				
			-74		FBP Soil Boring Log Drilling Date: 5/10 (2012	Sheet of /	
	Soic				Project No: WBS 03.01.01.02.01	Date Started: 5710 (2012 105	
Vell No		1A			Drillers: MEW Deilling	Date Ended: 5/10 /2012 114	
ogged	By (a)	Ilican	Re J		Rig: Geoprohe DPT 7730	Total Depth: 10fj	
Veather	: Bree	21 1	50	-			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery	(in) Blow Count	PID (ppm)	Description		
ζ,		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2		2" TOPSOIL, Muist dense yello chay, crumply for the 1/4 10 with st in same as above, then silt, some sand and Damp brown 7.5 YR chay little sand, nou 12" Moist brown silt, overlying silt, some sand overlying silt, some sand overlying sand, sugary f	damp 7.5 YR 4/4 damp 7.5 YR 4/4 damp 7.5 YR 4/4 damp 51,5 YR 4/4 alwy slightly plaste 4/4 Silt, some - plaste Inthe sand and clan ad 1, Hie clay, trace witholiz 7.5 YR 5/4, unconformat	

1

	Hearts-	NHR.	10/12			FBP Soil Boring Log	Revision 1 April 2015		
I Bor	ing No.			PTZC		Drilling Date: 5/10/2012	Sheet (of		
niect:	Soil	BACI	LERO	ININ		Project No: WBS 03.01.01.02.01	Date Started: 5/ 10 /2012 12:34		
ell No:		A				Drillers: MELL Dr. 11 14 43	Date Ended: 5/10/2012 13:02		
	By: WI	11		2erd)	Rig: Geoprobe 7730 BPT	Total Depth: 10 + r		
eather	r: Pi	arts.	1 (loud	4 60	2 /			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)				
		1_ 2_ 3_ 4_ 5_	22 24 2es		0.0	Slightly moist olive brown becoming olive brown and mottled sitt, little clay Moist, yellowish brown sill Sand 10, YR, 4/4, crumble	f little class		
		6 _, 7 _ 8 _ 9 _ 10 _	20		0.0	With Spioliz 6' noist, silt, little sun grading in to moist, Sourd shiftle etc. Sourd shiftle with shiftle 8'' moist suft silt, some cla overlying damp sand litt Sund, brown 75 YRY 4'' damp brown sand well Sand, some gravel 7.5 END DE Born			
	*	11 12 13 14 15 16 17 18 19 20				END OF BORN			

					DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189				
-				EDD Soil Poring Log	Revision 1				
		6.05		FBP Soil Boring Log	April 2015				
		BKG PPT		Drilling Date: 5/17/2012	Sheet of $($ where $5/17/12$ $27/8$				
10		Backgu	round	Project No: WBS 03.01.01.02.01 Drillers: MEW Prolling	Date Ended: 5/17/12 1300				
Well N		11liam	REID	Rig: Groprohe 7730 PP	2000				
Weath	er: 5	unny E	905	rug. Ocopitik 112					
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery. (in)	Blow Count	2° TOPSOIL	2" Topson				
2 HPL 5117/11 B.25	NA 1.75 2.5 2.25 3.25 3.25 3.25 3.0 3.25 3.0 3.25 3.0 3.25 3.0 3.25 3.0	1 - 2/ 2		Clay (1.5 Yiz s/G) Yellow Most, brown Blasilt, some Clay LO YR G/4, som Slightly Moist brown 7.5 Slightly plastic some Mothing & grading into topl" Moist brown 7.5 yiz S/ Sand, some gray mo Slightly plastic, some	Silt some sand little clay own silt, some sand little sand little gravel and e Oxidation staining VIR 5/4 5.1t, Some clay pale yellow 2.5 Y 7/4 brown silt, some clay to depta brown Silt, some clay little offing 7.5 YR 5/2, St. ft organics. silt, some clay and sand aining				
	NA	10 11 12 13 14 15 16 17 18 19 20		ENO OF BURN	NG				

					FBP Soil Bori	ng Log	Арі	il 2015
oil Bo	ring No.	BREPPTZ	7	Drilling	Date: 5/17/201	r	Sheet of (
_		- Backs	li li		No: WBS 03.01.01.02.01		Date Started:5/17/12	1930
ell N	0:	NA			MEW DRILLI		Date Ended: 5/17/1	2 1455
ogged	By: W	Iliam 1	Ze.d	Rig:	Geographe 7250	DPt	Total Depth: 10 FF	
leath		SUNA	J 70'S					
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery (in)	Blow Count	PID (ppm)		Descrip		
	3.25	1 - 21 2 - 20 3 - 20 4 - 5 - 21 6 - 7 - 29		Mois hitti silt Mois of litt inco Moi YR Stiff tran Shift San Shift Kitt	t brawn e sand grad and clay with st gray XS Sand, Some re yellowish of silt 1 yellowish ce sand, g d. with t yellowish with t yellowish with t gray fo Usi h some gray,	7.5 YR 4/4 117/12 5/1 YR 5/1 SII Fred oxid brown 10 YR brown 20 YR brown 25 brown 25 brown 25 brown and ray wet 117/12 with trace same yww ye nothing stit	soft silt ff gray Xst sim sim sim to some ela ation of eining Sla motting, Sla motting, Sla motting, Sla motting, Sla motting, slining	some clay YR 5/1 some clay some shin sand gray X.S and clay , silt, some 6/1 bw.sh brow 7.5 YR 516
		11 _ 12 _ 13 _ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 _			*=1* ;			

	1940						FBP-ER-RCRA-WD-RPT-0189			
						FBP Soil Boring Log	Revision 1 April 2015			
Soil Bo	ring No. 1	346	OPT 2	8		Drilling Date: 5/17/2012	Sheet (of (
Project	Shit	Ba	calar	ownd		Project No: WBS 03.01.01.02.01	Date Started: 5/17/2012 1210			
Well No	Sole	N	A			Drillers: MEW Drilling	Date Ended: 3/17/2012 12.30			
Logged	By: W	Illia	m l	leid		Rig: Geoprube 7730 DPT	Total Depth: 10 4+			
Weathe	r: Su.	nny	70;		-					
Sample No.	Sample No. Penetrometer (kg/cm ²) Depth (ft) Depth (ft) Sample Recovery (in) Blow Count PID (ppm)					2"Topso.1				
w 142 5/17/1	019	1_ 2_ 3_ 4_	~			Slightly moist brown 7,5 4p 5/3 Clay 1 trace organics and with houst brown 7.5 4p 5/3 Statt Moist brown 7.5 4p 5 little sand, dense, some slightly plastic Same as above, thin	Dridation staining pinkish gray 7.5 YR			
with 5117118	4.25	5_ 6_ 7_ 8_	20			6/2 wet stit seam bet with 17/12 with Strong brown 7.5 YR 5% trace of sand slightly P 7.5 YR 5/1 mottling and	lastic some Gray d wood slivers, shift			
W UNR SIM 12	-24	9 _ 10 _ 11 _ 12 _ 13 _ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 _	24			Provist stift strong brown clay grading into stron clay and sand, not as motting in both END OF BO	g brown silt, some shft, some gray			

	_	.w.,			and the second se	FBP-ER-RCRA-WD-RP1-0189 Revision 1
	4	- University of the	- 12		FBP Soil Boring Log	April 2015
Soil Ro	ring No.	BKGDPT	- 7.91	1000	Drilling Date: 5/17/2012	Sheet (of (
Project	: Soil	Ba	ekgrown	d	Project No: WBS 03.01.01.02.01	Date Started: 5/17/2012 1342
Well N		JA.	- 1	V	Drillers: MEWDRICING	Date Ended: 5/17/2012 1415
Logged	By: W	illian	· PELD		Rig: Beoprobe 7730 pr	Total Depth: 10 F
Weath			, breezy	70		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery	(in) Blow Count	PID (ppm)	Descrip	
	3.0 3.25 2 0	4 5 - 2 6 7 - 2 8	2		4" Moist brown 7.5 YR4/4, 51 (nto light gray 2.5 YR little clay with red oxid same as above to 16" 42 wotthingg. Same as above to 16" 42 northingg. Same as above to 16" 42 northing 51/6 51/1 Julting light brown into thing Moist gray and Discon 3/14, some clay i trace 5 Moist shift gray 7.5 YR 6/1 5/4 silt, some clay little staining and organics	un bro little brown with slipliz we strong brown clay + so snad, some slipliz Jis VR G/1 und 7.5 YR 5/4 sand, Slight 1 y plastic
		$10 _$ $11 _$ $12 _$ $13 _$ $14 _$ $15 _$ $16 _$ $17 _$ $18 _$ $19 _$ $20 _$			END OF BORIN	

								PPPO/03-0667 RA-WD-RPT-	
	da	Add the second				FBP Soil Boring Log		Revis April	1.08
Project: Well No	By: W	BAC	KGR	2ELD		Drilling Date: 5/16/2016 Project No: WBS 03.01.01.02.01 Drillers: Мёш Dr. 7/1000 Rig: Geoprome 7730 DPT	Sheet <i>i</i> of (Date Started: Date Ended: Total Depth:		1525
Sample No.	Penetrometer.	Depth (ft)	otanipic recovery	Blow Count	PID (ppm)	Descri			4
		1_ 23 4567	19 18 21			Moist dark grayish brown trace of clay to 10 itum sand 75 YR 616 credd Moist light yellowish bro dark iron minerals with staining itrace clay. Moist light Yellowish bro with dark oxidation stain clark mineral i almost la Moist yellowish brown si clay, clay increasing ä oridation staining entra Moist grigray and brow Shft. END OF B	with red Oxid silvin silvin solver) S, 1+ mig aroun boks like 1+, some t deptu e length	some d weay hornb Sard I some	Sandrani strang bittle Sand sand wered lend Li Hie red
		19 _ 20		-			7		1.1

8

							FBP-ER-RCRA-WD-RPT-0189
		14		4	1	FBP Soil Boring Log	Revision 1 April 2015
Soil Bor	ing No.	Ken	PPTS	31		Prilling Date: 5/32 2012	Sheet / of /
				rownil	1	Project No: WBS 03.0.01.02.01	Date Started: 5 18/2017_ 9:15
Well No	:					Drillers: M&W Drilling	Datended: 5/18/202 920
	By: L			Lid		Rig: Geopribe 7730 DPF	Total Depth: 1.
Weath	er:	2 nn	7 1	10'5	1		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	Descript	
	475- 510	4 - 5 - 6 - 7 - 8 -	23		5/18/1	2"Topsoil, moist yellowish brow sand little eldy trace a shift yellowish brown stilt and grading into light brown silt, some rock fragment shift yellowish brown and and clay some rock fragme hard weather ed shale, along basel parting surf with depth (2,5 1 4.1) to Davk gray weather staining Elon on base 11 5/18/12 weathered Shale	clay, some vocie fragment nish gray clay and " nray mottled silt nts red oxidation staining Saces , becoming competent
		12 _ 13 _ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 _				END OF Boring	

						an application of the second sec	FBP-ER-RCRA-WD-RPT-0189
		Sec. Sec.	and the state	at stills in		FBP Soil Boring Log	April 2015
Soil Bo	ring No.	RKG	OPT	32		Drilling Date: 5/21/12	Sheet of /
	: Soi			Groun	0	Project No: WBS 03.01.01.02.01	Date Started: 5/21/12 13 54
Well N		NI		-	4	Drillers: MEW Orilling	Date Ended: 5/21/12 1500
	By: L			Ke.v	/	Rig: Geoprobe 7730 DT	Total Depth: /8'
Weathe	21:	Sun	NY	80	1 ×		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrip	
		1_ 2_ 3_ 4_ 5_ 6_	18			1"Topsoil, Moist brown 2.5 liffle sand and organics Moist, medium shift silt is yellowish red 5712 5/6 5712 7/1, Gray motting (Stiff Bilt and clay 1 lift soft silt with sizilized then stiff silt and c	with lettle gray molling ucreasing with dipt.
1001-1 50-1-1	ing	7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -				Moist yellowish red silt some some given mothing to 14" some given mothing to 14" slightly moist yellowish red red and gray mothed silt the sedd yellowish red si with slightly our yellowish red si bour gray 5 YR G/1 silt, lift socie fragment s to 20 the rock fragment s to 20 the some sund and rock fragm reddish brown & gray mothing the reddish brown silt	E clay, trace sand, then yellow's hed, sand the Bigellow's hed, sand silt to 5" then red silt and some clay little sand to it some clay to 29 softward le sand trace clay/vicontor silt, some sand, little with red silt, and little brown silt and sand some roce brown silt and clay what's to 5" then od silt, some sand to le is and and rock freement
500 F	5	15 16 17 18 19 20	36		with	Callin - like, moist, Crumbl silt, sand and quavel, t clay, some silt. damp to wet, yellow.sn red liffle quavel to 13, then w when siziliz when siziliz	y reddish yellowish red 34 the reddish brown sand, some silt,

「ない」のというのたちのないである

	and the	E,			Desire of a	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
					FBP Soil Boring Log	Revision 1 April 2015
Project: Well No:	50. Sv: W	NA	Read		Drilling Date: 5/21/12 Project No: WBS 03.01.01.02.01 Drillers: MEW Drucke Rig: Grangworkt PT. 7.730	Sheet L of Z Date Started: 5/21/12 8:57 Date Ended: 5/21/12 Fotal Denth: 21.5
	5	Depth (ft) Sample Recovery		PID (ppm)		strong brown 7.5 YR 516
smull s	ng	$ \begin{array}{c} 1 \\ 2 \\ 2 \\ 3 \\ - 2 \\ - 3 \\ - 2 \\ - 4 \\ - 5 \\ - 7 \\ $	20 1 24 20 4 -9 		Dry Crumbly silt, Some fragments, yello reddish with reddish with siling pry crumbly silt; Some some sand, sameas a SAME as above getting into weathered st 7.5 YR 7/4 lipink" si rock, Dry crumbly light br Shale to bottom. Dry crumbly light br Shale to bottom. Dry crumbly weather Shale to bottom.	hale, dry crombly hale, dry crombly hale, dry crombly bowen 7.5 YR 6/3, weathing bowen 7.5 YR 6/3, weathing bowen to weathing

1

1

C.2-33

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	nter a like	1411 11 1				FBP Soil Boring Log	Revision 1 April 2015
Soil Bo	oring No.		DPT?	3		Drilling Date: 5/21/12	Sheef of 2
	t: Sou					Project No: WBS 03.01.01.02.01	Date Started: 5/21/12 8154
Well N			NA	00100		Drillers: MEW Drilling	Date Ended: 5/2/1/2
	By: L	111	CA MA	Reil		Rig: Croprobe 7730 OPT	Total Depth: 21544
Weath	er: S	unn	1 70	Die			
	1	T	12	1 m			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (IIq	Descr	
		21_				Shale, basal parting	dry crumbly weathing
		22_		-			
		23_				Auger Refusal	
		24_					
		25					
		26_					
		27_					
		28_					
	1.1	29_					
		_0E				-	,
		11			1		,
		12					
		13_					
		14_					
		15_					
		16_					
4		17_		-			
94		18_					
		19	~				
		20_	-		14		

								/PPPO/03-0667&I CRA-WD-RPT-01	
			~ •					Revision	n 1
		-training at				FBP Soil Boring Log		April 20	015
Soil Bo	ring No.	BKG	OPT	34	- 10-1	Drilling Date: 5/23/12	Sheet / of 5		
Project				consu	nd	Project No: WBS 03.01.01.02.01	Date Started:		10:08
Well N						Drillers: Mew Drilling	Date Ended:	5/23/12	1340
Logged	By: LA	2.11	1 4 144	Rea	11	Rig: Geoprohe 7730 OPT		52	
Weathe	er: p	art	1 × ×	Inny	70	5 [Wate of	56	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descri			
	1.0	1_	18			Topsoil with trace gravel to readish yellow silt, lattle	sand an	a clay	75 YRG/C
	6	2_		-		the hard enceptive reddis	h >	s. It a	WIRL 1 SIZZIZ
ą.	>4.5	3_	20		with	Dry, hard crumbly reddis	s, tettie	sand a	nd clay_
	>45	4_	27	1	51231	shahtly moist, shift yello little aravel, overlying Silt and clay	wis sill stiff, y	Some effored di	clay sh yellow
	745-	78	21			Shff moist reddish yello sand. TETRGA	S ۱ ^{, ۲}	GNO CIU	Y (mace
	\$1.5	9_ 10_	29			Stiff, light brown s, It a reddish yellow s, It and			
	4,5	11_ 12_	27		with Sizzl	Moust stiff brown ish yello GVEV reddish yellow sand little organics	silt and	and clan	y grading with
	\$45	13 _ 14	27			with starting 511+ and cla	7, 1.4	e organ	nics
	3.15		36			Shft moist silt and ci Some clay to 28" the all readish yellow 7:5 MR	en stiff 616.	silta.	o silt; nd clay
Swit tool	199.25	16 _ 17 _	27			stift moist silt and clay reddish reliow 7.5 yr.G,			
		¹⁸ ¹⁹ 20	41		-	Medium shift silt and cli to 12" grading into lin 6/4.	ay reddi	sh yellow rish brow	T.SYRCK n LOYR

C.2-35

						DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189				
1		-	e -	-		FBP Soil Boring Log	Revision 1 April 2015			
Soil Bo	oring No.	240	OPT	34		Drilling Date: 5/23/12	Sheet 2 of 5			
Projec				ligno	nd.	Project No: WBS 03.01.01.02.01	Date Started: 5/23/12 1008			
Well N		N	A	-gree		Drillers: MEW Drilling	Date Ended: 5/23/12 1340			
	By: 10			Reid	1	Rig: Geoprobe 7730	Total Depth: 47 FF			
Weath		arl	-14	Sunn	1 70	13	52 withe 10 21/12			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	Descrip	tion			
Sa	Per		Samp	Ē	G	- 1 11, muist al rellar	Decide late			
	3.0	2 1_ 22_	इ द			medium shft reddish yellow mottled (Tist YR 6/6 un and clay, plastic	d 7.5 YR 7/1) Silt SIZ3111			
	2:75	23_	92			same as about				
		25_	58			14" same as above grading in 104R 7/3 511t, some clay little sand to bottom	to very pale brown to 50 yrun silt,			
		26_				6" soft " o. 14 little clay ver	y pale brown, grading into			
		27_ 28_	36			6" soft silt, little clay ver brownish yellow silt some clay content decreasing	at depth, trace gravel			
		29_ 30_	47			12" moist brownish yellow some clay, trace gravel q brown silt, little clay	rading into very pale			
		- יר - יר	35			moist to damp, soft, red and yellow 10 YR 7/6 mot	Koush yellow 7.5 YR 616 Hed silt, little sand.			
		3 ² _	વવ			same as abovel, tess y with sport	rellow mottling			
		34 35	45-			same as above				
		36_ 37_				Same as above				
		38_ 39_	60			Same as able above to 4 sand to be them.	8 then silt, some			
		1-		-						

THE R.

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	Revision 1 April 2015
Soil Bo	ring No.	BKU	PPT 3	34		Drilling Date: 5/23/12	Sheet Fof 3
Project	: 50	ic	hace	Kan	ind	Project No: WBS 03.01.01.02.01	Date Started: 5/23/12 1028
Well N	0:	/	V//			Drillers: M&W DRILLING	Date Ended: 5/23/12 1340
	By: U	sill,	am	Ren	d	Rig: Croprobe 7730 DPT	Total Depth: HT 52 ft With 6/21/12
Weathe	er:	Pa	n.fly	Cu	Jery	705	WINC 6/21/12
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		cription
		42_	48			Moist to damp, silt, som Yellow 10 YR 6/6 Same as above	e sand, soft, brownish
		43 - 44 - 45 - 46 - 47 -				Same as above to s and aravel yellowish by Dry crumbly silt, sand provide the sand	and gravel 10 YR 5/4 motiled
		48- 49- 50-	,			Retusa 1	2.5-16/4
		51_ 52_ 53_ 54_	-				
		55 _ 56 _ 517 _ 518 _ 519 _ 60 _					

.

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 **FBP Soil Boring Log** April 2015 **Drilling Date:** 5124/12 Sheet 4 of 5 Soil Boring No. BKGDPT 34 Project No: WBS 03.01.01.02.01 Date Started: 5/24/ 0910 Project: Soil Backaround UID Date Ended: 5/24/12 Drillers: M+W/ Well No: 52 fp 7730 OPT Lake Incorobe **Total Depth:** 46.5 Rig: Logged By: Mison with 150F+ 6/21/12 Weather: INNE Sample Recovery (in) Penetrometer Blow Count PID (ppm) Sample No. (kg/cm²) Depth (ft) We to refusal on 5 35/3 and additionalatta 10 stabilish extent of ballia MA NM 41 log steet f ag (5/23/12) 42 43 44 45 Dry sit, sand, togravel, light yellowish Brown 104R 5/6 45-46.5 46 refusal at 46. Hard 47 48 49 羽 511 512 53 **5**4 55 56 517 518 519 630

DOE/PPPO/03-0667&D1 w w 21 Revision T April 201 FBP-ER-RCRA-WD-RPT-0189 **FBP Soil Boring Log** Sheet nof 5 Drilling Date: 6/21/2012 Soil Boring No. Bic G DPT 34 Soil Background Date Started: 6/21 /2012 0930 Project No: WBS 03.01.01.02.01 Project: Date Ended: 6/21/12 Drillers: MEW Drilling 1100 Well No: Logged By: William Red Geoprope 7730 APT Total Depth: 52 f+ Rig: EUS Weather: Sunny Sample Recovery (in) Penetrometer (kg/cm²) Blow Count Depth (ft) PID (ppm) Sample No. Description AUGER DRILL TO 46'BG, see logs from 91 5/23 and 5/24 for description for 42_ 0 - 16 43 44 45 46 Slightly moist silt sand and gravel, little rock at 20" fedd yellowish red and prownish yellow mothed. with Ghillin 21 47. 48 22 Wet, strong brown, silt sand and grovel little rock fragments 49 24 B " 50 Bry, strong brown silt, sand and gravel, little rock. gray Weather of shale @ 51 51 7.4 52 END OF BORING 513 54 55 56 57 58 59 60

C.2-39

- laver - -FBP-ER-RCRA-WD-RPT-0189 April 2015 -----**FBP Soil Boring Log** 5/23/12 Sheet 1 of Z Soil Boring No. BEGDPT 35 Drilling Date: Project No: WBS 03.01.01.02.01 Date Started: 5/23/12 1525 Project: SoiL Backbround Date Ended: 5/23/12 1645 Drillers: MEW Drilling Well No: NA Rig: Geoprober 7730 DPT 32 ft Total Depth: Logged By: William Bartly cloudy 80 Weather: Sample Recovery (in) Penetrometer (kg/cm²) Blow Count (mqq) Depth (ft) No. Sample] Description **B** 2" Topsoil, then moist silt, some sand little clay and gravely yellowish brown LOYR 5% 1_ 20 2 Damp, 14" silt, sand and gravel, yellowish brown 10 yr 516 unconformably over stift silt and clay pule whet stastic 10 yr 6/3 3_ 19 4 Moist light gray 9.5 YR 7/1 Grading into brownish yellow silt, some elay little sand 10 YR 6/8 with and 5-28 40 W 17 5/23/12 W 14/2 112 6_ with Slightly moist, silt, some clay little sand. Sizil reddist strong brown 75 YR SIC, wet silt and sund along side of comple Scheen 18-24" 7 24 8 Moist strong brown and light gray mothed 9-33 Silt, some chay trace shad. 10 Moist strong brown silt some clay, trace sand vertical 1/4" light gray damp silt, some sand ribba 11-27 35 12 Most, strong brown silt, little clay and sand trace gravil and organics 13-26 20 Damp yellowish brown 10412 5/8 silt, little 14 to some sand 1 little clay trace gravel 15-42 0.5 Damp to wet yellowish brown 10YR 6/6 silf, some sand liftle clay trace gravel en i 16 Δ 30 with 5/23/1 17 18 Damp yellowish brown silt some sand little 19 30 clay frace gravel With 5/23/12 20

C.2-40

							FBP-ER-RCRA-WD-RPT-0189	
	Seat of the last					FBP Soil Boring Log	Revision 1 April 2015	
Soil Bo	oring No.	BrG	OPT 3	5		Drilling Date: 5/23/17.	Sheet 2 of Z	
	t: So				nd	Project No: WBS 03.01.01.02.01	Date Started: 5/23/12 15/2	5
Well N	lot	N	A	1	0	Drillers: MiW Drilling	Date-Ended: 5/23/12 164	5-
	i By: (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Re.		Rig: Cruprober 7730 DPT	Total Depth: 32 f+	
Weath	er:	P	antl.	f C	lov dy		2 11	-
i	ter		ver	H	2	Depth to Hzu	5.10	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	E Rect	Blow Count	(mqq)	Descrip	ntion	
amp	inetr (kg/	Dept	fi	10 M	· Cl		Juon -	
ŝ	Pe		Sample Recovery (in)	^m		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		
		認能			-	Pomp to wet silt and so	and, little quavel, he	ace.
		21_	24		-	Clay 10 YR 6/4 brown	ish yellow	
		1446				~		
(I I I I I I I I I I I I I I I I I I I		22_			1	1 1 1 1 1 1 1 1	11 1 21	
		92			1	Wet prounist yerrow &	Sill and sund, e	
	(h)	23-	32		1	graver and sand them	sitt, sand and	1
		24		-		wet brownish yellow 8" gravel and sand them rock fragments to 24 Silt and little sand. Gravel silt and sund unconformably over brown and gravel, rock fragme wet silt sund and gravel	then yellowish brown	1
		Renth.			1	Silt and little sand.	IDYR STA	
		15	24	1	1	6 wet silt and a		
			24			Unconformably aver 1	YEIIOW, JOYK 176,	
		26_				and gravel will brown	1.5 TK STY SILF, Sand	
						wet alternal a	ents at 20 Gallia	
	1	27-				" and gravel	7.5 YR 5/4 then	
		141 623	3.0		G	6 yellowish brown sand	then silt sand an.	l
		28-			G V	wet silt sand and gravel 6" yellowish brown sand Gravel, some rock fragme	en its	
		20			-	bet silt sand and gro	am 164R6/4	
	1	0	32					
es ave	100	30_			1		6	
			1	12	1	6" Dry silt sand and g	ravel, fren reddish b	Voun
1900		31_	30			"Shale then gray shale	to bottem.	
			50			1	213	
1		32_			-		1	
		533			1	END OF	BURING	
1		33_	1.1.2					
A			- N	-				- 1
-		34 -						
		35_						
	1	30-	24 1 2			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8
		36-					17 N	
		27			1			
		37_						
1.2								
		38_						
		6		+				
		39_						
		11						
		40-						8
		12-1-1-2	· · ·	1. Sec. 1. Sec	1 million 1			

-

an and

					a contract of the second	FBP-ER-RCRA-WD-RPT-0189					
	FBP Soil Boring Log April 2015										
Soil Bo	ring No.	BKG	DPT36		Drilling Date: 5/22/12	Sheet of 2-					
		, Bo	ekground	I	Project No: WBS 03.01.01.02.01	Date Started: 5/22/12 8:45					
Well N	0:	NA	1		Drillers: MEW Drilling	Date Ended: 5/22/12 1207					
Logged	By: W	illia	in Reid		Rig: Geoprobe 7730 DI 1	Total Depth: 39 F+					
Weathe	er: Cla			1		*					
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Kecovery (in) Blow Count	PID (ppm)	Stable depth to Hz@Descript						
	3.5	4	23	-	B"Topsoil, the moist brown clay, thrace sand, overlying br some clay trace sand Moist medium shift silt some 17, some gray mothing 7.5 silt, some sandi france clay. Moist medium shift silt and	clay, trace sand its 126/1 to 21"yun damp					
	3.0	6 7 8 9 10	27		Moist medium stiff silt and overlying light gray 7,5 1/R slightly plastic years stiff with gizzliz 11 same as above them by and clay 1 toccce sand 6" yellow 10 yr 7/6 and ligh silt and clays overlying red silt and clay medium stiff brown silt and clay pla silt, same as above ov silt, sand and grownl gallin - like Moist stiff reddish yellow	ownish jellow, silt Stift, some organies it gray 10 pl 7/1 motter 0 ish yellow 7:5 YR c/y yellow 7:5 YR c/y gray, shift light astric relying readish yellow cend some cobbles					
		14 15 _ 3 16 17 _ 2 18 19 _	-8 56 14		Moist, stift reddish yellow gray mothied is yn 7/1 silt, som and wohlied with and wohlied so yn 7/1 silt, som with and wohles. Siz Moist, roddish yellow 7.5 YR trace sand to 10" the is the to some sand with to 30, then dawp strong some sand Moist soft, brownish yellow shind rock fragments at Brownish yellow, silt and the so the brownish yellow so, sand merensing in em silt and sand to ba with	6/6 silt and chay moist, soft silt, the rock fragments brown silt 7,5 7R 5/6, w 10 412 6/6 silt little 4 24 be come s yellow					

							DOE/PPPO/03-0667&D1
							FBP-ER-RCRA-WD-RPT-0189 Revision 1
	1.14	-				FBP Soil Boring Log	April 2015
Soil Bor	ing No.	BILG	-DPT 3	6		Drilling Date: 5/12/2012	Sheet 2 of 2-
Project:	Sui	1	Back	gnu	nd	Project No: WBS 03.01.01.02.01	Date Started: 5/12/2012 845
Well No):	NI		0	1	Drillers: MEW Prilling	Date Ended: 5/22 / 2012 12072 Total Depth: 34/6+
Logged	By: (A	114	and-	1 68	0	Rig: Gegain) 30 DPT	Total Depth: 34 4+
Weather		TC (00			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	tion
1	л М	Z 2_	24		ΔN	Damp to wet brownish yel sand, one insand seam at # Wet GALLIA Wet 12" wet sand overly	
		2 ⁴ - 25_ 26_	357		• म ५	wet 12 wet sand overly gravel, some rock fragme sand and peagravel. Wet yellowish brown 10 Y to 28, your sand and with 22112	R 6/6 sea gravel
we tu sn Tub	nt naller ng	28_ 29_ 30_ 31_				Baddy Yellowish brown silt some vock fragments Same al above same as above, some mottling 215-717 4/14	•
	-	32 - 33 - 74 -	22 28		1	4" sand and grave (, fr Gray shale, most likely cu)	
		35 - 36 - 37 - 38 - 39 -			-	END OF BURING	
		40-				-	

State of the state of

								RA-WD-RPT-0189	
-	-04	ata anti-	100 K (100 K) (100 K)			FBP Soil Boring Log		Revision 1 April 2015	
0.11 D	nine Ma	2Vr	NOT	37		Drilling Date: 5/22/12	Sheet (of 3		
200	ring No.			KGrov	nd	Project No: WBS 03.01.01.02.01	Date Started:	5/22/12	1530
Project Well N		1A	pare	ic grov		Drillers: ME W PERCINIC	Date Ended:	5/22/12	1800
Logged		1.11		Red	,	Rig: Geoprobe 7730 DPT	Total Depth:	53.5 ft	
Weath		CI	oud	1 70	15				
	1		Å.						
No.	neter 1 ²)	£	COVE	ount	(mqq)				
Sample No.	tron g/cn	Depth (ft)	(ii)	Blow Count	D (B)	Desc	cription		
Sam	Penetrometer (kg/cm ²)	Å	Sample Recovery (in)	Blo	DII	WHIL SIZZI		7.5412 61	8
-	F_	25 244 1	Sa			1" Topsoil, moist yellosas shift, trace sand, si	ish reliand	L and el	
		12-11			-	1" Topsoil, Moist yellowish	i la hutte	r, and the	27
		1_	21	-		Stitt, trace sand', Si	n++ 5/2	2/12	
		1441						-	4
		2_		-		at the false	1.1+ 1.+1.	e sand an	.0
		20127				Slightly moist, crumbly clay rock fragments & 7.5 YR 618		added ve	low
		3_	24			Clay, rock fragments	bottom 6	he harde [
		0.50				15 75 YR 618	an a		
		4_	~	-			e shad 1	the main	C
1		5				Dry crumbly silt, sur @ 13" rock fragments some vock fragments		I TOUL	maguren ?
		-	24	-		(a) 13" rock fragments	increasing	in confe	at to
		6		-		some vocil fragments	10 YR 6/6	brown ish	yellow
				-		Dry crumbly cit. som.	caul	1 and	
	1.1	7_	22			Dry crumbly sit, some some organics top 12'	Some in 1	gravel,	
	14.5		100			IOYR 1, a top 12	1 h, the pra	gments 1	ast 10
	1	8				10 YR 618 brownich yel	Ian		
						Dry cruchy FIL	•		
		9	24			sand place colling	e rock frac,	ments lit	He
		31.3	127			Dry grumby silt some sand olive yellow 2.5	TY 6/6		
	1	10_		-					
		154				same as above, 1	ittle clay	20-24"	
		11	24	-		, , ,	1		
	11								
		12_		-		1.1. <	ilf Some	rock fra	a mento
		Line and				Dry, havd, crumbly, s and gravel, little class		d ker	364
1	>4.5	13_	75	-		and gravel, little clas	y and sa	non very	
		Part -	23	-		/			
		14_				a subly silt so	me class	1.44	
		REF				Dry crumbly silt, so			
	4.0	15_	26			fragments and sand	, little so	fer	
	1		1				1122/12	~ •	
	1	16_		-		fragments and sand yellow 5 and clay plastic 3.11 increasing last 5"	d airair in	offled .	14
Swith	1		1 1	-		MOIST redaish brown	TUS YR GIA	and 70	YRIA
1		17_	24	-		and cing plastic	1.5 11- 016		
1001	ng	10	1-1			SITT INVERSING ILST S			
ľ		18_	- in	112.		Same as above ent	ve length.		
	5	10	WSIZI	110	1	Same as a	1		
	4.25	19	29						
		20							
		20-							
-	1	ille als	1						

						FBP-ER-RCRA-WD-RPT-0189 Revision 1
	100.000				FBP Soil Boring Log	April 2015
oil Bo	ring No.	BKGD	r77		Drilling Date: 5/22/12	Sheet Zof 3
oject	: Su	IL B	acting	round	Project No: WBS 03.01.01.02.01	Date Started: 5/22/12 1530
ell N		N	4	A	Drillers: MEW Drilling	Date Ended: 5/22/12 1802
gged	By: Le	Mia	mR	ill	Rig: Geoprope 7730 DPr	Total Depth: 53,54+
eath	er: (1000	dy '	705		
	E I		(iii)			
Z	met	(£)		Blow Count PID (ppm)	Dogo	ription
Sample No.	etro kg/c	le R	E I	PID (Desci	ription
Sar	Penetrometer (kg/cm ²)		i i		1/1 2/1	
-	-	Ű.	5		10YR 7/6	
	2.75	-	50 -		AMOIST yellow Silt, some	e clay slight redoush
	10	21_			yellow notting	 {
		112	_			
		22			Moust, stiff silt and	clay, plastic reddish
		1.45			MOIST (STUR	
		23 _ 2	31 H		Yellow INTR 714. BI	astre
	3.25	10.20			42 112	
		24			WSIZZI	7.5 TR GIC reddish yellow
		4		NE.	"The crumbly silf, som	e rock lettle sand over.
	3.0	25_	50		Withulin 5" Dry crumbly silt, som Shff Muist Shff Muist Yellowish brown i becomin	10 YR 6/4 light
	3.0	16.00	50-		stift silt and clay,	plastic 1 yellow at m
		26-			relivish brown becomin	g brownish y +++0
		5.7				
		77			15 moist reddesh ye	110W silt little to some
		27-3			Clarg Overlying silt and	1 Ala a la se al
		28			10 YR 716	n clay plastic, yellow
				-		
		20	-1 -	-	Dame as above to 48" OCIL Gragments, 7.5 YR 6	And all I
		29_3		-	· OCIL Gragments / TISYR /	18 SIF Sand Some
		20	-			reduch yellow
		- E			1.04 , 7.54	IR 6/8
			-	_	18" moist reddish yellow	Silt, sand and gravel
		3-4		_	crumbly grading into si	It und clay, stiff.
		1. 24	- L		Plastic	with 7/4
	1.11	32-	-			5/12/1 45 yr. 7/6
		1100	-	_	18" moist slightly plastic "	course perior sin some
		33-5	2 -	_	clud grading into mo	1st, soften redaich yellow
		8:3 C		_	silt i some sand little a	lay 7.5 YR 6/R
	1	34			14"	
	1 - E	1411	F		Moist reddish yellow si	It, some sand little
	10.14	3 ⁵ -62			clay grading into yel	low silf and sand.
		- iq	,° L			10 YR 7/6
		36	_			
		his si			Moist to damp with Speriello	W SILL CONCESAND 10
		37-1	11 L		28 becoming wet silt	and sand loyr 6/6
		1999 - S				1
		38_			A	11 up an acle home
		832-1		<u> </u>	N wet, fine sand, little si	it very par brown
		39_			10 YR 7/4	
					11- 11-7	
		40_	100			
		1 7				

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	-	-				FBP Soil Boring Log	Revision 1 April 2015
Coll De	oring No.	Que	APT 2	5	-	Drilling Date: 5/22/10	Sheet 3 of 3
Project				icon	und	Project No: WBS 03.01.01.02.01	Date Started: 5/22/12 1530
Well N		NI	F	107.00	12	Drillers: M&W Drilling	Date Ended: 5/22/12 1800
Logged		111	Gm	Ren	l	Rig: Gaoprobe 7730 OPr	Total Depth: 53.5 ft
Weath	er: (10	vd1	705			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (II4	Descript	
-		1.			1	wet, reddish yellow sand	7.5486/4
	11.1	91_	46			/	
		42_				same as above	
		43_	42				
		73-	12				
		44-				HR 2/12	
1		1	-			Incre P ()	7.5 41614
		45	48			ware fine to medium sand.	
		1	40				
		46_			- (4		
	4	1			79	wet silt sand and a	varel 10/12 614
		47-	50			wet silt sand and a	
		1/8_					
	1	10	1 2 1				
		49_	46				
		50		1			
		- 06		-			
		51	52	1	÷	Damp wet gray 10YR overlying reddesh yellow s	6/1 sand, some grame (
						Damp wer grad walland a	silt sand and gravel
		52				overlying reduces yellow	
		5					
		53		5 <u> </u>		To" weathered shall	
		E				447	
		54.				4- Gray shall with (sho	ile had mud patina
		5.				5/22/12	5
		55					
		56					.9
		- 0.0					њ. (
1.		517					
		58					
		18.1	100				
		59_					
		Z		2	-		
	1 1	60					
		1.			1		

				-			FBP-ER-RCRA-WD-RPT-0189
			er.			FBP Soil Boring Log	April 2015
Soil Bor	ing No.	BYG	DPT	38		Drilling Date: 6/12/12	Sheet of 3
Project:			Bac		vad	Project No: WBS 03.01.01.02.01	Date Started: 6/12/12 1358
Well No		٨	IA		1	Drillers: MEW Drilling	Date Ended: 6/12/12 1530
Logged			inm			Rig: acoprobe 7730 OPT	Total Depth: 431
Weather	: Po	int	17 6	lov a	4 80		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) UI	Descri	
	1.5	1_ 2_	16	-	- W 101	sitt opsoil the slightly a sitt of little clay and slightly muist, crumbly br	
401		3 - 4	22			lette clay and sand.	
.*	8.0	15]	Moist to down yellow 7.5 Sand little clay and	YR 716 Silt, some
	0.5	5_	19			Sand little clay and	gravel little red
	v.5	L 1	11	1		Uxidation staining	'
		6_		-	1	the state of the state of the state of the	and and avanel
		8		-	-	4" Damp yellow silt some little clay unconturnably and around grading in 7.5 TR 5/6 silt and day Moist, tet shing brown c some 1/2" to 1" yellow si rock fragments 1 to 16"	5 14 some cand
	0,0	7_	7-9	-	4	little clay unconturnably	OVEN SITT WITH SINTIZ
	4.	12	-1		-	and aravel grading in	to stift, strong brown
		8_		-	-	1.5 The sign sille and day	slightly plastic
-8-5	16	10. T	. 7		1.0	Moist, red Strong brown c	ing and sing of the
	2.75	9_	23		1	some is to by velloci si	In incontract and
		10			1	to bettern.	Trun SITT MALO C
		10 -		-	1	and the mathemat house	10 VR 64 silf and
		11			1	clay with this ye'red	silt aminae, Unconforme
	>4.5 on built	An T	26		1	clay with this ye ind over damp to met brown to 24", then shift grateb clay then shift grateb	ish yellow silf some san
	on buy	12			1	to 24 the shft groeb	rownish yellow silt and
		1				ciay where 6/12/1	2 d class lixtio
		-	30			shift brownish yellow silt	ava cing i milic
						shift brownish yellow silt sund and gray mottling	In the alter
15.50	oling	14	MAX SAD SA			and cling; some gray	1 1.44 gravel
2 -		÷.			X	wet brownish yellow sill	+ and sard, little grant
	2.75	15 _	40			Unconformably over moist,	brownish yerrow still
	-	X I				and clay some gray i	nott ling.
		16_			1	1	
		ACC IN		5	-	Moist stiff yellowish bri	oun 10 112 5 16 and
	3,5	- 17 _	53		-	gray loviz oli mothed a	silt and clay
+	26	1.000			4		· · · · · · · · · · · · · · · · · · ·
		18_			-		
		10	1 3	-	-	Moist soft brownish	yellow and gray
		19 -	44	1	1	I TO SIF SOMP	to all its 75 same
		20	17			and fine sand with	damp little elvy
	1.1	20 -			1	and fine sand withe	6/12/12

C.2-47

ŧ

		-				FBP Soil Boring Log	Revision 1 April 2015
Coll Bo	ing No.	EV/	OPT	58		Drilling Date: 6/12/12	Sheet 2 of 3
Project		o i T		ellar	1	Project No: WBS 03.01.01.02.01	Date Started: 6/12/12. 1358
Well N		N		- agr		Drillers: MEW Drilling	Date Ended: 6/12/12 1530
Logged		111	am	Re	d	Rig: Ceoprohe 7730 OPT	Total Depth: 431
Weathe	r: /	art	14 0	loud	1 80	25	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	Descript	
	1.75	21_ 22_	42."		with	S" damp gray silt, little into gray and brownish fatto brownish yellow silf-	
14. 1	3. 3	23_ 24_	38			same as above, little	4. 10
.7	1,75	1	58			Same as above, some last 4'	sand and quark
	0.s	26_ 27_ 28	~			Soft, moist to damp yellows Silt, Little clay trace sa Glizliz	
8	Ø.S	11.	42			Bott, damp gray silt and clay, becoming sil	t, some elay last
	42. 0.5		42		2 S Min	4" dry silt, some cian littl brown sand seam to 5" yum Clay and shad.	e sand, some strong idonof some strong wither laray silt, üttle olivine t some sand little
		33 - 34 -	43		at		1
		35_ 36_	54		51121	clay.	ome sand, little
)		37 - 38 -	57			same as above	
		39- 40-	SY(

DOE/PPPO/03-0667&D1	
$FBP_FR_RCRA_WD_RPT_0189$	

							FBP	Soil Bo	ring Log			April 2	
Soil Bor	ing No.	BKG	DPT	38		Drilling I	Drilling Date: 6/12/12 Sh						
Project:					1			3.01.01.02.0)1			: 6/12/12	1358
Well No):		NA	5000	_	Drillers:	ME	w pri	lers			6/12/12	1530
Logged Weather	By: U	11h	um	Reig		Rig:	George	rube	7730 0	M	Total Depth:	43'	
Weather	r:	Par	+ 44	Liu	ydy -	80		1	,	-			
ö	ter	0	over	Ħ	G	DT	w	16.1					
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	E Rec	Blow Count	PID (ppm)				J	Descript	ion		
amp	enetu (kg	Dep	, ple	3low						-			
0	Ā		Sample Recovery (in)	H									
		1				4" w	et s	ilt, s	iome so	and	1.41.	gran	1 unconta
	6	41_	43		20	ably	over	lying	wetye	brown	n lar	12 5/6	sil+
	11.0	1000	1		Í	Sim	et a	nd	e icale	Grau	el an	d volle	fras ment
· · · · · · · · · · · · · · · · · · ·		42_							-1 + -1 4	-1			
3		11	1.1			4,	Mois	t gr	ay sil	It on	nd c	lay, on	1 un conto s:1+ fra q ments unhyiniq
R.	0.11	43 -	36	1.00		wear	These,	0 50	ay sho	le			1
		44		-		1000		EN	0 0 0	- BUY	ring		а. С
.*	12	44 -			1								
1		45_			1								
		4											
		46_	1. C										
		1.00											
		4-		1.2									
		Dec 1											
		48-											
1.4	6	el.											
		49_											
		50									-		
		-10_											
		51_		200	1								
		P			1								
	11.0	52_	1		1								
	1.1		1										
		53_											
			1.0										
		54_	1.1.1	-	-								
		1250		-									0.1
		55-											
		Fr	(
		56_	· 1										
		17			1								
		1			1								
1.1		18	h = 1		1								
					1								1.15
		19_	1 B]								
5				1									
		20_	1										
		(1991))			le al								

				FBP-ER-RCRA-WD-RPT-0189
			FBP Soil Boring Log	Revision 1 April 2015
Soil Boring No.	BKGDPT	34	Drilling Date: 6/12/12	Sheet of 3
Project: So		inround	Project No: WBS 03.01.01.02.01	Date Started: 6/12/12. 1650
Well No:	NA		Drillers: MEW Prilling	Date Ended: 6/12/12 1845
Logged By: ん		Red	Rig: Geopople 7730 00-	Total Depth: 50 Fy
Weather:	Partiy	cial dy	90	
Sample No. Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery, (in)	Blow Count PID (ppm)	whalirliz	scription
2.25	$2 - \frac{3}{2} - \frac{2}{5}$ $4 - \frac{5}{2} - \frac{2}{5}$ $6 - \frac{7}{7} - \frac{2}{5} - \frac{2}{5}$ $8 - \frac{9}{2} - \frac{2}{3}$ $10 - \frac{10}{5}$		silt i and gravel, some with in Strong br Slightly muist; for unb gravel, little cobble Same as above down yellowish brown silt 10412 7/4 motting, // Moist yellowish brown reddish yellow thin 4" of reddish yellow with little Same as aboved, lam and etisit laminaet prown silt 10 VR 6/3	and clay, some vellow and clay, some vellow aminae blatte silt and elay, some damp silt. mated silt and clay to 21 yrun ptipale to bottom. blatte
2 " trool ne 3.75 3.75 1.25	14_ 15_38 16_ 17_48 18_		then pale brown silt is wet pale brown so yr b' wet pale brown io yr b' wet pale brown si over brownish yellow si shift clay some silt stift slightly moist yel yellow mothind 10 yr 51 and clay, with 12	and clay stiff to 20 the 613 silt , lift to 20 the 613 silt , lift to sand and it is once sand, unconformation to bottom to bottom to bottom to bottom to bottom to and to ype 6/8 Silt mish yellow and some clay and silt slightly

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
				أدرز	tinzli	FBP Soil Boring Log	Revision 1 April 2015
Soil Bo Project Well N Logged		N.	Bach	-39 Kgru	und	Drilling Date: 6/12/12 Project No: WBS 03.01.01.02.01 Drillers: M&W Dr. 11100 Rig: Geographe 7730 0PT	Sheet 2 of 3 Date Started: 6 / 12 / 12 / 1650 Date Ended: 6 / 12 / 12 / 1650 Total Depth: 50 Fr
Weath		Pas	HV	Clu		805	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	/ (mqq) CII		12/12
	3.0	Z1_ 22_	56			moust promise yellow and and cliny techning to ext yellowish brown with fith	
₩.	1.5	23_ Z4_	48			Same as above to 28 brown and gray mott and gravel, becoming	12d sill, little clay
	1.25	25_	50			and gravel, becoming within soft so slightly plastic gray mothed silt, son and gravel	
	25	2.7_ 2.8_	51			Yellowish brown with little and clay little gravel as gray silt and clay so mottling, slightly stiff	me yellowish brown
	1.5	29_ 30_	48	ē		clay little sand trace into moist gray silt,	gravel to 24 grading some clay little yellow
	15	31 - 32 -	50			trace cand, so me yellow	ist brown nottling.
	1,5	33 - 34 -	43			Damp gray silt, little little avaul between 3	2 and 35"
		35_ 76	42			same as above	4
	-	37-	472			same as above	
		39- 40-	39		110	same as about 18 some sand 1 little gra 28"	", then wet silt avel between 26 and

											FBI -EK-KCKA	Revision 1	
				ان	hulin	F	BP S	oil Bori	ng Log			April 2015	
Soil Bori	ng No.	3KG	OPT	39	<u>.</u>	Drilling I	Date:	6/12	12		Sheet 5 of 3	A.	
Project:	50	IL NA	Bai	KGI	wind		o: WBS	03.01.01.02.	01	-	Date Started:	6/12/201	2 1650
Well No:						Drillers:	ME	W Dr	Iline		Date Ended:	6/12/2012	1845
Logged I	By: W	1110	in	Re	0	Rig:	Geo	prube	773	O DPT	Total Depth:	5044	
Weather		+14	C IUU	1-1 B	0	1							
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) UIY					Descrip	tion		
		4 1- 42_ 43 - 44 - 45 - 46 - 47 -			şά	Sam silt Wet Sand	su gra	s abund a	d rec ravel	to 20	Sand "yww -Callia reddish reddish e gray	wet qu yellow s; rock tra	It a ments
		48_ 48	38			weat	The	nd a	Mray	sha	E	w "6/12	.112
		4-	30	1000		nea	/			0.a.	-		_
		50^{-} 51^{-} 52^{-} 53^{-} 54^{-} 55^{-} 56^{-} 57^{-} 58^{-} 59^{-} 59^{-} 620^{-}						END	of	BOR	ING		

-					
station.				FBP Soil Boring Log	Revision 1 April 2015
ng No. B	KEDPT	-40		Drilling Date: (2/13/2012	Sheet (of §
50,1			und	Project No: WBS 03.01.01.02.01	Date Started: 6/12/12 0846
	NA			Drillers: MEW Drilling	Date Ended: 1/13/12 1830
					Total Depth: 76
Pa	a.4 1.4	10	Jely	6015	
Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery	(in) Blow Count	PID (ppm)	Descript	<u> </u>
	2	_			
NA	4	9	-	silt, sand and around t	some cubbles
VOLK Sume	5-Z	4		some cobbies, strong bi silt and clay seam be	rown 7.57R 516 Fren 16-20"
		5		Some gravel list rellow over dry string brown sand and gravel, the	Silt and clart Unconformably will (7.5712 516) silt blish yettbrownish yellow
3.5	and the second			graching into stiff browning	silt some clay
2.5				some the phin yellow	AFF avound (C. 6)
2.75	¹³ - Z.	7		Clay to 24" from yellowich to 28 then yellowich brow	brown silt and we silt and some clay a silt and some clay
2.5	15 - 3	7		Muist, stift, yellowish bro some then 1/2-1/2" yellow	
1,0	17 - U			Moist ; yellowish brown s, thin yellow lamande to then yellow lamine, the zit	- yellow silt last
20	19 - Egg 20_		-	Moist yellowish brown silt unin yellow lawinhand y gray toman laminal; f	- and chay some the first the thin > fastic
	Solution Stranger 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

4 h

PORTS/SOIL BKGRD RPT D1 R1 MASTER/04/16/2015

							FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	Revision 1 April 2015
Soil Bori	ng No. 🏌	1. GADT	100			Drilling Date: 6/13/12	Sheet 7 of 5
Project:		Soil		ell	atting	Project No: WBS 03.01.01.02.01	Date Started: 6/13/12. 0846
Well No:		NA			1	Drillers: Mel W Drilline.	Date Ended: 6/13/2 1830
Logged I	By: W	illier	n k	Leic	l	Rig: Geoprobe 7730 Det	Total Depth: 84.
Weather	: Pu	Atly	CI	oud	1 6	6	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	(iii)	Blow Count	PID (ppm)	Descriptio	
	2.0	$\begin{array}{c} 2^{1} \\ 2^{2} \\ 2^{3} \\ 2^{3} \\ 2^{4} \\ 2^{5} \\ 2^{5} \\ 2^{5} \\ 2^{6} \\ 2^{7} \\ 2^{6} \\ 2^{8} \\ 2^{9} \\ 3^{0} \\$	10 10 10 10 10 10 10 10 10 10 10 10 10 1			Moist yellowish brown thin yellow laminae 249 the back to Moist yelknish brown si 28, the treddish ye yeri maist. Maist brownish yellow s. 7' the yellowish yellow s. 7' the yellowish yellow s. 13. the brown and yellow sh yellowish brown and yellow of the mosit to damp sill epraved. Moist brownish yellowish Clay with gray, yellow of the mosit to damp sill with Moist brownish yellowish ind ZI. Mont same as above to 36 yellow silt joome saud Same as above to 36 yellow silt joome saud	It and clay to 11003 Silt, some clay ill, some clay to h brown a larg to an ilaminated is silt and clay broan silt and is black laminactor is some send little t, sand and gravel. ved gravel, brownish 11 an 14 and 16
-	30	3 ⁵ - 5	Y			Moist / yellowish brown Infle sand and grave (silt, some clay
	1.0	3 ⁶	52			Same as above, with Gravel semms at 12-2	0.00
	315	3°	16			18" silt sand and grownl YR 516 gunding into Yell Motthed silt, some clay.	Well3/12 , read strong brown 7.5 100-154 proven and gray

C.2-54

						FBP-ER-RCRA-WD-RPT-0189		
					FBP Soil Boring Log	Revision 1 April 2015		
Soil Bori	ng No. F	KC.DPT	40	1.1.1.1	Drilling Date: 6/13/12	Sheet 3 of S		
Project:	Soil		La rou.	rd	Project No: WBS 03.01.01.02.01	Date Started: 6/13/12 0846		
Well No:		NA		1	Drillers: M& W Dwilling	Date Ended: 6/13/12 1830		
the second s		Illice in	Rei		Rig: Coroprobe 7730 DPT	Total Depth: 86'		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Blow Count	PID (ppm)	Descripti	16/13/12		
	1.0	41- 500 42-			same as about to 24. Strong brown silf, sand in then very moist gray silf clay, soft gray Silf clay, some yellowish b Moist soft, gray silf clay trace gravel. 24" slightly moist gravel some schot on moist gray silf some between 32 an 36.	Some sand little rown mothing little sand and		
	2.0	49-45 50-			moist array silt, some trace of gravel, some	clay little saud,		
	2.25	51 - 58 52			Same as aboved 10" white sile sand one	d a read in		
	6.5	53_ 56			into avay silt, some cla	y little shad.		
	2.5	$5s = 5^{-1}$ $56 = 5^{-1}$ $57 = 5^{-1}$ $58 = 5^{-1}$ $59 = 5^{-1}$ $60 = 5^{-1}$			Moist plastic qua (fili some tore yellowish brown clishe same as above. Moist soft, plastic clo dark gray			

FBP-ER-RCRA-WD-RPT-0189

-	FBP Soil Boring Log April 2015							
		er (j				FBP Soil Boring Log	April 2013	
Soil Bori	ng No. B	KGO	PT 40)		Drilling Date: 67/3/12.	Sheet of s	
Project:					nd.	Project No: WBS 03.01.01.02.01	Date Started: 6/13/12 0846	
Well No:		N	IA	*		Drillers: Meter Drilling	Date Ended: 10113/12 1830	
Logged B	iy: 1		an	Re		Rig: Geoprone 7730 DP	Total Depth: 86	
Weather:		y f	12	100	dy	70 5		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm) ≰	Descripti		
	2.75	62_				Ver Very moist gray Si grading into shffer 4/1 clay some silt Same as above to 3	It prove clay dark gray 7.57R trace grand	
	225	63_ 64_	56			Same as above to 3: gray 7.5712 6/1 lamin moist with 6/13/12	ec. Some	
	2.0	66_	54			moist with 6/13/12 prisest , gray silf and trace send and fine	stay, plastic, grand	
	2.0	67_ 68	58			same as above		
	1,75	69_	58			same as a bove		
	1,5	7 ¹⁰ _	56			Same as above	Jan .	
	2.15	712_ 713_	58			same as above		
	(,5-	74- 75-	57			same as above	15 2 JA	
		76 - 17 - 78 - 79 -	50		271	Moist quay silt, son quant quay silt, son and sand, little quan same as y'above we will gray silt sand a	vet avay silt	

	-	-	_		-		Revision 1
						FBP Soil Boring Log	April 2015
Soil Borin		346	-pet	- 40	·	Drilling Date: 6/13 /17.	Sheet Sof 5
Project:	Soi		Buc	12-19:31	und	Project No: WBS 03.01.01.02.01	Date Started: 6/13/12
Well No: NA Logged By: William Ried						Drillers: M&W Drilling	Date Ended: 6/13/12 6:30
Logged B Weather:			Clo	Rich	-	Rig: Geoproise TT30 FPT	Total Depth: 90
Weather.		114	2	1	10		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descripti	
	int - on ing	新生い			G	Wet gray silt is an Some cobbiles Dry gray silt is and cobles with 6's weather bottom of split spoo in shore END DE B	and quarel, and quarel, and quarel, and gravel, some and shale @ booton and some e
		918_ 79_ Ø0_					

	200						DOE/PPPO/03-0667&D1
	1						FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	April 2015
Soil Bori	ing No.	BKG	NOTH	1		Drilling Date: 6/14/12.	Sheet of 5
Project:			Buck		und	Project No: WBS 03.01.01.02.01	Date Started: 6/14/12 0848
Well No: NA						Drillers: 172 W Dr. Hing	Date Ended: 1/14/12 15-5-0 1
	By: W					Rig: Conceptible 7730 por	Total Depth: 90f+
Weather:	<u>;</u>	5	unn	1 8	FOS	1	
Sample No.	Sample No. Penetrometer (kg/cm ²) Depth (ft) Depth (ft) Sample Recovery (in) Blow Count PID (ppm)					Description	7570 614
	4.5	4 5 6	20 24 29 27			2" Top soil, then dry light bri and gravel to 12" then slight yellow (104k 616) with Gli4112' Yellowish brown 10 YR 5/6 si cobbies, little clay and sand Moist brownist yellow silt a gravel and cobbies, little san cobbies last 3" Moist, brownish yellow silt gravel, grading into yell clay, became shifter and	and clay, some no, shahly moist, crumbly and clay, some no, sousted quartz and clay, little lowish brown silt and laminated with thin
	40	10	29		withe 6/14/12	Yellow lamine LIOYR 716). Moist, stift yellowish brown some thin yellow silt i "stift, yellowish brown c yellowish yellow and brownis silt, then yellowish brown si thin yellow silt imminac, so Moist yellowish brown clay, s	Wh clay, some silt, laminae. Lay then 8" of the yellow laminated ilt and clay with ome rock at billom.
(han tuoli	2.75 2.75 2.9 X	14	30 46 40 43			Yellow laminae to 16" the silt to 24" the back to y some silt. Moist, brownish yellow silt yellowish brown clay, som laminated silt and clay Moist, brownish yellow claw over damp yellow silt, so reddish yellow 7.5 yr 71L, s clay, wet at buttom. Wet, reddish yellow 75 yr 7 little clay.	relionish brown clay - and clay to 8" then the silt to 24" then to bottom. y and silt, unconformably ome clay and sand then silt some sand little

						FBP-ER-RCRA-WD-RPT-0189	
1.1					FBP Soil Boring Log April 2015		
Soil Bor	ing No. B	KGDP	r41		Drilling Date: 6/14/12	Sheet Z of 5	
Project:		- Ba		ind	Project No: WBS 03.01.01.02.01	Date Started: 6/14/12 0848	
Well No	: /	NA			Drillers: MEW Drilling	Date Ended: 6/14/12 1500	
Logged	By: Wil	liam	Rud		Rig: Groprobe 7730 DPT	Total Depth: 904+	
Weather	;	Su.	11/ 8	UC			
Sample No. Penetrometer (kg/cm ²) Depth (ft) Depth (ft) Sample Recovery (in) Blow Count					Descript	ion	
	2.23	21			same as abovebecomin wet sand and silt to 23, moist, yellowish brown si some thin yellow lamina with pyllin Moist, yellow and gray lam some yellow and gray lam soft yellow silt to 28; t strong brown silt is and slightly moist, crumbly, str and gravel to 20; then sand to 30; then sightly Moist, yellowish red silt, Gravel and sand. Slightly moist brownish ye and clay, with silt san at 14-10; 31-36; and brownish yellow - Dry acrumbly silt, some 24; then strong brown silt dig crumbly. Dry, crumbly, reddish yello Some gravel; lithe clay Crumbly silt, sand and Dry, crumbly, reddish yello lithe gravel and sand Crumbly silt, sand and Damp to moist, crumbly sand and gravel, lithe clay	unconturnably over "It and clay (aquiturd) e brown silt and clay will mae to 20" then 2" is and gravel. ung brown silt, sand moist silt some i moist silt some i moist silt some i moist silt sand some clay, little flow silt, little sand and gravel lenses 40-42. clay, little sand to , sand and gravel, bw 7.5 YR 7/c, silt i to 30" flow day gravel. w silt i some clay to 36" i flow damp gravel.	

				FBP-ER-RCRA-WD-RPT-0189					
-			FBP Soil Boring Log	Revision 1 April 2015					
Soil Boring No. BLGDPT4/ Drilling Date: 6/14/12 Sheet S of 5									
Project: Soil	Bailing	round	Project No: WBS 03.01.01.02.01	Date Started: 6/14/12 0848					
Well No: N/	f .	. 1	Drillers: MEW Dy. Iling	Date Ended: 6/14/12 1500					
		- il	Rig: Ocop.ohr 7730 DPT	Total Depth: 90'					
Weather: Sun	ny gos								
Sample No. Penetrometer (kg/cm ²) Depth (ff)	Sample Recovery (in)	Blow Count PID (ppm)	, w b/i41						
3.5 4			Sightly moist for brown mothed silt, some to 24 thin dry strong gravel to 49, talents "Elay little graves to same as above to stitle sand, trace gra same as above to stitle strong brown silt, so same as above to still strong brown silt is same as above same as above to strong brown silt is same as above frounds yellow silt clay Moist brownish yellow sand gravel to 18 the sand of the gravel to 27 dry mothing to 8" the sorve clay to some motor and gravel, little clay moist brown ish yellow sorve clay to some for sorve clay to some motor sold to the the gravel sold to the the some for sold for a some for sold to the some sold sold for a some for sold to the sold for sold the sold for sold for sold for the sold for sold for the sold for sold for the sold for sold for the sold for sold for the sold for sold for the sold for sold for the sold for the so	SZO, then decomp ist yellow and avay clay little gravel brown silt sand and ounsh yellow silt some so item with use bound yellow 12" then dry crumbly and and gravel ist, little shed and ist, little clay the strong brown silt then yellowish brown sand and gravel Silt isome clay and silt isome clay and strong brown silt then yellowish brown sand and gravel Silt isome clay and strong brown silt strong brown silt					

C.2-60

							FBP-ER-RCRA-WD-RPT-0189
		-				FBP Soil Boring Log	Revision 1 April 2015
Soil Bor	ing No.	BKG	POPT			Drilling Date: 6/14/12	Sheet 4of 5
Project:			Back		· J .	Project No: WBS 03.01.01.02.01	Date Started: 6/14/12 0848
Well No	: ,	NIA				Drillers: Me W Dr. 11, ng Rig: Geoprobe 7730 OPT	Date Ended: 6/14/12 1500
Logged 1	By: W	114	in 1	he d		Rig: Geoprobe 7730 DPr	Total Depth: 90 ++-
Weather	-	vun.	NYS	305			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery- (in)	Blow Count	PID (ppm)	Descrip	
	2.25	64_, 65_	48 50 43			strong brown silt isance the moist silt isance silt sand and gram moist brownish yellow a clay isome sill, grad bicoming shitter at 44 moist provinish yellow Silt i brownish yellow Silt i brownish yellow Silt i brownish yellow silt i brownish yellow	at to bottom
	2.5	(~6_ 7_ 8_ 9_	50			hequinny at 28 to bo Moist brownish yellow an silt some clay liftin 32, the strong brown sill 48 years brownish yellow yellowish red and palo itany liftle grand, with depth, but still Moist reddy lollowing	should frace gravely
	2.5	7º 7! - 72 73 -	53			Moist brownisk yrllow	38, then some
	í, Ð	74 15 _ 76 - 77 - 78	53 39			Most reddish yrllow s truce gravel to 24 little and to 29 the Sound little clart to Moist althe clart to Seend and organic u Seems at 19-20, and 23	bottom who silf fitte clay material some and
		- <u>19</u> _ &0_	49			Moist yellourist brown little clay, grand and 22.	Silt, some sand

51.00

					FBP-ER-RCRA-WD-RPT-0189
				FBP Soil Boring Log	Revision 1 April 2015
Soil Boring No. BIL	-DDT	41		Drilling Date: 6/14/12	Sheet 5 of 5
Project: Spil	BULL	a div	r d	Project No: WBS 03.01.01.02.01	Date Started: 6/14/2012_ D868
Well No: NA			1		Date Ended: 6/9/17 1508
Logged By: Lu, 11	him	Rec	d	Rig: Geoproki 7730 DPT	Total Depth: 90 ft
Weather: Sur	ny ,	80			
Sample No. Penetrometer (kg/cm ²) Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Description	on
81 82 83 84	47			Very woist brownish yell trace gravel Moist brownish vellow little graver to 24 th sand little yellowish be Very moist to damp 9 Very moist to damp 9 Very moist to damp 9 Sand to 34 the grave Mothed sill sund and grave State. END OF BORING	Silt, Some Sand an gray silt, some rown mothing ray silt, some ray Silt, some ray and yellowish brown grovel. Sind to 9" from Sylam browners

							FBP-ER-RCRA-WD-RPT-0189
			+		,	FBP Soil Boring Log	Revision 1 April 2015
Call Dorin	- No 12	w 1. 1	CPT 4	15		Drilling Date: $6/14/12$	Sheet for Z
Project:	So:1	Bu	cellquo	ound	-	Project No: WBS 03.01.01.02.01	Date Started: 6/19/12 1610
WellNo:	N	A				Drillers: in MEW Dr. Il wain	Date Ended: 6/14/12 17.00
Logged B	y: Wi	Viau	na il	end		Rig: Geoproise 7730 por	Total Depth: 30 ft
Weather:		yan	1 × 80			1	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery'	Blow Count	PID (ppm)	Descrip	In the second
Chane tuolin	5.7.5 7 Ks	4 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 18 18	23 25- 22 28 36 48 48 50 48 50			1" Topsont, dry Lrumaly graved, brownish yell Moist, brownish yellow Statt trace arrows of a with trace arrows of a work and with the and host shift yellowish brow work and with the arrows of sand to 16, then 24 Shift etc a some sit Dry crumbly basat par and array silf, some c weathered shale Dry crumbly soft use reddish brown clay a Dry crumbly sitt cund the the ard gray clay shale tille material to clay hard, no basat Dry crumbly brown sh the day for a clay shale tille material to clay hard, no basat Dry crumbly sitt and the dry gray clay shale tille material to clay hard, no basat Dry crumbly sitt and shale tille material to clay hard, no basat Dry crumbly sitt and shale tille gray clay shale tille material to clay hard, no basat Dry crumbly sitt and some as about	clay, some silt in well in a silt in could gray me silt trace i gravel saa yhn It trace sand it gravel saa yhn in hard - looks like adjuured gray and ad silt (State) as above clay, basit partings i the dry crowbly to 44 the gray parting relow clay and silt to a to 32 the strong growel (calie?)
		C. C. Martin					

	D	OE/P	PP	O/03	-0667	7&D1
TOD	гъ	DOD		TT	DDT	0100

	_					Revision 1	
1					FBP Soil Boring Log	April 2015	
Soil Bori	ng No. (SK.	GOPT	42		Drilling Date: 6114/16	Sheet Zof Z	
Project:	Seil	150.21		und	Project No: WBS'03.01.01.02.01	Date Started: 6/14/12 1610	
Well No:				0	Drillers: ME W Drilling	Date Ended: 6/14/12 17.50 Total Depth: 30 4-4-	
Logged B Weather:	y: (1) [!	In ny	80	d	Rig: 600 probe 7730 OPT	Total Depth: 30 F+-	
Treamer.			00				
Sample No.	Penetrometer (kg/cm ²) Denth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descripti		
	2	$ \begin{array}{c} 1 \\ 5 \\ 2 \\ 3 \\ - 5 \\ 4 \\ - 5 \\ - $			Dry provdery clay and trace sand. Same as above Dry gray pounday clas Shale fragments, cross Dry brownish yellow clay 48, some shale fragment gray, more competent s Dry brownish yellow cr. (lay) (weathered shale)	and silt, some why. why. why. becoming Le 11 last 6"	
	う: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3:				Refusal		

	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
FBP Soil Boring Log	Revision 1 April 2015
Soil Boring No. BKG DPT 43 Drilling Date: 5/24/12	Sheet / of >
Project: So, Background Project No: WBS 03.01.01.02.01	Date Started: 5784/12
Well No: NA Drillers: M+W DOE/PPPO/03-0667&D0 FBP-	Date Ended: 6/18/12
Logged By: Alon Lake Rig: 7730 Green Ve Revision 0	Total Depth: 56
Weather: Sunny. clear, 85°F	
Sample No. Penetrometer (kg/cm ²) Depth (ff) (in) PID (ppm) PID (ppm)	iption
$\frac{1}{1} = \frac{1}{12} =$	titles slighty maist out of y stitle site, and vory stitle cohes, the Gray mostling 5.5-6: 245-4.7: Thyray mostling 7'-8'. Slightly is site site clay. Thyray mostling 7'-8'. Slightly cohesite, Y site seem & 9.1-9.7. Norm with gray + black The slightly cohesite, Y site seem & 9.1-9.7. Norm with gray - black The stitle, non cohesite, Y site seem from Still seem fr

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 **FBP Soil Boring Log** April 2015 Sheet -of Drilling Date: 512411/2 Soil Boring No. BIL Co D 5/24/12 Date Started: Project No: WBS 03.01.0 1.02.01 Laruno 201 Project: MOW 6/18/12 1300 Drillers: Date Ended: Well No: 7731) Greofvolze 56 Rig: **Total Depth:** nor Logged By: A Weather: Sunny, clear, hot, breezey 85°F ample Recovery (in) Penetrometer (kg/cm²) **3low Count** Sample No. Depth (ft) PID (ppm) Description Wet silt with trace Fine sand. 21.6-25 104R 5/4 Yelow brown stift, tight, dry silty slay, non cohes. Ve 24" 2-1_ 2-2 DYR 5/6 Dry stiff silver clay w/ gray mostling 34" 23 14 SAA 124" 25 26 Jo 26.5 SAA. 26.5-28" 10YR 5/6 yellow brown. Dry, stitle state Medium Sitt. trace fine sanc 124" 27 SATI MOISE, Mediumstiff. Silt. Gravel@18.4. 104R5/6 2-8 2411 29 30-30.6 very moist SAA. 30.6-32. Slightly moist start Si It and clay. 10 VR 5/8 yellow brown with gray mattling. Tracecourse gravel 30 241 ≥1. 10 VR 4/6 dry Clayey Silt noncohes, Vermediumshift, Elayey Silt. grey motfling throughout. Edarse sand w/ trace finegravel from 32. J-32.4. 32 1 33 74 104R 4/6 progressing to 5/3. Slightly maist to moist Clayer site, trace coarse gravel, Medium stite Non conferme 34 35 24" TOYR 5/3 Moist to wet clayer site. Medium stift to soft non cohesive. trace coars-gravel. 36 37 241 38 SHA 39 24 XP

_	_					FBP Soil Boring Log	April 2015
	ing No.	BK	6.01	43		Drilling Date: 5 34/12	Sheet 3 of 3 Date Started: 5/24/12
roject:		071	Sucky	TOUTIO	-	Project No: WBS 03.01.01.02.01 Drillers: M+W	Date Ended: 6/18/12 1300
ell No		41:	Son	ake	5	Rig: 7730 Greoprope	Total Depth: 56'
eather			, Cleu	in b		Vee 207,85°F	
		17	ery				
No	mete	£	ecov	Joun	(udd)	Descri	intion
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	DII (I		
Sa	Per (amp	B		6/18/12 13:05 DTW 33.	49
-		1000		NA	NA	SAA.	
1	11-1	41	$\mathcal{Y}^{\prime\prime}$	1 21			
			8ª				
		42					
		1311				-9AM	
		43_	ייאנ				
		44					to a de al anna este
		-14 -				Very moist to wet Medin	mo soft clayey sic
		45_	11	1		10485/4	
			24"			10 90-11	1
()	1 8	46_	and the second second			Moist to very moist 5	als clayer silt Nonwi
			Sull			Moist to very moist	$o_{FA} = v_{I} / I$
		47-	24"		0	10 90 5/4	
1.13					R	Wet, Soft to very soft fine sand, 10 VA 7/1	- cloudy silt with som
		M8_		-	-	Wet, Soft to very som	is ht gray.
		140	24"			fine sand, IOVA) !!	ng ng gray
		49_	0				
as.	me.	10				Refusal @ 51' 50-50.5 Ony Sand (time to course) 5/8 yellowish Brown -	1 AA. 50.5-51
		7				Refusarios ju intel	+ coarse gravel 1041
181	12,	511_	24"			on sand (time to course)	11 40 59
0142	ecil	1			-	5/8 yellowish Drowin - 4	GATTA TO SA
nala	114	72_		-	Ā		
		53_			on	Dry yellowish brown sill	- sand and grapel
25	P	15-	21		Spoor		
	KL 3	54			1		
		100				same as above for	16" 41
		ips_	17.0	-	4	gray shale	I man had in the red
		1	24		1	1 dep	re to shale 55.5
		f6_	-			ESt, marter	
		500			-	END OF BORNUS	
	15 11	4'-		-		UV UV	
		18		1	1		
		1]		
		59			1	N	
	1			VI 1 2	1		
		10			-	1	

1.00						Revision 1			
	anticett.				FBP Soil Boring Log	April 2918-19/12			
Soil By: Wi	NA	n h	rou leid		Drilling Date: 6/18/12 Sheet / of 5 6 Project No: WBS 03.01.01.02.01 Date Started: 6/19/12 082 Drillers: M&W Drilling Date Ended: 6/19/12 155 Rig: Geoprape 77.30 DPT Total Depth: 83 ft				
H	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) CII	Descripti	1			
0.5					anjoome and little cla	7.			
0.5	3_ 4_	હ			graved. " " " " " " "	he little clay make			
1.0	5_ 6_	14			to 6" your brown ish clay some gray mother and sard.	yellow silt and			
3.0	78	24			moist vellow sit and cl and rellow law mare, then silt and clang 11-15" y	brooming yellow in min			
3-0	an le	26			Moist yellourish brown				
2.25	11	34			Then laminated in	1017			
1.5	13 14	34		11	some silt she classify plaster silt and clame clay to	towish hor own clay to it, your yellowish a to 14, your yellowish a ca, your reddich brown			
	15 16	34			Signed and graved to 10	" yun minist yeilow			
	17	32		-	Same as above to 20, brown silt, some sand day	and gravel lettle			
2	2.37 11	72	-		Muist yellowish brown little availed to ask becam silt iscard a	Yum wait at			
	Soil By: Un : Pa : Pa : Pa : 0.5 0.5 0.5 1.0 3.0 5.0 5.0 5.0 2.25	$\begin{array}{c c} S_{0,1} & \mathcal{C}_{1} \\ \hline N \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	NA By: Withiam Reid Partiy Cloudy Image: Construction of the second of the	Soil <u>Eachtarsord</u> NA By: William <u>Reid</u> Partly <u>Cloudy</u> <u>B</u> (i) <u>Cloudy</u> <u>B</u> (iii) <u>Cloudy</u> <u>B</u> (iv) <u>Cloudy</u> <u>C</u>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

4.

						1	FBP-ER-RCRA-WD-RPT-0189			
-	1.4		-			FBP Soil Boring Log	April 2015			
Soil Boring Project: Well No: Logged By		N	A	yro. yro.	ord	Drilling Date: 6/14'12 Sheet 2 of 5 Project No: WBS 03.01.01.02.01 Date Started: 6/14/12 03 Drillers: Mew Prilling Date Ended: 6/19/12 13 Rig: Occ prome 7730 DPT Total Depth: 8/3 Ft				
Weather:			Sun	my	805					
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript				
	3.25	$2 - 2_{-}$ $2 - 3_{-}$ $2 - 4_{-}$ $2 - 5_{-}$ $2 - 4_{-}$ $2 - 5_{-}$ $2 - 4_{-}$ $2 - 4_{-}$ $3 - 4_{-}$ 3 -	54			15" moist yellowish brown little sand mol gravel the duy crunbing silt sand yellowish brown si Moist brownish yellow silt and arrower to 18 the hrown silt some clay i Moist, brownish yellow little clay trace arovel strong hightly moist brownish and sand trace grave brownish yellow slightly moist crumbing a brownish yellow sittle gravel to 24 the brownish yellow silt around sind trace grave brownish yellow sittle clay to 24 the brownish yellow sittle clay hellow silt around sind trace grave brownish yellow sittle clay hellow silt gravel little strong brownish yellow silt gravel little strong bry reddish yellow 5.5 and craw to 24 of silt some sand for pry reddish yellow 5.5 and strang to 10 yr of silt caravel to 10 yr of silt to 20 yr of silt to 10 yr of 10 yr of silt to 10 yr of 10 yr of silt to 10 yr of 10 yr of 10 yr of silt to 10 yr of 10 yr of 10 yr of silt to 10 yr of 10 y	and of the order to 30 the and of the order to 30 the It, some clay littless It, some clay littless It, some clay shad trace of the sand some array mottlin downed to 26. Distances yellow and we clay little grand silt. Little clay of silt. Little clay of silt some sand the some sand			

C.2-69

In Some BorderBill Some ProjectionSome ProjectionDetermining LogDetermining Log <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Revision 1</th><th></th></th<>												Revision 1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-					FBP	Soil Boring	Log			April 2015	
$ \begin{array}{c c} \hline \\ \hline $	oil Borir	1g No.	Bille	DPT 4	4		Drilling Date:	6/18/12			Sheet 3 of 5		
Ver No: N/A prime: M_{1}^{2} $Drafters product U/q/q 1555generative: U/q/q Loudr = Rec - Couprobe 7730 DPC [Total Depth: B3 \ ex-Venther: Darty \ Coudr = Couprobe 7730 DPC [Total Depth: B3 \ ex-Venther: Darty \ Coudr = Couprobe 7730 DPC [Total Depth: B3 \ ex-Venther: Darty \ Coudr = Couprobe 7730 DPC [Total Depth: B3 \ ex-Venther: Darty \ Coudr = Couprobe 7730 DPC [Total Depth: B3 \ ex-Venther: Darty \ Coudr = Couprobe 7730 DPC [Total Depth: B3 \ ex-Venther: Darty \ Coudr = Couprobe 7730 DPC [Total Depth: B3 \ ex-10 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-11 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-12 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-12 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-12 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-12 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-12 \ generative \ Couprobe 7730 DPC [Total Depth: B3 \ ex-12 \ generative \ Couprobe 7730 \ PC \ ex-13 \ generative \ Couprobe 7730 \ PC \ ex-14 \ generative \ Couprobe 7730 \ PC \ ex-15 \ H2 \ Couprobe 7730 \ PC \ ex-15 \ generative \ Couprobe 7730 \ PC \ ex-15 \ generative \ Couprobe 7730 \ PC \ ex-16 \ generative \ Couprobe 7730 \ PC \ ex-16 \ generative \ Couprobe 7730 \ PC \ ex-16 \ generative \ Couprobe 7730 \ PC \ ex-16 \ generative \ Couprobe 7730 \ PC \ ex-16 \ generative \ Couprobe 7730 \ PC \ ex-16 \ generative \ Couprobe 10 \ ex-16 \ generative \ ex-16 \ generative \ ex-16 \ generative \ ex-$						d	Project No: WF	3S 03.01.01.02.01			-		0828
Venter: Party Lloody Sector Party Lloody Sector Party Lloody Sector Party Lloody Sector Party Cloudy Sector Party Sector Party Silf, Some Sand little graded F1 Silf Sing Strong brown silf sand Sing Silf Silf Silf Party Silf, Some Sand little graded Sing Silf Some Strong brown silf sand Sing Silf Some as about to 10° years redding years Sing Silf Some Clay little Sand Silf Sand Silf Some Silf Some Sand Silf Some Sourd Silf Some Silf Some Sand Silf Source Silf Some Silf Some Sand Silf Source Source Silf Some Silf Some Sand Silf Source Source Source Source Silf Some Sand Silf Source Source Source Silf Some Sand Source Source Source Source Silf Sol Source Sand Source Source Source Silf Sol Source Sand Source Source Source Silf Source Sand Source Source Source Silf Sol Source Sand Source Source Source Source Sand Source Source Source Source Sand Source Source Source Source Source Sand Source Sour	Vell No:		NA				Drillers: M	iew prilli	ng				1558
or or <thor< th=""> or or <tho< td=""><td></td><td>y: W</td><td>1110</td><td>un R</td><td></td><td></td><td>Rig:</td><td>inoprobe</td><td>7730</td><td>OPP</td><td>Total Depth:</td><td>83 Fr</td><td></td></tho<></thor<>		y: W	1110	un R			Rig:	inoprobe	7730	OPP	Total Depth:	83 Fr	
1. cit 1. cit	Veather:	ļ,	art		loud	1							
1. cit 1. cit	Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)			Desc	cription	n		
59-91 Danp gray and abrown mothed silt, some sand little gray mothing at i brown with			4^{2} 4	54 412 41 37 54 45 52 46		with	to 12 and some sill-1 sc sightly claim qui claim p sill-1 so cui claim p sill-1 so cui cui cui cui cui cui cui cui	the space of the space of the second stand with the second stand with the second stand with the	to 10" to 10" to 10" to 10" to 10" to 10" to 10" to to 2 tumi S tumi S strong Source P Que source the strong source the source the source	ellon then the the the the the the the the	an sill duy ic 2 30 4 an re and she will she brown a brown brown a fifth brown a fi	t sand min sin addish y addish y	the site

							FBP-ER-RCRA-WD-RPT-0189
	1.See				_	FBP Soil Boring Log	April 2015
Soil Bori	ng No.	KG-1	DPT 44	7		Drilling Date: 6/19/12	Sheet 4 of 5
Project:	50,1	-	: (C. 4 1 07.	-	ŕ	Project No: WBS 03.01.01.02.01	Date Started: 6/19/12 0858
Well No:		NA		0		Drillers: MEW Drilling	Date Ended: 6/19/12 1558
Logged I Weather	By: Wi		inn i	Re		Rig: Geoprove 7730 DU-	Total Depth: 83 FT
weather	1	1 + 1		000	17	905	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descripti	1.1
		61_ 63_ 64_ 65_	44 48 48			Damp , gray pale brown s quoted. Damp & unit pale brow bitter and trace arave wet, silt, some sand,	in love by silt,
Split Spo	princip	69_	22 17 " 2.4			wet gray silt and sam gray-gray (light circenishign stane (free ment) some damp bump to wet gray silt little gravity not Galita	array silt and
		"72_ "73_ 74_ 75_	21			same as above	2
_		76_ 1 ⁷⁷ - 7 ⁸ - 7 ⁹ - 8 ⁰ -	24		N S	Same as above to 16" same as above to 16" sand and gravel. wet, gray silt sand a	-

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	-	-				FBP Soil Boring Log	Revision 1 April 2015
Soil Bor Project: Well No Logged Weather	By:	N	A	44 - q-m Re		Drilling Date: 6/19/12 Project No: WBS 03.01.01.02.01 Drillers: Mg W Grilling Rig: Geograph 750	Sheet 5 of 5 Date Started: (a) 1/9 1/12 0858 Date Ended: 6 1/9 1/12 1558 Total Depth: 8 3 F +
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		iption
		8 ⁴ 1_ 8 ² 2_ 8 ³ - 8 ³ - 8 ⁴ - 8 ⁵ - 8 ⁶ - 8 ⁷ - 8 ⁸ - 8 ⁹ - 8 ⁹ - 8 ⁹ - 8 ⁹ - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 -	2.4			Dry, Gray Silt sand, FOCK fragments, Ehale at 82.5' END OF	William avail, Jon out William avail, Jon out Williams Wi

-

		Revision 1 April 2015		FBP Soil Boring Log						a companya a										
Object Space of the project Nor WBS 03.01.01.20. Date Endet: D / 15 / 12 / 12 Parend By: (Juan Reich Rig: Glaphobic 7730 DPT Total Depth: 2.8 pt Summer Sunny 70 70 Set of the			Sheet (of Z	112	Drilling Date: 6		roject: Spil Background													
Open By: Lu, [law, Rec. Kip: Glappin: 77300PF Total Depti: 28 FF Survey 70 Survey	0956		Date Started:			ind		4		The second se	1.12.12.14.1									
atter Summer To od all and and Description od all and and and Description 4.0 1 22 some cande one ying through brown with yellow some cande one ying through the promises yellow some cande one yellow some cande one yellow some cande some conder to 12° the conduct years 2.15 3 45 some cande one years to not yellow some cande to 12° the conduct years 3 4.0 1 22 3 4.0 1 22 3 4.0 1 22 3 4.0 1 22 3 4.0 1 22 4 5 11° to and cande years 5 2.15 4 some cande one of the some to and one years 5 2.15 4 Stattly moust bord on the years 6 3 10° to and end one 7 2.8 10° to and end one 8 9 30 10° to and to and one 9 30 10° to and to and to and one 11° to and	1054			Drilling		4		7	NA											
Open manual of the served share servered share served share serve		28 FT	Total Depth:	e 7730047	Rig: Greep	!	le de	m 10	lias	y: Wil	gged E									
4.0 1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			tion	Descrip		PID (ppm)	Blow Count	Sample Recovery (in)	Depth (ft)	(C										
5 24 5 24 6 6 7 28 8 9 30 11 12 13 14 14 15 52 17 44 17 44 17 44 17 44 17 44 17 17 44 17 44 17 17 44 10 10 10 10 10 10 10 10 10 10							2			4.0										
Statitly moust brownish yellow and grave sid and clay some gravel and shale for beginning with bills is wellow weathind shale, with based partings 9 30 9 30 9 30 9 30 9 30 9 30 9 30 9 30	ila 1 w	ellowish 500	oren ye	st y allowish and arand unconformably	slightly m trace son l'avand son			15	र विकिस्त के स	2.5										
6 0	Self	nd grad	al'un as	hrownish	Slubtly me															
⁸ ⁹ 30 ¹⁰ ¹¹ 36 ¹² ¹³ 37 ¹⁴ ¹⁵ 52 ¹⁶ ¹⁷ eqq ¹⁷ eqq ¹⁷ eqq ¹⁰ ¹¹ content fragment or proved on the state of	fragm	Shale se part	itte ha	une gravet	and clay			4												
⁸ ⁹ 30 ¹¹ cfy ¹¹ so changes for the start of t	Č	eathined	ellow we	yet brow ash y	Dry crumbi			7.2	7											
10 11-36 12 12 13-37 14 14 15-52 16 17-444 10 10 10 11-36 11-36 12 12 12 12 12 12 13-37 14 14 14 14 14 14 14 14 14 14			times	t bases pa	shale, b				8											
11- 36 12- 12- 13- 14- 14- 15- 15- 16- 17- 17- 17- 11- 11- 11- 11- 12- 12- 12- 13- 12- 13- 14- 14- 14- 14- 14- 14- 14- 14	Oame	over bi	forwah'y	ment unions	yellow to			30	9_											
11- SG 12 12 13- 37 14 14 15- 52 16- 17- 44 17- 44 11- SG Same Sam				a hu	Same				10											
13 14 14 14 15 15 15 15 16 17 17 17 13 14 14 14 14 14 14 14 14 14 14				a vove				36	Exercit											
14 14 15 15 16 17 17 17 14 14 14 14 14 14 14 14 14 14																				
15 17 equ	-R 5/12	10 11 W 11	1.4					37												
15 17 equ		weather 2	alt, som	powday 5	Bry crumb			52												
			1.1						16_											
	Yena	OF GROWIN	wral 2					efy												
19-46 Sant as about				about	sant a		-	Yes												
								10	用影											

Revision 1

						FBP Soil Boring Log	April 2015
	NT.	74.4	nori	1-		Drilling Date: 6/15/12	Sheet Zof Z
Soil Born Project:	ng No. 1	326	Barera	a nur	d	Project No: WBS 03.01.01.02.01	Date Started: 6/15/12 095%
Well No:		NA				Drillers: Meas Philling	Date Ended: 6/15/12 1054
Logged B	y: NI	lin	un 1	red		Rig: Groprum 730 MPT	Total Depth: 28 FT
Weather:	50	10.10	1 10	15			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	Descrip	
		21_ 22_ 23_ 24_ 24_ 24_ 27_ 79_ 30_ 79_ 31_ 32_ 31_ 32_ 31_ 32_ 31_ 32_ 33_ 34_ 33_ 34_ 35_ 35_ 36_ 37_ 38_ 39_ 39_ 39_ 39_ 39_ 39_ 39_ 39_ 39_ 39	57			Same - Dry Powduy polverized by hamme yellowish red Scan with yellowish red Scan with shale, with Elistic Sime as above Petroal	

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision April 2015 **FBP Soil Boring Log** Sheet (of | Drilling Date: 6/20/12 Soil Boring No. BKGDPT46 Date Started: 6/20/12 1324 Project No: WBS 03.01.01.02.01 Project: Smit Background NA 6/20/12 Drillers: ME W Drilling Date Ended: 1520 Well No: Logged By: William 7730 DPF Total Depth: 16:51 Geographe Reid Rig: Partly Cloudy 90 Weather: 1530 DTW 1,55 fr Sample Recover (in) Penetrometer **3low Count** No. (kg/cm²) PID (ppm) £ Sample 1 Depth (Description sheroliz FI Topsoil, 10" dry strong brown silt, some sand little gravel and clay then dry, dosty 1 21 silt, little sand. 8" duy (crumbly silt, some sand and quand 2 3 24 silt, some sand little gravel trace clay. 4 slightly my ist broken it yellow hethesand to silt, some clay and gravel and gravet 16" the dry crumbly 5.14 brown, for and shand strong 5 26 6 Dry strong brunn silt, grand graver, some sand http:// clay to 6 "yhen i grand graver, some sand Silt and clay, some basal parting 7 30 8 wet (creek level) "weathered shale," soft can be reformed, does have basal putting overly inc 9 Σ 14 6" of brownish yellow sand and silt , little clay. z 10 Pry gray clay, with basal partings last 12" some brownish yellow mothing 42 11 12 Dry gray alo placenterered that e 13 -initial refusal @ 13' recharge hanner weathered shale 14 24 15 24 16 17 TERMINA-TION 18 19 20

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
1		1.				FBP Soil Boring Log	Revision 1 April 2015
Soil Bori	ng No. F	YG	OFTY	7		Drilling Date: 6/20 /10 6/10/12	Sheet of 3
Project:			aekni		1	Project No: WBS 03.01.01.02.01	Date Started: 6/20/12. 0913
Well No:		NA				Drillers: MEW Dr. Iding	Date Ended: 6/20/12 1105
Logged B		Villi	enn	Re	. d	Rig: Queprohe 7730 DPF	Total Depth: 45C+
Weather:		nny	80				
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	ion
	2.0	1_ 2_ 3_ 4	i7 24			1"Topsoil, then dry eron Sand and grave, stre 10" Dry crombly yet ous in silt sand and gravel Gray silt, some clay	
	545 >45	6	24			Dry dense strong brown and clay, some yellow, brownish yellow Moist, dense usilt and clr.	ship and gravel
	7.45	8_	24			Yellow silt and clay, little	h red and brownish gravel
-	4.0	11 _ 12 _	34			clay some grand and bron elay, shift grand grad Dense yellowsh ved and and clay, little grand	and sand.
switc	3.5	13 _ 14 _	36			Moist, crumbly brownish y little gravel, little yell	ellow sill and clad owish red motting
tooli	A.C.	15 _ 16 _	48	-	6120/12	Moist crumbly brownigh clay little around and been trades into silt and ger vel, little sand	sand to 36, then nd Glay, some
		18 19	49			24" Mont crombly brown clay i little gravel, and gravel yellowish red 57 slightly moust reddish yr silt, some clay, gravel	shad tun day 18 576 sitt, sand and ellow 7.5412 clo

1-

							FBP-ER-RCRA-WD-RPT-0189 Revision 1
		Ŧ				FBP Soil Boring Log	April 2015
Soil Bor	ing No.	1316	OPTY"	7		Drilling Date: 6/20/12	SheetZ of 3
Project:	Soil	Ba	ckyro			Project No: WBS 03.01.01.02.01	Date Started: 6/20/12 0913
Well No		NA			7	Drillers: MEW Drilling	Date Ended: 6/20/12 1105 Total Depth: 95 Ct
Logged Weather			ny, 8		<u> </u>	Rig: Geoprope 7730 ppt	Total Depth: 95.64
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descripti	0.0
		$z 1_{-}$ $z 2_{-}$ $z 3_{-}$ $z 4_{-}$ $z 5_{-}$ $z - 6_{-}$ $z - 6_{-}$	60		WHC 6/20/12	Same as above to 39 brownish yellow 1042 Bic liftle gravel. Silphily weist, Silt, some hittle clay brownish yellow silt, some clay and sand moist some yellowish be gravely moist gellowish b gravely moist gellowish b gravel i un conformably ou yellow silt and clay is same as above moist Silt and clay, some s and little gray mothing Moist belowish red mothed inter gravel and gravel and yellowish red mothed ittle sand and gravel and yellowish red mothed ittle gravel and sand clay little gravel, gravel clay some gravel. 1itt Moist, yellowish brown 101 clay little gravel and so moist yellowish brown an Vellowish brown an Vellowish brown an Sightly moist, crumbly s gravel, little clay	silt and clay sand and gravel and into (atso interesting orown silt sand and the fetting brownish yellow and, little gravel brownish yellow and, little gravel brownish yellow and, little gravel is silt and clay to 27 thin gray d silt and clay, hottled bilt and limbo silt and limbo silt and limbo silt and and, little gravel is sound@ 42's YR 51.4 is it and and. id gray mothed in clay, little gravel silt clay, some

									Revision 1				
		7 4				FBP Soil Bo	ring Log		April 2015				
Soil Bori	ng No. É	SKG	OPT4-	1		Drilling Date: 6/2	20/12	Sheet 5 of -	3				
Project:	.50		Back		1	Project No: WBS 03.01.01.		Date Started:	6/20/12	0913			
Well No:			(Jose In	700	eno		rilling	Date Ended:	6/20/12	1105			
Logged B		1110	in R	end		Rig: Geoprope		Total Depth:	45.Ar				
Weather:		SUN	ny,	803		1 0							
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		Desc	ription	tion				
		4^{1} 4^{2} 4^{3} 4^{3} 4^{4} 4^{5} 4^{6} 4^{7} 4^{8} 4^{7} 4^{9} 11 12 13 14 15 14 15 16 17 18 19 19	50 48 28			Dry crumble gravel, liff weathered Retus	shale	brown si	IF, Sand				
	-	20 _											

				AL		ALC: NO DESCRIPTION OF	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189			
		(mildae)	e (* 1	-		FBP Soil Boring Log	April 2015			
Project: Well No:	By: W	16	NA	48 Grann Re. 70		Drilling Date: 6/6/2012 Project No: WBS 03.01.01.02.01 Drillers: MEW Drilling Rig: Geoprobe 7730 OPT	Sheet of 3 Date Started: 6/6/12 1454 Date Ended: 6/6/12 1972 Total Depth: 50 ft			
	5	Depth (ft)	Sample Recovery S (in)	Blow Count	PID (ppm)	Descrip	ption			
10- 1- 1-	2.5	1_ 2_	18			Slightly muist strong brow some sand and gravel a g" moist reddish yellow, and gravel, little sand, arombiy strong brown sil	STYR 6/4, Asilf, some clay tittell Unconformably over day 11, sand and grave!			
		5_ 6_	28			Bry crumply strong said et over 4" moist brown sill fram moist silt sand, c slightly moist silt sand, c clay strong brown 7.5 YR Yellow 715 YR 716 moithin	and gravel, little clay id and gravel, little 516, some reddish			
	375	10	28			same as above down to strong brown silt, some stiff, little gray 7.54%. Stiff brownish yellow 104	clay little sand, all motting			
		12	-			Shift brownish yellow 104 Sand and gravel. little slightly moist silt some gray motting (104/2 6/1) Moist yellowish brown 1041 and clay little gravel and mothing	1 3 4 4 9 V 1 1			
	and the second	14 15 _ 16 _ 17 _ 18	45 38		in m 6/6/12	Sund and gravel overly in Silt sand and gravel 1 500	we chy some grades			
	2.25	19	91			Slightly moist silt and sand brownish yellow 104 grading into moist sil sand and gravel.	clay, some gravel, 1. The R 6/6 little gray mother			

J

						FBP-ER-RCRA-WD-RPT-0189 Revision 1					
	~	-				FBP Soil Boring Log	April 2015				
oil Pori	No.	Del	- OPT	-40		Drilling Date: 6/6/12	SheetZ of 3				
				Larov	.1	Project No: WBS 03.01.01.02.01	Date Started: 6 /6 /17 1953				
Vell No:		N	4		NU	Drillers: Mtw Drilling	Date Ended: 6/6/12 1924				
	By: W			ed		Rig: Geopruhe 7730 APT	Total Depth: 50 ft				
Veather		lar.	Pro	Show	er -	108					
Sample No.	5	Depth (ft)	Sample Recovery ((in)	Blow Count	PID (ppm)	Descrip					
		nt**				Moust reddish yellow Tos clay some gravel 1, HI e yellow mottling 10 YR 776	STR de la selt and				
	1.0	2.1_	41			Clay some grave little	Sall sattle II'll with				
		10.2010		1			Slightly plastic 616112				
		22_				6" Minut adding in 1 Th	1. 1. little a variel				
		0 0				Must reddes yellow silt	and clay TIE				
in in the second		23-	43			Unconformably over 14" of	- strong brown Silling				
1			17			Sand and grave then	yellowish brown sill				
**		24_				Sand and grave then same clay and to 34 the liftle shad, 75-YR	in with some 7 - non				
	10.1					Moist, strong brown silt	5/8				
	3.5	25-	48			Moist strong Drown Silt	and clay some grave				
	2.2					little sand some yellow	Motting 10 YR 116				
		7.6_				110 "	mist reddish				
				-		Same as above to 40	abon process				
	3.25	Z7_	56			Same as above to 48" yellow silt and clay 11	the gravel trace sand				
		1									
		28_				alle it induct vellow	a along come all				
X	4.0	20	04			Shift must reddish yellow little to some gravel, to	- Clag Same Sir				
	4.0	-	51			little to some graver, to	race yellow mostling				
	1.1	.J0_	1.11			Crumbly					
	1.11		1			Most roddish yellow silt	and the and				
,	3,5	31	54			into silt and class sou	- clay arading				
	Je	12.57				into silt and clay with ordin	ne gravel between				
		32 -				12 and 30 then silt	and clay little to				
		6				12 and 30 them silt trace gravel some gree slightly noist clotheth redding clay some grave litt at 36" trace cobbles	29 mothing				
		33_	48			Signi y moist 6/0/ tell-reddi	sh yellow silt some				
						Cay some grave litt	le clay, coarser grand				
		314_				at 36 trace cobbles	51				
		10-2				slightly moist at top, du silt some flow alittleksen some gravef and littleksen	Golf raddish wall				
		35_	54			Silt some classifier our	y at is readen yerloa				
		94				Some gravel and VUEKSA	id and grave, crumbly				
		36_		-	S.Y		81				
		7	m. 4		Y	Gallia -like, wet silt,s	and and gravel				
		17_	44			some rock fragments, to	28 then damp's it				
÷.		20			È.	Ballia - 1: Ke? Wet Silt, s some rock fragments, to some sand and gravel					
	1./	38_				hand all a					
SWI	KK	TO				Dry hard, silt sund and cobbles (rock fragments) with yellow sundstone	ravel, some				
fu :	ury	39-	24			Looples (rock fragments)	strong brown 7.540				
	50	10				with yellow sandstone	Magne to a com				
0 16	0.	40_			1	, ,	I MOLA I A I A I A I A I A I A I A I A I A I				

		ich i			-		F	BP	Soil	Bo	oring	Lo	g				-		Revisio April 20	n 1)15		
		R.d.a	ODT	-40 .		Drilling D	_		11	77	112	,		-	Sheet	3of 3	3			-	_	
Soil Boi Project:	ing No. Se			kan	a d	Project N	_		3.01.0	01.02.	.01	-				tarted:		61	6/11	e	14.	53
Well No		JA		10010	Vera	Drillers:	1	ME	W	Dr	-11.	ng			Date E				6/ 12		191	
Logged		rill	am	Rec	(Rig:	0	Su	upre	obe	- 7:	730	DPT	-	Total l	Depth:			50 f	+		
Weathe	r:	Pa	itly	Plov	dy	705	_	_		_	_		_	_	_		-	-		_		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)			4					Desc	-								
· Yao,	74.5 74.5 74.5 74.5	41- 42- 43- 44- 45- 46-	24 24 7 24 24			Dry gra Sligh and rech Sam- port Hand Clas Hand San Hand San	the star	and	or loost loo y isl rav 6 gr	-d + R -ou b b -ou -ou b -ou - -ou b -ou b -ou b -ou b -ou - -ou b - - - - -ou - - - - - - - - - - - - - -	s hav s ove til i s ove	an d trois 1-1 m son	d C cl my k 2 51 ilke 10YR ne co cla ale	3 a 1 1 a y 0 v ou 1 y 5 /2 6 b) y s a t	tha Sun Ga tes itt	? 1 1t to 2110 soloro soloro and ol	1	roi fu	cic pot, t	S a Une	nd s/3	
		11 _ 12 _ 13 _ 14 _ 15 _ 16 _ 17 _ 18 _ 19 _ 20 _						X	- /		*	Ð	F		1.1.1				A			÷ +

						and the state of t	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	2 × 140	in the second			14 .	FBP Soil Boring Log	Revision 1 April 2015
Soil Bo	oring No.	BKG	PPT	49		Drilling Date: 5/30/12	Sheet of
	t: Son				10	Project No: WBS 03.01.01.02.01	Date Started: 5/30/12
Well N		N	A			Drillers: MEW Drilling	Date Ended: 5/30/12
	By: W	17110	n in	Re. J		Rig: Geoprobe 1730 DPT	Total Depth: 71.5-178 6/8/12
Weath		urt	1.1 (10vol	1 81	,	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	
	7	1_ 2_ 3_ 4_	18 14		6/30)1	Mo-Signtly moist yellowish Clay and gravel, some a errouply 10 YR STB Moist yellowish brown silt, to 12" your moist yellowi clay 1 shift, slightly plastic	some clay and gravel sh brown silt and
	2.0	5 _ 6 _ 7 _ 8	24			Moist strong brown 7.5 12. touce sand, plastic Mosame as above entire	
	1.0	9 _ 10 _ 11 _ 12 _	42 39			Same as above, 2" sa at 26-28"	
	3.0	14_	46		w rk Bjsoli	Moist shift silt and clay sitt and chay with some silt content increasing the Moist slightly stift, sill- rock fragments; some or 7.5 YR 6/3 with some ye Bame as above.	gellowish brown 10425/6 yellow 104127/6 laminan last 12" and clay some with gamics light brown 301
5. K. 17	4.0	17 _ 18 _ 19 _ 20 _	5Z 5G			I Find maked silt	

C.2-82

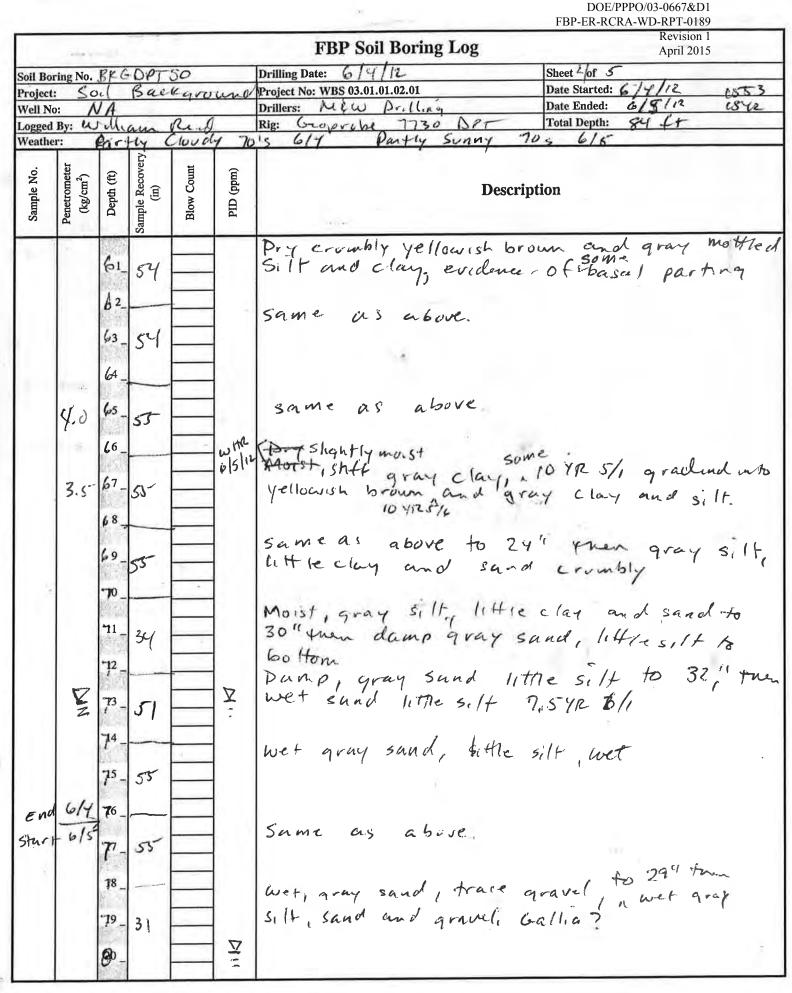
						4.	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189						
	1	1				FBP Soil Boring Log	Revision 1 April 2015						
Soil Bo	ring No.	BY	GAPT	49		Drilling Date:	Sheet Lof 4						
Project	: Soil	P	packe	FOUN	d	Project No: WBS 03.01.01.02.01	Date Started: 5/30/12						
Well No	0:	NA	•	-1		Drillers: MEW Drilling	Date Ended: 5/30/12						
Logged	By: h	ral .	an 1	Le d.		Rig: Ocoprobe 7730 DPT Total Depth: 71.5/78 6/8/12							
Weathe	r: Ya	44	12	ay b	rezz	80	the second s						
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Description							
	>4:75	Z1_ 22_	52			slightly moist strong by cend sand little vock	Fragements, crumbli(
1.1		(ref).	46			Moist, stiff strong brown Silt and clay little s	and yellow mothed sand and fine gravel						
		24_	46			slightly moist, light brow							
	35	25_	58			and fine gram (, trace	me cray prince sume						
	1.1	26_			1.0								
	2.5	77	50"			slightly muist light brown motting silt some san	I and grave little						
		28_				Clay, unconformably aler Str YR-TH Silt and clarg-ygr Sand and gravet	ading back to silt, some						
WHR 51301-3	3.0	29_	58			Strong brown and light b some sand and gravel 1	11472 clay, slightly moist						
5150		30_	51.			crumbly Slightly moist, brownish ye and gravel, little clay fo	1100 sill, some sand 26, grading into						
		31 - 32 -	56			mothing to go then silt,	some sand and a rawl						
0		Sen Se	58		-	Moist silt, some sand and strong brown silt, some yet then silt, some shad a	gravel to 10" them clay and yellow mothing						
		34 -											
	3.5	35 _	5-6		slight	Same as above down to stiff moist strong brown plastic,							
		716_				Slightly moist some silt , 5	ome clay and sand,						
2	4.5	912,004	59			Slightly moist some silt, 5 little gravel to 28 bee clay little sand and gi	ravel, crombly.						
	4.0	38- 39-	59			Slightly moist. Feddish yello	w 7.57K618 Silf and						
		40-			-	silt, some sand I sand seam silt, some sand and grav statining to 48 then dry	rul some oxidation crumbly silt and clay						

	100					FPD Coil Dowing Log	I DI -ER-RCRA	A-WD-RPT-0189 Revision 1
			and a	_		FBP Soil Boring Log	Bhar 3 - 6 4	April 2015
	oring No.				. 1	Drilling Date: 5/30 / 12 Project No: WBS 03.01.01.02.01	Sheet 3 of 4 Date Started:	5/30/12
roject Vell N		M	Back	grou	no	Drillers: MEW Prelling	Date Ended:	5/50/12
ogged	By: h	, de	am R	u.d		Rig: Geoprohe 7730 DT	Total Depth:	71.5 /78 6181
Veath		_						
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		scription	
		41_ 42_	56		with 5/30/1	Ory crumbly silt some gravel reddish yellow poor silt, little clay rock fragment and grav		
		43_	NR			sample tube failed, sa from hole after rod		
		44_	(36)		w HR 513011	Dry crumbly silt and	and clay, mbly 14" gra	ading in to 5/30
	2.75	45_	48			Moist reddesh yellow si frace yellow mothing.	It i some cla 7.5 YR 516	y trace grave
		1 -	1			36" of moist endlight to	own 10418 7.	5/30/12 5/6 Silt
	2.0	47_	56		•	brown Pist YR 5/6 silt brown Pist YR 5/6 silt brown Pist YR 5/6 silt bry crumbly silt and Moist reddesh yellow si trace yellow mothing 10 YR 7/6 36" of moist poddet br and clay i slightly pla 51/4 and clay some re	ashe, grading d Strong brow	info gray 7.5 TR m mo Hing.
	2.75	48_ -49_	56			gravel and sand, son	silt and a ne reddish	Vellow mothing
		50_		-		1.5 114 40,6		
	if.d	51_	54			Moist, Stift silt and and strong brown 7.54R 24" grading into silt 11H1 - shad to bottom!	ciay 11417 b S/G moffie Some clay	and grand
		9 ² -				shift slightly moist sil	f and class.	dvay 7.5 YR 61,
	4.0	53_	54			and brown 7.5 YR 5/9	y mottled.	t í
		54_	-	-	-			
	3.0	Ħ5_	56			stiff, slightly moist sill some brown 7.5 yr sr	t and clay	gray Lis 18 6%
		56_ 57_	54		-	same as above		
		57- 58_	44			S. have all	, <u> </u>	π.
	1:75	59_	56		-	Same as above, softw	at bottom.	
	1	60		1.2.1	1			
		Harris I.	1					3

C.2-84

ŧ

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	-child	di det	ing a			FBP Soil Boring Log	Revision 1 April 2015
Project: Well No Logged	: So 1): By: L	NI	en	Reven	1	Drilling Date: 5(3) (12 Project No: WBS 03.01.01.02.01 Drillers: MEW Prilling Rig: Greeprope 7730 DPT	Sheet of 9 Date Started: 5/30/12 6/8/12 08 Date Ended: 9/30 126 8/12 10 Total Depth: 71,5 78 6/8/12
Sample No.	Penetrometer	Depth (ft)	Sample Recovery	Blow Count	(mqq) (II4	Descrip	
	1.75 2.5	62_			-	Moist, gray 7.5 YR C/1 Sil. brown mottling top 10% 42 Plastic Dark gray 2.5 1 5/1 silt sand, crumbly	and clay, little
10 sc 64 -65	2.0		32 55"			Moist gray Silt, some cla Same as above	ay, lithe sand
	15	68_ 69_ 70_			N ³ N	same as above to 46" 4 then wet graytsh and gravel, wet , gravel brown	n. silt and sand gray
resur	2.0	12. 13_	8 19"		-	8" Wet gray silt, sand END OF BORING 5" fluft, Moist crumbly s little cubbles, brownish yo brownish yellow silt sa	6/Resume 6/8/12 silt sand and avavel ellow and gray mothed
		13 _ 76 _ 77 _ 78 _ 79 _	18		618/12	Brownish yellow silt sand Giey 2 E/1 sandstone, M Brownish yellow silt, sand rods were wet 151. of 14 Gray shale in split-spoon END OF BARING	Equavel, some cobbler 20 on vods.
		79- 80_				END OF BORING	


					and the second s	FBP-ER-RCRA-WD-RPT-0189	
			-		FBP Soil Boring Log	April 2015	
Soil Br	oring No.	BREDPT	50	-	Drilling Date: 6/4/12	Sheet of S	
Projec			ekary	und	Project No: WBS 03.01.01.02.01	Date Started: 16/4/12 1553	
Well N		NA	A		Drillers: MAW Drilling	Date Ended: 6/5/12 1542.	
		llam			Rig: Geoprube 7730 DPT	Total Depth: 84 1	
Veath	er:	Parti		udy	75+		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery (in)	Blow Count	PID (ppm)	Descrip		
	1.75	1_ 2.3 2_			Pry Topsoil 2" then light clay and sand to 3" the yellow silt some sand vociely ravel	myellows brownish and clay and	
	3.75	3-Z¢			Moist, stiff plastic, brow clay, little gravel tra	ce sand,	
	>4.75	5- ZY			Moist, shift, reddish yello and clay, slightly plastic	loud silt and clay to	
C	1. 18	1000	-	1	slightly moist, reading ye	It and clay with	
	0.95	7-25			8" becoming aminante	sit gravel scam	
		8 9 ;2_ 10			slightly moist, veddish yel 8" becoming laminated This yellow 10 YR 7/6 la 2+ 14" 15" Same as above, yellow Blightly thicker Same as above to 8		
	2.75	11 - Z7 12		wrth. 6/5/12	StR 4/4 gravel lens the Yellow laminate are thin	in back into to 6/5/12	
	1.5	¹³ - 36			same as abore to silt, some clay and gra ments and cobbles, brownis	30 h then soft idamp wel sittle rock frag.	
	2.25	¹⁵ - 29 16			Slightly moist reddick yell, und sand to 5" ynconform 75 TR 6/6 silt sand and o light brown 7.5 YR 6/3 3, 14 Gallin-like Silt sand and	ably over strong brown mravel town 16, the	
t. F	3.25	17-36 18-3-				ciay, little availed to 24	"becoming yellowish
		19 - 42 20 -		w #4_ 615/12	strong brown silf sciend with	pero to 32° becoming	
		ACT INT			ary, 6141	n.	

DOE/PPPO/03-0667&D1

FBP-ER	-RCRA	-WD-	RPT	-0189

								RA-WD-RPT-0189 Revision 1	
		-				FBP Soil Boring Log		April 2015	
Soil B	Boring No.	BKC	S OPT	50	-	Drilling Date: 4 / 4/2012-	Sheet Zof 5		
Projec	et: So	i []	Buck.	y rocm	~	Project No: WBS 03.01.01.02.01	Date Started:	61412012	1553
Well N			VA	0.1	A	Drillers: MEW Prilling Rig: Geographe 7730 DPT	Date Ended: Total Depth:	61512012	1542
Logge Weath	ed By: W		y CI			Rig: Geoprobe 7730 DPT	Total Depth.	0 T T	
11 cm.	1.	T T	1 A	1 1	1				
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Blightly			
	2.	11			-	Moist strong brown silt little clay to 18" your	1 some so	and and	grave
	5.65	4-	- 55-		1	cion little and and	n should t	n In then	
		12	1.13		1	Clay liftle sand and yellowish brown 10 yr 5/8	6 A 11 1	CAME SAND	
			-		1	gravel.	3 3115 12	0000	0
	2.5	23_	-55]	Slightly maist sill and	clay,	little grav	Ne Ha
		(ETA	2 .		1	and sund strong sto	un 1.5-710	6 10 1500	de or in
		24_		1272	-	with and und avail f	nun 42	to better 5	Allia - Gi
	11.17	25			-	Gravel. Slightly moist Silt and and sund strong brow little gray mothing 75 VR silt sand und dravel to Dry strong brow Silt sand reddish yellow SXR 416 mothedg, Silt and Clay	and ara	wel to 14h	xun
	2.25-52				-	reddish yerow STR 416	and gr	ay syr a	0/1
		26			1	mosticha, sitt and clay	, trace a	graveli	-
		20-			1	the house and			
		27_	1.0		1	Moist strong brown and	gray Si	It and cla	4
	3.5		48		1	little sand and gravel to silt send and gravel, de	> 30 4707	n strong b.	in
1		28_	/		1	all suma and grave, or	19		
	1.1992/	100		1223		18" of slightly moist redd	esh yellow	and yell	low
1	2.25	29_	52		1	notted silt and clay	grading in	to yellow.	shord
1		1	1001		4	Silt some given to 34	hime hime	strong pro	non
1		30 -	·!	-	4 /	leave as above silt a	am. 6141201		
	14.13	-+1	0-1		1	same as above, silt as	nd Grave		W itsz
1	2-25	31-	55			18 and 26"			614/12
		32_	1 1						
I	1	132-1			1	18" of moist gellowish br	our silt a	such clay,	
1	15-1	33_	56		ħ. I	unconformably over Stoom and gravel (gallin-like)	g brown,	silt, sand	w wette
			1 1		1	and gravel (gallin-like)	TO 56 9	from some	est pla
	1	34_		-		Vellowish red and area	watter d	sult and	10.0
1			1			I Wellinghish red wet	cit and	r 1000 510	L .
Í -	2.5	35-	50	<u> </u>	-	gray mothing little ar	Silf and	e can d	me
í.	1- /	100	1 1		-	1	aner p	No. J. Start M.	
1	1 7	36_			1				
1	3.25	317_	52	-		Same as abovel			
1	[]	2	1221				.10	-3.	
6	1 = 7	318			1		WHR 614/12		
í I		4			1	Hoist wollowish red silt		A . A	
6		39_	54			to 14" then silt, little	land ela	1, little sa	ad !!
1	1 /	2	1				- SOME SAN	of 11the qu	ravel
1	1 1	\$0-	1)			gravel and sand to be	SIII MAD	clay litte	1e
				<u> </u>		עו ער ייזא	How.		

-			+	-	-	EPD Soil Boring Log	April 2015
-	-	_		1		FBP Soil Boring Log	
	ing No.				,	Drilling Date:	Sheet 3 of 5 Date Started: 6 14 12012 1553
	500		Baell	aver	nd	Project No: WBS 03.01.01.02.01 Drillers: $M \notin W \bigcap r_i (1, n_i)$	Date Started: 6/4/2012 1553 Date Ended: 6/5/2012 1542
Well No	ву: W	T	in .	lend	1	Rig: Geoprube 7730 DPT	Total Depth: 84 fr
Weathe	By: 00	nt	am	wydy		Nig. Ocoprost 110 011	
ricatiie		11	2	100 ay			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrip	
	3.0	41_	53			Moist, yellowish brown 3 gravel, frace send, cru	"It and clay, little
	3.U	4 ² -	55	•	.9	same as above	
		44-		-		Same as above, si	It clay und gravel
	30	45- 46-	57			Scan between 14 and	
	3.0	47-	55			Moist strong brown Sill sand und gravel ish	+ some clay, little ghtly moist correbly
	3.25	and the second second	485			moist brownish yellow, sand trace granel, cru	silt und clay little mbly.
	3.0	10.1	55-			Moist, light brown 31/t red oxidation staining, f	and clay, sume race gravel, plastic
	4.5	5 3_	53-			Same as above 1 stiffe	
	2.25	1000	55			Same as ubure	
	4.5	59- 57- 58	ST			Moist, brownish yellow silt gravel and sand, Shift.	- and slay, trace
	35-	đo	54		*	same as above, little	gravel, trace sand

C.2-89

DOE/PPPO/03-0667&D1

				_		FBP-ER-RCRA-WD-RPT-0189 Revision 1
					FBP Soil Boring Log	April 2015
Soil Boring	No. BK	G DPT	50	-	Drilling Date: 6/5/2012	Sheet 5 of 5
Project: 2 Well No:	NA	Bach	Carou	ne	Project No: WBS 03.01.01.02.01 Drillers: M&w Drilling	Date Started: 6/4/2012 1553 Date Ended: 6/5/2012 '542
Logged By:		un /	le d		Rig: Ocoprobe 7730 DOT	Total Depth: 84 Ft-
Weather:	Cloud	1- +0		fly	Cloudy 60's to 70	
Sample No. Penetrometer	(kg/cm ²) Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	/ Descrip	
Drose i switch to augo	with 15 13	9" 18 24	55	w HR 615/11	Wet, reddish gray silt sund AD3" moist reddish yellow formably over gray 7.5 yl gray sandstone fragment (Moist reddish yellow sill, cobbles	s. It some sand, Bron- R STI silt and bluish SLEYZ G/I sand and gravel some
	84 -		/	1.0.1	83.5" Weathined grays END OF BOR	hale
2	85_				END OF BOR	CAN CT
	$8^{6} - 8^{7} - 8^{7} - 8^{7} - 8^{7} - 8^{7} - 8^{7} - 8^{7} - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 17 - 18 - 19 - 20 - 20 - 20 - 20 - 20 - 20 - 20 - 2$					

ča.

			-1,	j I-	-		DOE/PPPO/03-0667&D1
-		-		N		FBP Soil Boring Log	FBP-ER-RCRA-WD-RPT-0189 Revision 1
						00	April 2015
and the second second	ring No.				0	Drilling Date: 5/3/ 1/2	Sheet (of 3 Date Started: 5/31 12 1320
Project Well N		NA	ACKG	RUUN	9	Project No: WBS 03.01.01.02.01 Drillers: Μέω Dialling	Date Ended: $5/3/12$ (320 Date Ended: $5/3/12$ (500
the second se	By: W.		n A	F . 0		Rig: Geoprobe 7730 DPT	Total Depth: 48'
Weathe	r: Pa	rtly	C10	udy	80		
Sample No.	Sample No. Sample No. Penetrometer (kg/cm ²) (kg/cm ²) Lipth (ft) Depth (ft) Lipth (ft) Sample Recovery (in) (in) Blow Count PID (ppm) PID (ppm)					1540 Depth to Hze 1610 Depth to Hze Descr	30.55 ription
	2.0	1_ 2_	17			little clay, brown 10/12	
	3.0	3_ 4_	17			Moist, shifter silt, som to 12's your silt and brown 10 yr 573 Moist pyellowish brown St tun zone of rock frag.	
	>+75 5-2+					Moist, shift, yellowish brow	in and yellow laminate
	4.5 ⁻	8_	24			sand and rock fragment yellow silt and clay som stiff yellowish brown a Slightly moist silt and and little sand crow	to them you yellowish brownish ne sand fellowish brownish ne sand fellowish 5/31/12 and brownish yellow, d clay (fifte gravel abily (with s/31/12
	2.5	11 _ 12	84			Moist yellowish brown 10 Some grave, little sk staining	NR 518 silt and clay no isome red oxidation
	<u>3</u> 25	E.A	36			slightly moist yellowish v yellowish brown mothing and gravel, 100Ks like	Gallia (but not)
	35	15 _	36			Slightly moist stift brom silt and clay some grad Oridation staining.	and little sand, rea
	325		38			SAME AS ABOVE	
	225	1.5	56			Slightly moist, not as a ond clay, some sand, to is a rock and gravel sand	Stiff brownish yellow silt Dottom, @ 6" to 12" seam with silf and

C.2-91

						(*).	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
						FBP Soil Boring Log	Revision 1 April 2015
oil Bo	oring No.	Bil	GPP	T 51		Drilling Date: 5/31/12	Sheet Zof 3
rojec			Bac			Project No: WBS 03.01.01.02.01	Date Started: 5/31/2012 1320
Vell N		NA	0.00		٨	Drillers: MEW Dr. 11,29	Date Ended: 5/31 2012 1500
	By: h			Re	el _	Rig: Geoprose 7730	Total Depth: 481
/eath	ег:	10	ituz	150	udy	20	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery ((in)	Blow Count	, (mqq) (IIA	With 5131/12	
	3.5	21_	42		-	Moist Brownish yellow fittle sand and grac some, red oxidation s	taining. 5/31/12
	3,25	2_ 3_ 4_	44		-	same as above to 24" and gallia - like sequence into moist silt sand an brownish yellow with ye	star il a
	1.75	5_ 6_	45			some clay little sand	some red oridation
	1.5	78	48			Same as above, with 5/8 Oxidation staining 1 time Moist, soft brownish yello	ast 18" of sample withing sand
	0.75	9_ 340- 31_	48			Moist, soft brownish yellow with red oxidation stdining yellow little staining to SYR 5/G silt; some clay Damp, yellowish red silt grace (at top,	ind fittle clay and sand
		3 2_	54			pamp yellowishred sil	+, some sand, 1141.
		33 _ 34 _	52		Z	clacy to 32" then silt trace graver Damp to wret sand so	1:44 (-
		35 - 36 -	чв		•	Damp to wet sand, so gravel, trace c (ay vellowish red 5/31/12	9131112
		37 - 38 -	48			yellowish red 5/31/12 Wet brown sand some sit SIII sand and gravel s wet sand, little gravel o	14, to 14, fren earn to 22 fren and silf. to bottom
			32			Gragment in sand at B-1 at bottom. 4!	little silt, rock 2" yhon coarse sand

C.2-92

PORTS/SOIL BKGRD RPT D1 R1 MASTER/04/16/2015

											F			O/03-0667&E -WD-RPT-018		
-							FBP	Soil Bo	ring I	09		DI LICIC		Revision	1	
Coil Do	ring No.	RVI	1.01	FI	-	Drilling Da		5/311			She	et 3of	3	April 201	15	
Project				ellan	and	Project No						te Started:	_	5/31/201	2	1320
Well N		NA		9		Drillers:	ME	W Dr	aller		_	te Ended:	_	5/31/201	г	1500
	By: U					Rig:	Ceu	probe	773	SUDPT	Tot	al Depth:		48 ft		
Weath	er: P	unt	14	f lou	dy	80							_		-	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery(in)	Blow Count	PID (ppm)	Description										
		42_				Wet Silt Wet	50 50 50	and a	nad ma	ish red ilt is grave gravel gravel avel t yello		H-2 18	i.	then	kr	ef
		48_ 49- 510_	20							Yello	Devisi	red.			- /	
		11 _ 12 _ 13 _ 14 _				/						¢				
		15 _ 16 _ 17 _ 18 _ 19 _ 20 _							7							÷

-		-	<i>ā</i> .,	1.0	- 1	FBP Soil Boring Log	Revision 1 April 2015
		0		12 11			
	ing No.	ISKO	TDPT	52. Kgro	und	Drilling Date: 6/7//2 Project No: WBS 03.01.01.02.01	Sheet of / Date Started: 6/7/12 0925
Project: Well No		IA	DAC	1Cgro	UT U	Drillers: Mew Prilling	Date Ended: 6/7/12 1/00
	By: L		. m (2 e.d		Rig: Geoprobe 7730 DPF	Total Depth: 18.6+
Weather	r: P	art	14 6	ivud.	1600		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	2, Topso. 1	ion
-Mare	2.75	1_ 2_ 3_ 4_	19 30 27			Moist brownish yellow silt Moist brownish brown silt SYR SIY Silt Sand and Dry, reddish brown silt se down to 200, yhun brownish little gravel royRoll Moist brownish yellow silt yhun brownish yellow silt of basal parting (probably	yellow silt and clay the and clay to 6"
		6 _ 7 _ 8 _ 9 _ 10 _ 11 _ 12 _ 13 _	36			Pry Crumbly silt some a two strong brown silt sand at 8-10" and 24-25: same as above strong bro gravel lens at 25-26" Dry crumbly silt, little 10 YR 6/6 unconforournably ou clay 10 YR 6/1 reddish bro to 26-32. silt, platy Pry crumbly Silt, little a gray 10 YR 6/1, 6 lusst fis	ing perpensish branes with und gravel scans our silt sand and clay yellowish from brownish fellow clay yellowish prom ler gray silt little own silt sand magravel clay and gravel sle
		14 15 16 17 18 19	47		3	Dry Erunding silt Eittle a gray to 18 then reddis and gravel scan to 21 yetromish brown 30 - 36 then same as above could only 2" brown damp 'silt seamath Cannot retrieve 17-18 s Returnal weathered shale	advance to 17', dama advance to 17', dama sumple sleeve stock sample to no gallia evol
10		20 _	ų g				

DOE/PPPO/03-0667&D1

						FBP-ER-RCRA-WD-RPT-0189							
	1820	santikkor ac	s (252) -	-		FBP Soil Boring Log	Revision 1 April 2015						
Soil B.	oring No.	BK/+	DATE	2		Drilling Date: 5/30/2012	Sheet of 3						
	t: Son				0	Project No: WBS 03.01.01.02.01	Date Started: 5/30/12_ 0101						
Well N			IA			Drillers: M&W Drilling	Date Ended: 5/30/12 /150						
			linm	0.	1	Rig: Ocoprobe 7730 DPT	Total Depth: 41 ft						
Weath		Art	4 6	lovely		<u>1</u>							
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Description							
	275	1_ 2_	23			Moist brownish yellow sill becoming more clay rich							
	4.5	3_ 4_	23			Moist shffesreddish yollow liftle sand 7.5 YIR 616 U Brownish yellow silt and Cl							
	20	5_ 6_	24			Moist stift brownish yellow clay some organics to 12 yellowish red and reddish yel 10; yhu mottled at botten	the laminated the laminated Now clay, some sitt for 5 YR 5% and 5 YR 4/6						
	2.5	7_ 8	25			Must, shift clay, some silt p reddist yerrow slightly lamino the light brown silt and	lastic rellowish red and itid the notfled 10-9" Clay (ittle rock frag						
	25	9_ 10_	25			Moist light brown silt and clay with accretion rings @5" the with churt fragments when shift, moist light brown 7.57 with brownish yellow silt seam between 13" and 18"	in light brown silt and sill, grading into silts'						
	375	11 _ 12 _	25			with brownish yellow silt Seam between 13" and 18"	R 6/3 silt and clay 1 some clay little vock						
	9.0	13 _ 14 _	26	-		some red ogedation stuining	between & and 13'						
	3.5	1.5 3.5	26			Shift, muist light brown sill kellowish brown mottling 10							
	4.0	¹⁶ - 17 - 18 _	15			shift slightly moist reddest silf, some clay, little, sa	nyellow 7.5 TR 6/8 nd. crumbly.						
	4.0	P5. X 111				Same as above to 18" for 7.5 YR 6/3 and red 2.5 y some sund, little round of	ravel dry crumbly.						

1.4

DOE/PPPO/03-0667&D1

			DOE/PPPO/03-0667&D1 EBP_EP_PCPA_WD_PDT_0180					
			FBP Soil Boring Log	Revision 1				
		F		April 2015				
Soil Boring No.	BILGOPT	53	Drilling Date: 5/30/12	Sheet Zof 3 Date Started: 5/30/12 0901				
	il Baeko	wound	Project No: WBS 03.01.01.02.01	Date Ended: 5/30/12 /150				
Well No:	NA	01	Drillers: Miw Onlling	Total Depth: -// f+				
Logged By: 1	nicam	Rud	Rig: Ouprobe 7730 DPT	Total Deptil(1 PP				
Sample No. Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery (in)	Blow Count PID (ppm)	Descri					
15	21 - 34 22 $23 - 29$ 24 $25 - 39$ 26 $27 - 34$ 28		Moist light brown 7.5 Yiz 6/ gravel to 5" ynen yellow little sand and rock, 50 18" and 24". Muist reldish yellow Silt fragmints to 18" ynen little rocktragments, yel Moist yoft silt, some and sand, clay content yellowish brown 10 Yiz 516 716 mothing and won 0x1. Moist yellowish brown 51 Sand to 18" Unconformato Silt sand and gravel fo Silt and clay with rock Moist to damp yellowish rock fragments, and grav south of 18" Unconformato Silt and clay with rock	some clay trace rock moist silt syre 5/8 moist silt; some clay low 10 yr 7/4 mottling clay little rock fragmens t decreasing with deptu with some yellow 10412 dation staining al-bottom 11,50 me gellow 10412 dation staining al-bottom 11,50 me gellow is brown tragment of 130/2 trong brown tragment of 100 to the				
charge poling	30		Damp strong brown 5:1 overlying silt, sand and Damp strong brown 7.54R Some rock frogments for some grand, little silt withisolic pamp reddish strong brown and grand of raiding little gravel. 18 bottom Strong Brown Silt 156 some rock frequent Strong Brown 7.5 YR 5/6 some rock frequents	t, some sand little clay grave (- Gallia 518 silt, sand, gravel 524, then dense sand 715 12 5/c silt sand into a saind, some sill with 5130/12 nd and gravel, silt sand and gravel,				

						DOE/PPPO/03-0667&D1 FBP-FR_RCRA-WD_RPT-0189						
						FBP Soil Boring Log	Revision 1 April 2015					
Soil Bo	oring No.	BIL	6 DPT	53		Drilling Date: 5/30/12	Sheet 3of 3					
Projec		il	Buck	grou	nd	Project No: WBS 03.01.01.02.01	Date Started: 5/30/12 0901					
Well N	lo:	NE	+			Drillers: MEW Dr. Iling	Date Ended: 5/30/12 11:50					
Logged	By: C	Vill	ihm	Red		Rig: Geoprobe 7730 OPT	Total Depth: 4/fr					
Weath	er:	-			-							
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (II4	Description						
		41_	-			END OF BUR						
		42_				END OF BUC	LING					
		1-			ñ.,							
		43_										
	1.1											
8	1	44 -										
		10, 11,			la la compañía de la							
		45-										
		14			5							
		46_		-	2							
		47-		1								
		1'-										
		48_										
		18										
		49_		2.00								
		51/55										
		50_										
		Editor)		-								
		11_										
		12_										
		1185										
		13_		S								
		Sec. al		$1 < 1 \leq 1$								
		14_										
		15_										
		16_	1									
		50 17										
		17_										
			6.1									
		18_										
		a.										
		19_										
		2										
		20_										
F		TTTT I										

		ć		1 1			DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	-0					FBP Soil Boring Log	Revision 1 Apríl 2015
Soil Bo	ring No.	BYG	DOT 5	1		Drilling Date: 5/21 12	Sheet (of 3
	501				>	Project No: WBS 03.01.01.02.01	Date Started: 5/31/12 0904
Well No		NA				Drillers: MEW Drilling	Date Ended: 5/31/12 1050
Logged	By: W	Ilia	in R	e.A		Rig: Geoprobe 7730 DPT	Total Depth: 48
Weathe	r: PA	1+14	Cio	udy	66		14
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		30. · 15 27. 40 iption
		1_ 2_,	17 27		WHR 51311R	Moist 1 brownish yellow Stand	if some clay cruckly
	2.5	6_	25			18° moist brownish yel crumbly softed oxidation of soft, moist to damp s sand, stop little oxida	low silt , some clay trining grading into
	3.0	9_ 10_,	30			gravel, brownish yellow gravel, gravel 15 yellow little sand.	Silt, some clay and ish Red 5YR 4/6,
	3,5	11 _ 12 _	36				silt, some clay and reddish yellow 7.5 YR C/C little Oxidation spring
	5.5	13 _ 14 _				Moist light brown and silt and clay, trace 7.5417 6/3 and 7.54R	k heddish yellow nottled sand and gravel 46
	323	15 _ 16 _	40			Moist brownish yellow 5 Sand crimbly 1	ilt and clay, little
- 1	ţ.5 ⁻	17 18	42			Same as above, getting	
	4.0	¹⁹	54			28, getting stiffer silt brownish yellow	clay little sand to t an clay slittle sund with 5/3//12

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
		2	-			FBP Soil Boring Log	Revision 1 April 2015
0.0.0	+ N1	Pres	0.07	11		Drilling Date: 5/31 2012	Sheet Lof 3
Project	oring No.	IL B			md	Project No: WBS 03.01.01.02.01	Date Started: 5/31/12 0904
Well N		NA	chart	1.0-		Drillers: MEW Orilling	Date Ended: 5/31/12 1050
	By: IA	-	um	Re.	I	Rig: Geoprohe 7730 DPt	Total Depth: 48'
Weath	er:	Part	cly	Clou	, dy	68	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (IIA	Descrij	
		21 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	ejs Po		NIT	Moist light brown and silt, some elay little to 20" the light brown motting i getting sotting sume as above to 30 slightly moist silt, so and gravel, coumbly 5 Moist strong brown silt, then silt and sand, brown mottling 7.5 yr Moist damp strong brown sand, silt, and gravel iz'; Moist damp strong brown trace clay evet at Wet sand is some silt, down to 445 it then Strong wet, sand Some gravel Some gravel Some gravel	" them Strong brown, The little clay, sand 131/12 some sand to 30 ⁴ damp, some light To bla m silt and sand; seam between 6 and 29.5'
		40_	50				*

								PPPO/03-0667&D1 RA-WD-RPT-0189	
		4				FBP Soil Boring Log		Revision 1 April 2015	
Soil Bo	oring No.	BK	G DPT	-54		Drilling Date: 5 (21 (12	Sheet 3 of 3		
Project	1: 50	iL	Bac	KGre	our d	Project No: WBS 03.01.01.02.01	Date Started:	5/31/12	0904
Well N	lo: /	VIA	-			Drillers: MEW DRICLERS	Date Ended:	5/31/12	1050
	By: (v.1	liam	Re.	2	Rig: Geoprobe 7730 DPT	Total Depth:	48	
Weath	er:	pa	Aly	Cluc	dy	70			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)		scription		
		41_ 42_	42			Wet strong brown. gravel	, silt san	d and	
		43_ 44_	40			Same as above			
		A s. It.	44			same as above			- 1
		46 -				Moist brown 7.5YR gravel to 10" the shale at 47.5"	514 514	Stand to	a il
		16.9				Moist brown is In	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	, sunder a	ng
	16.5	47 -	22			gravel to 10 the	n gray	weathere	A
		48_				shall at 47,5			
		1°- 49-				END OF			
		510_							
		11_						,	
		12_							
		12							
		13_							
		14		-					
		15							
	1.1					÷			
		16_	. 3						
		a. 4							
		17_							
1.0		見たの							
		18_							
		19							
		19 -							
		20							
			1						-

C.2-100

DOE/PPPO/03-0667&D1

FBP-ER-RCRA-WD-RPT-0189 **Revision** 1 April 2015 **FBP Soil Boring Log** Drilling Date: 6/6/2017. Sheet of 9 Soil Boring No. BKG DPT 55 Date Started: 6/6/2012 Project No: WBS 03.01.01.02.01 Project: Soil Background NA Drillers: MEW Drilling Date Ended: 6/7/2012 Well No: Logged By: (N, 11 ain Re. V Geoprope 7730 OPT **Total Depth:** 67 Rig: Weather: Parny 60 c Cloudy Sample Recovery (in) Penetrometer (kg/cm²) Depth (ft) Blow Count (mdd) Sample No. Description DID 2" topsoil, moist strong brown silt some sund attre clay, crubby. 1_ 23 2_ 3" moist silf, some clay and grand, little sand E. and gravel brown 7.5 1/2 516 silt, sund 3 M strong brown sill sand and arabel union for nably over reddish you low silt, sometay clay, little sand grading into pole brown 104/2 6/3 51/4, 4 5_ 29 2.5 Some clay, soft. 6_ with grading state brown silt some sand and gravel unconformate of 1/2 20 your strong brown silt and clay 7.55 yR 6/2 Gallia - Vice 7-36 8_ Dry strong brown silt sand and gravel 5 9 Gallia - like sequence crumply 41 10 same as above 11-48 12 same as above, finer gravel 13 _ 43 Same as above, little clay in gallie - like sementerial between 20" and 28" 14 15_ 39 16 Same 17 _ 37 18 Dry crombly silt sand and arout to 9" then moist silt, some sand clay and gravel to 16, then bry crombly silt sand and gravel to 35 then moist silt some clay gravel and sand to 39, then silt, som clay little sand, all strong brown 19_ 41 20

Revision 1 April 2015 **FBP Soil Boring Log** Drilling Date: 6/6/12 Sheet 2 of 4 Soil Boring No. BKGDPT55 0925 Project No: WBS 03.01.01.02.01 Date Started: 6/6/17 Project: Soil Background 1505 Drillers: MEW Drilling Date Ended: 10/7/12 NA Well No: 7730 OPT **Total Depth:** 671 Reid Logged By: William Rig: Geoprobe 70 Partly Cloudy, Weather: Sample Recovery. (in) Penetrometer (kg/cm²) Blow Count (mqq) Sample No. £ Depth (Description Q 7.5YR 6/6 Moist, reddish yellow silt and clay little sand, some gray 7.5 4R 6/1 mottling to 44, 21_ 49 then dry crumbly silt, some sand and grave to bottom 22 Dry crumbly silt sand and gravel to 13 the mestightly must silt come clay, littland and gravel to 24, then dry crumbly silt sanda and gravel to 1.21 38 3.5 23_ 48 38 yher muist, stiff silt and clay liftle san 24 Dry crumbly silt sand and gravel to 7" the slightly muist , some silt, some clay little sand 25 43 2.75 to 25- then silt some clay gravel and sand to 32 year sightly moist silt some clay little su prosst2, Dry crumbing silt, some clay little gravel and 25-34 me 26 with 610/12 silt and clay, slightly plastic and with 275-27-44 28. Moist, Yellowish brown loyr 5/8 silt, some clay trace sand, slightly to medium plastic. 2.25 29-48 30 Moist, sume as above 325 31-54 Moist yellowish brown silt and elay crumbly 72 3.0 33-52-Muist Vellowish brown silt and clay grading 34 into solt gray 10 412 6/1 8 day, some silt 35_ 1.0 51 plashi Moist plastic, gray clay some silt, some 36 browness yellow no Hing between 14 and 24" 2-1-37silt content increasing at be coming silt some Clay at 29" extending to 45t then gray silt to be them 46 38 moist to damp gray silt, little clay "14" sand seam at 8", clay content increasing at 31" becoming gray Silt, some clay at 36" extending to bottom. 39_ 1.0 45 40

April 2015 **FBP Soil Boring Log** Drilling Date: 6/6/2012 Sheet 3of 4 Soil Boring No. BKGOPTSJ 0925 Date Started: 6/6/12 Soil Background Project No: WBS 03.01.01.02.01 Project: 6/1/12 1505 NA Drillers: MEW Prilling Date Ended: Well No: Geoprope 7730 APT Total Depth: 1.7.ft Rig: Logged By: William Red Puntly cloudy -70 Weather: Penetrometer (kg/cm²) Sample Recover (in) Count (mqq) °Z (£ Sample 1 Depth (Description Blow (Ð Moist grad silt some clay extending to 20 becoming stifter, elay content increasing, gray sitt and clay at 25" plustic, trace wronning 11- 40 3.0 yellow mothing between 1170 an 34. same as above with allorownish yellow mothing increasing to some little 42 -43 -50 20 WINC. with fittle gravel to 4 sume as above to 34 with oto 36 Then damp gray sill to the cholic 2.0 45 47 Moist, gray silt and clay trace sand, some motting 46 brownish yelloything to 34" yun little 2.5-47-51 Very moist gray silt, little sand to 30, Then moist gray silt, some clay little brownish yellow mothing 48 1.25 49 36 Moust gray silt and clay, stplashe getting satter with dipth trace dark gray mothing return grando 30 0.75 51 ST Moist gray 10 YR 5/1 Silt, little to some clay 92 With with 3.75 53-44 6/6/12 54 Moist gray silt little clay to 24 the wet gray silt, some sand I 35_ 39 AU -36 wet gray silt and sand, trace i lay 57_ 56 wet gray sand, some silt trace gravel 58 59_ 44 60

							FBP-ER-RCF	RA-WD-RPT-0189	
	-		-	+		FBP Soil Boring Log		Revision 1 April 2015	
Soil Bo	ing No.	BI	C-DF	755		Drilling Date: 6/6/2012	Sheet Hof 4		
Project		:1	Buc	Reve	nur d	Project No: WBS 03.01.01.02.01	Date Started:	6/6/12	0925
Well No):	NA	7			Drillers: Mew Drilling	Date Ended:	6/7/11	15:05
Logged			liam	Re.		Rig: Groprum 77306PT	Total Depth:	67'	
Weathe	r: (ant	17	Clou	ly	70			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (IIY	Descrip	with , 6/6,	112	
		61_	24			Wet gray and yellows silt, sand and gravel, se	2 brown	n mo Hie bles	d
and it.		63_	22						
- 20		64	-	-		part			~
6/7-		65_	24			B" Auger refusal wet, strong brown silt san then dry silt sand and a weathered Gray shak	told red	cobbles	aughs some graves
		66_		_		Then dry silt sand and a	rand		(/ / / / /
		67_				a contract of shall			
		68_							
17.1	4.5	F9_							
		70_		1					
		11_		1				-1	
		12 _							
		13 _	6 6						
		14							
1		15							9
		16							
		部月	4						
		17_		-					
		18_							
		19_							
1	9	20 _							

DOE/PPPO/03-0667&D1

1	The second				-		DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
14	- Secure	مر شدر) ا	- the second			FBP Soil Boring Log	Revision 1 April 2015
Soil Bor	ing No	BK	G-DP	T 56		Drilling Date: 6/4/2012	Sheet of 3
		0		LUVNO		Project No: WBS 03.01.01.02.01	Date Started: 614/2012 1248
Well No		N	A			Drillers: MEW Dalling	Date Ended: 6/9/2012 1939
	By: W	1110	ana (le.J		Rig: Guoprube 7730 OPT	Total Depth: 58 FT
				lova	1, 70	D 's	a second second second
Sample No.	5	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	Descript	
	2.5	2_	23			4" Topsoil & Manure, slightly silt, little sund und clay 10 YR 6/6 silt some clay 1 Moist, stiff whe 6/4/12 Noist, stiff yellows brown silt, some clay little sun little oxidation staining	ish yellow 10 y12 6/6 d trace gravel,
	50	56	27			Moist shift brownish yel sand and grand to 12" and clay track squal.	The start start
	>45-	78	22			Moist, silt, some clay wet at 14-16" your and gravel, gallian- lil	dry hard silt sand
	4.5	9_ 10_	24		white	10" of Gallia - like materia over slightly moust silt, some yellow 10 YR 616 the Strong with orylized stiff Dry, Stiff silt, some cle Sand between 4 and 8 silt and clay crumbly to dvy crumbly laminated almost shale -like light red then glightly moist silt a fragments	brown silt and clay 6/4/12
	4.0	11 _ 12 _	29			Sand between 4 and 8 silt and clay crumbly to	Becoming moist stiff with GIANIZ (" to bottom.
	2.5	13 _ 14 _	32			almost shale like light red then glightly moist silt a Graquents Maist epth sollowed and	Idish brown 5 YIR 6/4 ma clay, some rock
	3.75	15 _ 16 _	56			Moist stiff yellowish red some yellow loyr 716 la tim browight yellow loy silf and ching to bottom	ninge down to' 20" R 6/6 silt thin 13to 24
	4.5	17 _ 18 _ 19 _	36			Moist brownish yellow silt gravel, becoming stiffer some yellow motting slightly moist yellowish bro yellow mothing 10yR716 se crombly then moist silt	WA 10412 5/8, some 14, some ciay, duy
		20_					

r.d.

6

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
					4	FBP Soil Boring Log	Revision 1 April 2015
Soil Bo	oring No.	BKO	SPOT	36		Drilling Date: 6/4 (2012	Sheet Zof 3
Projec		oil		ellar	und	Project No: WBS 03.01.01.02.01	Date Started: 6/4/2012 1248
Well N	lo:	Ń	14			Drillers: MEW Drilling	Date Ended: 6/4/2012 1434
	By: U					Rig: Geoprone 7130 OPT	Total Depth: 58 ft
Weath	er: /	an		leve	h		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery. (in)	Blow Count	PID (ppm)	Descript Slightly moist yell brownish Silt, some clary little sa.	
		- 6				slightly moist well brownish	h yellow 10YR 618
	2 10	21	150			Silt, some clay lette sa.	nol. zoumbly
	12,5	ANT -	50	-			
		22-					-11
			6 S			Slight moist, brownish yello little sand and gravel,	ow silf, some clay
	275	23-	45			little sand and gravel,	country
	1.00		11 X				<i>,</i>
	1	24_				same as a sove	
(75					
	3.25	- C	148				
		26					16 come ala
		00		1		Slightly moist, yellowish bri +race sand, some 9	own Sill, some ciay
		27_	52	¢.		trace cand some qu	ray motting 10YR 611
	275	No.	120			Subic 1	
		28_				same as above.	
		ŝi (Jame as anote.	
	3.0	29-	48	-			
		-70					- 1. A.
		30-	-			moist, yellowish brown s some gray mothing lit	The and alan, Shifty
	9.10	31		-		Same ray nothing lit	the gravel.
	3.0		52		1 - I	some after month to	
		32-					
		R Sec	· · · · · ·	1		Moist, yellowish brown an	or gray mortied
	UN	33_	56			Moist, yellowish brown an silt and clay, trace	sand, stift.
		34-				Moist yellowish brown and some clay tracet grave	1 II. A
	1170	70		-		Some clea the	gray mottled sill;
	1.75) >_	52			a change have	and she sand al
	1.1.1.6	36_					
		- 20-				Moist brownishis yellow 10 littlegravel to 48" ymm r	YR 6/9 Silt some Ch
	12	-17	21			lithegravel to 48"	reddul will SYR 514 7
	4.0		54			brunnin well	comist yellow and
		38_	-			brownish yellow silt , som	me clay had shad.
	1 2	No.				Moist brownish wollow cith	
		₹°-	0			sand and	1 some elay, little
	2,85	Anto	50			Moist, brownish yellow silt sand and gravel, some	gray mottling
		90-					
		112149		6.000	1		

					4.		PPPO/03-0667&D1 RA-WD-RPT-0189	
-	-	* **			FBP Soil Boring Log	5.85	Revision 1 April 2015	
all Bor	ing No	BKG DPT	51.		Drilling Date: 6 14 2012.	Sheet 3 of 3		
roject:	Sa	il Back	· · · · · · · · ·	. d	Project No: WBS 03.01.01.02.01	Date Started:	6/4/2012	1248
		ALA.	-90000	10	Drillers: MEW Drilling	Date Ended:	6/4/2011	1434
ell No	By: L	1417	0 1	,	Rig: Ceoprube 7730 OFT	Total Depth:	58'	
eather		Partly	and	6	breezy ilus	Trotal Deptili		
catilei		1 Di		0.00	orice of the y			
Sample No.	Penetrometer (kg/cm ²)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrip		l,	
	1.5	41-46 42- 43-48 44-		2 in 2	Moist, strong brown and 9 7/1' silt, some clay tra reddish yellow 7.5 yr mothing silt, littre sand Burne as above to 14, brown sand some silt, Dimate	rading to 24	the gran	ng av
		$4^{5} - 54$ 4^{6}			Damp to wet sand, some strong brown 1047.5718 5 34" wet reddish yellow sa into damp sand some Wet reddish yellow sand clay seam then sand back wet reddish yellow san wet reddish yellow san	nd, 114 silt, with jointli to 27, 2	2 Silt be for " sit and	a ding
		52 - 2.8 54	· · · · · · · · · · · · · · · · · · ·		wet sand grading gravel availing	24 4 2ravef, obbles (ro thing 1	hen sligh with is with is	+14 ret 14/12 un ts)

Q.

		FBP-ER-RCRA-WD-RPT-0189
The second	FBP Soil Boring Log	April 2015
HE IN PUCCOTCLO		Sheet (of 3
oil Boring No. BKGDPT 56 R	Drilling Date: 6/11/12 Project No: WBS 03.01.01.02.01	Date Started: [11 12 10 15
Vell No: NA	Drillers: MEW Drilling	Date Ended: 6/11/12 1211
ogged By: William Real	D	Total Depth: 58 fr
Veather: Raining 70		
	A LA STATE AND A LA STATE	· · · · · · · · · · · · · · · · · · ·
Sample No. Penetrometer (kg/cm ²) Depth (ft) Sample Recovery (in) Blow Count	Descript	
$2.5 \qquad 3 - 21 \qquad 4 - 1 \qquad 2.25 \qquad 5 - 25 \qquad 6 - 1 \qquad - 1 \qquad$	2" Top Soil I dry, cromble WHA there to 10" yhun slightly clary trace sand, 10" Slightly moister, pett brown and clary trace sand Staining Slightly moist, brownis clary, little gravel, 50 Mottling 10 yiz 5/6	Lish yellow silf: some red oxidation Lyellow silf and me yellowish Brown
7 - 2.67 8	10" Silighty moist brownin Clay some yellowish brownin Unconformably dry yellowish Silt, some clay sand an 16" dry crumbly silt, son clay enconformebly oyer mothing clay some silt pry crumbly adilly some cl	brown 10 YR SIB d Travel YR SIB me sand, gravel and stiff yellowish , littic gray 10 yr cl.
11 - 33 12 - 35 13 - 35 - 14 3 - 5 - 40	4" Jaminated with silt and c Bome yellow laminge (lamine 4" Jaminated wilt and cl slightly moist silt offer with this moist silt offer rock from with 20" moret with	lay yellowish brown he makend) some grading into some grading into hedded clay laminae, little
16 2.5 17 381849 19 48	some yellowish brown mothing	clay boround is years clay boround is years clay prading into clay prading into the sand. years boy coy chille
with 6 11/12 20-	Augur a brokladsh	avail unconformably and clay.

C.2-108

.

	In					FBP Soil Boring Log	Revision 1 April 2015
Soil Roy	ring No.	BKI	D'PT	SCR		Drilling Date: 6/11/12	Sheet Lof 3
Project		ent		ella	nund	Project No: WBS,03.01.01.02.01	Date Started: 6/11/2 1015
Well No		A	IA	V		Drillers: MEW Brilling	Date Ended: 6/11/2 1211
Logged			1 him	Re	1	Rig: Geoprobe 7730 OPT	Total Depth: 58 44
Weathe	r: 1	La	12	70'5	1		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	
		21_ 22_	58		6/11/12	Yette Brownish yellow, mais, crembly some little red	oxidation staining
and the second second	320	23_	55		-	Same as above brownish yellow	2,
ан сан Ал	25	25_	570			Brownish yellow Brownish yellow down to 36" them same a and gand	with little arrivel
2,75	275 WHL 611112	2 7 _ 2 7 _	54	74		same as above	
	3.0	E I	52-	•	-	same as above down it moist brownish itellow sil sand, slightly shifter	F and Clay, Trace
	(.5	14.21	58			moist, soft, yellow will some away motting 10 yrs brown motting.	with still
	2,25	33 - 34 -	58		-	Moist brownish yellow sil	t and clay slightly
	2.25	35 _ 36 _	54			gray she silt and clay mothing with and clay Moist gray and brownish and clay little sand brownish yellow at 26, con	ME WEAR INUFFICE
	2.5	297 - 78 -	58			Same as above beginning yellar and gruy mothing Some some stor strong brown and clay with 10 7.5 yr. 51. Moist strong brown 5.11.	shurle (w) 10 1
-	l,5-	39_ 490-	47			Moist strong brown Silte graver, little clay some mothing 10 YR 6/4	some sand and fine brownish yellow

DOE/PPPO/03-0667&D1

FBP-ER-RCRA-WD-RPT-0189

	4					FBP Soil Boring Log	Revision 1 April 2015
Soil Bor	ing No.	Br	GOFT	SUR		Drilling Date: 6/11/12	Sheet 3 of 3
Project:		il	-	Kenira	word	Project No: WBS 03.01.01.02.01	Date Started: 6 /11/12 1015
Well No		NA				Drillers: ME W Drilling	Date Ended: 6 / 11 212 1215
Logged 1		UN	lean	70%	.el	Rig: Deeprobe 7730 DPT	Total Depth: 53.44
Weather		-ICe	1 m	103	1		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	tion
		41- 42- 43- 44- 45- 46	54 52 50			Moist to Damp Strong & silt some stand strong & yeilow with Withow strong gravel to bottom. Dump Strong brown si little gray motting to s" becoming silt and san Same as above!	becoming brownish brown mottling little It is a me sand "then string brown d at 30"
		1°- 47- 48- 49- 53 0-	44 38	•	17	Moist to damp yellowish Silt, wet bottom 6" Wet, yellowish red sou 24" yun yellowish brow Wet.	nd little silt to a sand, some sill-
		91_ 512	48			wet strong brown well silf.	
		53_	30			10" wet strong brown save sand and gravel; ballies.	d, then, wet silt
		54_ 55_	2.2	•		thet yellowish red SVR s some sand last 5"	5/8 pen groull
		.96_ 57_	26			wet sand, silt and cobbl formasing over dry, silt s weathered yray shat	and clay Vellowish forein
		98_ 99_				EUD' OK Bori	with 10-1R 3 6/11/12
		60_					

ŕ

		9 12 62 44 R - +	15 20			- Les	FBP-ER-RCRA-WD-RPT-0189
				-		FBP Soil Boring Log	Revision 1 April 2015
oil Bo	oring No.	RUG	OPT"	57		Drilling Date: 5/2 4/12.	Sheet of 2
	t: Surc					Project No: WBS 03.01.01.02.01	Date Started: 5129/12 1600
Well N	lo:	NA			A	Drillers: MEW Dr. Iling	Date Ended: 5/24/12 1805
	By: h			Reel	0	Rig: Geoprobe 7130 DPT	Total Depth: 30 ft
Veathe	er: <i>Pl</i>	1 1	1 5	1 nory	80		
4o.	cter	E	OVEL	ţ /	ि	1820 DTW 20.81	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	(mqq) (Descri	iption
Sam	² enet (kį	Def	nple	Blov	E E E E E E E E E E E E E E E E E E E		-
		-	Sar		<u> </u>	111 1 1 1	
	2.75	CREAT.	16		1	Moist reddish brown. Sil	It, some clay , have sand
	4.1-	1_	19	-	1		
		2	1		1		
		23.1 3			1	Moist. shift brownish yell	and all and ale.
	3.5	3_	26			Moist, shift brownish yelle trace rock fragmen ce wire 5/29/12	III. A Tott
	ľ	1.4	C-		1	Wirr 5/29/12 4	oboles a
		4			4		
	and		1	\vdash	1	14" Moist, Stift strong b	rown 75 YR 6/5 Silt
	3475	5-	201		1	and clay some organics over yellowish brown shift s.	trace send animontorna
		6			1	lover yellowish brown stift s.	It & clay traine word still
		Ť			Ê j	Musi child brownish vella	
	74.2	- 7_	22		Ĺ T	Moist stift brownish yellow clay, trace organics -	~ IOYR GIG SILF and
	17:00	18	11		1	Ciny irace organics -	and sand
		8			1		11. INTR Calle self and
			1		1	18" Moist shift brownish ye	ellow with pite state and
	1.25	9_	23		1	Clay frace of sand over presed sand soften.	lying silt some clay
				$ \rightarrow $	(truck sand soften.	•
	0	10		-	6		
	1011112	11	1.11		6 (Muist, crumbly brownish	yenor any and
	3120		27		60.2	little sand, trace gravel	, damp last 4
		12			Ê	have here have the	now silt , little to some
		6.7%			1	Moist soft, brownish yel	
	25	13 _	27		6	clay , fittle sand, prace	c gravel.
	120		121	\vdash	6	w the 5/29/12	
		14		\vdash	(at the terministic a	the ite little che
		15			(Moist soft brownish y	
	.75	1	32		6	and sand, wet silt.	
		16]		1	lengthwise tast B" of s 16" wet silt some sa into moist siltsome clay buck to silt some sand	sample time
			1			16 wet silk "	
		17_	36			into moist sitsome clay.	1. Han in grading
		18	1	\vdash		into moist sittsome clay buck to silt some sand brownish yellow and yel Monst to dama silt :	little clay wet seams
		18			1	brownish yellow and viel	11111 1040 111 11 11 11
1	1 1	19_					
			34		-	Silt some clay; slightly s to so" then wet strong b	shft Go 30" 14" est ading
		20 _	U)		NI		rown 7.5yr STG Silt &
1		12:52				Sand wet 1	
							with

× 1

								PPO/03-0667&D RA-WD-RPT-018	
						FBP Soil Boring Log	· · · · · · · · · · · · · · · · · · ·	Revision April 201	
Project: Well No Logged	Bac	NA NA		57 Re.	1	Drilling Date: 5/29/12 Project No: WBS 03.01.01.02.01 Drillers: M2 W Dr. 11ers Rig: Ceoprobe 7730 OPT	Sheet 2 of 2 Date Started: Date Ended: Total Depth:	5/29/12 5/29/12 30 FF	1600 1805
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrip	otion		
Cha. too,		22_{-} 23_{-} 24_{-} 25_{-} 26_{-} 27_{-} 28_{-} 23_{-}	37 29 26 304			Wet sitt some sand r 7/6 down to Zy" then clay, moist to Z9 the kottom. Wet silt some sand wis seam between 9" and 11 sand to Zett" unconformate sand to Zett" unconformate sand to Zett" unconformate sand to Zett" unconformate sand to Zett" unconformate unt silt some vack tragminor loyiz 7/6 motting, y" s Wet silt, sand gravel Same as above. DPT of Changed tooling, went gray Shale. END OF BORING	Teddish y m wet s in Z" s i then oly over 7.5 YR R 5/4 S, ents and sea and sea	ellow si silt and wet si moist s 5/4 lt, sand d yell mat Zo bbles	lt, some (sand to clay

		itte market			and the second		PPPO/03-0667&D RA-WD-RPT-0189	
				-	FBP Soil Boring Log		Revision April 2015	
oil Bo	oring No.	BKGOPT	58		Drilling Date: 5/31/12	Sheet (of 3	1	
		Backs			Project No: WBS 03.01.01.02.01	Date Started:	5/31/12	1610
Vell N	lo:	NA			Drillers: MEW Prilling	Date Ended:	5/31/12	17.48
_		llinm	Read	/ 6	Rig: Geoprobe 7730 DPT	Total Depth:	46"	
eath	er: r	untly	LIGUA	4,0				
Sample No.	Penetrometer (kg/cm ²)	Depth (ft) Sample Recovery	Blow Count	PID (ppm)	Descri			3
	3.9	¹ - 22. ² - ³ - 28 ⁴ - 5			Slightly moist, filt, some yellowish brown 10 TR 5/9 yellow 10 YR 6/6 Slight moist, yellowish Silf, some clay, little Inttle gravel slightly moist brownish Clay littlesond runconform	grading W5/31/12 Brown yes	ellow 10 run 6/,	48 614
	4.5	5- Z4 6			slightly monst brownish Clay little sand, unconform laminated Elay, some silt 75 YR 5/8, and yhin yello	w 10 YR	Strong bi 7/6 lam	ina e
	2.5	7-28 8	_	-	same as above 1 2" sil at 24-26"	+ seam	Nellow 1	54R7/6,
	3.5	9-32 10_						
		11_2°			Muist; stift, clay, some B"ymm thin yellow sil to 17, them 4" silt lam, yellow then back to bro to 23, then yellow sil	ma yello which yel t to both	a to be but clau	and si
	2,75	¹³ - Z-			4" yellowish brown shad	to 12" to	un 6" si	It and
	3.0	15 - 32 16 -		-	with little grand at last 4"	1011000 -	,) -	/
	20	17_36 18_		-	brownish yellow silt and some yellow 104R 7/C n with 5/31/12	/		
	2.75	19_27 20_		-	to 10" them 5" seam of yellowish red 54 5/6 brownish yellow silt sound	pun	nd and back to	Te san. Noavel

PORTS/SOIL BKGRD RPT D1 R1 MASTER/04/16/2015

	190 (A)	DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189
	FBP Soil Boring Log	Revision 1 April 2015
Soil Boring No. & KGDPT 58 Project: Soil Background Well No: NA Logged By: William Reid Weather: Partly Cloudy Bo	Drilling Date: 5/3/2012 Project No: WBS 03.01.01.02.01 Drillers: MEW Pr. 11.09 Rig: Geoprobe 7730 DPT	Sheet Z of 3 Date Started: 5/3//12 14/0 Date Ended: 5/3//12 1745 Total Depth: 46'
Sample No. Penetrometer (kg/cm ²) (kg/cm ²) Depth (ft) Depth (ft) Sample Recovery (in) Blow Count PID (ppm)	Descript	
$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	yellowish red, dry silt san yellowish red, dry silt san yravel the oridation si gravel the oridation si gray mothing at about same as above Same as above Same as above Same as above Same as above Datap yellowish brown and and sand Dry crumbly silt some s grading int moist soft s little clay yellowish brown Moist, yellowish brown silt the sind of graded with silly ellowish gravel with silly ellowish ed to is if the yellowish brown silt wet wedding yellowish ed to is if the yellowish brown si fragments to 12' the second scarse sand to 3 gravel. Wet Yellowish brown si fragments to 12' the second for 3 gravel. Wet Yellowish brown si the yellowish brown si fragments to 12' the second for 3 gravel. Wet Yellowish brown si	gray mothled silt and lettre gravel silt tothe gravel isome gray mothing isome clay to 15 aravel, then silt gallie, then silt wet silt sand and quavel silt sand and quavel silt sand inthe quavel silt sand is gravel is and inthe quavel is and inthe quavel

							DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189	
	-					FBP Soil Boring Log	Revision 1 April 2015	
Soil Bo	oring No.	BILG	DOT	58		Drilling Date: 5/3//12	Sheet 3 of 3	
	t: 561	_			1	Project No: WBS 03.01.01.02.01	Date Started: 5/31/12 14	010
Well N	lo:	NA				Drillers: MEW Drulling		45
	By: W			Rud	2	Rig: Geoptobe 7530 pp	Total Depth: 46'	
Weath		I	17 6	land	1 80	2		
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descrij		
		4 1_ 42_				wet silt sand and a red and yellow moth		r
		43_ 44_	36			same as above, sm		-
		45 -	60			Reddish brown weatherd gray weather shale,	to bother.	
		46-			-	END OF	2. 2. 2.00	
		47 - 8 = 9 = 10 = 11 = 12 = 13 = 14 = 15 = 16 = 17 = 18 = 19 = 19 = 19 = 10						*
		20_						

		manin	menter	_			Revision 1		
FBP Soil Boring Log April 2015									
Soil Bo	ring No.	BKG	DPTJ	1		Drilling Date: 5/29/12	Sheet [of Z		
-	: 500					Project No: WBS 03.01.01.02.01	Date Started: 5/19/12 1251		
Well No		VIA		ic page	1	Drillers: MIW DRILLING	Date Ended: 5/24/12		
	By: L	hlly	im 1	(e.A		Rig: Geoprope 1730 DPT	Total Depth: 34 /		
Weathe	r: Par.	thy	SURAS	1 80	thum.	& Sturms possible			
	10000	1	2 /		1.11				
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript			
	4.0	1_ 2_ 3_	12"			Moist brownish rellow sitt, so shightly shift loyra/a Moist brownish yellow silt a shift sit slight frace with S/29/12 Moist brownish yellow silt a	and clay, trace shad		
	9.75	4_				With S/29/12 Moist shift brownish yellow some sand at boitom	, silf and clay,		
		6_	22			NVISK yellowish brown a Silf them yellowish brown damp 14 Them yellowish brown si 6" laminated yellow 10412 7/6 7412 c/a Silf and clay grown cont	silt little clay to		
	\$.75	9_ 10_	26		/	silt, some a lug trace organics	then brownish yellow rocks at bottom		
	4.25	11 _ 12 _	29			Moist y ellowich brown 104R s/2 Mottled filt, the clay with 5/29/12 Moist yellowish brown 104R	518 Bilt, some clay		
	3.75	13 _ 14 _ 15 _ 16 _	_			trace sand and organics staining @ 30 14" Moest readish yellow 7.5 brownich yellow 10 yrz 6/8 rech tragmint spread the	57R 6/6 grading into. Silt, some clay little roughout		
	74.75 3.25-	17 _ 18 _ 19 _ 20	32			Slightly moist slightly even yellow slit and clay 1 stiff Same as above down to soften (3.25 kg/m²) trace	12" becoming slightly		
1.1		1.1							

_							FBP-ER-RCRA-WD-RPT-0189
)(jiljob))	خدغره	-	-	FBP Soil Boring Log	April 2015
Soil Bo	oring No.	BKG	DPT	59		Drilling Date: 5/29/12	Sheet 2 of 2
	t: So	ic	Back		1	Project No: WBS 03.01.01.02.01	Date Started: 5/29/12 1251
Well N	lo:	NA	4	1		Drillers: MEW DRICCING	Date Ended: 5/29/12 Total Depth: 34'
Logged	By: CA	2111	Y SU.	and	80	Rig: Geoproin 7730 DPT	Total Depth: 34
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descript	tion
	3.0 0.5	22_ 2 3 - 2 4 - 2 5 _ 2 6 _ 2 7 _ 2 8 -	26		with Sizaliz	Mon Slightly moist yellowish to cund rock fragments to 10 YR 6/8 silt, little clay 1 to Same as above to 29" the 518 silt, some rock and strong brown s. It sand a 2"same as above & end 16" Moist yellowish brown e fellowish brown of sitt, some sand god ro brown silt sund and gram Moist strong brown silt sc vock fragments little cla Blightly moist, brownish yell same as above, botto shale. arey weathered shale	ace sand (no rock), in yellowish brown 10YR gand to 35; then met a vare 1 (gallia?) silt, little sand, two and the sand, two and the sand, two and the sand the same (gallia?) silt, little sand, two and the sand the same (gallia?) silt grading into strongs ome gravel, sand and of Acllia-like (low 10 Yiz 6/8 5:17, tragments
		3 4_					
		35-				END OF BORING	
		36_					
		10.00					
		37_				100 C	
		318_					
			1			1	
		39_					
		40-					
		7	Y				


						FBP Soil Boring Log	April 2015	
Soil Bo	ring No.	BKG	OPTO	00		Drilling Date: 6/4/2012	Sheet 1 of 2_	
Project: Soil Backgruund						Project No: WBS 03.01.01.02.01	Date Started: 64/2012 852	
Well N	0:	NI	4 .			Drillers: MEW Dritling	Date Ended: 6/4/2012 10:04	
	By: WT			e.d		Rig: Geoprobe 7730 DPT	Total Depth: 36 ft	
Weathe	er: Par	thy	Clove	4 60	's		and the second	
o.	ter	2	Sample Recovery (in)	Ħ	a			
le N	cm ²	ц Ц	E Keo	Ū	(uudd)	Descript	ion	
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	ple	Blow Count	CIA			
S	Pe		Sam			5"	+	
		\$ (61m)		1	1	Moist light brown 7.5 yr 6/3	e eilt some sand little	
	0.75	1_	14			Clay uncahamably and -	delich wall TEYD Clo	
	0.13		['']			Clay uncaturnably over r silt, some clay liftie rock	taais yerrow 1. 112 18	
		2	*			in a ne ciny little rock	ic tragments (cobots)	
		22.				MOSST, how nich some all -	me sand little grave	
	>45	3_	20		in	Moist, brownish yellow silt, some sand, little much and the silt in the sand in the silt is the sand in the silt is the source of the source of the silt in the silt is the source of th		
	115	1			614/12	the increasing to some	grav at 5 w 10. Th	
		4_			Prin.	Still Sim Silt, some clay si	and and cobbles (rec	
		the st				Shift Stransilt some clay s. fragments with ioyn 6/0 Moust Brownish yellow silt sand, some gray 10 yrz 6/1	and class trans	
		5_	2.			Moist Brownish yellow sill	some - creq made	
	74.5	hera	31			sand, some aray :0 YR 6/1	nothing to 12 your	
		6_	_			Strong srown 7.5 yr 3/6	silt, sand, and grave	
		1.		1				
	2.0	7_	30			1" Gallia-like material overly 10YR BIG Silt, some clay trace with depth strace gray mother Man	ng moist brownish yen	
	2.0	LS &				IOYR BIG wilt some clay trace	e sund, becoming Soft	
		8_		-		with depth trace aray noth	ing, and	
		in the second se				Moist brownish yellow sill, shad which chiffing grading in some sand between grand over yellowish brown silt and and sang	Some day	
	2.5	9_	26			Shad what chiffing grading in	to silt and an	
		1-2				some sand between 9'and	17" AMConfirmation	
		10_				over yellowish brown silt an	id clay - liftie to 1000	
		ar i	-			and sang	1 i ini e of more	
	3,15	11_	32			14" slightly moist yellowish brow	in sill, some clay letter	
		10210	1 - 4			gravel and cobbles, unconturm	ably own slightly more	
		12_		-		Yellowish red 5 YR 5/6 Silt	, some clay little grave	
		Size.				slightly moist yellounsh brown little gravel to 140 little yell grading into reddish syellou sand I trace clay and gra	silt, some clary,	
	0.75	13_	33		a. 13	arading into to 14", little yell	Iow nothing (0817 2/6	
		Road State	4.5			sund has it readish yellow	W 7.5 YR 6/6 gilt some	
ang	5	14 _				min I tract Clay and gra	iver, damp.	
olino	1 1	BRS 13				same as above, dampu	at bolton 4"	
1 N	1	15_	32			· · · · · · · · · · · · · · · · · · ·		
	1.1	Man-						
		16_		WHR		same as above, 2" gravel o	at silt scan between	
		17	A	614/12		sume as above, i grave o		
		17 _				5" and 7"		
		18	34					
		10-				brown silt and sand, s	un damp vellowish	
		19				brown silt and said.	soft.	
		17 -	39	1				
		20						
		20 -	1.13					

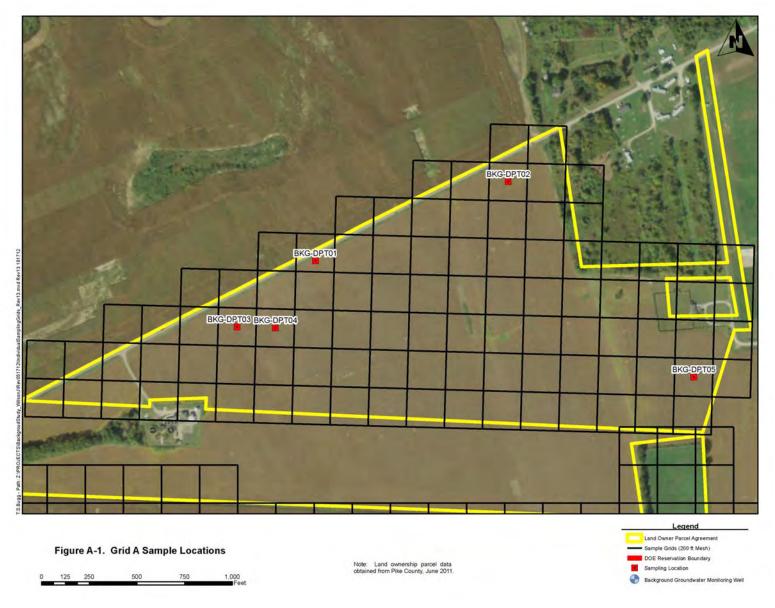
						DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189			
-	-	-				FBP Soil Boring Log	Revision 1		
	NT-	P 1.		+1.0		Drilling Date: 6 /4 /2012	April 2015 Sheet Zof 2 who 1412		
Project	ring No.	PK	-ODP Ru	140	aund	Project No: WBS 03.01.01.02.01	Date Started: 5/4/2012		
Well N	io:	A	JA	010 01		Project No: WBS 03.01.01.02.01 Drillers: Mをい Or. ((ing	Date Ended: 6/4/2012 10:65		
	By: W	alleo	in	Rud		Rig: Groprohe 7730 DPT	Total Depth: 36'ft		
Weath	er: 1	ant	14	clovely	48	¢			
Sample No.	Penetrometer (kg/cm ²)	Depth (ft)	Sample Recovery (in)	Blow Count	PID (ppm)	Descri			
Samp	Penetr	21_ 22_ 23_ 24_ 25_ 26_ 27_ 28_	36 34 29	with 614112		6" wet yellowish brown silf seams at 19" and 3 Moist to damp silf, so 7.5 (R 5/6, soft Pamp yellowish brown, Si silt and sand @ ap Moist yellowish brown sil gravel (at 6") becoming gravel to 23 the silt, with G14/12 Same as above Moist silt, some clay little se	ift and sand, grading some sand, l'graves sil" ome sand Strong brown It isome sand, becoming provimentity 24" It isome clay little silt little sand and some clay little gravel yellowish brown 10412 5/6 and and gravel to orown silt, sand and IR 6/6 silt is and and		
		36_ 37_ 318_ 39- 40_				END OF BORING			

2

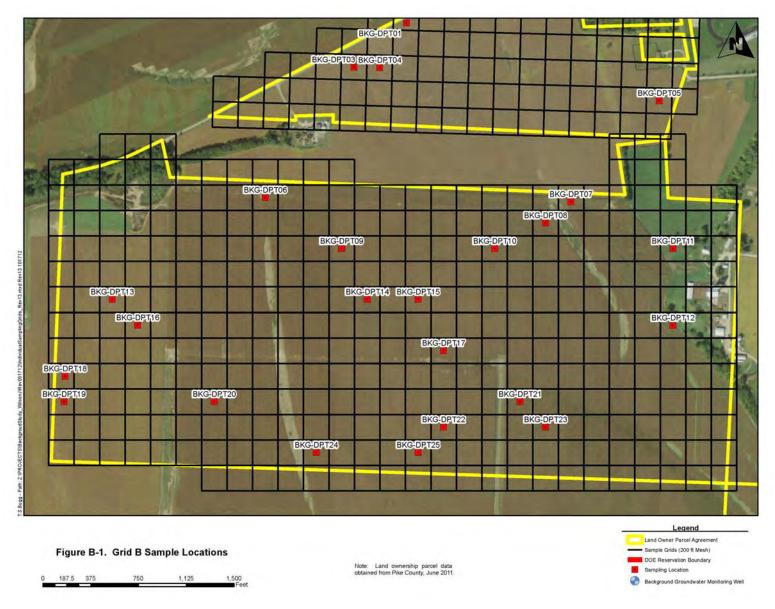
This page is intentionally left blank.

APPENDIX D: LOCATION MAPS

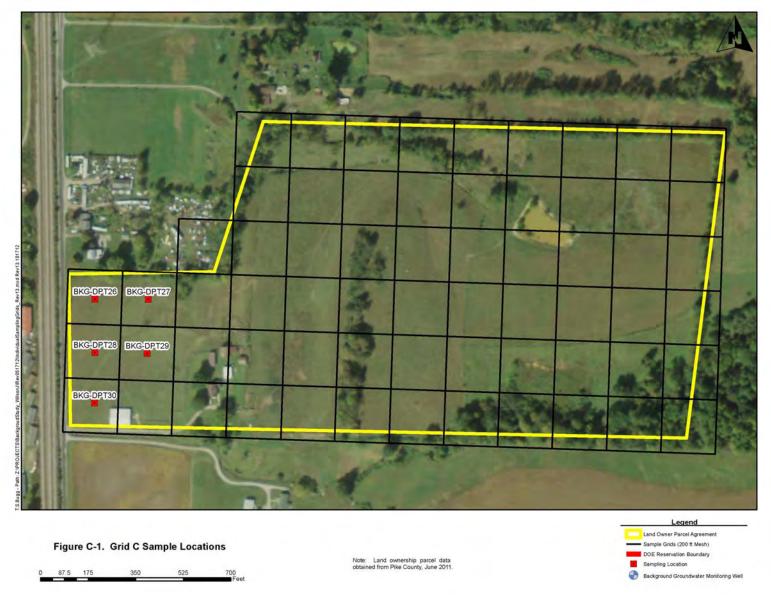
This page is intentionally left blank.


FIGURES

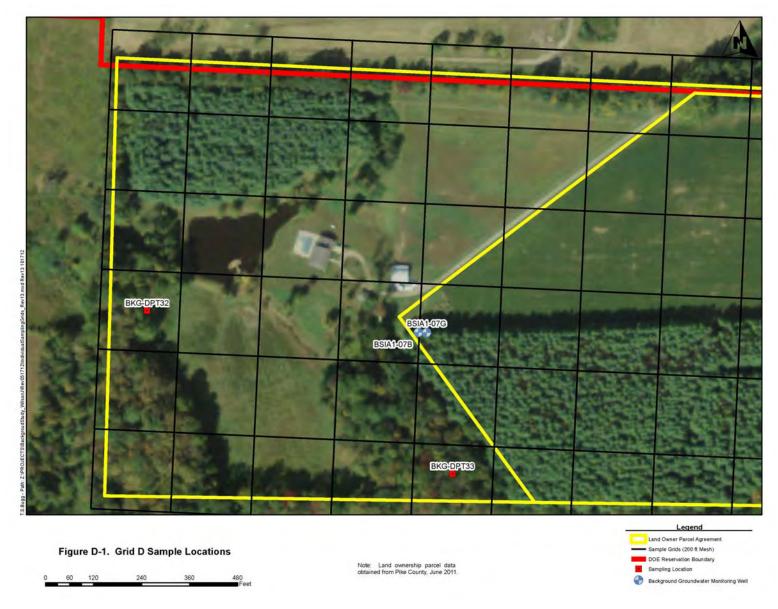
Section


Page

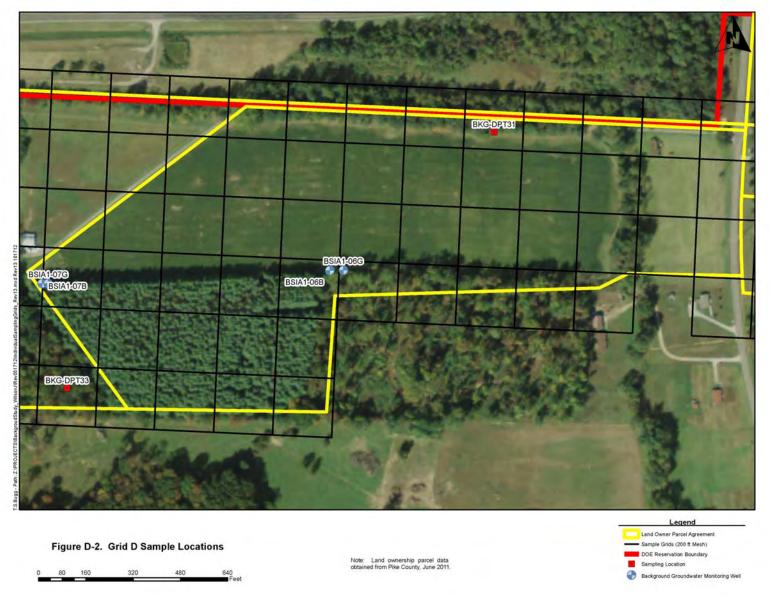
D.1.	Figure A-1. Grid A Sample Locations	D-3
D.1. D.2.	Figure B-1. Grid B Sample Locations	
D.3.	Figure C-1. Grid C Sample Locations	
D.4.	Figure D-1. Grid D Sample Locations	
D.5.	Figure D-2. Grid D Sample Locations	
D.6.	Figure E-1. Grid E Sample Locations	
D.7.	Figure F-1. Grid F Sample Locations	
D.8.	Figure F-2. Grid F Sample Locations	D-10
D.9.	Figure F-3. Grid F Sample Locations	
D.10.	Figure G-1. Grid G Sample Locations	
D.11.	Figure H-1. Grid H Sample Locations	D-13
D.12.	Figure I-1. Grid I Sample Locations	D-14
D.13.	Figure J-1. Grid J Sample Locations	D-15


This page is intentionally left blank.

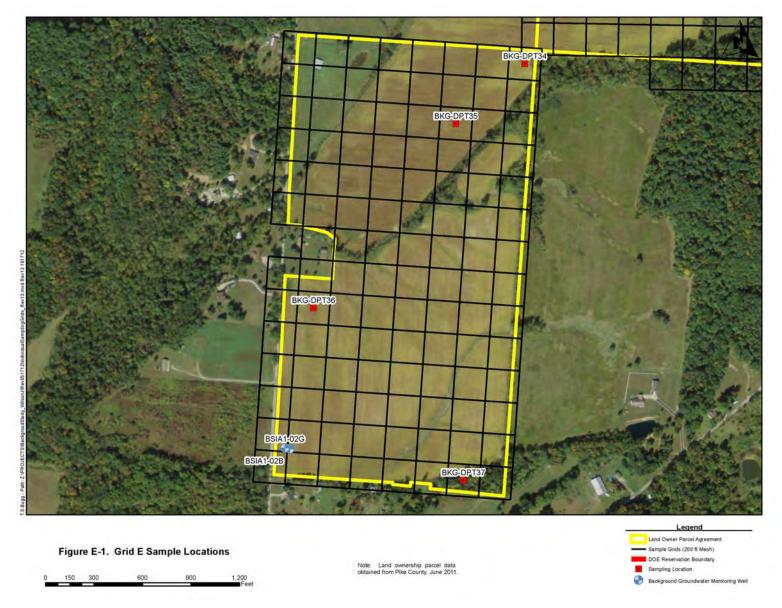
D.1. Figure A-1. Grid A Sample Locations

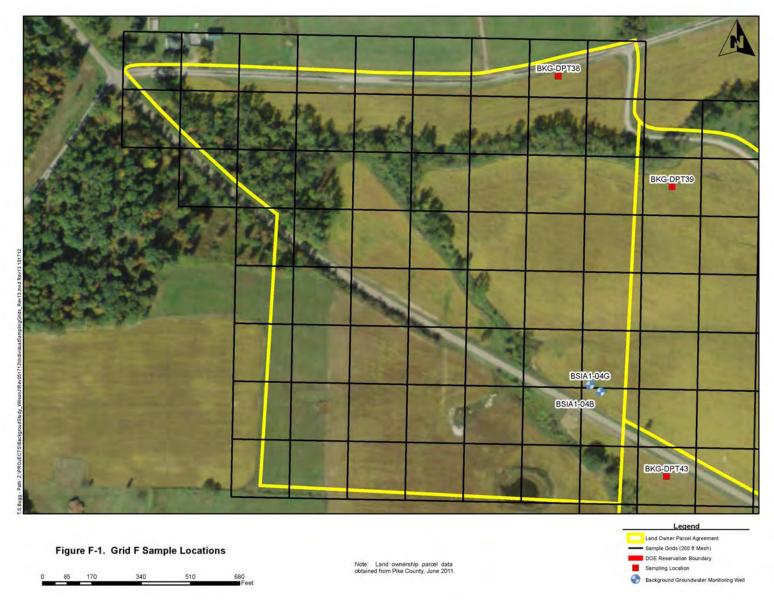


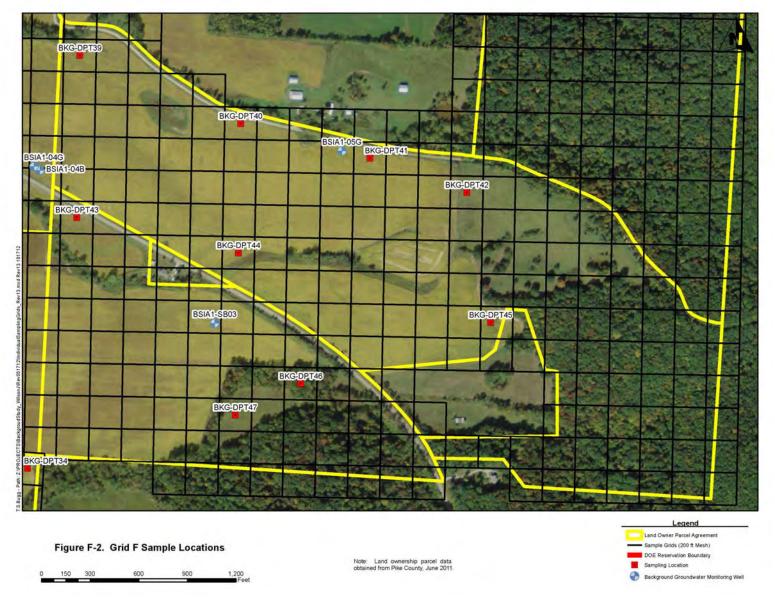
D.2. Figure B-1. Grid B Sample Locations

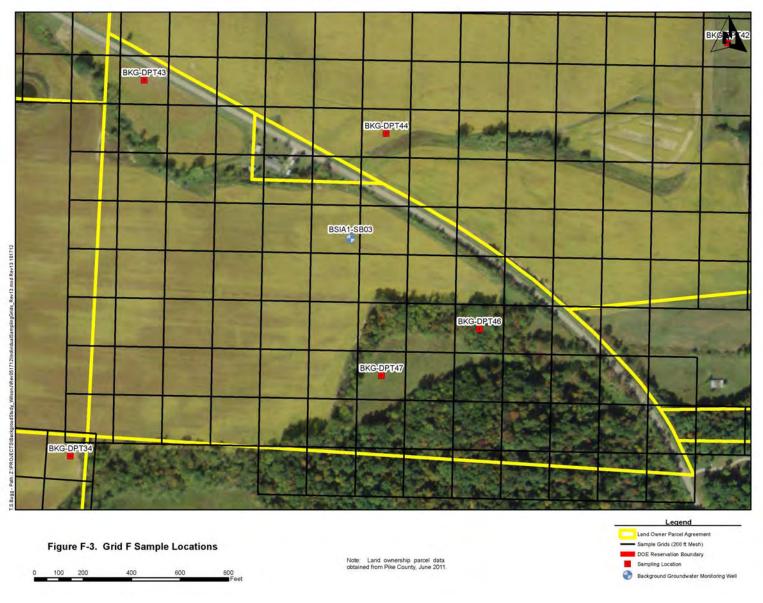


D.3. Figure C-1. Grid C Sample Locations

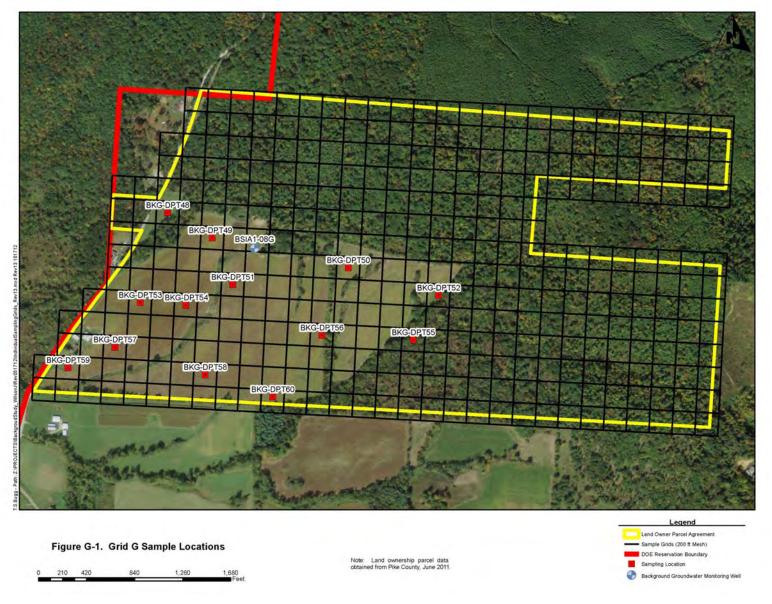

D-5

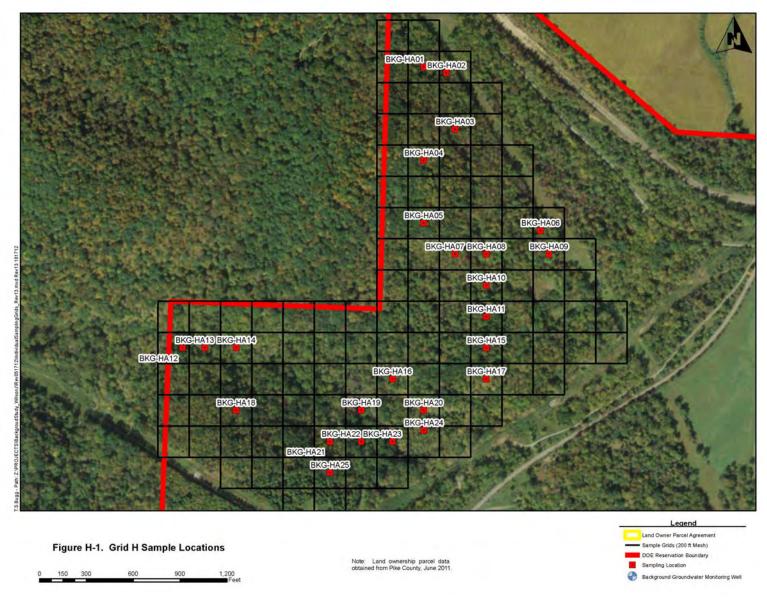

D.4. Figure D-1. Grid D Sample Locations


D.5. Figure D-2. Grid D Sample Locations

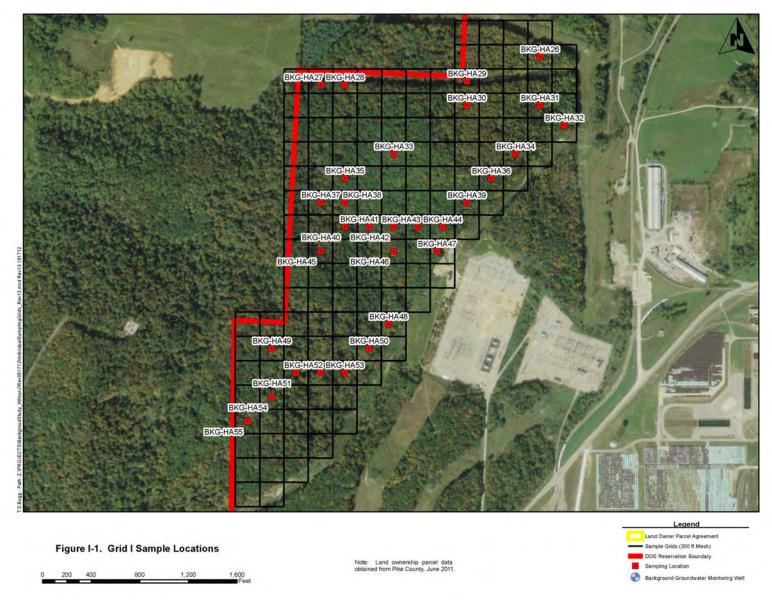

D.6. Figure E-1. Grid E Sample Locations

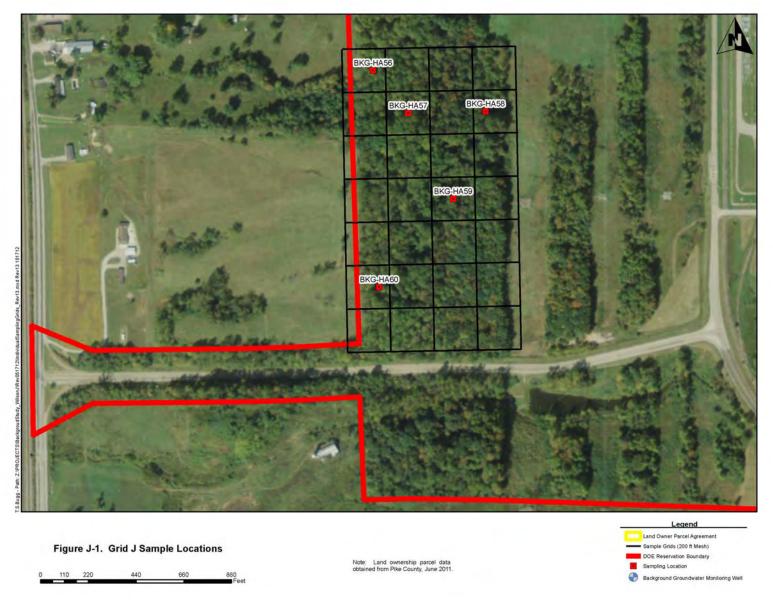
D.7. Figure F-1. Grid F Sample Locations


D.8. Figure F-2. Grid F Sample Locations


D.9. Figure F-3. Grid F Sample Locations

D-11


PORTS/SOIL BKGRD RPT DIR1 MASTER/4/14/2015 3:34 PM


D.10. Figure G-1. Grid G Sample Locations

D.11. Figure H-1. Grid H Sample Locations

D.12. Figure I-1. Grid I Sample Locations

D.13. Figure J-1. Grid J Sample Locations

This page is intentionally left blank.

APPENDIX E: SURVEILLANCE REPORT

This page is intentionally left blank.

SURVEILLANCE REPORT

Assessment Title:	Soil Background Study at U.S. DOE PORTS
Assessment Number:	XP-2012-S014
Organization:	E. R. Operations
Location:	BKGDPT53
Date(s):	5/30/2012
Performed by:	Mark Longhauser
Issue Owner Concurrence:	NA
Purpose:	The purpose of this surveillance is to evaluate the Soil Sampling activities per the below refer-
Basis:	enced materials. The reference documents for this evaluation are as follows:
	 FBP-WP-11-0052, Soil Background Study at U.S. DOE PORTS FBP-ER-PRO-00005, Subsurface Soil Sampling FBP-ER-PRO-00030, Decontamination of Sampling Equipment FBP-ER-PRO-00037, Direct Push Technology (DPT) Drilling, Sampling and Micro Well Installation
Checklist:	See Attachment 1.
Personnel Contacted and for distribution to:	The following personnel were contacted during this evaluation: Jeff Wilson, Reinhard Friske, Steven Thompson, Jim Fleck, William Reid, Steve Guthrie, Stacy Claggett, J.D. Chiou, Uday Kumthekar, Bill Zebick, Earl Brinkerhoff
WCO Concurrence:	NA
Results Summary:	This writer observed soil sampling of location BKGDPT53. Samplers collected from 0.0' to 40.5' (refusal) along with field QC samples. Good glove use and change out between sample intervals. New blue nitrile gloves used during each soil handling activities. Preserved liquid bottles empty/full were staged on collection table in cardboard boxes with inserts still in place to prevent accidental spillage. Observed Geoprobe shoe deconned, air dried and wrapped in aluminum foil from prior days use, for use on next boring location.
	There were $\underline{0}$ findings, $\underline{0}$ observations, or $\underline{0}$ proficiencies identified as a result of this Surveillance

LPPF-N0256, Rev. 1 (9/09) Procedure Reference LPP-PQ-1415 Fluor-B&W Portsmouth LLC (FBP) Blue Sheet Reviewed

ATTACHMENT 1 SURVEILLANCE FBP-QA-S-12-0XX CHECKLIST

Item	Characteristic	Result	Remarks
The fc	I blowing characteristics are from the reference	documents	listed on page 1
1.	<u>FBP-WP-11-0052, Rev.0, Sect. 5.2.3</u> Pre and Post job Briefing	A	Prejob briefing conducted at X-801 parking lot. All parties present for today's activities. Supervisor and project personnel openly discussed events from the previous day's activities (post job). Discussed roles and responsibilities for activities ongoing for Soil Background Study at U.S. DOE PORTS.
2.	FBP-WP-11-0052, Rev.0, Sect. 5.4.7 Collect subsurface soil samples in accord- ance with FBP-ER-PRO-00005, Subsur- face Soil Sampling and FBP-ER-PRO- 00037, Direct Push Technology (DPT) Drilling, Sampling, & Micro Well Installa- tion.	A	Observed collected grab sample for Pest, Herb, PCB's, and SVOC analyses immediately and placed in sample container (sample ID bkgdpt53- 01-10). Sample bottle filled completely
3.	FBP-WP-11-0052. Rev 0 Sect. 5.4.10 Maintain custody of samples in accordance with FBP-ER-PRO-00275, Sample Chain-of-Custody	A	Observed COC in hand and sample specific information being filled out in real-time.
4,	FBP-WP-11-0052, Rev.0, Sect 5.4.11 After each sampling event, decontaminate non-dedicated sampling equipment in ac- cordance with FBP-ER-PRO-00030, De- contamination of Sampling Equipment.	А	Liquinox used as the cleaning agent. Spatulas and bowls used for each segregated push cleaned prior to next use.
5,	FBF-WP-11-0052, Rev.0, Sect 5.4.13 Supervisor/Sampler will ensure all samples are made available to RC for surveys.	A	Observed RC surveyed samples and equipment at random intervals throughout activities.
6.	FBP-ER-PRO-00005, Subsurface Soil Sampling, Sect. 8.1, 8.2,	A	Observed sampling information recorded in the field logbook and Chain of Custody forms
7.	FBP-ER-PRO-00037, Sect 8.2.5 The sampler is then reintroduced to the inside of the external drive casing and driven ahead of the casing into the under- lying undisturbed soils.	A	Observed The sampler reintroduce the sampling tube inside of the external drive casing, prior to driving ahead of the casing, into the top of the targeted sampling interval
8.			
9.			
10.	1 C		i
11.		_	
12.			

A = Acceptable O = Observation (Describe the observation in the Remarks) F = Finding (Describe non-compliance in Remarks) N/A = Not Applicable

LPPF-N0256, Rev. 1 (9/09) Procedure Reference LPP-PQ-1415 Fluor-B&W Portsmouth LLC (FBP) Blue Sheet Reviewed

APPENDIX F: FIELD CHANGE NOTICES

This page is intentionally left blank.

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000 APR 0 3 2012 DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

PPPO-03-1434604-12

Ms. Maria Galanti Site Coordinator Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138

Dear Ms. Galanti:

TRANSMITTAL OF VARIANCE FBP-ER-RCRA-WD-PLN-0040-R2-01 TO THE SOIL BACKGROUND STUDY SAMPLING AND ANALYSIS WORK PLAN

Enclosed, please find the U.S. Department of Energy (DOE) transmittal of a variance form to the Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio (DOE/PPPO/03-0250&D1).

Variance FBP-ER-RCRA-WD-PLN-0040R2-01 contains four individual items. Of the four items, three are considered non-significant and one significant. The three non-significant variances include how changes to the sampling and analysis plan (SAP) will be handled (i.e., via the variance process); corrects the depth of river valley subsurface soil samples; reflects the bluesheet procedure process and provides the Fluor-B&W Portsmouth, LLC (FBP) procedure number in Table 1; and the significant variance corrects the laboratory methods for the referenced parameters in Table 2. The contract laboratories are not currently able to support the SAP specified laboratory methods for the referenced parameters.

This variance is being provided to the Ohio Environmental Protection Agency for review and approval.

If you have any questions, please contact Amy Lawson of my staff at (740) 897-2112.

Sincerely

Joel B. Bradburne Portsmouth Site Lead Portsmouth/Paducah Project Office

Enclosure:

Variance FBP-ER-RCRA-WD-PLN-0040-R2-01

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 PPPO-03-14256/20152

Ms. Galanti

cc w/enclosure:

Vince.Adams@lex.doe.gov, PPPO/PORTS Amy.Lawson@lex.doe.gov, PPPO/PORTS Kristi.Wiehle@lex.doe.gov, PPPO/PORTS Joel.Bradburne@lex.doe.gov, PPPO/PORTS Jud.Lilly@lex.doe.gov, PPPO/PORTS Rachel.Blumenfeld@lex.doe.gov, PPPO/ORO Ray.Miskelley@lex.doe.gov, PPPO/LEX William.Murphie@lex.doe.gov, PPPO/LEX Jim.Sferra@epa.state.oh.us, Ohio EPA/Logan Jamie.Jameson@fbports.com, FBP/PORTS Dennis.Carr@fbports.com, FBP/PORTS Jyh-Dong.Chiou@fbports.com, FBP/PORTS Greg.Uetrecht@lex.doe.gov, HEI/PORTS PPPO Records/LEX PPPO.DFF&O@lex.doe.gov RCRA Administrative Record

VARIANCE		S	Significant	? Yes	Variance No. FBP-ER-RCRA-WD-P1.N-0040-F	2-0)
	cument No.: DOE/PPPO/03-0250&				Page I of 3	
FBP Document No., Rev. No.: FBP-ER-RCRA-			WD-PLN-0040, Rev. 2		Date: 03/28/12	
	nt Title: Soil Background Study Samj iketon, Ohio	pling and A	Analysis W	ork Pla	n for the Portsmouth Gaseo	us Diffusion
	NCE (Include justification)					
REQUI	REMENTS:					
L	Variance Process: Section 5 of the referenced sampling for the soil background study; how deviations and/or field changes to the	vever, the	SAP doc	s not c	define a process for submit	ting significan
2.	Section 5.2 of the referenced SAP d DOE reservation in the river valley. 20 ft bgs) will be collected.					
	Table 1. Fluor-B&W Portsmouth L identifies LATA/Parallax Portsmouth					
	Table 2. Analytical Parameters of the Chromium (III) will be analyzed by I Chromium (VI) will be analyzed by I Cyanide, Total will be analyzed by E	EPA SW-8 EPA SW-8	46, 6010B 46, 6010E	/6020	hat:	
VARIA	NCE					
1,	Variance Process: Add the following section to the SA SAP, and obtaining Ohio EPA concu					g changes to th
	5.6 VARIANCE PROCESS Any changes, modifications, or clarivariance is a means to document cha supporting respective SAP implement Data Quality Objectives. A variance significant or non-significant. A significant or modify technical approace DOE Project Manager and Ohio clarification, correct errors, docume concurrence. All variances to the Sy significant variances require concu- implementation.	nges to a S ntation. V e to a SAJ nificant va hes or cha EPA pric ant re-samp AP will be	SAP. The ariances r P approves riance is r nge in any or to imp pling, loca submitted	varianc nust no d or co equired alyses) elemente ation, e l to Olu	e is for specific field and/or t deviate from the scope of neutred by Ohio EPA must when the activity changes 5 and as such requires concu ation. Non-significant va itc. and as such do not req ito EPA for informational pu	laboratory task respective SA be classified a SAP scope (e.g. mence from the riances provid juire Ohio EPA rposes, but on
Requeste	ed By: Jeff Wilson			2	Date: 03	/28/12
X (IF REQ'D)	VARIANCE APPROVAL	DATE	X (IF REQ'D)		VARIANCE APPROVAL	DATE
х	Quality Assorance	3/29/12	10 A	Jim He		3/2/12
Х	Field Characterization Steven Thompson Hum Chumpn	7/28/12	х		ambers	> 3beliz
Х	Sample Management Office Cindy Tabor	3/28/12		12.1	U	
DUICH	ON REQUIRED (Document No. & T	itlet		-		

Pagel of 3

VARIA	ANCE	Significant? Yes	Variance No. FBP-ER-RCRA-WD-PLN-0040-R2-01
	ocument No.: DOE/PPPO/03-0250&D1		Page 2 of 3
FBP Document No., Rev. No.: FBP-ER-RCRA-WD-PLN-0040, Rev. 2		Date: 03/28/12	
	ent Title: Soil Background Study Sampling a Piketon, Ohio	and Analysis Work Pla	n for the Portsmouth Gaseous Diffusion
	NCE (Include justification)		
2,	Section 5.2 has been clarified to specify the bgs) will be collected.	at river valley subsurf	ace soil samples (1 ft to approximately 10 ft
3.	Table 1. FBP Procedure and Reference C provide the FBP procedure numbers, where		evised to reflect the blue sheet process and ched Table 1)
4,	Table 2. Analytical Parameters have been c Chromium (III) will be calculated by EPA 3 Chromium (VI) will be analyzed by EPA S Cyanide, Total will be analyzed by EPA S	SW-846, 6010B/6020 W-846, 7196	
	These are the appropriate methods per EPA	SW-846 to determine	e these parameter concentrations.
USTI	FICATION:		
depth of	riance is to document how changes to the SA f river valley subsurface soil samples; reflect s in Table 1; and document the correct labora	the bluesheet procedu	ire process and provide the FBP procedure

Page 2 of 3

Procedures	Reference documents				
Administrative procedures					
Chain of Custody	FBP-ER-PRO-00275, Sample Chain of Custody				
Variance/Change Request	SADQ Section 3.6.14				
Corrective Action	FBP-QA-PRO-00018, Problem/Nonconformance Reporting				
QA/QC	SADQ				
Excavation/Penetration	FBP-OS-PRO-00022, Excavation/Penetration Permit				
Data Verification/Validation	FBP-ER-PRO-00001, Volatile and Semivolatile Data Verification and				
the state that the second	Validation				
	FBP-ER-PRO-00033, Inorganic Data Verification and Validation				
	FBP-ER-PRO-00032, Pesticide and PCB Data Verification and Validation				
	FBP-ER-PRO-00059, Radiochemical Data Verification and Validation				
Field procedures					
Field Logbooks	FBP-ER-PRO-00027, Field Logbooks				
	FBO-SM-PRO-00017, Field Logbooks and Data Forms				
Drilling	ASTM D 6151, Standard Practice for Using Hollow-Stern Augers for				
	Geotechnical Exploration and Soil Sampling				
Surface and Subsurface Soil	FBP-ER-PRO-00039, Surface Soil Sampling				
Sampling	FBP-ER-PRO-00005, Subsurface Soil Sampling				
	FBP-ER-PRO-00037, Direct Push Technology (DPT) Drilling, Sampling, &				
	Micro Well Installation				
	ASTM D 1586, Standard Test Method for Standard Penetration Test (STP) and				
	Split-Barrel Sampling of Soils				
Rock Core Sampling	ASTM D 2113, Standard Practice for Rock Core Drilling and Sampling of Rock				
	for Site Investigations				
Lithologic Logging	FBP-ER-PRO-00042, Lithologic Logging				
	ASTM D 5434, Standard Guide for Field Logging of Subsurface Explorations of				
	Soil and Rock				
	ASTM D 2488, Standard Practice for Description and Identification of Soils				
	(Visual-Manual Procedure)				
Decontamination	FBP-ER-PRO-00030, Decontamination of Sampling Equipment				
Sample Shipping	FBP-ER-PRO-00018, Sample Shipping of Non-Hazardous Samples to Off-Site				
	Laboratories				
	FBP-WM-PRO-00009, Sample Shipping of Hazardous, Including Radioactive,				
	Samples to Off-Site Laboratories				
	ASTM D 4220, Standard Practices for Preserving and Transporting Soil Samples				
Analytical procedures					
Semivolatile Organics	EPA SW-846, Method 8270				
PCB	EPA SW-846, Method 8082				
Pesticides	EPA SW-846, Method 8081				
Chlorinated Herbicides	EPA SW-846, Method 8151				
Metals	EPA SW-846, Methods 6010, 6020, 7471				
Radionuclides	Alpha spectroscopy (uranium isotopics, neptunium-237, plutonium isotopics,				
	americium-241, thorium isotopics)				
	Liquid scintillation (technetium-99)				

Table 1. FBP Procedure and Reference Guidelines

ASTM= American Society for Testing and Materials EPA = U.S. Environmental Protection Agency PCB = polychlorinated biphenyl QA = quality assurance QAPP = quality assurance program plan QC = quality control

Page 3 of 3

This page is intentionally left blank.

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

MAY 3 0 2012

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

PPPO-03-1475324-12

Ms. Maria Galanti Site Coordinator Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138

Dear Ms. Galanti:

TRANSMITTAL OF PAGE CHANGES FOR FIELD CHANGE NOTICE FBP-ER-RCRA-WD-PLN-0040-R2-02 TO THE SOIL BACKGROUND STUDY SAMPLING AND ANALYSIS WORK PLAN

The purpose of this letter is to provide page changes associated with Field Change Notice (FCN) FBP-ER-RCRA-WD-PLN-0040-R2-02 to the *Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (DOE/PPPO/03-0250&D1). The enclosed information is provided as follow-up to an approved FCN; therefore, no response is necessary.

The U.S. Department of Energy (DOE) submitted FCN FBP-ER-RCRA-WD-PLN-0040-R2-02 to the Ohio Environmental Protection Agency (Ohio EPA) via e-mail on May 14, 2012, Ohio EPA approved the FCN request on May 15, 2012, pursuant to the requirements of the Ohio Consent Decree (Enclosure 1). FCN FBP-ER-RCRA-WD-PLN-0040-R2-02 revised some of the sampling locations based on field observations in Areas A, B, C, F, and G to either facilitate safe access to sampling locations or to move the locations to an area with the appropriate geologic soil type consistent with the data quality objectives of the approved work plan. Clean replacement pages and redline copies of the corresponding page changes, where appropriate, for FCN FBP-ER-RCRA-WD-PLN-0040-R2-02 are provided in Enclosure 2. Two large copies of the map (Plate 1) showing the background study sampling areas/locations are also enclosed.

If you have any questions, please contact Amy Lawson of my staff at (740) 897-2112.

1.1

Sincerely,

Joel B. Bradburne Portsmouth Site Lead Portsmouth/Paducah Project Office

Ms. Galanti

Enclosures:

- 1. Field Change Notice Approval for FCN FBP-ER-RCRA-WD-PLN-0040-R2-02
- 2. Clean replacement and redline pages for FCN FBP-ER-RCRA-WD-PLN-0040-R2-02 (pages A-1 and B-1)
- 3. Plate 1, Background Study Sampling Areas/Locations on and Around the DOE Reservation

cc w/enclosures:

Vince.Adams@lex.doe.gov, PPPO/PORTS Joel.Bradburne@lex.doe.gov, PPPO/PORTS Amy.Lawson@lex.doe.gov, PPPO/PORTS Kristi.Wiehle@lex.doe.gov, PPPO/PORTS Jud.Lilly@lex.doe.gov, PPPO/PORTS Ray.Miskelley@lex.doe.gov, PPPO/LEX Jim.Sferra@epa.state.oh.us, Ohio EPA/Logan Jamie.Jameson@fbports.com, FBP/PORTS Dennis.Carr@fbports.com, FBP/PORTS Jyh-Dong.Chiou@fbports.com, FBP/PORTS Greg.Uetrecht@lex.doe.gov, HEI/PORTS PPPO Records/LEX RCRA Administrative Record

ENCLOSURE 1

Field Change Notice Approval

 From: Galanti, Maria [mailto:maria.galanti@epa.state.oh.us]
 Rev

 Sent: Tuesday, May 15, 2012 11:00 AM
 April

 To: Lawson, Amy
 Cc: Wiehle, Kristi; Stewart, Melody

 Subject: RE: Field Change Request (FBP-ER-RCRA-WD-PLN-0040-R2-02) for the BKG Study Work
 Plan DOE/PPPO/03-0250&D1

Amy and Kristi,

Ohio EPA has completed the review of the field change request for the background study submitted to this office via e-mail on Monday, May 14, 2012. The field change requests was to move several sampling locations in Area A, Area B, Area C, Area F, and Area G to facilitate safe access to sampling locations and to locate the soil type that was the objective of the approved Work Plan. Pursuant to the requirements of the Ohio Consent Decree, Ohio EPA is approving the revised sampling location in Area A, B, C, F and G.

If you have any questions, please do not hesitate to contact me.

Maria Galanti Site Coordinator Division of Environmental Response and Revitalization <u>maria.galanti@epa.ohio.gov</u> 740-380-5289

From: Lawson, Amy [mailto:Amy.Lawson@lex.doe.gov]
Sent: Monday, May 14, 2012 11:01 AM
To: Galanti, Maria
Cc: Lawson, Amy; Wiehle, Kristi; Uetrecht, Greg (PPPO/ETS); Thompson, Steven (FBP); Guthrie, Steve (FBP)
Subject: Field Change Request (FBP-ER-RCRA-WD-PLN-0040-R2-02) for the BKG Study Work Plan DOE/PPPO/03-0250&D1

Maria,

The purpose of this email is to ask for your review and approval of a field change that has been classified as significant. A formal letter will be sent to you this week. The Soil Background Study Sampling and Analysis Work Plan (DOE/PPPO/03-0250&D1) established randomly selected soil sample locations to be collected over hundreds of acres of land both on and off the PORTS site. FBP mobilized for the Soil Background Study on March 29, 2012 and began marking proposed sample locations at off-site locations with uniquely identified pen-flags after access was granted to the off-site private properties. Several of the sample locations at the off-site properties were in areas with dense underbrush and mature trees, requiring a change in a number of sample locations to facilitate safe access. Upon field evaluation, FBP determined that some proposed sample locations were in areas with an elevation slightly above the elevation where the objective soil type is located. These areas had a native soil type that did not meet the objective of the Work Plan, requiring a change in order to meet the Work Plan objectives.

Consistent with Section 5.3 of the approved Work Plan, DOE is proposing to change select sample locations in areas A, B, C, F, and G. To accomplish these sample location changes, boundaries in sample areas A, B, C, F, and G were revised to eliminate areas with dense underbrush and mature trees and areas where the soil type did not meet the objective of the Work Plan. The sample size methodology in Section 5.5 of the Work Plan was implemented, using the remaining 200 ft x 200 ft

grids in each affected sample area. To accomplish the sample location changes, new sample replacement locations were selected by a random number generator that included only available sampling grids that met the revised location criteria (no dense underbrush or mature trees and native soil type meeting work plan objectives) that were not already identified as sampling locations.

The revised sampling areas A, B, C, F, and G are fully accessible and are representative of the Lake Tight Buried Valley Aquifer sediments (Minford/Gallia materials) soil type which is the objective of the Work Plan. The following sections outline specific changes to the sample areas, revised sample area maps with revised sample locations as well as the original sample area map. Also, attached are the maps for the revised locations, there are 10 maps included and the maps are numbered starting with page 3 of 12, each file contains 2 maps.

Area A: Sample location BKG-DPT02 was initially located in an area elevated approximately 20 feet above other sample locations in Area A with a soil type that did not meet the objectives of the Work Plan. This single sample location has been moved to a new location which is presented with the other sample locations in this area in Figure A-1. Figure A presents the original sample locations.

Area B: Sample location BKG-DPT12 was initially located in an area elevated approximately 20 feet above other sample locations in Area B with a soil type that did not meet the objectives of the Work Plan. This single sample location has been moved to a new location which is presented with the other sample locations in this area in Figure B-1. Figure B presents the original sample locations.

Area C: Sample locations BKG-DPT26, -DPT27, -DPT28, -DPT29, and -DPT30 were initially located in an area elevated approximately 20 feet above other sample locations in Area C with a soil type that did not meet the objectives of the Work Plan. Figure C-1 presents the revised sample locations and Figure C presents the original sample locations.

Area F: Sample locations BKG-DPT39, -DPT40, -DPT43, -DPT44, and -DPT47 were initially located in areas with dense underbrush and mature trees and with a soil type that did not meet the objectives of the Work Plan. Figure F-1 presents the revised sample locations and Figure F presents the original sample locations.

Area G: Sample locations BKG-DPT48, -DPT49, -DPT50, -DPT51, -DPT53, -DPT54, -DPT56, -DPT57, -DPT59, and -DPT60 were initially located in areas with dense underbrush and mature trees and with a soil type that did not meet the objectives of the Work Plan. Figure G-1 presents the revised sample locations and Figure G presents the original sample locations.

Thank you for your time and consideration. Please let me know if you have any questions. Once everyone is happy with these changes we will provide you with the page changes and a copy of the large map.

Thank you again, Amy Lawson, PMP Department of Energy Portsmouth/Paducah Project Office amy.lawson@lex.doe.gov

Phone (740) 897-2112

Fax (740) 897-2982

I am not authorized to change the scope, price, time required for contract performance, terms or conditions of the contract. If you believe that a change has been directed as a result of this letter (or email), then in accordance with contract clause DEAR 952.242-70 "Technical Direction," you are directed to contact the Contracting Officer, in writing, within five (5) working days after receipt of this letter (or email) and prior to taking any action as a result of this letter.

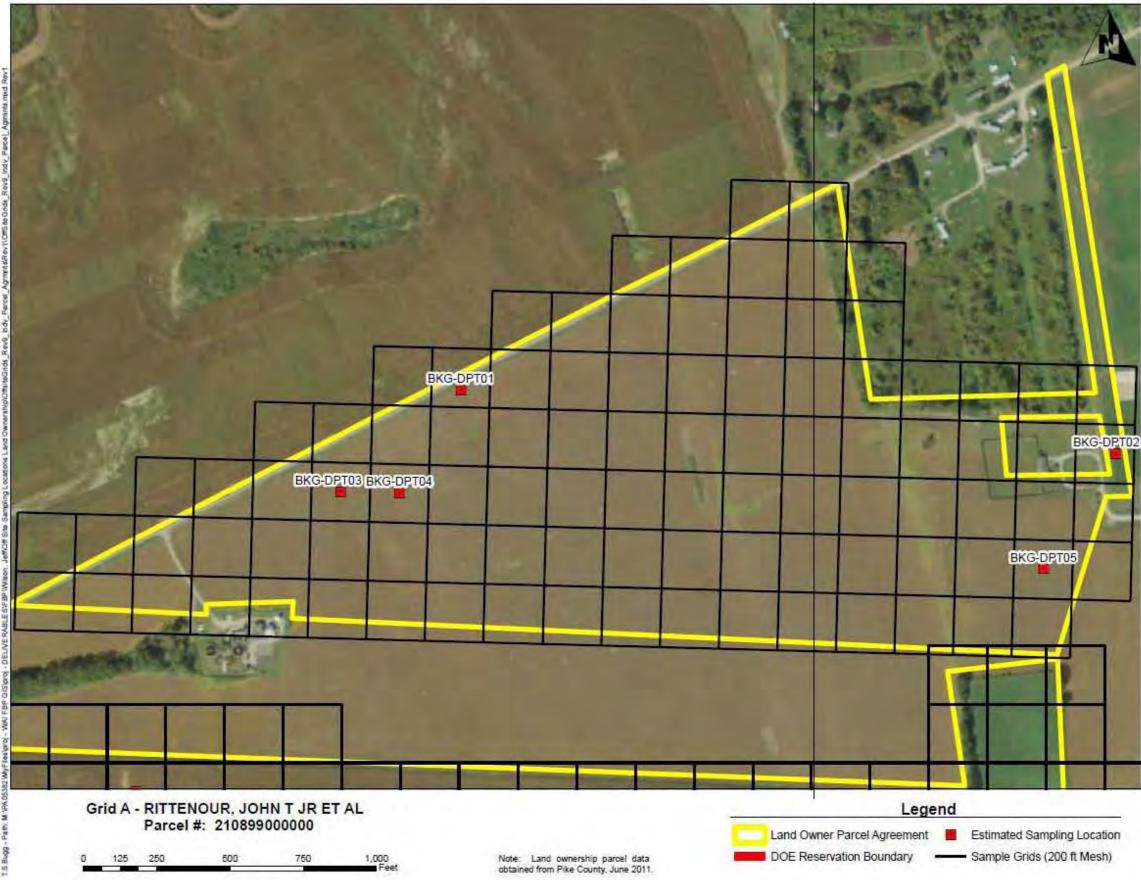


Figure A. Proposed Soil Background Study Area A Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

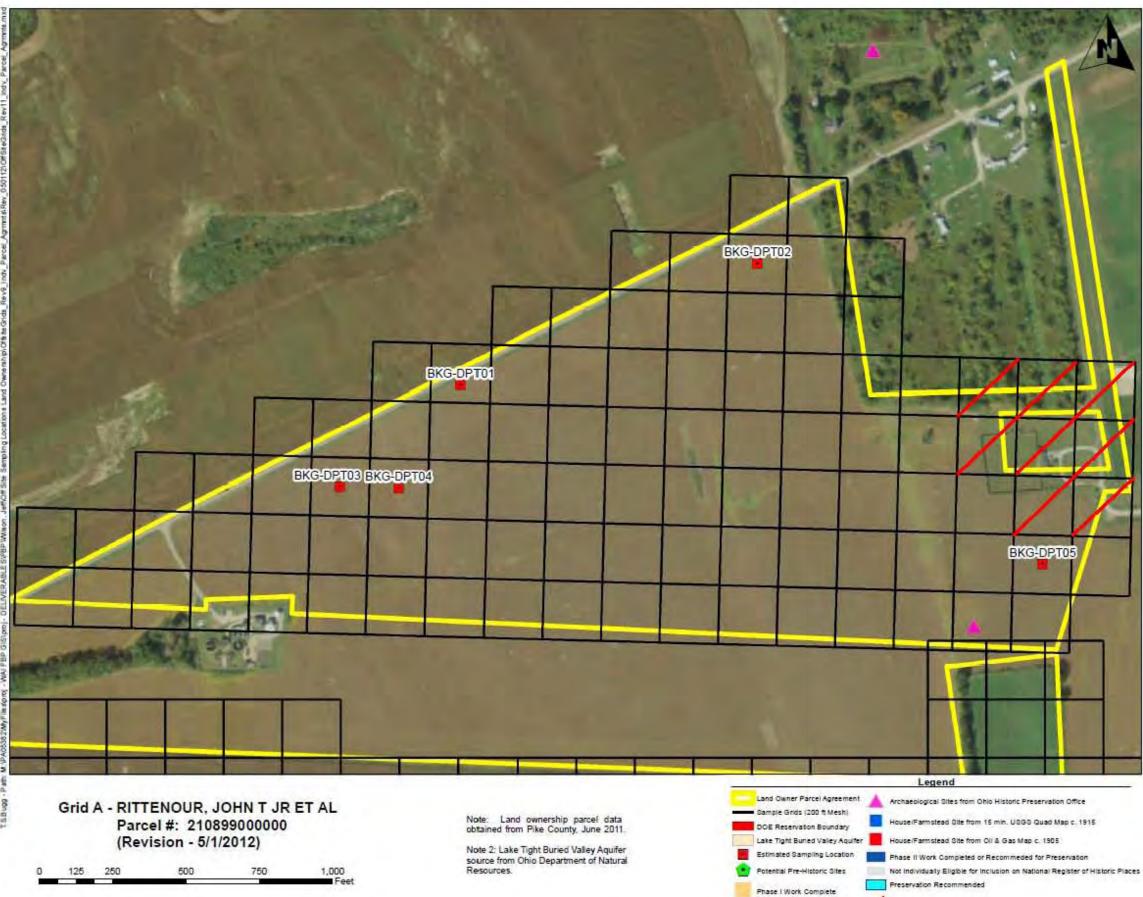


Figure A-1. Final Soil Background Study Area A Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

Sampling grid eliminated: incorrect soil type or dense underbrush

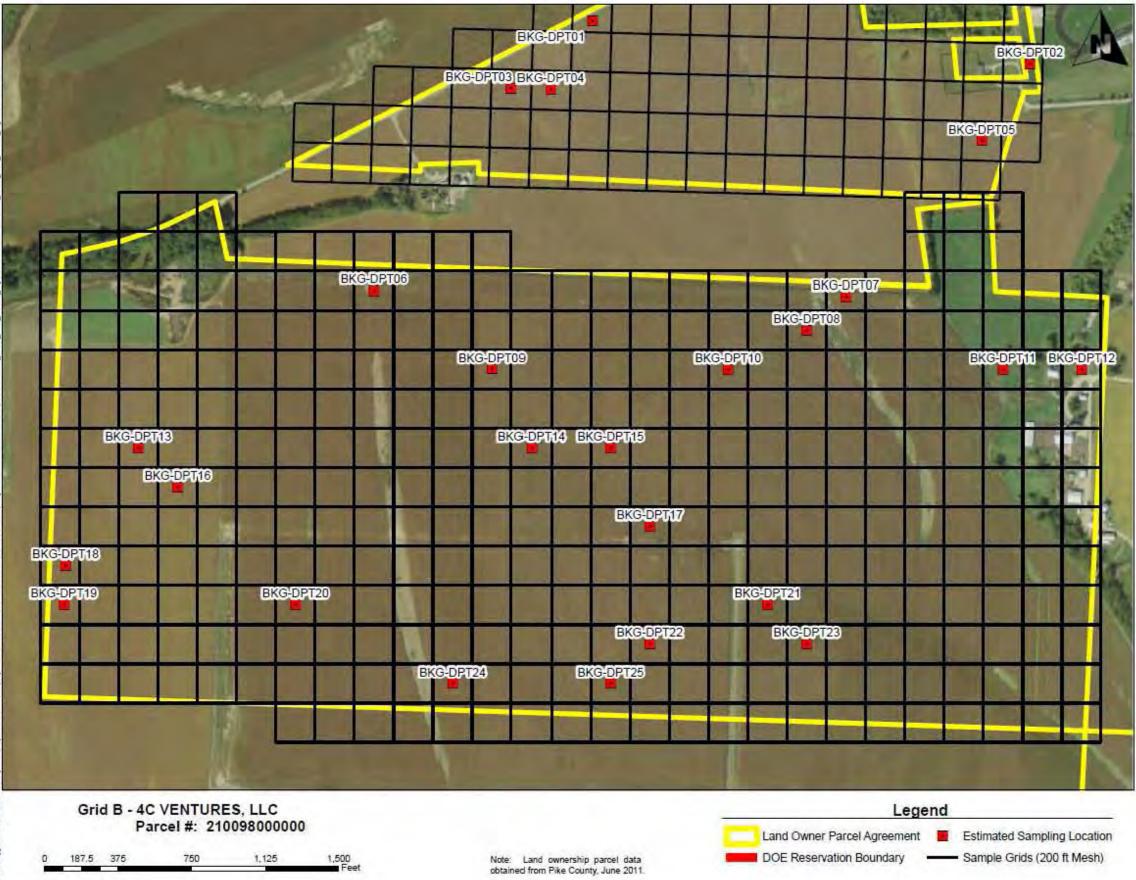


Figure B. Proposed Soil Background Study Area B Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

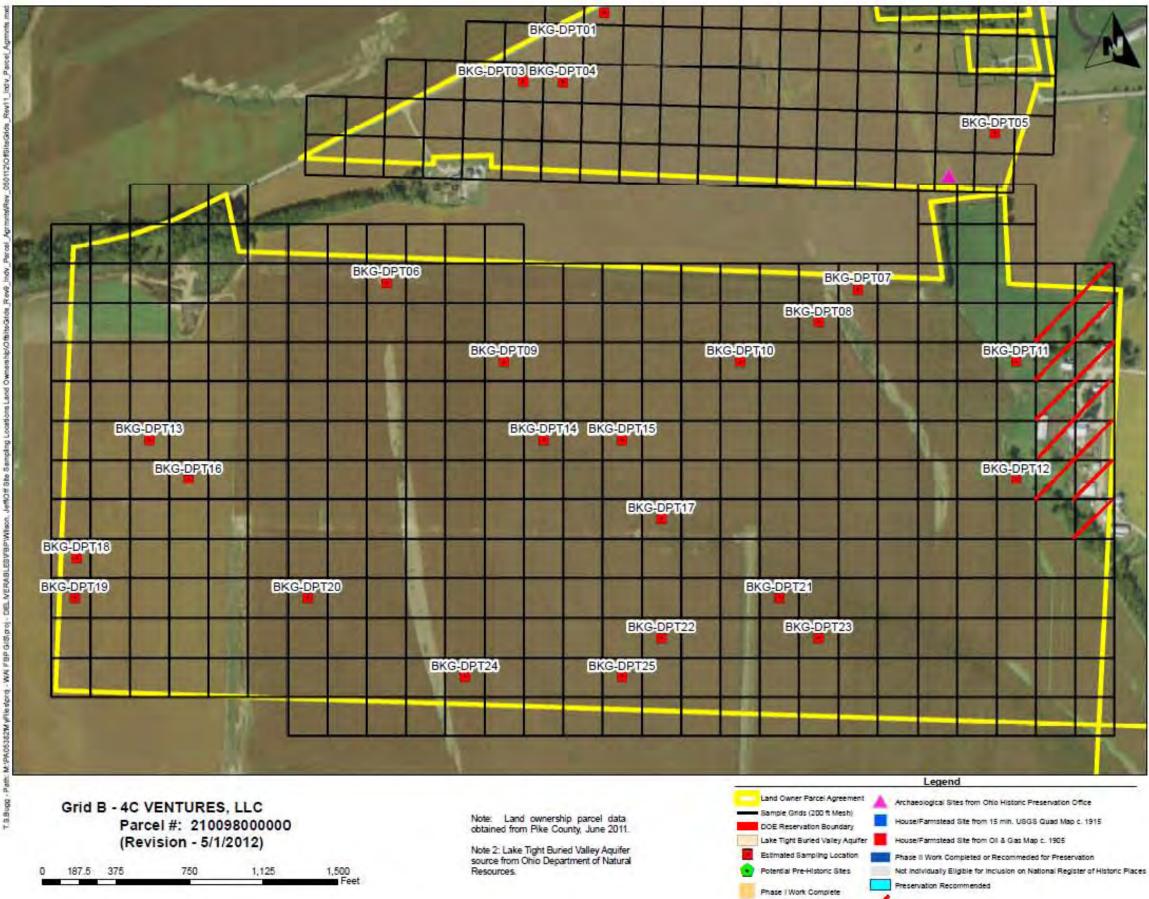


Figure B-1. Final Soil Background Study Area B Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

📕 Sampling grid eliminated: incorrect soil type or dense underbrush

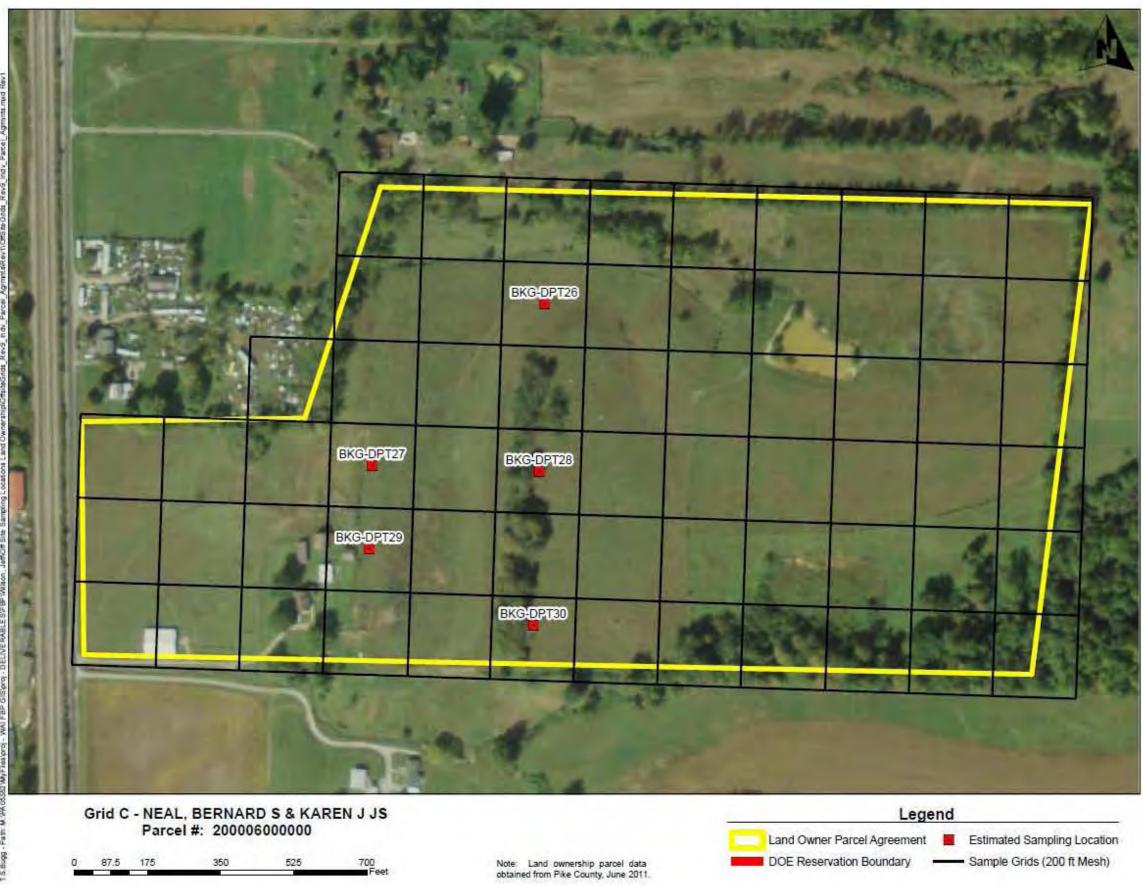


Figure C. Proposed Soil Background Study Area C Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

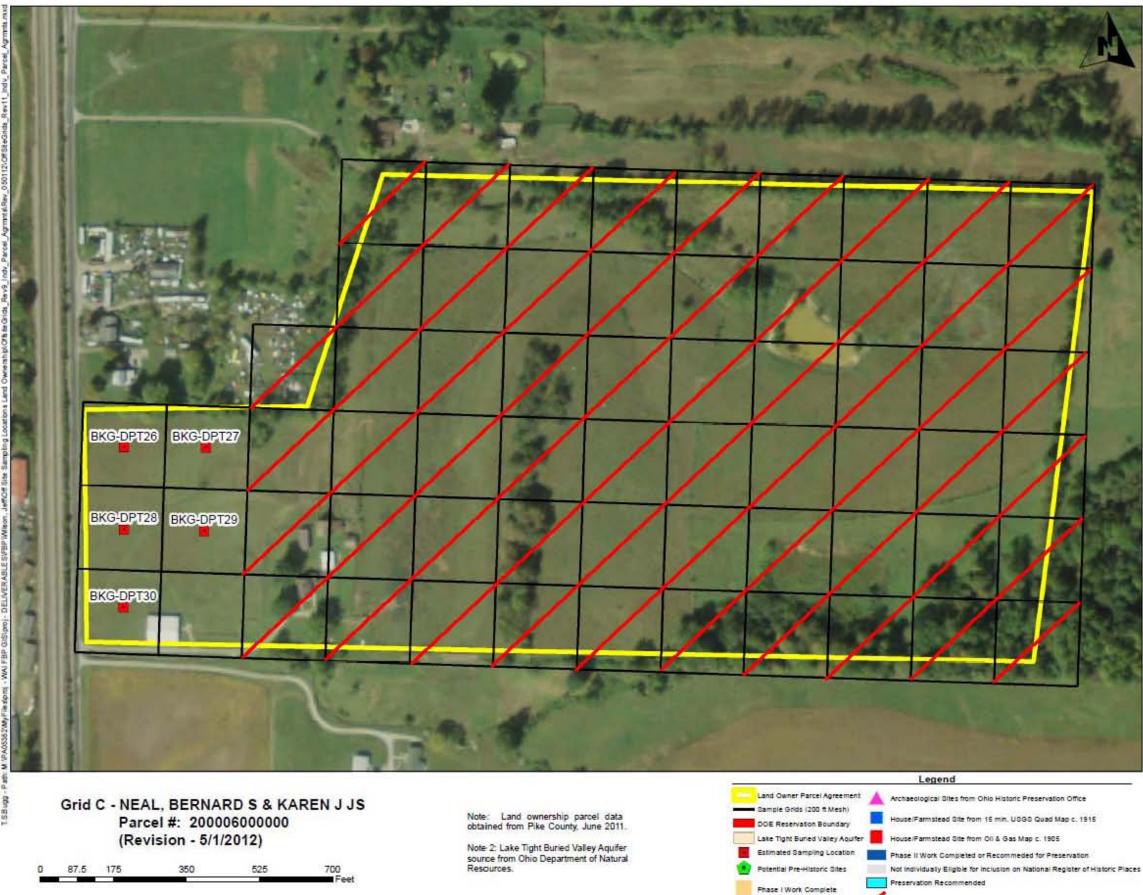


Figure C-1. Final Soil Background Study Area C Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

Sampling grid eliminated: incorrect soil type or dense underbrush

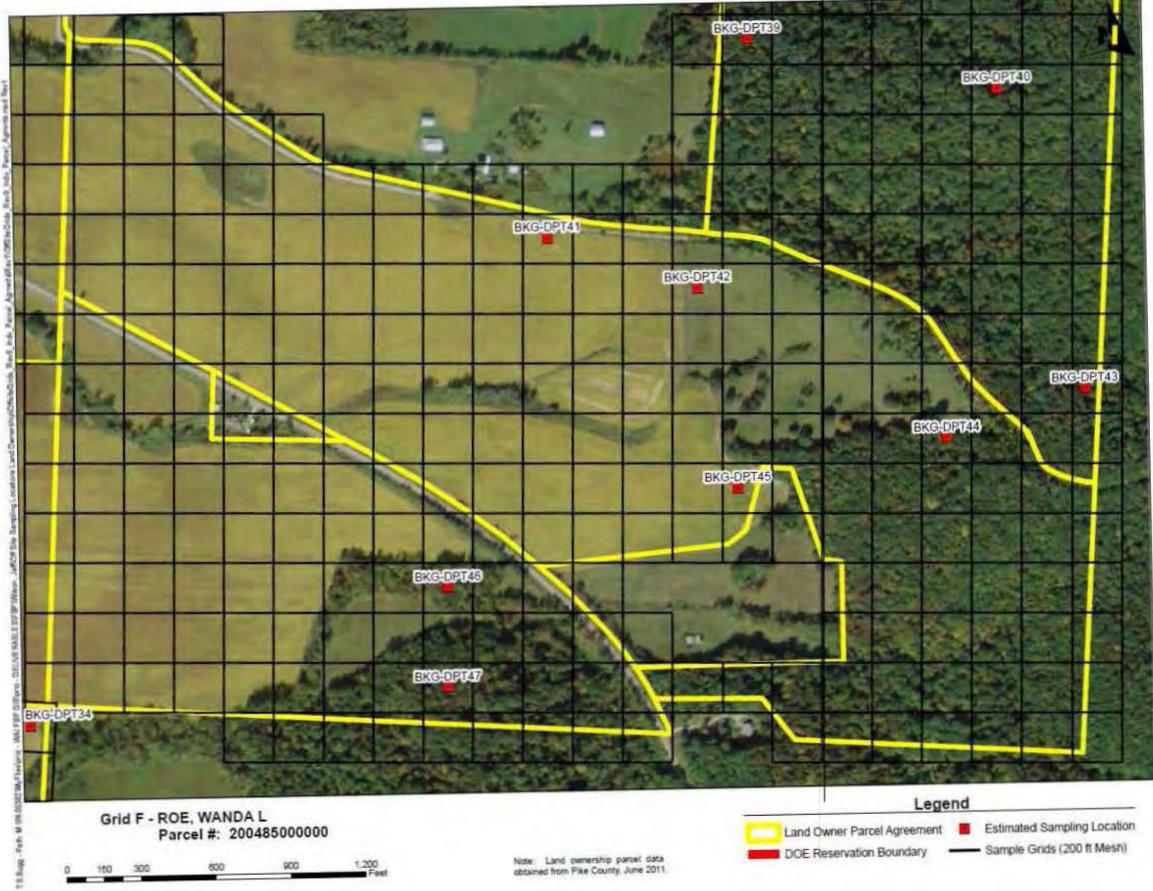


Figure F. Proposed Soil Background Study Area F Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

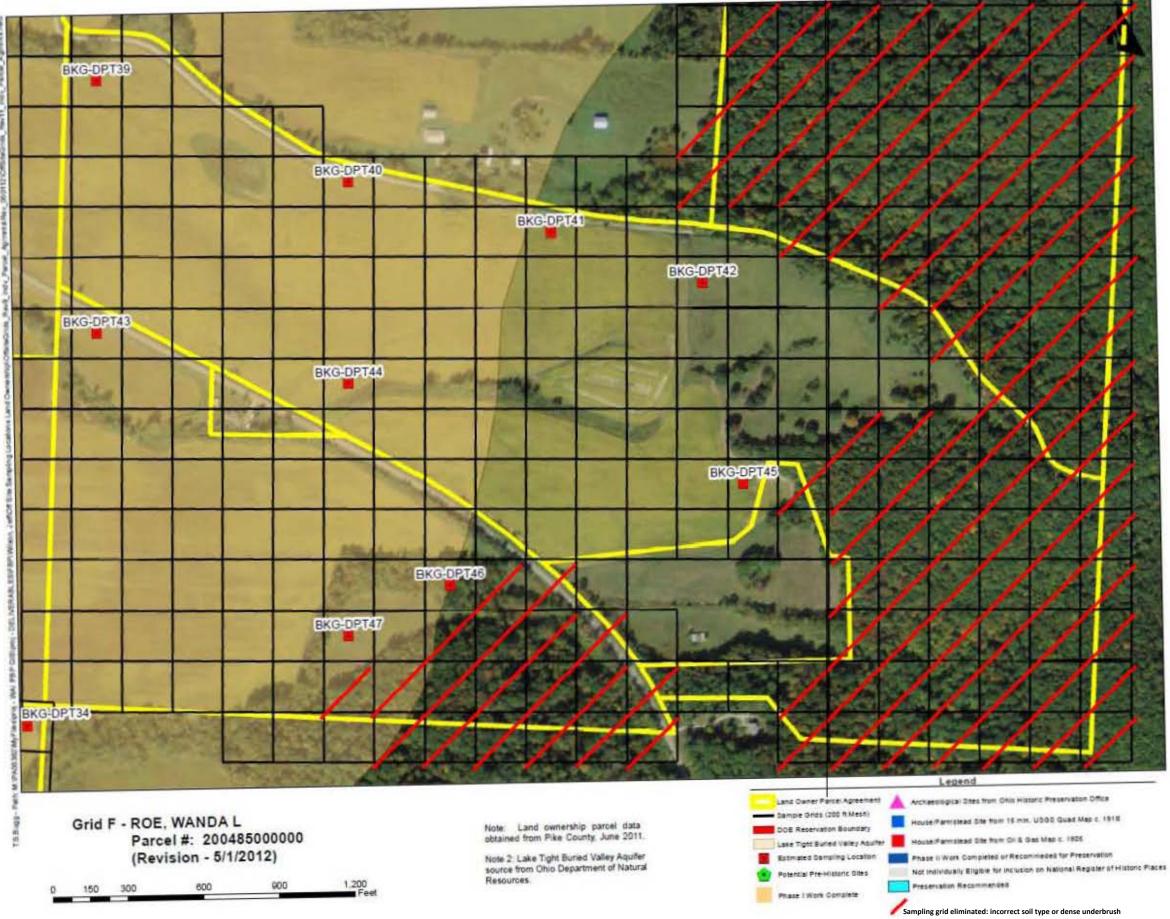


Figure F-1. Final Soil Background Study Area F Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

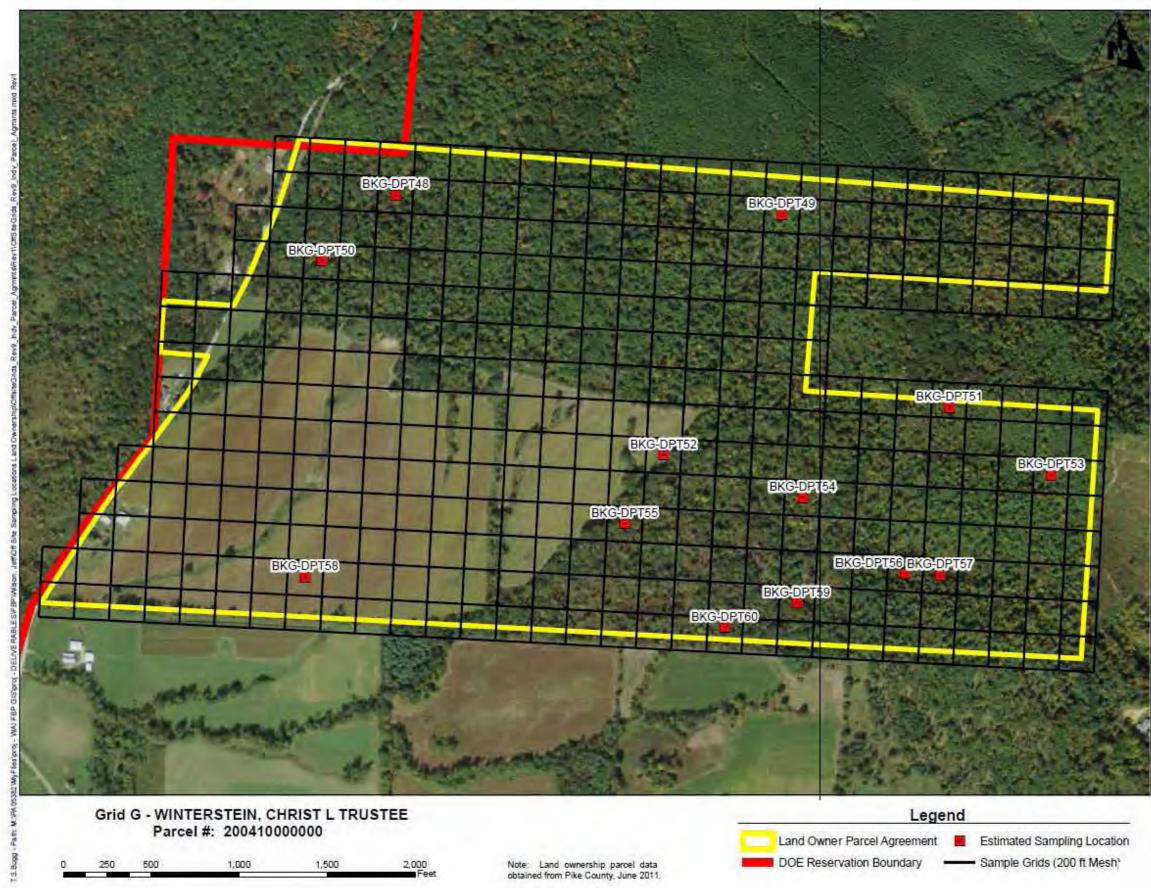


Figure G. Proposed Soil Background Study Area G Sampling Locations

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision^R1 April 2015

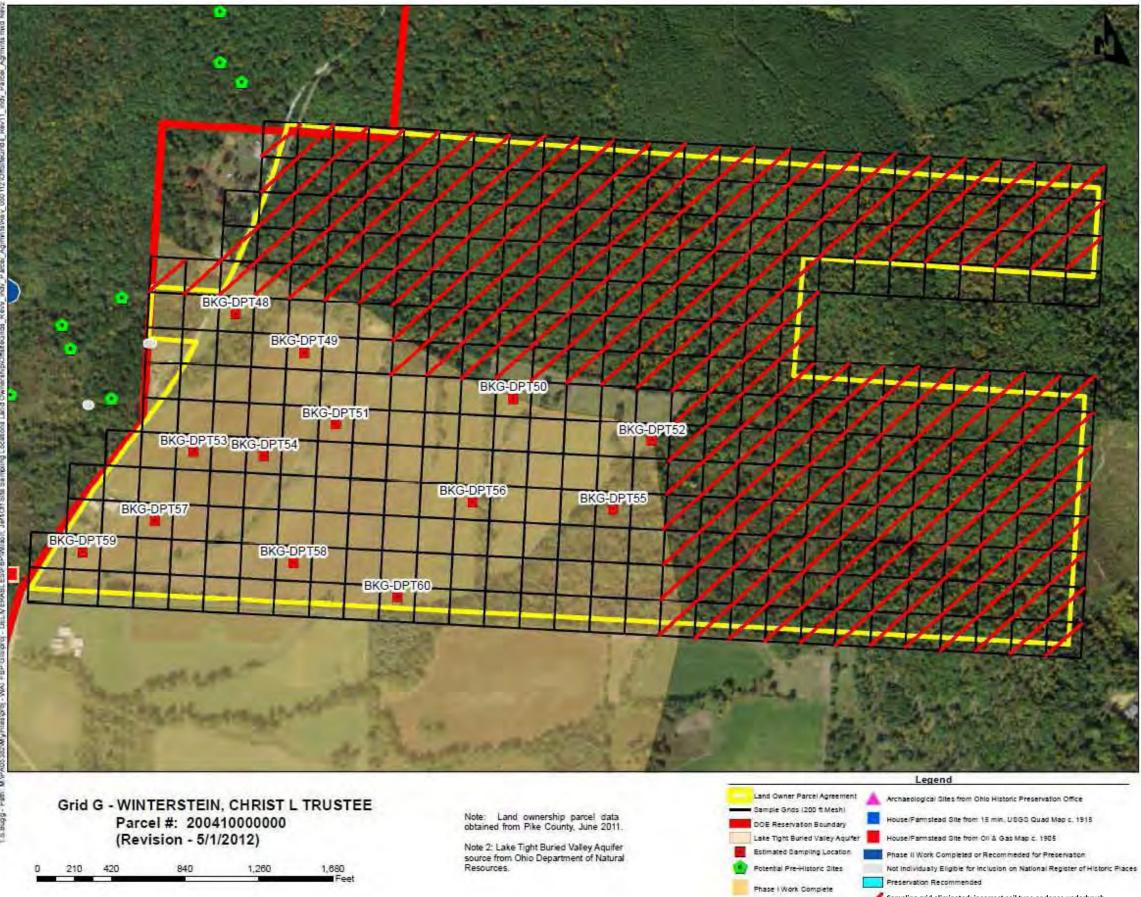
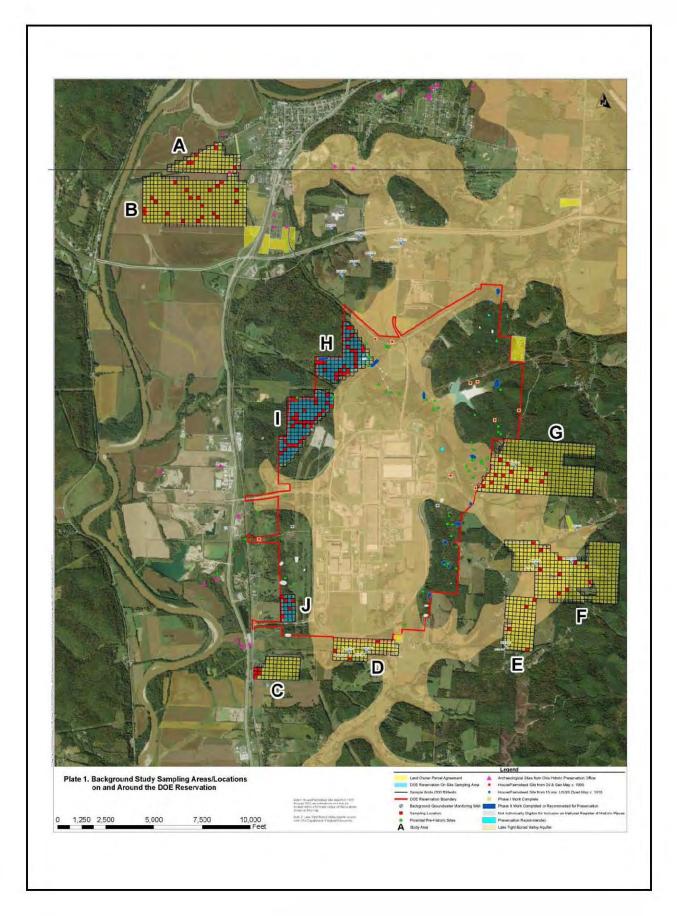


Figure G-1. Final Soil Background Study Area G Sampling Locations


12 of 12

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

Sampling grid eliminated: incorrect soil type or dense underbrush

ENCLOSURE 2

FCN FBP-ER-RCRA-WD-PLN-0040-R2-02: Clean Replacement and Redline Pages

Sampling Area	No. of Potential Sampling Grids	No. of Proposed Sampling Grids	Proposed Sample Depths	Sample Collection Equipment
A	88	5	Surface soil: 0-1' bgs	Hand auger or DPT
	00	0	Unsaturated soil: 1-20' bgs	DPT
В	327	20	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 1-20' bgs	DPT
С	6	5	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 1-20' bgs	DPT
D	83	3	Surface soil: 0-1' bgs	Hand auger or DP
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
Е	111	4	Surface soil: 0-1' bgs	Hand auger or DP
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
F	237	10	Surface soil: 0-1' bgs	Hand auger or DP
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
G	130	13	Surface soil: 0-1' bgs	Hand auger or DP
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
Н	115	25	Surface soil: 0-1' bgs	Hand auger
Ι	142	30	Surface soil: 0-1' bgs	Hand auger
J	28	5	Surface soil: 0-1' bgs	Hand auger

Summary of PORTS Soil Background Study Sampling

Assumptions:

1) Sampling grids are 200' \times 200'.

2) Samples will be collected at center point of grid (where possible).

3) Soil samples will be classified and described by a geologist familiar with PORTS per FBP procedure.

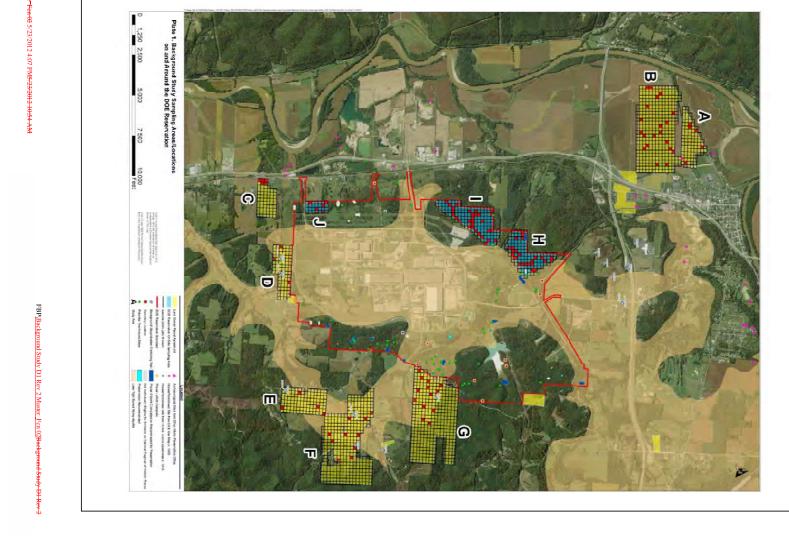
4) Surface samples will be collected vertically from 0-1' bgs and composited (except VOCs).

5) In saturated conditions, no free liquids will be collected.

6) Sampling locations will be surveyed to acquire XYZ coordinates per FBP procedure.

7) QA/QC samples will be collected as follows:

• One field duplicate sample will be collected for each analytical batch or for every 20 samples, whichever is fewer. Field duplicates will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.


• One field blank will be collected for each analytical batch or for every 20 samples whichever is fewer. Field blank samples will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

• One rinsate blank sample will be collected for each analytical batch or for every 20 samples whichever is fewer. Rinsate blank samples are samples of deionized ultra-filtered water that has been used to rinse decontaminated sampling equipment. The blanks will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

• One trip blank will be prepared for each shipment of VOC samples only. Trip blank samples will be analyzed for the same set of VOCs as the non-QA/QC samples being collected.

bgs = below ground surface DPT = Direct Push Technology FBP = Fluor-B&W Portsmouth LLC PORTS = Portsmouth Gaseous Diffusion Plant QA = Quality Assurance QC = Quality Control VOC = volatile organic compound

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

Formatted: Font: 6 pt, Do not check spelling or grammar FBP Formatted: Font: 6 pt, Do not check spelling or grammar Revision 2 2012

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

DOE/PPPO/03-0250&D1 FBP-ER-RCRA-WD-PLN-0040 Revision 2 FCN FBP-ER-RCRA-WD-PLN-0040-R2-02, MayJanuary 2012

Summary of PORTS Soil Background Study Sampling

Sampling	No. of Potential	No. of Proposed		Sample Collection
Area	Sampling Grids	Sampling Grids	Proposed Sample Depths	Equipment
A	88 96	5	Surface soil: 0-1' bgs	Hand auger or DPT
•			Unsaturated soil: 1-20' bgs	DPT
В	<u>327</u> 339	20	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 1-20' bgs	DPT
С	<u>646</u>	5	Surface soil: 0-1' bgs	Hand auger or DPT
-			Unsaturated soil: 1-20' bgs	DPT
D	83	3	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
E	111	4	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
F	<u>237</u> 354	10	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
G	<u>130</u> 377	13	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
H	115	25	Surface soil: 0-1' bgs	Hand auger
I	142	30	Surface soil: 0-1' bgs	Hand auger
J	28	5	Surface soil: 0-1' bgs	Hand auger

Assumptions:

Sampling grids are 200' × 200'.
 Samples will be collected at center point of grid (where possible).
 Soil samples will be classified and described by a geologist familiar with PORTS per FBP procedure.

4) Surface samples will be collected vertically from 0-1' bgs and composited (except VOCs).

5) In saturated conditions, no free liquids will be collected.
6) Sampling locations will be surveyed to acquire XYZ coordinates per FBP procedure.
7) QA/QC samples will be collected as follows:

• One field duplicate sample will be collected for each analytical batch or for every 20 samples, whichever is fewer. Field duplicates will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

One field blank will be collected for each analytical batch or for every 20 samples whichever is fewer. Field blank samples will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

• One rinsate blank sample will be collected for each analytical batch or for every 20 samples whichever is fewer. Rinsate blank samples are samples of deionized ultra-filtered water that has been used to rinse decontaminated sampling equipment. The blanks will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

· One trip blank will be prepared for each shipment of VOC samples only. Trip blank samples will be analyzed for the same set of VOCs as the non-QA/QC samples being collected.

bgs = below ground surfaceDPT = Direct Push Technology

FBP = Fluor-B&W Portsmouth LLC PORTS = Portsmouth Gaseous Diffusion Plant QA = Quality Assurance QC = Quality Control VOC = volatile organic compound

Formatted: Font: Times New Roman

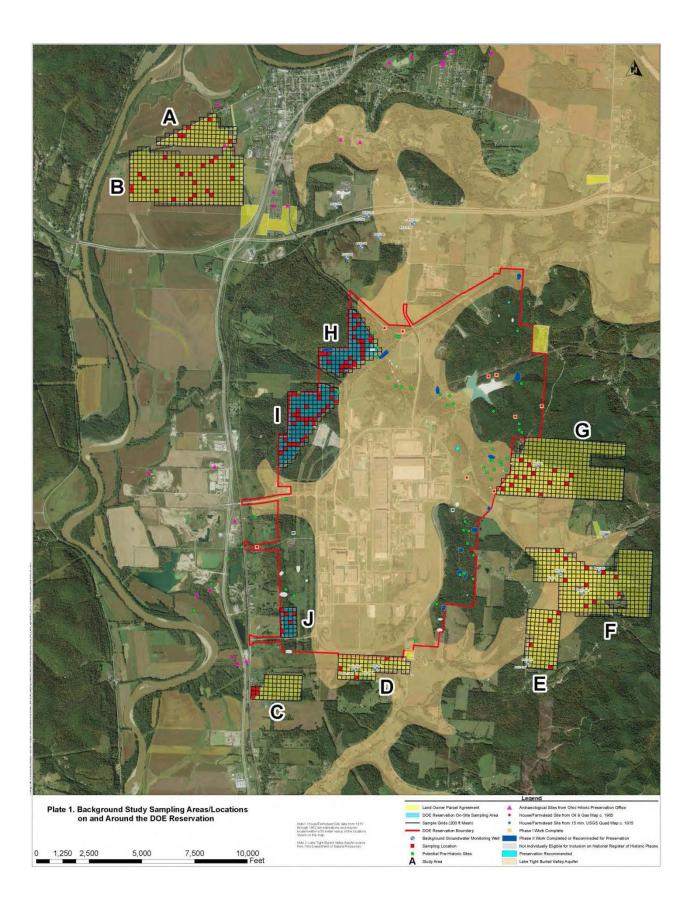
Formatted: Font: 11 pt

Formatted: Font: 6 pt, Do not check spelling or grammar

#/5/23/2012 4:06 PM5/23/2012 10:54 AM

B-1

FBP/Background Study D1 Rev 2 Master Fcn 02Background Study D1 Rev



This page is intentionally left blank.

ENCLOSURE 3

Plate 1, Background Study Sampling Areas/Locations on and Around the DOE Reservation

Department of Energy

Portsmouth/Paducah Project Office 1017 Majestic Drive, Suite 200 Lexington, Kentucky 40513 (859) 219-4000

JUL 2 5 2012

DOE/PPPO/03-0667

PPPO-03-1507921-12

Ms. Maria Galanti Site Coordinator Ohio Environmental Protection Agency Southeast District Office 2195 Front Street Logan, Ohio 43138

Dear Ms. Galanti:

TRANSMITTAL OF PAGE CHANGES FOR FIELD CHANGE NOTICE FBP-ER-RCRA-WD-PLN-0040-R2-03 TO THE SOIL BACKGROUND STUDY SAMPLING AND ANALYSIS WORK PLAN

The purpose of this letter is to provide page changes associated with Field Change Notice (FCN) FBP-ER-RCRA-WD-PLN-0040-R2-03 to the *Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (DOE/PPPO/03-0250&D1). The enclosed information is provided as follow-up to an approved FCN; therefore, no response is required.

The U.S. Department of Energy (DOE) submitted FCN FBP-ER-RCRA-WD-PLN-0040-R2-03 to the Ohio Environmental Protection Agency (Ohio EPA) via e-mail on June 27, 2012, and Ohio EPA approved the FCN request via e-mail on June 28, 2012, pursuant to the requirements of the Ohio Consent Decree (Enclosure 1). FCN FBP-ER-RCRA-WD-PLN-0040-R2-03 proposed changes to the Sampling and Analysis Plan (SAP) regarding sample collection, analytical methods, and data reporting. Clean replacement pages and redline copies of the corresponding page changes, where appropriate, for FCN FBP-ER-RCRA-WD-PLN-0040-R2-03 are provided in Enclosure 2.

If you have any questions, please contact Amy Lawson of my staff at (740) 897-2112.

Sincerely,

Joel B. Bradburne Portsmouth Site Lead Portsmouth/Paducah Project Office

- 1. Field Change Notice Approval for FCN FBP-ER-RCRA-WD-PLN-0040-R2-03
- 2. Clean replacement and redline pages for FCN FBP-ER-RCRA-WD-PLN-0040-R2-03 (pages 29, 32, 36, 37, 39, and B-1)

cc w/enclosures:

Vince.Adams@lex.doe.gov, PPPO/PORTS Joel.Bradburne@lex.doe.gov, PPPO/PORTS Amy.Lawson@lex.doe.gov, PPPO/PORTS Kristi.Wiehle@lex.doe.gov, PPPO/PORTS Jud.Lilly@lex.doe.gov, PPPO/PORTS Jim.Sferra@epa.state.oh.us, Ohio EPA/Logan Jamie.Jameson@fbports.com, FBP/PORTS Dennis.Carr@fbports.com, FBP/PORTS Jyh-Dong.Chiou@fbports.com, FBP/PORTS Greg.Uetrecht@lex.doe.gov, HEI/PORTS PPPO Records/LEX RCRA Administrative Record

ENCLOSURE 1

Field Change Notice Approval

Cline, Rebeckah V

From:	Lawson, Amy [Amy.Lawson@lex.doe.gov]
Sent:	Thursday, June 28, 2012 9:12 AM
To: Cc:	Thompson, Steven; Guthrie, Steve; Cline, Rebeckah V; Chiou, Jyh-Dong Wiehle, Kristi PPPO; Uetrecht, Greg (PPPO/CONTR)
Subject:	FW: Field Change Notice (FBP-ER-RCRA-WD-PLN-0040-R2-03) to the Soil Background Study SAP Work Plan (DOE/PPPO/03-0250&D1)
Importance:	High
fyi	
Amy Lawson, PM	P
Department of En	ergy
Portsmouth/Padu	acah Project Office
amy.lawson@lex.c	loe.gov

Phone (740) 897-2112

Fax (740) 897-2982

I am not authorized to change the scope, price, time required for contract performance, terms or conditions of the contract. If you believe that a change has been directed as a result of this letter (or email), then in accordance with contract clause DEAR 952.242-70 "Technical Direction," you are directed to contact the Contracting Officer, in writing, within five (5) working days after receipt of this letter (or email) and prior to taking any action as a result of this letter.

From: Galanti, Maria [mailto:maria.galanti@epa.state.oh.us]
Sent: Thursday, June 28, 2012 8:32 AM
To: Lawson, Amy
Cc: Wiehle, Kristi; Andersen, Kristen (PPPO/CONTR); Croswalt, Janie (PPPO/CONTR)
Subject: RE: Field Change Notice (FBP-ER-RCRA-WD-PLN-0040-R2-03) to the Soil Background Study SAP Work Plan (DOE/PPPO/03-0250&D1)
Importance: High

Good Morning Amy,

I have reviewed the proposed Field Change Notice (FCN FBP-ER-RCRA-WD-PLN-0040-R2-03) to the Soil Background Study SAP Work Plan (DOE/PPPO/03-0250&D2) outlined below. US DOE is proposing 6 changes to the SAP dealing with sample collection, analytical methods, and data reporting. The field changes are approved. Please modify the Soil Background Study SAP as necessary. If you have any questions, please contact me.

Maria Galanti Site Coordinator Division of Environmental Response and Revital ization <u>maria.galanti@epa.ohio.gov</u> 740-380-5289

From: Lawson, Amy [mailto:Amy.Lawson@lex.doe.gov]
Sent: Wednesday, June 27, 2012 3:23 PM
To: Galanti, Maria
Cc: Wiehle, Kristi; Lawson, Amy; Uetrecht, Greg (PPPO/CONTR); Miller, Greg (PPPO/CONTR); Andersen, Kristen (PPPO/CONTR); Croswalt, Janie (PPPO/CONTR); Walsh, Tom (PPPO/CONTR); Chiou, Jyh-Dong (FBP); Cline, Rebeckah V

F-34

(FBP); Thompson, Steven (FBP); Guthrie, Steve (FBP) **Subject:** Field Change Notice (FBP-ER-RCRA-WD-PLN-0040-R2-03) to the Soil Background Study SAP Work Plan (DOE/PPPO/03-0250&D1) **Importance:** High

Maria,

The purpose of this e-mail is to request your review and approval of a Field Change Notice (FCN FBP-ER-RCRA-WD-PLN-0040-R2-03) to the *Soil Background Study Sampling and Analysis Work Plan for the Portsmouth Gaseous Diffusion Plant, Piketon, Ohio* (DOE/PPPO/03-0250&D2). The following changes are included in this FCN:

- Revise Section 4, Step 5, second bullet, to state "Unsaturated Minford clay (discrete samples at 2-ft intervals from 1 ft to approximately 16 ft bgs)." During the Soil Background Study Data Quality Objectives (DQO) workshop with Ohio EPA in July 2011, collecting a composite soil sample from 1 10 ft bgs was considered. At the conclusion of the workshop, all parties agreed to collect discrete soil samples at 2-ft intervals from 1 ft to approximately 16 ft bgs and to only collect a composite sample in the deeper Gallia soils. Section 5.2 of the approved Soil Background Study Sampling and Analysis Plan (SAP) also identifies the sampling approach of collecting samples at discrete 2-ft intervals from 1 ft to 16 ft bgs.
- 2. Hexachlorobenzene and Pentachlorophenol are listed twice in Table 2 of the SAP. In one instance, Table 2 lists that samples will be analyzed for both constituents using Method 8270. In the second instance, Table 2 lists that samples will be analyzed for Hexachlorobenzene using Method 8081 and Pentachlorophenol using Method 8151, with more conservative reporting limits than Method 8270. Revise Table 2 to eliminate the reference to Method 8270 for these constituents. In accordance with Table 2, samples will be analyzed for Hexachlorophenol using Methods 8081 and 8151, respectively.
- 3. Add an additional footnote to Table 2 stating "N-Nitrosodiphenylamine will be reported as Diphenylamine." N-Nitrosodiphenylamine cannot be reported; as stated in EPA Method 8270C, Revision 3, December 1996, Section 1.4.5, "N-Nitrosodiphenylamine decomposes in the gas chromatograph inlet and cannot be separated from Diphenylamine."
- 4. Add an additional footnote to Table 2 stating "4-Methylphenol co-elutes with 3-Methylphenol and cannot be reported separately by Method 8270; therefore, results will be reported as 3,4-Methylphenol."
- 5. Correct Table 2 of the SAP to identify the correct CAS number for bis(2-Chloroisopropyl)ether as 39638-32-9. The CAS number (108-60-1) currently listed in Table 2 of the SAP is actually for 2,2'-Dichlorodiisopropyl ether. While the two compounds have the same molecular formula, their structures are different; therefore, they are not synonyms and cannot share the same CAS number.

F-35

6. A clarification is needed to Item No. 2 of Variance FBP-ER-RCRA-WD-PLN-0040-R2-01 approved by Ohio EPA on April 6, 2012. Consistent with the above-referenced DQO agreement to collect discrete soil samples on 2-ft intervals, this clarification further revises Section 5.2 to specify that the unconsolidated Scioto River Valley subsurface soil samples (1ft to approximately 10 ft bgs) will be collected for lithologic description, and the approximate 8-10 ft bgs horizon/interval will be submitted for laboratory analysis.

Thank you for your time and consideration on this field change. Please let me know if you have any questions.

Thank you again, Amy Lawson, PMP Department of Energy Portsmouth/Paducah Project Office amy.lawson@lex.doe.gov Phone (740) 897-2112

Fax (740) 897-2982

I am not authorized to change the scope, price, time required for contract performance, terms or conditions of the contract. If you believe that a change has been directed as a result of this letter (or email), then in accordance with contract clause DEAR 952.242-70 "Technical Direction," you are directed to contact the Contracting Officer, in writing, within five (5) working days after receipt of this letter (or email) and prior to taking any action as a result of this letter.

F-36

ENCLOSURE 2

FCN FBP-ER-RCRA-WD-PLN-0040-R2-03 Clean Replacement and Redline Pages

- Statistically sufficient number of soil samples from surface and subsurface formations in areas not affected by site operations
- Analytical results of COPCs in the soil samples
- Statistical analyses of the analytical results.

Step 4 - Define the boundaries of the study

Ten study areas have been identified as potential soil background sampling locations. Guidelines for selecting these ten areas include: similar environment of deposition and geologic source materials as PORTS, reasonable proximity to the PORTS facility, surface and subsurface materials located in the Scioto River Valley associated with DOE pump houses and pipe lines, and areas un-affected by PORTS or other significant sources of contamination. In addition, the western side of the DOE reservation was selected for soil background sample collection to evaluate any radiological contribution from historical nuclear testing in the western United States as determined by evaluation of recent and historical wind rose diagrams. Boundary conditions specific to the soil background study include consideration that some sampling locations may be limited by access to private properties, formation samples include the Minford, Gallia, Cuyahoga, Sunbury, and Berea formations, and no groundwater will be characterized at this time.

Step 5 - Develop the analytic approach

Several intrusive field methods will be used to obtain the required soil data to support this background study including hand auguring, direct-push technology (DPT), and other drilling methods suitable for drilling in both unconsolidated and limited bedrock formations. A follow-up technical meeting was held in September 2011 with Ohio EPA to discuss the sample approach and sample locations. Soil boring samples will consist of DPT continuous soil sampling tubes and split-spoon samples from discrete depth intervals. Seven soil sample populations are proposed for this background study:

- Surface soils (0-1 ft bgs, Minford clay)
- Unsaturated Minford clay (discrete samples at 2-ft intervals from 1 ft to approximately 16 ft bgs),
- Saturated Minford clay/silt (16 ft bgs immediately above the Minford/Gallia (cemented where present) interface (25 ft bgs)
- "Cemented" (where present) Gallia material and 6 in. immediately above
- Saturated Gallia material (composited). Analysis will be performed on all discrete and composited samples for COPCs in Table 2 in Section 5.4 of this work plan
- Surface soils and Subsurface soils/material in the unconsolidated, unsaturated Scioto River Valley immediately west of the DOE reservation.

Subsurface rock samples collected under the Geotechnical SAP will be analyzed to determine conditions in the Cuyahoga, Sunbury, and Berea formations. Inorganic and radiological COPCs indentified in the *Geotechnical Sampling and Analysis Plan* (DOE 2011b) Table 3 and total organic carbon will be analyzed for rock samples.

unsaturated subsurface soil sample (approximately 8 to 10 ft bgs with a lithologic description from 1 ft to approximately 10 ft bgs) will be collected. Figure 12 shows a graphic of the vertical sample profile. Appendix B presents a summary of the PORTS soil background study sampling, including the number of proposed sample grids, sample depths, and sampling equipment.

5.3 SAMPLING PROCEDURES

The primary focus of the field sampling is to collect geochemical data identified during the DQO workshop in July 2011. This section identifies the media to be sampled during the field investigation and specifies the methods for collecting and analyzing the samples. Investigation activities will use standard industry practices that are consistent with EPA procedures and protocols. Procedures and methods that will guide the Background Study are listed in Table 1. If field conditions differ from those anticipated, the sampling approach, if appropriate, will be evaluated and revisions to the sampling program will be made as needed. Additional soil borings or DPT locations may be utilized as warranted by the analysis and evaluation of field collected data with Ohio EPA approval. Any additional locations will require the approval of a field change request in accordance with Fluor B&W Portsmouth LLC (FBP) procedures and with Ohio EPA approval.

5.4 ANALYTICAL PARAMETERS

Analytical data will be generated using EPA SW-846 and Standard Methods or other well-established, approved methods for the regulatory based parameters. For radiological parameters, EPA approved methods or other well-established, approved methods shall be used. All soil samples will be analyzed for the parameters listed in Table 2. Those constituents in Table 2 that do not have a reporting limit listed will be deferred to the recomme nded reporting limit in the laboratory method. This list was compiled from a review of all significant PORTS COPCs, as listed in Table 3 of the *Methods for Conducting Human Health Risk Assessments and Risk Evaluations* (DOE 2011a) including inorganics and radionuclides. The extensive sample and analyte set is comprehensive in order to ensure all potential future background data requirements can be met. Collection of this comprehensive data set should not be construed to suggest that DOE will seek to establish PRGs or final cleanup levels for all analytes.

The analytical services representative will verify the analytical data to determine if data deliverables are in compliance with the laboratory statement of work. A laboratory approved per the DOE Consolidated Audit Program shall perform all analyses. The approved laboratory shall possess an appropriate license issued by the Nuclear Regulatory Commission (NRC), a license issued by an NRC-approved agreement state, or shall be a DOE facility.

To ensure the quality of analytical data, all of the samples will be analyzed at Analytical Support Level 4 (i.e., full data deliverable and full analytical quality control, 1/20 or 1/batch). Results will receive 100 percent verification and a minimum 10 percent validation on a randomly selected data set at Validation Support Level D for COPCs which are evaluated to establish clean-up levels under the Consent Decree and/or CERCLA 120(h) processes.

All data will be validated in accordance with FBP internal procedures and include examination of field measurements, sampling and handling procedures, laboratory analysis, and reporting and non-conformance.

5.5 SAMPLE SIZE

Background sample populations targeted in this study include: 1) upwind hillside surface soils; 2) nonsite-impacted Minford soils; 3) non-site-impacted Gallia deposits; and 4) Scioto River Valley soils. To obtain representative samples of upwind hillside surface soils, surface soil samples will be collected in Areas H, I, and J (as shown on Plate 1); representative samples of off-site Minford and Gallia deposits

Contaminant of Potential Concern		Reporting Limit ^a	CAS Number	Laboratory Method	Hold Time (days)
SVOC	Benzoic acid	166.5 µg/kg	65-85-0	EPA SW-846	14
	Benzyl alcohol	100 µg/kg	100-51-6	8270	14
	Bis(2-chloroethoxy)methane	100 µg/kg	111-91-1		14
	Bis(2-chloroethyl)ether	100 µg/kg	111-44-4	-	14
	Bis(2-chloroisopropyl)ether	100 µg/kg	39638-32-9		14
	Bis(2-ethylhexyl)phthalate	100 µg/kg	117-81-7	-	14
	Bromophenyl phenyl ether, 4-	100 µg/kg	101-55-3		14
	Butyl benzyl phthalate	100 µg/kg	85-68-7		14
	Chloro-3-methylphenol, 4-	100 µg/kg	59-50-7		14
	Chloroaniline, 4-	100 µg/kg	106-47-8		14
	Chloronaphthalene, 2-	10 µg/kg	91-58-7		14
	Chlorophenol, 2-	100 µg/kg	95-57-8		14
	Chlorophenyl phenyl ether, 4-	100 µg/kg	7005-72-3		14
	Cresol, o- (Methylphenol, 2-)	100 µg/kg	95-48-7		14
	Cresol, p- (Methylphenol, 4-) ^b	100 µg/kg	106-44-5	-	14
	Dibenzofuran	100 µg/kg	132-64-9		14
	Dichlorobenzene, 1,2-	100 µg/kg	95-50-1		14
	Dichlorobenzene, 1,3-	100 µg/kg	541-73-1		14
	Dichlorobenzene, 1,4-	100 µg/kg	106-46-7		14
	Dichlorophenol, 2,4-	100 µg/kg	120-83-2	-	14
	Dichorobenzidine, 3,3'-	100 µg/kg	91-94-1		14
	Diethyl phthalate	100 µg/kg	84-66-2		14
	Dimethyl phthalate	100 µg/kg	131-11-3	-	14
	Dimethylphenol, 2,4-	100 µg/kg	105-67-9		14
	Di-n-butyl phthalate	100 µg/kg	84-74-2		14
	Dinitro-2-methylphenol, 4,6-	100 µg/kg	534-52-1		14
	Dinitrophenol, 2,4-	100 µg/kg	51-28-5	• •	14
	Dinitrotoluene, 2,4-	100 µg/kg	121-14-2		14
	Dinitrotoluene, 2,6-	100 µg/kg	606-20-2		14
	Di-n-octylphthalate	100 µg/kg	117-84-0		14
	Hexachlorobutadiene	100 µg/kg	87-68-3		14
	Hexachlorocyclopentadiene	100 µg/kg	77-47-4	·	14
	Hexachloroethane	100 µg/kg	67-72-1		14
	lsophorone	100 µg/kg	78-59-1		14
	Nitroaniline, 2-	100 µg/kg	88-74-4		14
	Nitroaniline, 3-	100 µg/kg	99-09-2		14
	Nitroaniline, 4-	100 µg/kg	100-01-6	1	14

Table 2. Analytical Parameters

Contaminant of Potential Concern		Reporting Limit ^a	CAS Number	Laboratory Method	Hold Time (days)
SVOC (continued)	Nitrobenzene	,		EPA SW-846	14
	Nitrophenol, 2-	100 µg/kg	88-75-5	8270	14
	Nitrophenol, 4-	100 µg/kg	100-02-7		14
	Nitroso-di-n-propylamine, N-	100 µg/kg	621-64-7		14
	Nitrosodiphenylamine, N- (Diphenylamine) ^c	100 µg/kg	86-30-6		14
	Phenol	100 µg/kg	108-95-2	ļ	14
	Trichlorobenzene, 1,2,4-	100 µg/kg	120-82-1		14
	Trichlorophenol, 2,4,5-	100 µg/kg	95-95-4		14
	Trichlorophenol, 2,4,6-	100 µg/kg	88-06-2		14
ncPAH	Acenaphthene	10 µg/kg	83-32-9	EPA SW-846	14
	Acenaphthylene	10 µg/kg	208-96-8	8270	14
	Anthracene	10 µg/kg	120-12-7		14
	Benzo(g,h,i)perylene	10 µg/kg	191-24-2		14
	Fluorene	10 µg/kg	86-73-7		14
	Fluoranthene	10 µg/kg	206-44-0		14
	Methylnaphthalene, 2-	10 µg/kg	91-57-6	1	14
	Naphthalene	10 µg/kg	91-20-3		14
	Phenanthrene	10 µg/kg	85-01-8		14
	Pyrene	10 µg/kg	129-00-0		14
сРАН	Benzo(a)anthracene	10 µg/kg	56-55-3	EPA SW-846	14
	Benzo(a)pyrene	10 µg/kg	50-32-8	8270	14
	Benzo(b)fluoranthene	10 µg/kg	205-99-2		14
	Benzo(k)fluoranthene	10 µg/kg	207-08-9		14
	Chrysene	10 µg/kg	218-01-9		14
	Dibenz(a,h)anthracene	10 µg/kg	53-70-3		14
	Indeno(1,2,3-cd)pyrene	10 µg/kg	193-39-5		14
РСВ	Aroclor-1016	1.1 µg/kg	12674-11-2	EPA SW-846	14
	Aroclor-1221	1.1 μg/kg	11104-28-2	8082	14
	Aroclor-1232	1.1 µg/kg	11141-16-5		14
	Aroclor-1242	1.1 µg/kg	53469-21-9		14
	Aroclor-1248	1.1 µg/kg	12672-29-6		14
	Aroclor-1254	1.1 μg/kg	11097-69-1		14
	Aroclor-1260	1.1 μg/kg	11096-82-5	1	14
	Aroclor-1268	1.1 μg/kg	11100-14-4		14
	Aroclor, total	1.11 μg/kg	1336-36-3		14

Table 2. Analytical Parameters (Continued)

Contaminant of Potential Concern		Reporting Limit ^a	CAS Number	Laboratory Method	Hold Time (days)
Metals	Silver	l mg/kg	7440-22-4	EPA SW-846	180
(continued)	Sodium	500 mg/kg	7440-23-5	6010B/6020	180
	Thallium	20 mg/kg	7440-28-0		180
	Uranium	0.04 mg/kg	7440-61-1		180
	Vanadium	2 mg/kg	7440-62-2		180
	Zinc	20 mg/kg	7440-66-6		180
	Mercury	0.02 mg/kg	7439-97-6	Method 7471A	28
	Cyanide, Total	0.5 mg/kg	57-12-5	Method 9012	14
	Fluoride	10 mg/kg	16984-48-8	Method 9056	28
Radionuclides	Americium-241	0.10 pCi/g	14596-10-2	Alpha Spec	180
	Neptunium-237	0.10 pCi/g	13994-20-2		180
	Thorium-228	0.10 pCi/g	14274-82-9		180
	Thorium-230	0.05 pCi/g	14269-63-7		180
	Thorium-232	0.10 pCi/g	7440-29-1		180
	Plutonium-238	0.10 pCi/g	13981-16-3		180
	Plutonium-239/240	0.10 pCi/g	15117-48-3		180
	Uranium-233/234	0.10 pCi/g	13966-29-5		180
	Uranium-235/236	0.10 pCi/g	15117-96-1		180
	Uranium-238	0.10 pCi/g	24678-82-8	-	180
	Technetium-99	0.5 pCi/g	7440-26-8	LSC/ICP-MS	180
Chlorinated	2,4-D	I.66 ug/kg	94-75-7	EPA SW-846	14
Herbicides	2,4,-DB	1.66 ug/kg	94-82-6	8151	14
	2,4,5-TP (Silvex)	1.66 ug/kg	93-72-1		14
	2,4,5-T	l.66 ug/kg	93-76-5		14
	Dalapon	20.0 ug/kg	75-99-0		14
	Dicamba	1.66 ug/kg	1918-00-9	2	14
	Dichloroprop	1.66 ug/kg	120-36-5	×.	14
	Dinoseb	1.66 ug/kg	88-85-7		14
	МСРА	230 ug/kg	94-74-6		14
	МСРР	200 ug/kg	93-65-2	1	14
	Pentachlorophenol	1.0 ug/kg	87-86-5	-	14

Table 2. Analytical Parameters (Continued)

^{*a*} Best available technology will be applied to achieve the lowest reporting limit possible.

 b 4-Methylphenol coelutes with 3-Methylphenol and cannot be reported separately by Method 8270; therefore, results for 3,4-Methylphenol will be reported.

^cN-Nitrosodiphenylamine will be reported as Diphenylamine.

CAS = Chemical Abstract Service

EPA = U.S. Environmental Protection Agency

cPAH = cancerous polycyclic aromatic hydrocarbons

ncPAH = non-cancerous polycyclic aromatic hydrocarbons PCB = polychlorinated biphenyl SVOC = semivolatile organic compound

Sampling Area	No. of Potential Sampling Grids	No. of Proposed Sampling Grids	Proposed Sample Depths	Sample Collection Equipment
A	88	5	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 8-10' bgs	DPT
В	327	20	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 8-10' bgs	DPT
C	6	5	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 8-10' bgs	DPT
D	83	3	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
E	111	4	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
F	237	10	Surface soil: 0-1' bgs	Hand auger or DP
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
G	130	13	Surface soil: 0-1' bgs	Hand auger or DP
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
Н	115	25	Surface soil: 0-1' bgs	Hand auger
I	142	30	Surface soil: 0-1' bgs	Hand auger
J	28	5	Surface soil: 0-1' bgs	Hand auger

Summary of PORTS Soil Background Study Sampling

Assumptions:

1) Sampling grids are 200' \times 200'.

2) Samples will be collected at center point of grid (where possible).

3) Soil samples will be classified and described by a geologist familiar with PORTS per FBP procedure.

4) Surface samples will be collected vertically from 0-1' bgs and composited (except VOCs).

5) In saturated conditions, no free liquids will be collected.

6) Sampling locations will be surveyed to acquire XYZ coordinates per FBP procedure.

7) QA/QC samples will be collected as follows:

• One field duplicate sample will be collected for each analytical batch or for every 20 samples, whichever is fewer. Field duplicates will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

• One field blank will be collected for each analytical batch or for every 20 samples whichever is fewer. Field blank samples will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

• One rinsate blank sample will be collected for each analytical batch or for every 20 samples whichever is fewer. Rinsate blank samples are samples of deionized ultra-filtered water that has been used to rinse decontaminated sampling equipment. The blanks will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

• One trip blank will be prepared for each shipment of VOC samples only. Trip blank samples will be analyzed for the same set of VOCs as the non-QA/QC samples being collected.

bgs = below ground surface DPT = Direct Push Technology FBP = Fluor-B&W Portsmouth LLC PORTS = Portsmouth Gaseous Diffusion Plant QA = Quality Assurance QC = Quality Control VOC = volatile organic compound DOE/PPPO/03-0250&D1 FBP-ER-RCRA-WD-PLN-0040 Revision 2 FCN FBP-ER-RCRA-WD-PLN-0040-R2-03. Junclamoury 2012

- Statistically sufficient number of soil samples from surface and subsurface formations in areas not
 affected by site operations
- Analytical results of COPCs in the soil samples
- Statistical analyses of the analytical results.

Step 4 - Define the boundaries of the study

Ten study areas have been identified as potential soil background sampling locations. Guidelines for selecting these ten areas include: similar environment of deposition and geologic source materials as PORTS, reasonable proximity to the PORTS facility, surface and subsurface materials located in the Scioto River Valley associated with DOE pump houses and pipe lines, and areas un-affected by PORTS or other significant sources of contamination. In addition, the western side of the DOE reservation was selected for soil background sample collection to evaluate any radiological contribution from historical nuclear testing in the western United States as determined by evaluation of recent and historical wind rose diagrams. Boundary conditions specific to the soil background study include consideration that some sampling locations may be limited by access to private properties, formation samples include the Minford, Gallia, Cuyahoga, Sunbury, and Berea formations, and no groundwater will be characterized at this time.

Step 5 - Develop the analytic approach

Several intrusive field methods will be used to obtain the required soil data to support this background study including hand auguring, direct-push technology (DPT), and other drilling methods suitable for drilling in both unconsolidated and limited bedrock formations. A follow-up technical meeting was held in September 2011 with Ohio EPA to discuss the sample approach and sample locations. Soil boring samples will consist of DPT continuous soil sampling tubes and split-spoon samples from discrete depth intervals. Seven soil sample populations are proposed for this background study:

- Surface soils (0-1 ft bgs, Minford clay)
- Unsaturated Minford clay (1-10 ft bgs, composited and disorter samples, and discrete samples at 2-ft intervals from 1 ft to approximately 12, 14, and 16 ft bgs),
- Saturated Minford clay/silt (16 fl bgs immediately above the Minford/Gallia (cemented where
 present) interface (25 ft bgs)
- · "Cemented" (where present) Gallia material and 6 in. immediately above
- Saturated Gallia material (composited). Analysis will be performed on all discrete and composited samples for COPCs in Table 2 in Section 5.4 of this work plan
- Surface soils and Subsurface soils/material in the unconsolidated, unsaturated Scioto River Valley
 immediately west of the DOE reservation.

Subsurface rock samples collected under the Geotechnical SAP will be analyzed to determine conditions in the Cuyahoga, Sunbury, and Berea formations. Inorganic and radiological COPCs indentified in the *Geotechnical Sampling and Analysis Plan* (DOE 2011b) Table 3 and total organic carbon will be analyzed for rock samples.

Formatted: Font: 6 pt, Do not check spelling or grammar Formatted: Font: 6 pt, Do not check spelling or grammar

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

DOE/PPPO/03-0250&D1 FBP-ER-RCRA-WD-PLN-0040 Revision 2 FCN FBP-ER-RCRA-WD-PLN-0040-K2-03_JuneJammy 2012

unsaturated subsurface soils sample (approximately 8 to 10 ft bgs with a lithologic description from 1 ft to approximately 10 ft bgs) (1 ft to approximately 20 ft bgs) will be collected. Figure 12 shows a graphic of the vertical sample profile. Appendix B presents a summary of the PORTS soil background study sampling, including the number of proposed sample grids, sample depths, and sampling equipment.

5.3 SAMPLING PROCEDURES

The primary focus of the field sampling is to collect geochemical data identified during the DQO workshop in July 2011. This section identifies the media to be sampled during the field investigation and specifies the methods for collecting and analyzing the samples. Investigation activities will use standard industry practices that are consistent with EPA procedures and protocols. Procedures and methods that will guide the Background Study are listed in Table 1. If field conditions differ from those anticipated, the sampling approach, if appropriate, will be evaluated and revisions to the sampling program will be made as needed. Additional soil borings or DPT locations may be utilized as warranted by the analysis and evaluation of field collected data with Ohio EPA approval. Any additional locations will require the approval of a field change request in accordance with Fluor B&W Portsmouth LLC (FBP) procedures and with Ohio EPA approval.

5.4 ANALYTICAL PARAMETERS

Analytical data will be generated using EPA SW-846 and Standard Methods or other well-established, approved methods for the regulatory based parameters. For radiological parameters, EPA approved methods or other well-established, approved methods shall be used. All soil samples will be analyzed for the parameters listed in Table 2. Those constituents in Table 2 that do not have a reporting limit listed will be deferred to the recommended reporting limit in the laboratory method. This list was compiled from a review of all significant PORTS COPCs, as listed in Table 3 of the *Methods for Conducting Human Health Risk Assessments and Risk Evaluations* (DOE 2011a) including inorganics and radionuclides. The extensive sample and analyte set is comprehensive in order to ensure all potential future background data requirements can be met. Collection of this comprehensive data set should not be construed to suggest that DOE will seek to establish PRGs or final cleanup levels for all analytes.

The analytical services representative will verify the analytical data to determine if data deliverables are in compliance with the laboratory statement of work. A laboratory approved per the DOE Consolidated Audit Program shall perform all analyses. The approved laboratory shall possess an appropriate license issued by the Nuclear Regulatory Commission (NRC), a license issued by an NRC-approved agreement state, or shall be a DOE facility.

To ensure the quality of analytical data, all of the samples will be analyzed at Analytical Support Level 4 (i.e., full data deliverable and full analytical quality control, 1/20 or 1/batch). Results will receive 100 percent verification and a minimum 10 percent validation on a randomly selected data set at Validation Support Level D for COPCs which are evaluated to establish clean-up levels under the Consent Decree and/or CERCLA 120(h) processes.

All data will be validated in accordance with FBP internal procedures and include examination of field measurements, sampling and handling procedures, laboratory analysis, and reporting and non-conformance.

5.5 SAMPLE SIZE

Background sample populations targeted in this study include: 1) upwind hillside surface soils; 2) nonsite-impacted Minford soils; 3) non-site-impacted Gallia deposits; and 4) Scioto River Valley soils. To obtain representative samples of upwind hillside surface soils, surface soil samples will be collected in Areas H, I, and J (as shown on Plate 1); representative samples of off-site Minford and Gallia deposits

Formatted: Font: 6 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

Formatted: Font: 10 pt

32 (19) The Landon State (1) for a streng to a first provide the state of the State

DOE/PPPO/03-0250&D1 FBP-ER-RCRA-WD-PLN-0040 Revision 2 FCN FBP-ER-RCRA-WD-PLN-0040-R2-03, JuneJamaney 2012

Contaminant of Potential Concern		Reporting Limit*	CAS Number	Laboratory Method	Hold Time (days)	
SVOC	Benzoic acid	166.5 µg/kg	65-85-0	EPA SW-846 8270	14	
	Benzyl alcohol	100 µg/kg	100-51-6	0270	14	
	Bis(2-chloroethoxy)methane	100 µg/kg	111-91-1		14	
	Bis(2-chloroethyl)ether	100 µg/kg	111-44-4		14	
	Bis(2-chloroisopropyl)ether	100 µg/kg	108-60-139638-		14	
	Bis(2-ethylhexyl)phthalate	100 µg/kg	32-9 117-81-7		14	
	Bromophenyl phenyl ether, 4-	100 µg/kg	101-55-3		14	
	Butyl benzyl phthalate	100 µg/kg	85-68-7		14	
	Chloro-3-methylphenol, 4-	100 µg/kg	59-50-7		14	
	Chloroaniline, 4-	100 µg/kg	106-47-8		14	
	Chloronaphthalene, 2-	10 µg/kg	91-58-7		14	
	Chlorophenol, 2-	100 µg/kg	95-57-8		14	
	Chlorophenyl phenyl ether, 4-	100 µg/kg	7005-72-3		14	
	Cresol, o- (Methylphenol, 2-)	100 µg/kg	95-48-7		14	
	Cresol, p- (Methylphenol, 4-)	100 µg/kg	106-44-5		14 Fo	Formatted: Superscrip
	Dibenzofuran	100 µg/kg	132-64-9		14	(entrances expensely
	Dichlorobenzene, 1,2-	100 µg/kg	95-50-1		14	
	Dichlorobenzene, 1,3-	100 µg/kg	541-73-1		14	
	Dichlorobenzene, 1,4-	100 µg/kg	106-46-7		14	
	Dichlorophenol, 2,4-	100 µg/kg	120-83-2		14	
	Dichorobenzidine, 3,3'-	100 µg/kg	91-94-1		14	
	Diethyl phthalate	100 µg/kg	84-66-2		14	
	Dimethyl phthalate	100 µg/kg	131-11-3		14	
	Dimethylphenol, 2,4-	100 µg/kg	105-67-9	6. B	14	
	Di-n-butyl phthalate	100 µg/kg	84-74-2		14	
	Dinitro-2-methylphenol, 4,6-	100 µg/kg	534-52-1		14	
	Dinitrophenol, 2,4-	100 µg/kg	51-28-5		14	
	Dinitrotoluene, 2,4-	100 µg/kg	121-14-2		14	
	Dinitrotoluene, 2,6-	100 µg/kg	606-20-2		14	
	Di-n-octylphthalate	100 µg/kg	117-84-0		14	
	Hexachlumbonzene	100-pg/kg	148-74-1		44	
	Hexachlorobutadiene	100 µg/kg	87-68-3		14	
	Hexachlorocyclopentadiene	100 µg/kg	77-47-4		14	
	Hexachloroethane	100 µg/kg	67-72-1		14	
	Isophorone	100 µg/kg	78-59-1		14	
	Nitroaniline, 2-	100 µg/kg	88-74-4		14	
	Nitroaniline, 3-	100 µg/kg	99-09-2		14	
	Nitroaniline, 4-	100 µg/kg	100+01-6		14	Formatted: Font: 6 pt

Table 2. Analytical Parameters

Formatted: Font: 6 pt

1

	Table 2. Analyti	FCN FBP-ER-RC			Revision 2 mary 2012
Contaminant of Potential Concern		Reporting Limit*	CAS Number	Laboratory Method	Hold Tim (days)
SVOC (continued)	Nitrobenzene	100 µg/kg	98-95-3	EPA SW-846	14
	Nitrophenol, 2-	100 µg/kg	88-75-5	8270	14
	Nitrophenol, 4-	100 µg/kg	100-02-7		14
	Nitroso-di-n-propylamine, N-	100 µg/kg	621-64-7		14
	Nitrosodiphenylamine, N- (Diphenylamine)	100 µg/kg	86-30-6		14
	Pentaghilaraphonol	100-µg/kg	87-86-5		- 14
	Phenol	100 µg/kg	108-95-2		14
	Trichlorobenzene, 1,2,4-	100 µg/kg	120-82-1		14
	Trichlorophenol, 2,4,5-	100 µg/kg	95-95-4		14
	Trichlorophenol, 2,4,6-	100 µg/kg	88-06-2	Section 1	14
ncPAH	Acenaphthene	10 µg/kg	83-32-9	EPA SW-846 8270	14
	Acenaphthylepe	10 µg/kg	208-96-8		14
	Anthracene	10 µg/kg	120-12-7		14
	Benzo(g,h,i)perylene	10 µg/kg	191-24-2		14
	Fluorene	10 µg/kg	86-73-7		14
	Fluoranthene	10 µg/kg	206-44-0		14
	Methylnaphthalene, 2-	10 µg/kg	91-57-6		14
	Naphthalene	10 µg/kg	91-20-3		14
	Phenanthrene	10 µg/kg	85-01-8		14
A	Pyrene	10 µg/kg	129-00-0		14
cPAH	Benzo(a)anthracene	10 µg/kg	56-55-3	EPA SW-846	14
	Benzo(a)pyrene	10 µg/kg	50-32-8	8270	14
	Benzo(b)fluoranthene	10 µg/kg	205-99-2		14
	Benzo(k)fluoranthene	10 µg/kg	207-08-9		14
	Chrysene	10 µg/kg	218-01-9		14
	Dibenz(a,h)anthracene	10 µg/kg	53-70-3		14
	Indeno(1,2,3-cd)pyrene	10 µg/kg	193-39-5		14
PCB	Aroclor-1016	1.1 µg/kg	12674-11-2	EPA SW-846	14
	Aroclor-1221	1.1 µg/kg	11104-28-2	8082	14
	Aroclor-1232	1.1 μg/kg	11141-16-5		14
	Aroclor-1242	1.1 µg/kg	53469-21-9		14
	Aroclor-1248	L1 μg/kg	12672-29-6		14
	Aroclor-1254	1.1 μg/kg	11097-69-1		14
	Aroclor-1260	1.1 μg/kg	11096-82-5		14
	Aroclor-1268	1.1 µg/kg	11100-14-4		14
	Aroclor, total	1.11 µg/kg	1336-36-3		14

Formatted: Font: 6 pt

1

37 FIP University of the 2 Martin 1 (a) 1 Martin 1 (a) 10 Martin and the total and the Color of the Color of

DOE/PPPO/03-0250&D1 FBP-ER-RCRA-WD-PLN-0040 Revision 2 FCN FBP-ER-RCRA-WD-PLN-0040-R2-03, JuneJanuary 2012

Contaminant of Potential Concern		Reporting Limit"	CAS Number	Laboratory Method	Hold Time (days)
Metals	Silver	1 mg/kg	7440-22-4	EPA SW-846	180
(continued)	Sodium	500 mg/kg	7440-23-5	6010B/6020	180
	Thallium	20 mg/kg	7440-28-0		180
	Uranium	0.04 mg/kg	7440-61-1		180
	Vanadium	2 mg/kg	7440-62-2		180
	Zinc	20 mg/kg	7440-66-6		180
	Mercury	0.02 mg/kg	7439-97-6	Method 7471A	28
	Cyanide, Total	0.5 mg/kg	57-12-5	Method 9012	14
	Fluoride	10 mg/kg	16984-48-8	Method 9056	28
Radionuclides	Americium-241	0.10 pCi/g	14596-10-2	Alpha Spec	180
	Neptunium-237	0.10 pCi/g	13994-20-2		180
	Thorium-228	0.10 pCi/g	14274-82-9		180
	Thorium-230	0.05 pCi/g	14269-63-7		180
	Thorium-232	0.10 pCi/g	7440-29-1		180
	Plutonium-238	0.10 pCi/g	13981-16-3		180
	Plutonium-239/240	0.10 pCi/g	15117-48-3		180
	Uranium-233/234	0.10 pCi/g	13966-29-5		180
	Uranium-235/236	0.10 pCi/g	15117-96-1		180
	Uranium-238	0.10 pCi/g	24678-82-8		180
	Technetium-99	0.5 pCi/g	7440-26-8	LSC/ICP-MS	180
Chlorinated	2,4-D	1.66 ug/kg	94-75-7	EPA SW-846	14
Herbicides	2,4,-DB	1.66 ug/kg	94-82-6	8151	14
	2,4,5-TP (Silvex)	1.66 ug/kg	93-72-1	1	14
	2,4,5-T	1.66 ug/kg	93-76-5	1 8	14
	Dalapon	20.0 ug/kg	75-99-0		14
	Dicamba	1.66 ug/kg	1918-00-9		14
	Dichloroprop	1.66 ug/kg	120-36-5		14
	Dinoseb	1.66 ug/kg	88-85-7		14
	MCPA	230 ug/kg	94-74-6		14
	МСРР	200 ug/kg	93-65-2		14
	Pentachlorophenol	1.0 ug/kg	87-86-5		14

Table 2. Analytical Parameters (Continued)

" Best available technology will be applied to achieve the lowest reporting limit possible.

"4-Methylphenol coelutes with 3-Methylphenol and cannot be reported separately by Method 8270; therefore, results for 3.4-Methylphenol will be reported.

N-Nitrosodiphenvlamine will be reported as Diphenvlamine.

CAS - Chemical Abstract Service

EPA = U.S. Environmental Protection Agency

cPAH = cancerous polycyclic aromatic hydrocarbons

ncPAH = non-cancerous polycyclic aromatic hydrocarbons PCB = polychlorinated biphenyl SVOC = semivolatile organic compound Formatted: Not Superscript/ Subscript Formatted: Not Superscript/ Subscript Formatted: Not Superscript/ Subscript

Formatted: Font: 6 pt

1

1

39 might a second flow [1] free if Marine Free 199 man and the second states a Marine Forest 7/11/2012 4-23 PM second a Localeta

λ.

DOE/PPPO/03-0250&D1 FBP-ER-RCRA-WD-PLN-0040 **Revision 2** FCN FBP-ER-RCRA-WD-PLN-0040-R2-012, JuneMay 2012

Sampling Area	No. of Potential Sampling Grids	No. of Proposed Sampling Grids	Proposed Sample Depths	Sample Collection Equipment
A	88	5	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 84-120' bgs	DPT
в	327	20	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 84-120' bgs	DPT
C	6	5	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated soil: 84-120' bgs	DPT
D	83	3	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
E	111	4	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallía: where present	DPT
			Saturated Gallia: where present	DPT
F	237	10	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallía interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
G	130	13	Surface soil: 0-1' bgs	Hand auger or DPT
			Unsaturated Minford: 2-16' bgs	DPT
			Saturated Minford/Gallia interface: 16-25' bgs	DPT
			Cemented Gallia: where present	DPT
			Saturated Gallia: where present	DPT
Н	115	25	Surface soil: 0-1' bgs	Hand auger
I	142	30	Surface soil: 0-1' bgs	Hand auger
1	28	5	Surface soil: 0-1' bgs	Hand auger

Summary of PORTS Soil Background Study Sampling.

Assumptions:

Assumptions: 1) Sampling grids are 200° × 200°. 2) Samples will be collected at center point of grid (where possible). 3) Soil samples will be collected at center point of grid (where possible). 4) Surface samples will be collected vertically from 0-1° bgs and composited (except VOCs). 5) In saturated conditions, no free liquids will be collected. 6) Sampling locations will be surveyed to acquire XYZ coordinates per FBP procedure. 7) QA/QC samples will be collected as follows: 4. One field durigicate served will be collected for each analytical betch or for even 20 samples will be collected as follows:

QAQC samples will be collected as follows:
 One field duplicate sample will be collected for each analytical batch or for every 20 samples, whichever is fewer. Field duplicates will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.
 One field blank will be collected for each analytical batch or for every 20 samples whichever is fewer. Field blank samples will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.
 One rinste blank sample will be collected for each analytical batch or for every 20 samples whichever is fewer. Field blank samples will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.
 One rinste blank sample will be collected for each analytical batch or for every 20 samples whichever is fewer. Rinste blank samples are samples of deionized ultra-filtered water that has been used to rinse decontaninated sampling equipment. The blanks will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.
 One rinse being the bank will be thereared for used being exclusion. The blank samples will be analyzed for the same set of analytical parameters as the non-QA/QC samples being collected.

One trip blank will be prepared for each shipment of VOC samples only. Trip blank samples will be analyzed for the same set of VOCs as the non-QA/QC samples being collected.

bgs = below ground surface DPT = Direct Push Technology FBP = Fluor-B&W Portsmouth LLC

PORTS = Portsmouth Gaseous Diffusion Plant

QA = Quality Assurance QC = Quality Control VOC = volatile organic compound

Formatted: Font: 6 pt, Do not check spelling or grammar

047011201231235566-0011-0-0844

B-1 Implementation from the set 2 Marter For 2 CH Parent A

This page is intentionally left blank.

APPENDIX G: ProUCL INPUT DATA FILES

This page is intentionally left blank.

The ProUCL input data files provided for this appendix contain analytical records for each background metal and radionuclide sample collected in Areas A, B, D, E, F, G, H, I, and J. Analytical results for samples collected in Area C have been excluded based on geological evaluation, as explained in the main body of the report.

The evaluation and selection of duplicate sample (i.e., field replicates) results was applied to the data prior to the formulation of the final input data files. Additionally, the input data files do not contain records for field blanks or rinsates. A spreadsheet for each of the following evaluated background area data sets is provided:

- Surface Soil: ABDEFGHIJ (metals)
- Surface Soil: ABDEFGHIJ (radionuclides)
- Unsaturated Minford: ABDEFG (metals)
- Unsaturated Minford: ABDEFG (radionuclides)
- Saturated Minford: EFG (metals)
- Saturated Minford: EFG (radionuclides)
- Gallia: DEFG (metals)
- Gallia: DEFG (radionuclides).

The initial two columns of each spreadsheet contain the background area designation (i.e., A, B, D, E, F, G, H, I, and J) and the project sample ID (e.g., BKGDPT01-04-10). The sample nomenclature is explained below.

Sample Nomenclature Each project sample ID has three components: [BKG(#1)-(#2)-(#3)]:

- The first component (#1) is associated with the sampling methodology and sample location.
- The second component (#2) identifies the sample type and analysis.
- The third component (#3) identifies the sample depth.

The following provides the details for each component:

<u>First component (#1):</u> Hand Augers: HA01 through HA60

- HA01-HA25 = Area H
- HA26-HA55 = Area I
- HA56-HA60 = Area J.

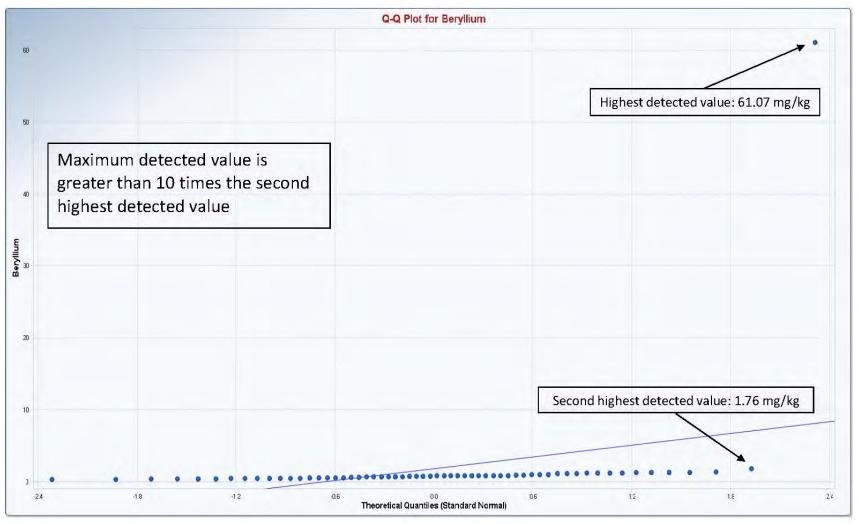
Direct Push Technology: DPT01 through DPT60

- DPT01-DPT05 = Area A
- DPT06-DPT25 = Area B
- DPT26-DPT30 = Area C
- DPT31-DPT33 = Area D
- DPT34-DPT37 = Area E
- DPT38-DPT47 = Area F
- DPT48-DPT60 =Area G.

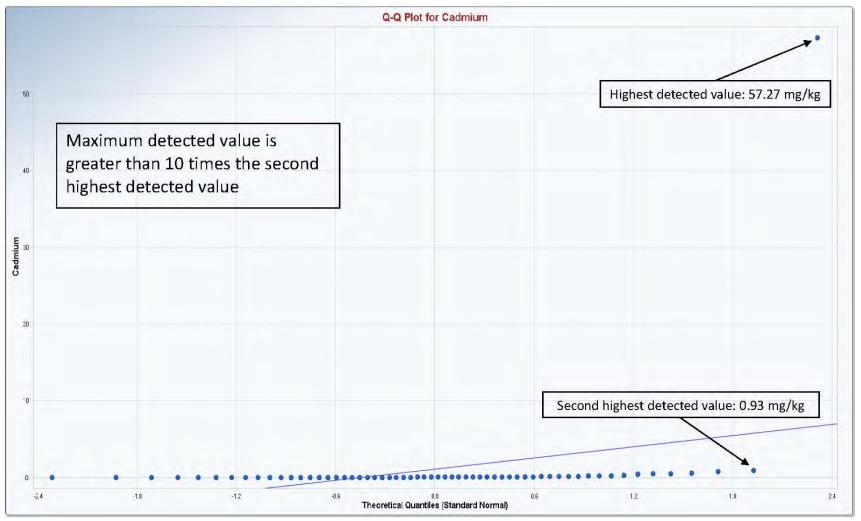
Second component (#2):

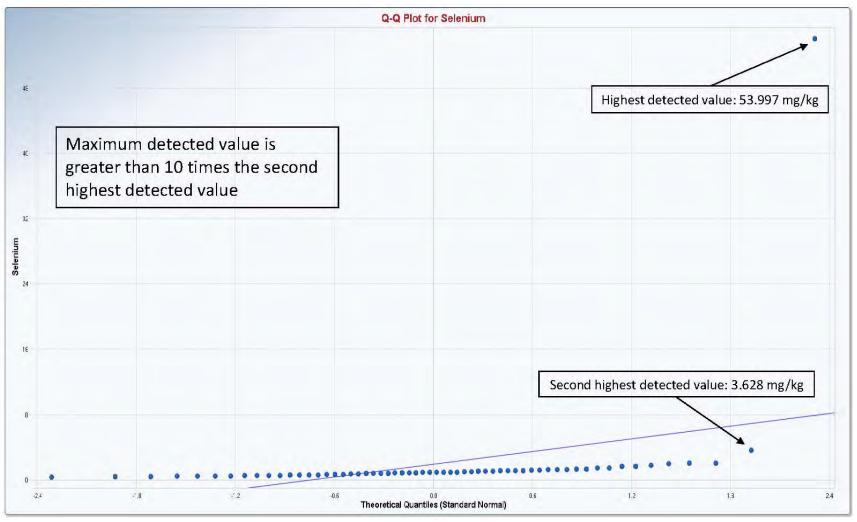
- 03 Regular/Metals
- 04 Regular/Radiological.

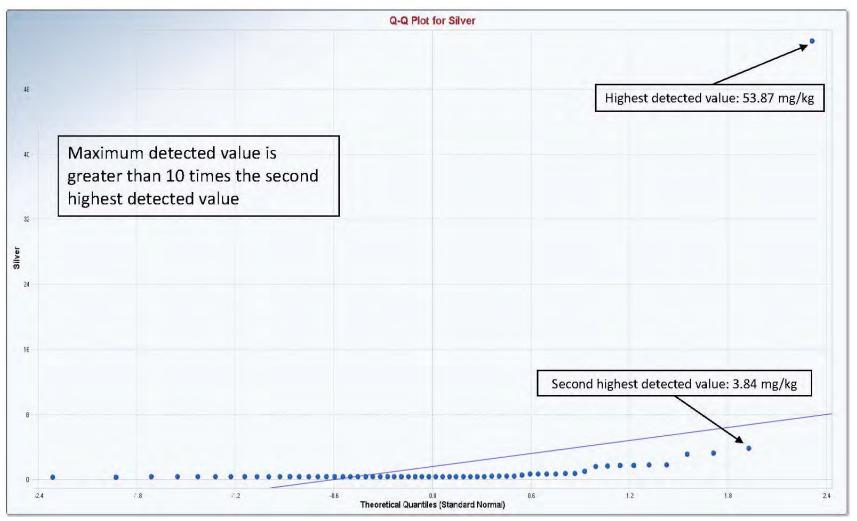
Third component (#3):

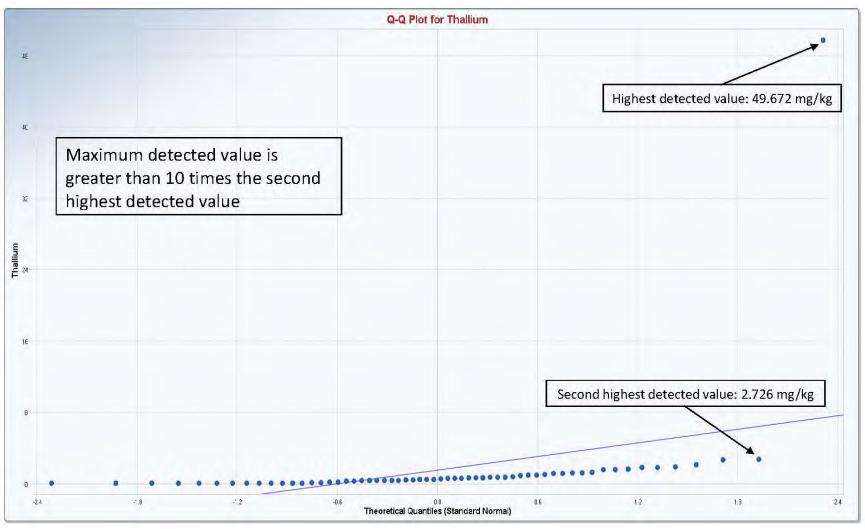

- SS = surface soil, 0 to 1 ft below ground surface (bgs)
- 2 = 2 to 4 ft bgs
- 4 = 4 to 6 ft bgs
- 6 = 6 to 8 ft bgs
- etc. through CMP = Composite Regular and CP2 = Composite Field Replicate.

Note: The above interval logic does not apply for samples collected in Areas A, B, and C; for these samples, the third component stated as 10 represents the sampling interval 8 to 10 ft bgs.


In the data files contained in the compact disc, the project sample ID column is followed by two columns for each metal or radionuclide. The first of these two columns contains the analytical result for the metal or radionuclide and the second column contains a number code to denote whether the analyte was detected or not. A "1" in this column designates that the analyte was detected and the analytical result. A "0" in this column designates that the analyte was not detected and the analytical value is equal to the method detection limit.


APPENDIX H: OUTLIER SUPPORTING DOCUMENTATION


This page is intentionally left blank.



DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

H-5

PORTS/SOIL BKGRD RPT DIR1 MASTER\4/15/2015 4:45 PM

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015 This page is intentionally left blank.

APPENDIX I: PORTS FINAL BACKGROUND DATA TABLES

This page is intentionally left blank.

TABLES

<u>Table</u>

Page

I.1.	PORTS Background Data: Areas A and B (0-1 feet below ground surface) Metals I-1
I.2.	PORTS Background Data: Areas A and B (0-1 feet below ground surface) Radionuclides I-6
I.3.	PORTS Background Data: Areas D, E, F and G (0-1 feet below ground surface) Metals I-10
I.4.	PORTS Background Data: Areas D, E, F and G (0-1 feet below ground surface)
	RadionuclidesI-15
I.5.	PORTS Background Data: Areas A and B (1-10 feet below ground surface) MetalsI-19
I.6.	PORTS Background Data: Areas A and B (1-10 feet below ground surface) Radionuclides I-23
I.7.	PORTS Background Data: Areas D, E, F and G (1-16 feet below ground surface) Metals I-25
I.8.	PORTS Background Data: Areas D, E, F and G (1-16 feet below ground surface)
	RadionuclidesI-41
I.9.	PORTS Background Data: Areas E, F and G (16-30 feet below ground surface) Metals
I.10.	PORTS Background Data: Areas E, F and G (16-30 feet below ground surface)
	RadionuclidesI-53
I.11.	PORTS Background Data: Areas D, E, F and G (16-90 feet below ground surface) Metals I-55
I.12.	PORTS Background Data: Areas D, E, F and G (16-90 feet below ground surface)
	RadionuclidesI-59
I.13.	PORTS Background Data: Areas H, I and J (0-1 feet below ground surface) MetalsI-61
I.14.	PORTS Background Data: Areas H, I and J (0-1 feet below ground surface) Radionuclides I-69

This page is intentionally left blank.

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium
А	BKGDPT01-03-SS	12865	1	0.91	1	11.3	1	92.3	1	0.67	1
А	BKGDPT02-03-SS	15700	1	1.26	1	13	1	137.7	1	0.84	1
А	BKGDPT03-03-SS	13286	1	0.74	1	12.1	1	90	1	0.7	1
А	BKGDPT04-03-SS	9435	1	0.7	1	10.3	1	60.4	1	0.57	1
А	BKGDPT05-03-SS	10508	1	0.88	1	9.2	1	86.9	1	0.61	1
В	BKGDPT06-03-SS	12034	1	1	1	11.5	1	88.1	1	0.67	1
В	BKGDPT07-03-SS	13407	1	1.35	1	12.3	1	121.2	1	0.83	1
В	BKGDPT08-03-SS	14724	1	1.11	1	13.1	1	126.4	1	0.87	1
В	BKGDPT09-03-SS	12546	1	1.32	1	11.6	1	120.4	1	0.79	1
В	BKGDPT10-03-SS	13740	1	1.25	1	11.9	1	138.6	1	0.8	1
В	BKGDPT11-03-SS	12053	1	0.66	1	8.7	1	125.6	1	0.64	1
В	BKGDPT12-03-SS	7318	1	0.48	0	8.4	1	49.9	1	0.35	1
В	BKGDPT13-03-SS	9963	1	0.81	1	10.7	1	93	1	0.6	1
В	BKGDPT14-03-SS	9153	1	1.05	1	7	1	133.2	1	0.56	1
В	BKGDPT15-03-SS	8507	1	0.48	0	8.8	1	84.1	1	0.42	1
В	BKGDPT16-03-SS	10650	1	0.98	1	11.1	1	84.6	1	0.7	1
В	BKGDPT17-03-SS	9522	1	1.15	1	9.9	1	41.6	1	0.5	1
В	BKGDPT18-03-SS	11022	1	0.86	1	11.9	1	97.2	1	0.73	1
В	BKGDPT19-03-SS	10709	1	0.48	0	10.9	1	93.3	1	0.71	1
В	BKGDPT20-03-SS	11905	1	1.33	1	11.2	1	120.2	1	0.77	1
В	BKGDPT21-03-SS	8349	1	0.63	1	8.1	1	44.4	1	0.37	1
В	BKGDPT22-03-SS	12394	1	0.93	1	11.3	1	115.8	1	0.78	1
В	BKGDPT23-03-SS	10290	1	0.71	1	9.7	1	61.2	1	0.51	1
В	BKGDPT24-03-SS	12456	1	1.35	1	12.5	1	112.3	1	0.77	1
В	BKGDPT25-03-SS	12423	1	1.38	1	11.3	1	125.5	1	0.76	1

AREA_LETTER	PROJ_SAMPLE_ID	Cadmium	D_Cadmium	Calcium	D_Calcium	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron
А	BKGDPT01-03-SS	0.24	1	3205	1	15.9	1	9.1	1	14.9	1	20234	1
А	BKGDPT02-03-SS	0.37	1	2778	1	18.7	1	12.1	1	21.4	1	24758	1
А	BKGDPT03-03-SS	0.2	1	2669	1	17.2	1	9.6	1	15.8	1	21708	1
А	BKGDPT04-03-SS	0.22	1	9758	1	12	1	7.6	1	11.5	1	17166	1
А	BKGDPT05-03-SS	0.02	0	765	1	14.2	1	9.9	1	12.4	1	17473	1
В	BKGDPT06-03-SS	0.34	1	3959	1	15.7	1	9.3	1	17.8	1	20828	1
В	BKGDPT07-03-SS	0.41	1	2718	1	13.3	1	10.9	1	22.3	1	22878	1
В	BKGDPT08-03-SS	0.29	1	1939	1	12.8	1	11.4	1	20	1	24417	1
В	BKGDPT09-03-SS	0.36	1	2509	1	11.6	1	10.3	1	20.3	1	21648	1
В	BKGDPT10-03-SS	0.4	1	2748	1	12.8	1	10.8	1	19.6	1	22700	1
В	BKGDPT11-03-SS	0.25	1	4081	1	14.6	1	10.4	1	17.6	1	17632	1
В	BKGDPT12-03-SS	0.21	1	34824	1	10.6	1	7.3	1	16.4	1	13529	1
В	BKGDPT13-03-SS	0.31	1	5600	1	8.3	1	9.1	1	17.3	1	20025	1
В	BKGDPT14-03-SS	0.27	1	2276	1	8.8	1	7.5	1	20.2	1	17070	1
В	BKGDPT15-03-SS	0.29	1	12153	1	12.2	1	8.2	1	11.8	1	16435	1
В	BKGDPT16-03-SS	0.2	1	1556	1	11.2	1	10.3	1	16.8	1	21446	1
В	BKGDPT17-03-SS	0.03	1	804	1	9.5	1	7.5	1	14.6	1	17716	1
В	BKGDPT18-03-SS	0.25	1	3474	1	10.1	1	9.8	1	18.5	1	22236	1
В	BKGDPT19-03-SS	0.24	1	22104	1	8.2	1	8.9	1	16.8	1	20331	1
В	BKGDPT20-03-SS	0.47	1	2694	1	10.8	1	10.6	1	22.2	1	22682	1
В	BKGDPT21-03-SS	0.08	1	1122	1	13.9	1	6.6	1	10.8	1	14871	1
В	BKGDPT22-03-SS	0.26	1	2382	1	12	1	10.5	1	19.8	1	21993	1
В	BKGDPT23-03-SS	0.09	1	886	1	14.1	1	7.4	1	11.6	1	16802	1
В	BKGDPT24-03-SS	0.33	1	1993	1	11.9	1	12.2	1	19.6	1	24437	1
В	BKGDPT25-03-SS	0.42	1	2485	1	11.8	1	10.6	1	21.6	1	22140	1

AREA_LETTER	PROJ_SAMPLE_ID	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese	Mercury	D_Mercury	Nickel	D_Nickel
А	BKGDPT01-03-SS	13.6	1	48.1	1	2421	1	557	1	0.0188	0	23.5	1
А	BKGDPT02-03-SS	15.5	1	61	1	2657	1	953	1	0.022	1	29.1	1
А	BKGDPT03-03-SS	12.8	1	50.1	1	2313	1	552	1	0.0234	0	24.8	1
А	BKGDPT04-03-SS	10.3	1	38	1	2304	1	429	1	0.0209	0	19.8	1
Α	BKGDPT05-03-SS	12.6	1	38.3	1	1370	1	988	1	0.0217	0	19.1	1
В	BKGDPT06-03-SS	13	1	44.9	1	2960	1	574	1	0.0225	0	24.5	1
В	BKGDPT07-03-SS	15	1	41.3	1	2485	1	861	1	0.0236	0	26.7	1
В	BKGDPT08-03-SS	15.3	1	44.8	1	2368	1	818	1	0.0227	0	27.1	1
В	BKGDPT09-03-SS	14.1	1	41	1	2177	1	836	1	0.0197	0	24.4	1
В	BKGDPT10-03-SS	14.7	1	42.1	1	2330	1	895	1	0.0222	0	26.2	1
В	BKGDPT11-03-SS	16.6	1	36.5	1	2305	1	898	1	0.0455	1	22.7	1
В	BKGDPT12-03-SS	16.1	1	29.5	1	9071	1	448	1	0.0222	0	18.6	1
В	BKGDPT13-03-SS	14	1	31	1	4091	1	670	1	0.0239	1	22.4	1
В	BKGDPT14-03-SS	9.5	1	29.5	1	1792	1	700	1	0.0229	0	20.9	1
В	BKGDPT15-03-SS	10.1	1	34.4	1	5579	1	619	1	0.0215	1	20.6	1
В	BKGDPT16-03-SS	13.1	1	34.3	1	2169	1	733	1	0.0228	0	22.2	1
В	BKGDPT17-03-SS	9.9	1	31.4	1	1562	1	456	1	0.023	1	17	1
В	BKGDPT18-03-SS	12.5	1	35.1	1	2885	1	677	1	0.0213	0	25.6	1
В	BKGDPT19-03-SS	11.2	1	34.2	1	6761	1	629	1	0.0229	0	21.4	1
В	BKGDPT20-03-SS	14.3	1	38	1	2406	1	946	1	0.032	1	25.2	1
В	BKGDPT21-03-SS	9.6	1	30.7	1	1358	1	395	1	0.0234	0	16.4	1
В	BKGDPT22-03-SS	14.5	1	34.3	1	2017	1	844	1	0.0352	1	22.6	1
В	BKGDPT23-03-SS	9.2	1	33.6	1	1541	1	433	1	0.0301	1	19.4	1
В	BKGDPT24-03-SS	14.1	1	40.9	1	2456	1	810	1	0.0257	1	25.4	1
В	BKGDPT25-03-SS	14.4	1	38.6	1	2177	1	878	1	0.0379	1	24.4	1

AREA_LETTER	PROJ_SAMPLE_ID	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
А	BKGDPT01-03-SS	2292	1	0.526	1	0.65	0	50	1	0.651	1
А	BKGDPT02-03-SS	2500	1	0.785	1	0.66	0	42	1	0.808	1
А	BKGDPT03-03-SS	1910	1	0.363	1	0.67	0	39	1	0.492	1
А	BKGDPT04-03-SS	1567	1	0.309	1	0.63	0	42	1	0.541	1
А	BKGDPT05-03-SS	1594	1	0.564	1	0.65	0	29	1	0.864	1
В	BKGDPT06-03-SS	2132	1	0.569	1	0.69	0	48	1	0.557	1
В	BKGDPT07-03-SS	2706	1	0.769	1	0.69	0	40	1	0.879	1
В	BKGDPT08-03-SS	2405	1	0.612	1	0.67	1	37	1	0.671	1
В	BKGDPT09-03-SS	2263	1	0.798	1	0.7	0	35	1	0.774	1
В	BKGDPT10-03-SS	2354	1	0.828	1	0.67	0	39	1	0.876	1
В	BKGDPT11-03-SS	2569	1	0.64	1	0.71	0	42	1	1.13	1
В	BKGDPT12-03-SS	1541	1	0.395	1	0.66	0	67	1	0.431	1
В	BKGDPT13-03-SS	1632	1	0.737	1	1.52	1	36	1	0.858	1
В	BKGDPT14-03-SS	1707	1	0.561	1	0.66	0	38	1	0.736	1
В	BKGDPT15-03-SS	1655	1	0.509	1	0.63	0	51	1	0.565	1
В	BKGDPT16-03-SS	1520	1	0.828	1	0.67	0	31	1	0.887	1
В	BKGDPT17-03-SS	1224	1	0.719	1	1.43	1	23	1	0.399	1
В	BKGDPT18-03-SS	1310	1	0.619	1	0.98	1	39	1	0.846	1
В	BKGDPT19-03-SS	1442	1	0.788	1	2.67	1	54	1	0.593	1
В	BKGDPT20-03-SS	1942	1	1.039	1	1.97	1	39	1	1.199	1
В	BKGDPT21-03-SS	1487	1	0.283	1	0.65	0	30	1	0.397	1
В	BKGDPT22-03-SS	1944	1	0.999	1	1.2	1	29	1	0.999	1
В	BKGDPT23-03-SS	1437	1	0.278	1	0.66	0	29	1	0.324	1
В	BKGDPT24-03-SS	1839	1	0.778	1	1.02	1	31	1	0.917	1
В	BKGDPT25-03-SS	2620	1	0.871	1	0.76	1	35	1	1.16	1

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
А	BKGDPT01-03-SS	3.96	1	35.6	1	70.8	1
А	BKGDPT02-03-SS	5.24	1	41.9	1	93.7	1
А	BKGDPT03-03-SS	3.67	1	36.7	1	68.3	1
А	BKGDPT04-03-SS	2.44	1	26.8	1	54.1	1
А	BKGDPT05-03-SS	4.23	1	25.7	1	60.4	1
В	BKGDPT06-03-SS	3.81	1	34	1	77.6	1
В	BKGDPT07-03-SS	4.95	1	37.6	1	92.6	1
В	BKGDPT08-03-SS	4.47	1	38.9	1	90.1	1
В	BKGDPT09-03-SS	3.93	1	33.5	1	86.7	1
В	BKGDPT10-03-SS	4.53	1	35.5	1	89.4	1
В	BKGDPT11-03-SS	2.83	1	30.2	1	92.8	1
В	BKGDPT12-03-SS	3.46	1	17.2	1	88.7	1
В	BKGDPT13-03-SS	3.37	1	28.6	1	79.2	1
В	BKGDPT14-03-SS	2.68	1	26.6	1	86	1
В	BKGDPT15-03-SS	3.46	1	23.7	1	60.2	1
В	BKGDPT16-03-SS	3.64	1	31	1	76.1	1
В	BKGDPT17-03-SS	2.89	1	27.2	1	48.1	1
В	BKGDPT18-03-SS	4.41	1	30.2	1	78.4	1
В	BKGDPT19-03-SS	3.52	1	29.4	1	74.8	1
В	BKGDPT20-03-SS	4.29	1	32	1	92.1	1
В	BKGDPT21-03-SS	2.71	1	23.9	1	45	1
В	BKGDPT22-03-SS	4.23	1	33.4	1	77.8	1
В	BKGDPT23-03-SS	2.68	1	26.4	1	52.6	1
В	BKGDPT24-03-SS	3.99	1	35.5	1	84.5	1
В	BKGDPT25-03-SS	4.56	1	31.7	1	85.7	1

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238
А	BKGDPT01-04-SS	0.022	0	0.035	0	0.018	0
А	BKGDPT02-04-SS	0.034	0	0.048	0	0.021	0
А	BKGDPT03-04-SS	0.041	0	0.035	0	0.005	0
А	BKGDPT04-04-SS	0.036	0	0.028	0	0.015	0
А	BKGDPT05-04-SS	0.035	0	0.03	0	0.023	0
В	BKGDPT06-04-SS	0.048	0	0.081	0	0.017	0
В	BKGDPT07-04-SS	0.062	0	0.028	0	0.006	0
В	BKGDPT08-04-SS	0.052	0	0.033	0	0.027	0
В	BKGDPT09-04-SS	0.032	0	0.058	0	0.028	0
В	BKGDPT10-04-SS	0.024	0	0.037	0	0.024	0
В	BKGDPT11-04-SS	0.144	0	0.027	0	0.018	0
В	BKGDPT12-04-SS	0.058	0	0.043	0	0.037	0
В	BKGDPT13-04-SS	0.026	0	0.067	0	0.028	0
В	BKGDPT14-04-SS	0.038	0	0.047	0	0.021	0
В	BKGDPT15-04-SS	0.065	0	0.019	0	0.015	0
В	BKGDPT16-04-SS	0.015	0	0.042	0	0.015	0
В	BKGDPT17-04-SS	0.034	0	0.037	0	0.015	0
В	BKGDPT18-04-SS	0.012	0	0.022	0	0.029	0
В	BKGDPT19-04-SS	0.027	0	0.027	0	0.039	0
В	BKGDPT20-04-SS	0.023	0	0.046	0	0.019	0
В	BKGDPT21-04-SS	0.08	0	0.024	0	0.025	0
В	BKGDPT22-04-SS	0.029	0	0.039	0	0.022	0
В	BKGDPT23-04-SS	0.061	0	0.03	0	0.102	0
В	BKGDPT24-04-SS	0.031	0	0.037	0	0.011	0
В	BKGDPT25-04-SS	0.014	0	0.055	0	0.011	0

All concentrations in pCi/g (dry weight)

AREA_LETTER	PROJ_SAMPLE_ID	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99	Thorium-228	D_Thorium-228
А	BKGDPT01-04-SS	0.007	0	0.428	0	1	1
А	BKGDPT02-04-SS	0.017	0	0.489	0	1.12	1
А	BKGDPT03-04-SS	0.013	0	0.488	0	0.86	1
А	BKGDPT04-04-SS	0.018	0	0.445	0	0.71	1
А	BKGDPT05-04-SS	0.03	0	0.469	0	1.02	1
В	BKGDPT06-04-SS	0.014	0	0.474	0	1.02	1
В	BKGDPT07-04-SS	0.021	0	0.515	0	0.8	1
В	BKGDPT08-04-SS	0.027	0	0.49	0	1.02	1
В	BKGDPT09-04-SS	0.016	0	0.461	0	1.11	1
В	BKGDPT10-04-SS	0.024	0	0.465	0	1.05	1
В	BKGDPT11-04-SS	0.022	0	0.524	0	0.82	1
В	BKGDPT12-04-SS	0.037	0	0.469	0	0.53	1
В	BKGDPT13-04-SS	0.018	0	0.482	0	0.77	1
В	BKGDPT14-04-SS	0.016	0	0.43	0	0.68	1
В	BKGDPT15-04-SS	0.018	0	0.531	0	0.84	1
В	BKGDPT16-04-SS	0.012	0	0.43	0	0.92	1
В	BKGDPT17-04-SS	0.018	0	0.434	0	0.64	1
В	BKGDPT18-04-SS	0.021	0	0.47	0	1.18	1
В	BKGDPT19-04-SS	0.026	0	0.456	0	0.7	1
В	BKGDPT20-04-SS	0.014	0	0.475	0	1.03	1
В	BKGDPT21-04-SS	0.032	0			0.67	1
В	BKGDPT22-04-SS	0.02	0	0.474	0	1.13	1
В	BKGDPT23-04-SS	0.059	0	0.444	0	0.64	1
В	BKGDPT24-04-SS	0.004	0	0.461	0	1.03	1
В	BKGDPT25-04-SS	0.014	0	0.513	0	0.95	1

All concentrations in pCi/g (dry weight)

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234
А	BKGDPT01-04-SS	1.73	1	0.97	1	1.2	1
А	BKGDPT02-04-SS	2.22	1	1.09	1	1.44	1
А	BKGDPT03-04-SS	1.66	1	1.06	1	1.09	1
А	BKGDPT04-04-SS	1.21	1	0.6	1	0.68	1
А	BKGDPT05-04-SS	1.63	1	0.95	1	1.28	1
В	BKGDPT06-04-SS	2.02	1	0.98	1	1.09	1
В	BKGDPT07-04-SS	2.09	1	0.99	1	1.43	1
В	BKGDPT08-04-SS	2.4	1	1.16	1	1.67	1
В	BKGDPT09-04-SS	2.05	1	1.01	1	1.21	1
В	BKGDPT10-04-SS	2.19	1	1.06	1	1.31	1
В	BKGDPT11-04-SS	1.69	1	0.89	1	0.94	1
В	BKGDPT12-04-SS	1.75	1	0.55	1	1.09	1
В	BKGDPT13-04-SS	1.85	1	0.95	1	0.98	1
В	BKGDPT14-04-SS	1.09	1	0.58	1	0.72	1
В	BKGDPT15-04-SS	1.79	1	0.81	1	1.03	1
В	BKGDPT16-04-SS	1.52	1	0.83	1	1.16	1
В	BKGDPT17-04-SS	1.25	1	0.65	1	0.78	1
В	BKGDPT18-04-SS	2.08	1	1.23	1	1.37	1
В	BKGDPT19-04-SS	1.61	1	0.66	1	1.02	1
В	BKGDPT20-04-SS	1.79	1	1.09	1	1.35	1
В	BKGDPT21-04-SS	1.17	1	0.52	1	0.71	1
В	BKGDPT22-04-SS	1.91	1	1.06	1	1.32	1
В	BKGDPT23-04-SS	1.26	1	0.76	1	0.88	1
В	BKGDPT24-04-SS	2.11	1	1.07	1	1.46	1
В	BKGDPT25-04-SS	2.02	1	0.98	1	1.46	1

All concentrations in pCi/g (dry weight)

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

AREA_LETTER	PROJ_SAMPLE_ID	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
А	BKGDPT01-04-SS	0.072	1	1.33	1
А	BKGDPT02-04-SS	0.112	1	1.76	1
А	BKGDPT03-04-SS	0.071	1	1.23	1
А	BKGDPT04-04-SS	0.034	1	0.82	1
А	BKGDPT05-04-SS	0.069	1	1.42	1
В	BKGDPT06-04-SS	0.088	0	1.28	1
В	BKGDPT07-04-SS	0.113	1	1.66	1
В	BKGDPT08-04-SS	0.101	1	1.5	1
В	BKGDPT09-04-SS	0.047	1	1.32	1
В	BKGDPT10-04-SS	0.049	1	1.52	1
В	BKGDPT11-04-SS	0.028	0	0.95	1
В	BKGDPT12-04-SS	0.054	1	1.16	1
В	BKGDPT13-04-SS	0.063	1	1.13	1
В	BKGDPT14-04-SS	0.065	1	0.9	1
В	BKGDPT15-04-SS	0.069	0	1.16	1
В	BKGDPT16-04-SS	0.066	0	1.22	1
В	BKGDPT17-04-SS	0.088	1	0.97	1
В	BKGDPT18-04-SS	0.066	1	1.48	1
В	BKGDPT19-04-SS	0.044	1	1.18	1
В	BKGDPT20-04-SS	0.085	1	1.44	1
В	BKGDPT21-04-SS	0.062	1	0.91	1
В	BKGDPT22-04-SS	0.1	1	1.42	1
В	BKGDPT23-04-SS	0.068	1	0.9	1
В	BKGDPT24-04-SS	0.099	1	1.34	1
В	BKGDPT25-04-SS	0.067	1	1.53	1

D_ChemicalName; 1 = Detect, 0 = Non Detect

All concentrations in pCi/g (dry weight)

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium
D	BKGDPT31-03-SS	14958	1	1.42	1	11.8	1	61.3	1	0.62	1	0.02	0
D	BKGDPT32-03-SS	19197	1	1.1	1	15.2	1	76.9	1	0.61	1	0.02	0
D	BKGDPT33-03-SS	18354	1	1.29	1	13.5	1	73.5	1	0.66	1	0.03	0
Е	BKGDPT34-03-SS	15348	1	0.71	1	8.7	1	105.5	1	0.73	1	0.02	0
Е	BKGDPT35-03-SS	12515	1	0.31	0	9.5	1	90	1	0.7	1	0.03	0
Е	BKGDPT36-03-SS	12424	1	2.24	1	6.4	1	85.5	1	0.82	1	0.02	0
Е	BKGDPT37-03-SS	19059	1	1.31	1	13.6	1	55.6	1	0.7	1	0.03	0
F	BKGDPT38-03-SS	6263	1	0.37	0	6	1	48.6	1	0.36	1	0.13	1
F	BKGDPT39-03-SS	8007	1	0.75	1	21.9	1	89.3	1	1.23	1	0.19	1
F	BKGDPT40-03-SS	8114	1	0.84	1	14.9	1	83.6	1	0.79	1	0.19	1
F	BKGDPT41-03-SS	9043	1	0.38	0	11.3	1	71.7	1	0.58	1	0.19	1
F	BKGDPT42-03-SS	7986	1	0.95	1	9.9	1	41.3	1	0.49	1	0.18	1
F	BKGDPT43-03-SS	22760	1	1.49	1	6.1	1	64.9	1	0.64	1	0.02	0
F	BKGDPT44-03-SS	7166	1	0.4	0	6.1	1	60.3	1	0.47	1	0.14	1
F	BKGDPT45-03-SS	8249	1	0.38	1	7	1	67.2	1	0.53	1	0.14	1
F	BKGDPT46-03-SS	8833	1	0.51	1	13.5	1	68.1	1	0.91	1	0.15	1
F	BKGDPT47-03-SS	9527	1	0.94	1	15.3	1	63.2	1	0.76	1	0.15	1
G	BKGDPT48-03-SS	7912	1	1.82	0	20.9	1	67.9	1	0.99	1	0.14	1
G	BKGDPT49-03-SS	11183	1	1.15	1	20.3	1	47.8	1	0.53	1	0.19	1
G	BKGDPT50-03-SS	10105	1	0.35	0	4.2	1	67.8	1	0.57	1	0.1	1
G	BKGDPT51-03-SS	7802	1	0.37	0	6.9	1	81.2	1	0.79	1	0.14	1
G	BKGDPT52-03-SS	9532	1	0.77	1	34.2	1	71.6	1	1.09	1	0.19	1
G	BKGDPT53-03-SS	18182	1	0.31	1	10.1	1	63.4	1	0.43	1	0.02	0
G	BKGDPT54-03-SS	8566	1	0.37	0	6.2	1	81.5	1	0.51	1	0.11	1
G	BKGDPT55-03-SS	7326	1	0.35	1	19.8	1	109.2	1	0.92	1	0.19	1
G	BKGDPT56-03-SS	5967	1	0.37	0	7.1	1	96	1	0.7	1	0.14	1
G	BKGDPT57-03-SS	13007	1	0.85	1	7.7	1	79.7	1	0.7	1	0.02	0
G	BKGDPT58-03-SS	9379	1	0.38	0	8.5	1	67.4	1	0.45	1	0.17	1
G	BKGDPT59-03-SS	16509	1	0.83	1	7.9	1	76.4	1	0.58	1	0.02	0
G	BKGDPT60-03-SS	6388	1	0.39	0	7.6	1	83.9	1	0.81	1	0.14	1

AREA_LETTER	PROJ_SAMPLE_ID	Calcium	D_Calcium	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium
D	BKGDPT31-03-SS	574	1	18.9	1	10.8	1	13.5	1	25814	1	14	1	67.4	1
D	BKGDPT32-03-SS	1028	1	16.4	1	10.1	1	18.2	1	32120	1	20.7	1	100.3	1
D	BKGDPT33-03-SS	356	1	20.8	1	15.7	1	17.7	1	27848	1	21.5	1	75.3	1
Е	BKGDPT34-03-SS	1025	1	12.6	1	12.9	1	6.4	1	20144	1	17	1	59.4	1
Е	BKGDPT35-03-SS	1201	1	15.1	1	10.8	1	8.2	1	20694	1	15.5	1	53.4	1
E	BKGDPT36-03-SS	905	1	9	1	8.8	1	5	1	13520	1	14.7	1	32.3	1
E	BKGDPT37-03-SS	402	1	18.1	1	6.7	1	10.8	1	34017	1	15.3	1	99.2	1
F	BKGDPT38-03-SS	1338	1	10.8	1	6.9	1	6.2	1	16378	1	13.7	1	6.6	1
F	BKGDPT39-03-SS	523	1	25.7	1	24	1	11.2	1	40661	1	27	1	14.2	1
F	BKGDPT40-03-SS	743	1	14.1	1	18	1	9.9	1	25164	1	18.4	1	14.7	1
F	BKGDPT41-03-SS	875	1	29.9	1	11.8	1	7.9	1	18570	1	18	1	9.2	1
F	BKGDPT42-03-SS	448	1	21.9	1	14	1	7.1	1	64885	1	16	1	15.4	1
F	BKGDPT43-03-SS	345	1	21.1	1	7.1	1	14.3	1	26392	1	11.8	1	65.3	1
F	BKGDPT44-03-SS	1204	1	8.2	1	9.7	1	5.7	1	13098	1	13.9	1	7.7	1
F	BKGDPT45-03-SS	1304	1	13.5	1	8	1	7.3	1	14531	1	12.2	1	14	1
F	BKGDPT46-03-SS	120	1	13.9	1	14.1	1	9.2	1	27048	1	20.7	1	16.9	1
F	BKGDPT47-03-SS	290	1	12.7	1	16.5	1	10.1	1	40777	1	17.4	1	16.4	1
G	BKGDPT48-03-SS	2235	1	18.1	1	17.9	1	12.3	1	128668	1	21.1	1	17.5	1
G	BKGDPT49-03-SS	2193	1	23.3	1	6.9	1	10.5	1	43387	1	21.2	1	12.4	1
G	BKGDPT50-03-SS	944	1	10.9	1	8.7	1	5.9	1	39930	1	19.8	1	6.2	1
G	BKGDPT51-03-SS	1331	1	12.7	1	12.9	1	6.3	1	16606	1	20.4	1	7.9	1
G	BKGDPT52-03-SS	591	1	31.2	1	29.5	1	9.6	1	67485	1	49.6	1	17.1	1
G	BKGDPT53-03-SS	850	1	16.1	1	6.5	1	5.9	1	23445	1	14.4	1	60.3	1
G	BKGDPT54-03-SS	878	1	11.5	1	8.9	1	5.6	1	16129	1	14.5	1	9.7	1
G	BKGDPT55-03-SS	784	1	17.6	1	15.7	1	9.8	1	23820	1	20.2	1	9.9	1
G	BKGDPT56-03-SS	745	1	12.1	1	10.2	1	6	1	12693	1	18.1	1	9	1
G	BKGDPT57-03-SS	735	1	15.5	1	23.7	1	9.7	1	15990	1	24.2	1	40.2	1
G	BKGDPT58-03-SS	856	1	15.6	1	7	1	9.7	1	16706	1	14.1	1	9.8	1
G	BKGDPT59-03-SS	820	1	14.2	1	12	1	7.2	1	21344	1	15.4	1	44.1	1
G	BKGDPT60-03-SS	978	1	10.6	1	9.3	1	6.8	1	12085	1	16	1	14.1	1

AREA_LETTER	PROJ_SAMPLE_ID	Magnesium	D_Magnesium	Manganese	D_Manganese	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium
D	BKGDPT31-03-SS	1882	1	451	1	0.0315	1	18.8	1	995	1
D	BKGDPT32-03-SS	2472	1	548	1	0.04	1	15.8	1	1280	1
D	BKGDPT33-03-SS	2291	1	524	1	0.0516	1	17	1	1241	1
Е	BKGDPT34-03-SS	1271	1	1047	1	0.0217	0	11.7	1	984	1
Е	BKGDPT35-03-SS	1178	1	870	1	0.0243	0	11	1	1012	1
Е	BKGDPT36-03-SS	900	1	765	1	0.035	1	8.8	1	597	1
E	BKGDPT37-03-SS	1460	1	170	1	0.0224	0	11.7	1	1472	1
F	BKGDPT38-03-SS	837	1	474	1	0.0255	1	6.2	1	382	1
F	BKGDPT39-03-SS	987	1	1777	1	0.0289	1	17.9	1	441	1
F	BKGDPT40-03-SS	1018	1	732	1	0.0241	1	13.7	1	639	1
F	BKGDPT41-03-SS	1188	1	471	1	0.0434	1	9.5	1	427	1
F	BKGDPT42-03-SS	961	1	1013	1	0.0392	1	10.5	1	505	1
F	BKGDPT43-03-SS	2312	1	81	1	0.066	1	15.4	1	1586	1
F	BKGDPT44-03-SS	873	1	798	1	0.0234	1	7.1	1	441	1
F	BKGDPT45-03-SS	1259	1	333	1	0.026	1	9.4	1	445	1
F	BKGDPT46-03-SS	1212	1	926	1	0.0314	1	12.3	1	623	1
F	BKGDPT47-03-SS	1262	1	1169	1	0.0205	1	13.5	1	584	1
G	BKGDPT48-03-SS	2980	1	1806	1	0.0242	1	14	1	1102	1
G	BKGDPT49-03-SS	1265	1	252	1	0.04	1	9.8	1	458	1
G	BKGDPT50-03-SS	1222	1	307	1	0.0302	1	9.5	1	448	1
G	BKGDPT51-03-SS	1258	1	1392	1	0.0317	1	10.1	1	473	1
G	BKGDPT52-03-SS	1105	1	1088	1	0.0453	1	25.4	1	540	1
G	BKGDPT53-03-SS	2069	1	330	1	0.0236	0	12.1	1	1376	1
G	BKGDPT54-03-SS	1088	1	1207	1	0.0195	1	9	1	388	1
G	BKGDPT55-03-SS	990	1	1202	1	0.0244	1	13	1	370	1
G	BKGDPT56-03-SS	732	1	1186	1	0.0286	1	10	1	418	1
G	BKGDPT57-03-SS	1241	1	1456	1	0.0224	0	11	1	888	1
G	BKGDPT58-03-SS	1110	1	209	1	0.0294	1	9.7	1	334	1
G	BKGDPT59-03-SS	1840	1	513	1	0.0233	0	13.3	1	1356	1
G	BKGDPT60-03-SS	802	1	1141	1	0.0238	1	11.4	1	427	1

AREA_LETTER	PROJ_SAMPLE_ID	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium	Total Uranium	D_Total Uranium
D	BKGDPT31-03-SS	0.223	0	0.65	0	28	1	0.162	1	3.73	1
D	BKGDPT32-03-SS	0.801	1	0.63	0	35	1	0.267	1	3.28	1
D	BKGDPT33-03-SS	0.447	1	0.69	0	36	1	0.303	1	3.31	1
Е	BKGDPT34-03-SS	1.463	1	0.63	0	29	1	0.984	1	2.95	1
Е	BKGDPT35-03-SS	1.338	1	0.67	0	26	1	0.854	1	3.34	1
Е	BKGDPT36-03-SS	0.778	1	0.65	0	29	1	0.619	1	2.68	1
Е	BKGDPT37-03-SS	0.528	1	0.68	0	32	1	0.139	0	3.64	1
F	BKGDPT38-03-SS	0.371	0	0.31	1	19	1	0.163	1	2.83	1
F	BKGDPT39-03-SS	0.358	1	3.36	1	28	1	0.132	1	3.13	1
F	BKGDPT40-03-SS	0.427	1	1.92	1	24	1	0.133	1	2.83	1
F	BKGDPT41-03-SS	0.367	1	0.4	1	26	1	0.211	1	3.13	1
F	BKGDPT42-03-SS	0.348	1	0.55	0	14	1	0.155	1	3.19	1
F	BKGDPT43-03-SS	0.579	1	0.65	1	121	1	0.132	0	3.28	1
F	BKGDPT44-03-SS	0.402	0	0.42	1	30	1	0.168	1	3.01	1
F	BKGDPT45-03-SS	0.36	1	1.04	1	29	1	0.208	1	3.22	1
F	BKGDPT46-03-SS	0.328	0	2.1	1	27	1	0.117	1	3.10	1
F	BKGDPT47-03-SS	0.39	0	3.14	1	30	1	0.117	1	3.25	1
G	BKGDPT48-03-SS	0.345	1	11.85	1	130	1	0.148	1	3.40	1
G	BKGDPT49-03-SS	0.369	0	3.69	1	40	1	0.189	1	3.81	1
G	BKGDPT50-03-SS	0.366	0	1.01	1	10	1	0.123	1	4.23	1
G	BKGDPT51-03-SS	0.702	1	0.11	0	40	1	0.162	1	3.37	1
G	BKGDPT52-03-SS	0.36	0	5.5	1	32	1	0.168	1	3.31	1
G	BKGDPT53-03-SS	0.561	1	0.66	0	58	1	0.135	0	2.89	1
G	BKGDPT54-03-SS	0.364	0	0.67	1	46	1	0.143	1	3.40	1
G	BKGDPT55-03-SS	0.354	0	2.08	1	27	1	0.134	1	2.92	1
G	BKGDPT56-03-SS	0.378	1	0.39	1	18	1	0.17	1	3.43	1
G	BKGDPT57-03-SS	1.468	1	0.66	0	31	1	1.706	1	2.80	1
G	BKGDPT58-03-SS	0.381	1	0.11	0	22	1	0.252	1	2.68	1
G	BKGDPT59-03-SS	0.443	1	0.66	0	37	1	0.136	0	2.62	1
G	BKGDPT60-03-SS	0.396	1	0.12	0	23	1	0.153	1	3.07	1

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

AREA_LETTER	PROJ_SAMPLE_ID	Vanadium	D_Vanadium	Zinc	D_Zinc
D	BKGDPT31-03-SS	34.4	1	55	1
D	BKGDPT32-03-SS	42.5	1	66.1	1
D	BKGDPT33-03-SS	40.6	1	68.7	1
E	BKGDPT34-03-SS	28.8	1	37.3	1
E	BKGDPT35-03-SS	32	1	38.2	1
E	BKGDPT36-03-SS	29.1	1	30.8	1
E	BKGDPT37-03-SS	43.4	1	39.7	1
F	BKGDPT38-03-SS	23.2	1	21.2	1
F	BKGDPT39-03-SS	39.5	1	40.8	1
F	BKGDPT40-03-SS	31.7	1	37.2	1
F	BKGDPT41-03-SS	26.5	1	24	1
F	BKGDPT42-03-SS	88.4	1	30.8	1
F	BKGDPT43-03-SS	47.3	1	35.1	1
F	BKGDPT44-03-SS	19.5	1	21.7	1
F	BKGDPT45-03-SS	24.5	1	24.4	1
F	BKGDPT46-03-SS	29.5	1	45.1	1
F	BKGDPT47-03-SS	56.7	1	47.6	1
G	BKGDPT48-03-SS	51.8	1	161.4	1
G	BKGDPT49-03-SS	45.2	1	36.9	1
G	BKGDPT50-03-SS	51.3	1	31.5	1
G	BKGDPT51-03-SS	26.5	1	25.6	1
G	BKGDPT52-03-SS	68	1	53.9	1
G	BKGDPT53-03-SS	41	1	43.4	1
G	BKGDPT54-03-SS	25	1	29.4	1
G	BKGDPT55-03-SS	28.8	1	32.9	1
G	BKGDPT56-03-SS	20.2	1	27.5	1
G	BKGDPT57-03-SS	30.4	1	31.9	1
G	BKGDPT58-03-SS	25.2	1	24.1	1
G	BKGDPT59-03-SS	36.2	1	41.5	1
G	BKGDPT60-03-SS	19.9	1	24.7	1

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238
D	BKGDPT31-04-SS	0.017	0	0.029	0	0.017	0
D	BKGDPT32-04-SS	0.012	0	0.059	0	0.011	0
D	BKGDPT33-04-SS	0.025	0	0.027	0	0.017	0
Е	BKGDPT34-04-SS	0.015	0	0.056	0	0.016	0
Е	BKGDPT35-04-SS	0.017	0	0.052	0	0.026	0
Е	BKGDPT36-04-SS	0.014	0	0.024	0	0.071	0
E	BKGDPT37-04-SS	0.018	0	0.029	0	0.015	0
F	BKGDPT38-04-SS	0.06	0	0.037	0	0.042	0
F	BKGDPT39-04-SS	0.023	0	0.027	0	0.036	0
F	BKGDPT40-04-SS	0.031	0	0.022	0	0.032	0
F	BKGDPT41-04-SS	0.055	0	0.028	0	0.041	0
F	BKGDPT42-04-SS	0.011	0	0.022	0	0.021	0
F	BKGDPT43-04-SS	0.029	0	0.016	0	0.027	0
F	BKGDPT44-04-SS	0.036	0	0.019	0	0.029	0
F	BKGDPT45-04-SS	0.014	0	0.02	0	0.02	0
F	BKGDPT46-04-SS	0.016	0	0.02	0	0.032	0
F	BKGDPT47-04-SS	0.005	0	0.029	0	0.031	0
G	BKGDPT48-04-SS	0.044	0	0.039	0	0.022	0
G	BKGDPT49-04-SS	0.031	0	0.021	0	0.014	0
G	BKGDPT50-04-SS	0.02	0	0.034	0	0.048	0
G	BKGDPT51-04-SS	0.036	0	0.021	0	0.021	0
G	BKGDPT52-04-SS	0.032	0	0.017	0	0.019	0
G	BKGDPT53-04-SS	0.029	0	0.053	0	0.047	0
G	BKGDPT54-04-SS	0.024	0	0.035	0	0.046	0
G	BKGDPT55-04-SS	0.015	0	0.043	0	0.023	0
G	BKGDPT56-04-SS	0.014	0	0.023	0	0.039	0
G	BKGDPT57-04-SS	0.006	0	0.066	0	0.029	0
G	BKGDPT58-04-SS	0.023	0	0.029	0	0.02	0
G	BKGDPT59-04-SS	0.017	0	0.025	0	0.022	0
G	BKGDPT60-04-SS	0.028	0	0.053	0	0.024	0

AREA_LETTER	PROJ_SAMPLE_ID	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99	Thorium-228	D_Thorium-228
D	BKGDPT31-04-SS	0.017	0	0.48	0	1.04	1
D	BKGDPT32-04-SS	0.011	0	0.509	0	1.12	1
D	BKGDPT33-04-SS	0.017	1	0.548	0	1.38	1
Е	BKGDPT34-04-SS	0.013	0	0.439	0	0.98	1
Е	BKGDPT35-04-SS	0.024	1	0.463	0	1.06	1
Е	BKGDPT36-04-SS	0.028	0	0.429	0	1.09	1
Е	BKGDPT37-04-SS	0.015	0	0.457	0	1.74	1
F	BKGDPT38-04-SS	0.026	0	0.467	0	1.03	1
F	BKGDPT39-04-SS	0.021	0	0.403	0	1.12	1
F	BKGDPT40-04-SS	0.022	0	0.31	0	1.27	1
F	BKGDPT41-04-SS	0.024	0	0.412	0	1.13	1
F	BKGDPT42-04-SS	0.014	0	0.365	0	1.3	1
F	BKGDPT43-04-SS	0.019	0	0.407	0	1.32	1
F	BKGDPT44-04-SS	0.02	0	0.492	0	1	1
F	BKGDPT45-04-SS	0.011	0	0.355	0	1.16	1
F	BKGDPT46-04-SS	0.005	0	0.394	0	1.35	1
F	BKGDPT47-04-SS	0.022	1	0.394	0	1.29	1
G	BKGDPT48-04-SS	0.025	0	0.37	0	1.26	1
G	BKGDPT49-04-SS	0.023	0	0.488	0	1.55	1
G	BKGDPT50-04-SS	0.038	0	0.375	0	1.2	1
G	BKGDPT51-04-SS	0.024	0	0.402	0	1.07	1
G	BKGDPT52-04-SS	0.013	0	0.382	0	1.39	1
G	BKGDPT53-04-SS	0.034	0	0.329	0	1.48	1
G	BKGDPT54-04-SS	0.039	0	0.392	0	1.18	1
G	BKGDPT55-04-SS	0.037	0	0.361	0	1.24	1
G	BKGDPT56-04-SS	0.02	0	0.418	0	1.08	1
G	BKGDPT57-04-SS	0.017	0	0.388	0	1.19	1
G	BKGDPT58-04-SS	0.02	0	0.431	0	1.31	1
G	BKGDPT59-04-SS	0.022	0	0.581	0	0.99	1
G	BKGDPT60-04-SS	0.015	1	0.444	0	1.18	1

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234
D	BKGDPT31-04-SS	1.19	1	1.03	1	1.05	1
D	BKGDPT32-04-SS	1.28	1	1	1	1.03	1
D	BKGDPT33-04-SS	1.53	1	1.2	1	1.13	1
Е	BKGDPT34-04-SS	1.22	1	1	1	1.01	1
Е	BKGDPT35-04-SS	1.08	1	1.18	1	1.08	1
Е	BKGDPT36-04-SS	1.34	1	1.22	1	0.98	1
Е	BKGDPT37-04-SS	1.66	1	1.63	1	1.16	1
F	BKGDPT38-04-SS	1.09	1	0.85	1	0.9	1
F	BKGDPT39-04-SS	1.01	1	1.12	1	0.84	1
F	BKGDPT40-04-SS	1.09	1	1.05	1	1	1
F	BKGDPT41-04-SS	1.13	1	1.01	1	1	1
F	BKGDPT42-04-SS	1.18	1	1.25	1	0.81	1
F	BKGDPT43-04-SS	1.37	1	1.3	1	0.97	1
F	BKGDPT44-04-SS	1.2	1	0.93	1	1.03	1
F	BKGDPT45-04-SS	1.19	1	0.92	1	1.03	1
F	BKGDPT46-04-SS	1.11	1	1.1	1	1.11	1
F	BKGDPT47-04-SS	1.21	1	1.18	1	1.04	1
G	BKGDPT48-04-SS	1.06	1	1.38	1	0.89	1
G	BKGDPT49-04-SS	1.22	1	1.35	1	1.19	1
G	BKGDPT50-04-SS	1.18	1	1	1	1.35	1
G	BKGDPT51-04-SS	1.28	1	1.04	1	1.07	1
G	BKGDPT52-04-SS	1.18	1	1.37	1	1.07	1
G	BKGDPT53-04-SS	1.56	1	1.44	1	0.98	1
G	BKGDPT54-04-SS	0.93	1	1.01	1	1.21	1
G	BKGDPT55-04-SS	1.06	1	1.06	1	0.93	1
G	BKGDPT56-04-SS	0.99	1	1.14	1	0.88	1
G	BKGDPT57-04-SS	1.17	1	1.11	1	0.95	1
G	BKGDPT58-04-SS	1.3	1	0.95	1	1.03	1
G	BKGDPT59-04-SS	1.17	1	1.14	1	0.94	1
G	BKGDPT60-04-SS	1.14	1	1.18	1	0.91	1

AREA_LETTER	PROJ_SAMPLE_ID	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
D	BKGDPT31-04-SS	0.06	1	1.25	1
D	BKGDPT32-04-SS	0.09	1	1.1	1
D	BKGDPT33-04-SS	0.05	0	1.11	1
Е	BKGDPT34-04-SS	0.059	0	0.99	1
Е	BKGDPT35-04-SS	0.06	0	1.12	1
Е	BKGDPT36-04-SS	0.057	1	0.9	1
Е	BKGDPT37-04-SS	0.072	1	1.22	1
F	BKGDPT38-04-SS	0.048	0	0.95	1
F	BKGDPT39-04-SS	0.062	0	1.05	1
F	BKGDPT40-04-SS	0.091	0	0.95	1
F	BKGDPT41-04-SS	0.083	1	1.05	1
F	BKGDPT42-04-SS	0.068	0	1.07	1
F	BKGDPT43-04-SS	0.05	0	1.1	1
F	BKGDPT44-04-SS	0.064	1	1.01	1
F	BKGDPT45-04-SS	0.073	0	1.08	1
F	BKGDPT46-04-SS	0.067	1	1.04	1
F	BKGDPT47-04-SS	0.033	0	1.09	1
G	BKGDPT48-04-SS	0.056	0	1.14	1
G	BKGDPT49-04-SS	0.054	0	1.28	1
G	BKGDPT50-04-SS	0.07	1	1.42	1
G	BKGDPT51-04-SS	0.061	1	1.13	1
G	BKGDPT52-04-SS	0.045	1	1.11	1
G	BKGDPT53-04-SS	0.056	0	0.97	1
G	BKGDPT54-04-SS	0.075	1	1.14	1
G	BKGDPT55-04-SS	0.056	1	0.98	1
G	BKGDPT56-04-SS	0.098	0	1.15	1
G	BKGDPT57-04-SS	0.072	1	0.94	1
G	BKGDPT58-04-SS	0.076	1	0.9	1
G	BKGDPT59-04-SS	0.057	1	0.88	1
G	BKGDPT60-04-SS	0.062	0	1.03	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
А	BKGDPT01-03-10	7079	1	0.61	1	10.5	1	34.3	1	0.44	1	0.17	1	2415	1
А	BKGDPT02-03-10	8189	1	0.86	1	10.6	1	45.7	1	0.48	1	0.16	1	7138	1
А	BKGDPT03-03-10	3614	1	1.05	0	8.5	1	34.9	1	0.15	1	0.11	0	103394	1
А	BKGDPT04-03-10	5214	1	0.99	1	8	1	26.7	1	0.34	1	0.06	0	40971	1
А	BKGDPT05-03-10	3459	1	0.43	0	7	1	24.2	1	0.13	0	0.11	0	127123	1
В	BKGDPT06-03-10	5338	1	0.47	0	6.7	1	32.2	1	0.24	1	0.07	1	1352	1
В	BKGDPT07-03-10	5577	1	0.68	1	7.5	1	38	1	0.34	1	0.09	1	1267	1
В	BKGDPT08-03-10	6881	1	1.14	1	8.9	1	47.5	1	0.54	1	0.15	1	1150	1
В	BKGDPT09-03-10	3371	1	0.44	0	6.5	1	18.3	1	0.26	1	0.08	1	54219	1
В	BKGDPT10-03-10	6715	1	0.99	1	10.1	1	36.7	1	0.53	1	0.17	1	1133	1
В	BKGDPT11-03-10	4805	1	0.46	0	4	1	15.7	1	0.14	0	0.11	0	72413	1
В	BKGDPT12-03-10	13997	1	1.05	1	9.8	1	81.8	1	0.8	1	0.29	1	8398	1
В	BKGDPT13-03-10	5769	1	0.56	1	7.9	1	57	1	0.31	1	0.14	1	59441	1
В	BKGDPT14-03-10	3052	1	0.43	0	5.9	1	31.7	1	0.35	1	0.11	0	65082	1
В	BKGDPT15-03-10	3306	1	0.42	0	9.8	1	22.5	1	0.13	1	0.05	0	67394	1
В	BKGDPT16-03-10	4045	1	0.5	1	6.5	1	30.1	1	0.28	1	0.06	0	39888	1
В	BKGDPT17-03-10	2376	1	0.42	0	4.3	1	28.3	1	0.36	1	0.11	0	99635	1
В	BKGDPT18-03-10	2965	1	0.35	1	4.2	1	21.4	1	0.21	1	0.06	0	54034	1
В	BKGDPT19-03-10	3903	1	1.07	0	7	1	39	1	0.3	1	0.11	0	110178	1
В	BKGDPT20-03-10	3384	1	0.46	1	5.9	1	20	1	0.23	1	0.06	0	44700	1
В	BKGDPT21-03-10	3215	1	0.43	0	6.9	1	25.4	1	0.08	1	0.05	0	71912	1
В	BKGDPT22-03-10	3205	1	0.42	0	5.9	1	22.4	1	0.15	1	0.05	0	70800	1
В	BKGDPT23-03-10	3239	1	0.43	0	8.1	1	89.9	1	0.15	1	0.05	0	75758	1
В	BKGDPT24-03-10	7831	1	0.93	1	9.1	1	65.9	1	0.49	1	0.08	1	36145	1
В	BKGDPT25-03-10	3582	1	1.27	1	6	1	34.3	1	0.26	1	0.07	1	19286	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
А	BKGDPT01-03-10	11.5	1	7.3	1	12.6	1	16490	1	9.1	1	35.8	1	2167	1	375	1
А	BKGDPT02-03-10	12.4	1	7.4	1	12.1	1	17173	1	8.3	1	42.2	1	3131	1	435	1
А	BKGDPT03-03-10	8.4	1	5.5	1	10.6	1	12256	1	3.8	1	35.8	1	30484	1	398	1
А	BKGDPT04-03-10	12.4	1	5.2	1	10	1	13205	1	6.8	1	29.1	1	12302	1	255	1
А	BKGDPT05-03-10	5.8	1	4.6	1	7.3	1	9086	1	4.6	1	45.2	1	31051	1	363	1
В	BKGDPT06-03-10	10	1	5.6	1	8.4	1	12371	1	5.5	1	24.4	1	1546	1	255	1
В	BKGDPT07-03-10	4.8	1	5.1	1	10.6	1	13009	1	6.1	1	21.5	1	1437	1	310	1
В	BKGDPT08-03-10	6.5	1	6.7	1	12.9	1	15714	1	8.1	1	29.8	1	1512	1	385	1
В	BKGDPT09-03-10	6.2	1	4.5	1	13.3	1	9684	1	4.8	1	21	1	14816	1	227	1
В	BKGDPT10-03-10	7.9	1	7.4	1	12.2	1	16547	1	9.7	1	30.5	1	1583	1	421	1
В	BKGDPT11-03-10	8.3	1	6.7	1	5.4	0	9435	1	7.6	1	17.5	1	24799	1	258	1
В	BKGDPT12-03-10	18.2	1	11.9	1	21.8	1	24086	1	13.4	1	59.8	1	5864	1	295	1
В	BKGDPT13-03-10	9.4	1	6.5	1	11	1	14336	1	6.9	1	32.3	1	29254	1	541	1
В	BKGDPT14-03-10	4.6	1	4.7	1	10.9	1	12041	1	4	1	30.7	1	19618	1	366	1
В	BKGDPT15-03-10	7.9	1	6.2	1	7.4	1	11232	1	5.4	1	23.4	1	22465	1	336	1
В	BKGDPT16-03-10	8.7	1	4.9	1	8.3	1	12022	1	6.1	1	24.9	1	13933	1	312	1
В	BKGDPT17-03-10	13	1	3.5	1	6.6	1	7233	1	3.5	1	41.3	1	39083	1	304	1
В	BKGDPT18-03-10	9	1	4	1	5.6	1	8508	1	3.8	1	21.7	1	12031	1	256	1
В	BKGDPT19-03-10	10.7	1	5.6	1	14	1	13641	1	4.9	1	48.4	1	15530	1	888	1
В	BKGDPT20-03-10	7.7	1	4.7	1	7.6	1	9919	1	5.2	1	20.8	1	13729	1	251	1
В	BKGDPT21-03-10	10.5	1	4.2	1	6.2	1	9528	1	3.4	1	21.7	1	20199	1	380	1
В	BKGDPT22-03-10	6.3	1	4.8	1	2.6	0	9541	1	4.2	1	27.3	1	14244	1	298	1
В	BKGDPT23-03-10	8.3	1	5.9	1	9.8	1	10387	1	4.8	1	22.8	1	18913	1	728	1
В	BKGDPT24-03-10	7.9	1	7.2	1	14.2	1	16386	1	8.6	1	30.4	1	13133	1	460	1
В	BKGDPT25-03-10	7.1	1	5.1	1	6.6	1	10690	1	4.3	1	19.2	1	8155	1	396	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
А	BKGDPT01-03-10	0.0219	0	19.1	1	1058	1	0.232	1	0.66	0	50	1	0.29	1
А	BKGDPT02-03-10	0.023	0	19.7	1	1055	1	0.227	0	0.66	0	63	1	0.396	1
А	BKGDPT03-03-10	0.0198	0	11.1	1	447	1	0.97	0	2.84	0	132	1	0.649	1
А	BKGDPT04-03-10	0.0219	0	12.6	1	770	1	0.547	0	1.6	0	74	1	0.327	0
А	BKGDPT05-03-10	0.0196	0	13.1	1	448	1	0.971	0	2.84	0	130	1	0.58	0
В	BKGDPT06-03-10	0.0228	0	15	1	781	1	0.213	0	0.63	0	53	1	0.341	1
В	BKGDPT07-03-10	0.0206	0	15.2	1	853	1	0.219	0	0.64	0	46	1	0.131	0
В	BKGDPT08-03-10	0.0233	0	16.5	1	854	1	0.263	1	0.65	0	37	1	0.263	1
В	BKGDPT09-03-10	0.021	0	11.4	1	541	1	0.51	0	1.49	0	92	1	0.305	0
В	BKGDPT10-03-10	0.0233	0	18.3	1	960	1	0.229	0	0.67	0	44	1	0.26	1
В	BKGDPT11-03-10	0.0211	0	15.7	1	1085	1	1.042	0	3.05	0	141	1	0.623	0
В	BKGDPT12-03-10	0.0474	1	28.2	1	1828	1	0.235	0	0.69	0	55	1	0.291	1
В	BKGDPT13-03-10	0.0219	0	16.7	1	804	1	1.03	1	2.09	1	98	1	0.641	1
В	BKGDPT14-03-10	0.0199	0	11.7	1	378	1	0.975	0	2.85	0	126	1	0.582	0
В	BKGDPT15-03-10	0.0188	0	14.3	1	419	1	0.497	0	1.45	0	125	1	0.486	1
В	BKGDPT16-03-10	0.0216	0	11.3	1	648	1	1.337	1	4.76	1	73	1	0.322	0
В	BKGDPT17-03-10	0.0174	0	8.6	1	491	1	2.543	1	3.73	1	125	1	0.726	1
В	BKGDPT18-03-10	0.017	0	9.9	1	375	1	1.504	1	1.99	1	105	1	0.403	1
В	BKGDPT19-03-10	0.0188	0	13.2	1	482	1	1.931	1	4.17	1	94	1	0.964	1
В	BKGDPT20-03-10	0.0186	0	11.2	1	607	1	1.014	1	3.12	1	76	1	0.301	0
В	BKGDPT21-03-10	0.0206	0	11.2	1	383	1	0.492	0	1.44	0	106	1	0.305	1
В	BKGDPT22-03-10	0.0194	0	10.3	1	411	1	1.435	1	4.47	1	90	1	0.296	0
В	BKGDPT23-03-10	0.0191	0	13.8	1	424	1	0.496	0	1.71	1	118	1	0.639	1
В	BKGDPT24-03-10	0.023	1	15.7	1	911	1	0.924	1	1.54	1	65	1	0.416	1
В	BKGDPT25-03-10	0.022	0	11.5	1	474	1	0.503	1	1.05	1	57	1	0.374	1

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
А	BKGDPT01-03-10	2.47	1	22.4	1	52.8	1
А	BKGDPT02-03-10	2.53	1	24.6	1	54.8	1
А	BKGDPT03-03-10	1.70	1	10.3	1	26.6	1
А	BKGDPT04-03-10	1.76	1	12.4	1	35.8	1
А	BKGDPT05-03-10	1.73	1	7.6	1	32.2	1
В	BKGDPT06-03-10	1.91	1	13.6	1	38	1
В	BKGDPT07-03-10	1.97	1	16.3	1	42.2	1
В	BKGDPT08-03-10	2.24	1	21.9	1	49.6	1
В	BKGDPT09-03-10	1.58	1	12.2	1	34.1	1
В	BKGDPT10-03-10	2.59	1	21.6	1	55	1
В	BKGDPT11-03-10	2.53	1	8.5	1	45.9	1
В	BKGDPT12-03-10	3.64	1	35.4	1	90	1
В	BKGDPT13-03-10	2.12	1	21.1	1	45.3	1
В	BKGDPT14-03-10	1.37	1	17.2	1	34.8	1
В	BKGDPT15-03-10	1.52	1	10.2	1	29.4	1
В	BKGDPT16-03-10	1.37	1	19	1	31.9	1
В	BKGDPT17-03-10	1.28	1	11.4	1	10.8	1
В	BKGDPT18-03-10	1.07	1	12.9	1	25.2	1
В	BKGDPT19-03-10	1.28	1	18	1	27.2	1
В	BKGDPT20-03-10	1.85	1	13.2	1	27.4	1
В	BKGDPT21-03-10	1.70	1	4.8	1	24.5	1
В	BKGDPT22-03-10	1.37	1	9.3	1	24.2	1
В	BKGDPT23-03-10	1.31	1	8.3	1	30.8	1
В	BKGDPT24-03-10	2.50	1	21.7	1	50.1	1
В	BKGDPT25-03-10	1.55	1	12.3	1	29.6	1

D_ChemicalName; 1 = Detect, 0 = Non Detect

All concentrations in mg/kg (dry weight)

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
А	BKGDPT01-04-10	0.021	0	0.061	0	0.043	0	0.049	0	0.439	0
А	BKGDPT02-04-10	0.039	0	0.067	0	0.049	0	0.045	0	0.453	0
А	BKGDPT03-04-10	0.046	0	0.07	0	0.04	0	0.025	0	0.411	0
А	BKGDPT04-04-10	0.079	0	0.063	0	0.061	0	0.057	0	0.427	0
А	BKGDPT05-04-10	0.053	0	0.088	0	0.106	0	0.089	0	0.381	0
В	BKGDPT06-04-10	0.049	0	0.085	0	0.035	0	0.018	0	0.407	0
В	BKGDPT07-04-10	0.053	0	0.031	0	0.058	0	0.055	0	0.414	0
В	BKGDPT08-04-10	0.047	0	0.069	0	0.091	0	0.059	0	0.426	0
В	BKGDPT09-04-10	0.042	0	0.035	0	0.021	0	0.017	0	0.361	0
В	BKGDPT10-04-10	0.105	0	0.07	0	0.078	0	0.063	0	0.434	0
В	BKGDPT11-04-10	0.039	0	0.089	0	0.039	0	0.044	0	0.358	0
В	BKGDPT12-04-10	0.036	0	0.064	0	0.149	0	0.098	0	0.472	0
В	BKGDPT13-04-10	0.036	0	0.057	0	0.021	0	0.01	0	0.38	0
В	BKGDPT14-04-10	0.064	0	0.06	0	0.027	0	0.031	0	0.358	0
В	BKGDPT15-04-10	0.022	0	0.042	0	0.049	0	0.041	0	0.359	0
В	BKGDPT16-04-10	0.028	0	0.047	0	0.022	0	0.01	0	0.398	0
В	BKGDPT17-04-10	0.074	0	0.053	0	0.017	0	0.021	0	0.361	0
В	BKGDPT18-04-10	0.024	0	0.071	0	0.043	0	0.043	0	0.388	0
В	BKGDPT19-04-10	0.023	0	0.022	0	0.036	0	0.019	0	0.378	0
В	BKGDPT20-04-10	0.047	0	0.052	0	0.032	0	0.032	0	0.358	0
В	BKGDPT21-04-10	0.06	0	0.05	0	0.072	0	0.019	0	0.375	0
В	BKGDPT22-04-10	0.047	0	0.059	0	0.021	0	0.011	0	0.375	0
В	BKGDPT23-04-10	0.033	0	0.053	0	0.057	0	0.031	0	0.38	0
В	BKGDPT24-04-10	0.07	0	0.087	0	0.009	0	0.009	0	0.427	0
В	BKGDPT25-04-10	0.02	0	0.053	0	0.017	0	0.017	0	0.365	0

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
А	BKGDPT01-04-10	0.58	1	0.93	1	0.62	1	0.82	1	0.045	1	0.83	1
А	BKGDPT02-04-10	0.67	1	1.24	1	0.79	1	0.76	1	0.047	1	0.85	1
А	BKGDPT03-04-10	0.2	1	0.55	1	0.16	1	0.42	1	0.051	0	0.57	1
А	BKGDPT04-04-10	0.36	1	0.68	1	0.38	1	0.54	1	0.026	1	0.59	1
А	BKGDPT05-04-10	0.3	1	0.72	1	0.25	1	0.6	1	0.041	0	0.58	1
В	BKGDPT06-04-10	0.32	1	1.16	1	0.48	1	0.67	1	0.036	1	0.64	1
В	BKGDPT07-04-10	0.34	1	0.92	1	0.35	1	0.55	1	0.042	1	0.66	1
В	BKGDPT08-04-10	0.47	1	1.04	1	0.57	1	0.65	1	0.041	0	0.75	1
В	BKGDPT09-04-10	0.32	1	0.78	1	0.25	1	0.58	1	0.021	0	0.53	1
В	BKGDPT10-04-10	0.63	1	1.47	1	0.7	1	0.75	1	0.034	1	0.87	1
В	BKGDPT11-04-10	0.34	1	1.27	1	0.26	1	0.96	1	0.037	1	0.85	1
В	BKGDPT12-04-10	1.16	1	1.74	1	1.15	1	1.31	1	0.045	1	1.22	1
В	BKGDPT13-04-10	0.66	1	1.27	1	0.62	1	0.65	1	0.026	1	0.71	1
В	BKGDPT14-04-10	0.3	1	0.73	1	0.24	1	0.4	1	0.028	1	0.46	1
В	BKGDPT15-04-10	0.26	1	0.85	1	0.44	1	0.54	1	0.02	1	0.51	1
В	BKGDPT16-04-10	0.49	1	0.89	1	0.47	1	0.52	1	0.044	1	0.46	1
В	BKGDPT17-04-10	0.28	1	0.57	1	0.51	1	0.35	1	0.044	0	0.43	1
В	BKGDPT18-04-10	0.26	1	0.76	1	0.37	1	0.4	1	0.049	0	0.36	1
В	BKGDPT19-04-10	0.34	1	0.79	1	0.28	1	0.37	1	0.031	1	0.43	1
В	BKGDPT20-04-10	0.35	1	0.75	1	0.28	1	0.67	1	0.059	0	0.62	1
В	BKGDPT21-04-10	0.29	1	0.52	1	0.23	1	0.35	1	0.032	1	0.57	1
В	BKGDPT22-04-10	0.24	1	0.58	1	0.31	1	0.35	1	0.029	1	0.46	1
В	BKGDPT23-04-10	0.17	1	0.65	1	0.18	1	0.43	1	0.03	1	0.44	1
В	BKGDPT24-04-10	0.83	1	1.13	1	0.7	1	0.78	1	0.048	1	0.84	1
В	BKGDPT25-04-10	0.41	1	0.71	1	0.37	1	0.47	1	0.052	0	0.52	1

All concentrations in pCi/g (dry weight)

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
D	BKGDPT31-03-2	15035	1	1.26	1	21.1	1	59.6	1	0.79	1	0.06	0	275	1
D	BKGDPT31-03-4	15450	1	2.62	1	77.7	1	431.9	1	1.35	1	1.46	1	292	1
D	BKGDPT32-03-10	11613	1	0.95	0	12.2	1	49	1	0.76	1	0.02	0	787	1
D	BKGDPT32-03-12	9928	1	2.46	1	53.3	1	71.6	1	1.71	1	0.06	0	880	1
D	BKGDPT32-03-2	19830	1	1.01	0	9.3	1	61.4	1	0.62	1	0.02	0	876	1
D	BKGDPT32-03-4	12057	1	0.98	0	6.2	1	74.9	1	0.67	1	0.02	0	978	1
D	BKGDPT32-03-6	15466	1	0.59	1	29.5	1	72.5	1	0.83	1	0.02	0	882	1
D	BKGDPT32-03-8	12663	1	0.98	0	21.8	1	68.2	1	1.1	1	0.06	0	1151	1
D	BKGDPT33-03-2	11089	1	0.93	0	11.7	1	49.9	1	0.43	1	0.02	0	123	1
D	BKGDPT33-03-4	20430	1	1.46	1	23.9	1	97.7	1	0.96	1	0.02	0	553	1
D	BKGDPT33-03-6	14365	1	2.91	1	37.3	1	83.9	1	1.18	1	0.06	0	434	1
E	BKGDPT34-03-10	15126	1	0.82	1	7.9	1	58.2	1	0.78	1	0.02	0	683	1
E	BKGDPT34-03-12	13839	1	1.06	1	14.1	1	64.1	1	0.97	1	0.02	0	765	1
E	BKGDPT34-03-14	13501	1	1.03	1	15.1	1	75.9	1	0.87	1	0.03	0	695	1
E	BKGDPT34-03-2	15610	1	1.61	1	13.6	1	51.1	1	0.65	1	0.02	0	278	1
E	BKGDPT34-03-2 BKGDPT34-03-4	20388	1	1.44	1	11.5	1	1529.1	1	1.11	1	0.02	0	774	1
E	BKGDPT34-03-6	20368	1	1.44	1	2.6	1	92.8	1	0.91	1	0.02	0	938	1
E	BKGDPT34-03-8	15981	1	0.77	1	4.9	1	92.8 58.8	1	0.91	1	0.03	0	652	1
E	BKGDPT35-03-10	11023	1	0.77	0	4.9	1	61.4	1	0.01	1	0.02	0	585	1
E	BKGDPT35-03-10 BKGDPT35-03-12	9166	1	0.28	1	20.4	1	60.4	1	0.77	1	0.02	0	588	1
E	BKGDP135-03-12 BKGDPT35-03-14	9100	1	0.39	1	19.1	1	59.7	1	0.71	1	0.02	0	526	1
E	BKGDP135-03-14 BKGDPT35-03-2	10011	1	1.03	1	36	1	59.7 47.8	1	0.72	1	0.03	0	288	1
					1	- 30 - 9	1		1						1
E	BKGDPT35-03-4	15357	1	0.99	-	9	1	68.8		0.64	1	0.02	0	743	1
E	BKGDPT35-03-6	14320	1	0.76	1		1	75.2	1	0.8	1	0.02	0	686	1
E	BKGDPT35-03-8	12334	1	0.3	0	10.5	1	67.8	1	0.46	1	0.02	0	709	1
E	BKGDPT36-03-10	10515	1	1.42	1	16.6	1	47.5	1	1.05	1	0.02	0	720	1
E	BKGDPT36-03-12	11299	1	1.72	1	13.8	1	59.1	1	0.84	1	0.04	1	855	1
E	BKGDPT36-03-14	8986	1	1.6	1	39.7	1	66.5	1	0.87	1	0.06	0	544	1
E	BKGDPT36-03-2	13834	1	1.56	1	8.5	1	47.1	1	0.45	1	0.02	0	196	1
E	BKGDPT36-03-4	14841	1	1.21	0	6.9	1	74.2	1	0.61	1	0.02	0	503	1
E	BKGDPT36-03-6	16038	1	1.18	0	3.4	1	105.8	1	0.73	1	0.02	0	963	1
E	BKGDPT36-03-8	8881	1	2.54	1	32.4	1	43.7	1	2.33	1	0.12	0	510	1
E	BKGDPT37-03-10	13333	1	1.03	1	10	1	76.1	1	0.89	1	0.02	0	494	1
E	BKGDPT37-03-12	14269	1	2.04	1	20.8	1	75.3	1	0.92	1	0.06	0	511	1
E	BKGDPT37-03-14	13769	1	1.69	1	8.9	1	58.3	1	0.91	1	0.02	0	564	1
E	BKGDPT37-03-2	16175	1	1.26	1	10.4	1	527.7	1	0.72	1	0.02	0	320	1
E	BKGDPT37-03-4	13808	1	2.56	1	15.3	1	42.8	1	0.92	1	0.02	0	441	1
E	BKGDPT37-03-6	14527	1	1.67	1	14.5	1	91.8	1	1.05	1	0.02	0	503	1
E	BKGDPT37-03-8	12812	1	1.24	1	9.8	1	71	1	0.8	1	0.02	0	507	1
F	BKGDPT38-03-10	6223	1	0.4	0	3.3	1	58.1	1	0.46	1	0.05	1	493	1
F	BKGDPT38-03-12	8415	1	0.38	0	12.4	1	83.9	1	0.73	1	0.11	1	1167	1
F	BKGDPT38-03-14	6451	1	0.41	0	3.9	1	52.6	1	0.56	1	0.09	1	954	1
F	BKGDPT38-03-2	6104	1	0.4	0	8.4	1	80.1	1	0.74	1	0.06	1	677	1
F	BKGDPT38-03-4	6960	1	0.38	0	6.6	1	40.2	1	0.38	1	0.02	1	668	1
F	BKGDPT38-03-6	8005	1	0.68	1	16.1	1	52.6	1	0.7	1	0.04	1	280	1
F	BKGDPT38-03-8	11904	1	0.41	0	13.5	1	81	1	0.58	1	0.08	1	806	1
F	BKGDPT39-03-10	9373	1	0.36	0	1.7	1	69.9	1	0.73	1	0.2	1	672	1
F	BKGDPT39-03-12	3829	1	0.39	0	2.2	1	32.1	1	0.35	1	0.07	1	284	1
F	BKGDPT39-03-14	8938	1	0.36	0	8	1	83.3	1	0.68	1	0.08	1	805	1
F	BKGDPT39-03-2	7059	1	0.36	1	40.1	1	65.8	1	1.05	1	0.16	1	315	1
F	BKGDPT39-03-4	6023	1	0.62	1	19.3	1	52.2	1	0.66	1	0.07	1	120	1
F	BKGDPT39-03-6	11398	1	0.43	1	2.6	1	96.3	1	1.04	1	0.15	1	669	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
F	BKGDPT39-03-8	11966	1	0.53	1	7.5	1	97.5	1	0.94	1	0.15	1	715	1
F	BKGDPT40-03-10	12500	1	1.02	1	10.3	1	81	1	1.12	1	0.18	1	1079	1
F	BKGDPT40-03-12	13010	1	1.51	1	9.3	1	81.4	1	1.06	1	0.17	1	1055	1
F	BKGDPT40-03-14	11538	1	0.87	1	5.3	1	87.3	1	0.93	1	0.24	1	1124	1
F	BKGDPT40-03-2	10098	1	1.76	1	27.3	1	57.1	1	1.18	1	0.14	1	527	1
F	BKGDPT40-03-4	7648	1	0.36	1	9.8	1	82.5	1	0.59	1	0.12	1	758	1
F	BKGDPT40-03-6	8849	1	0.58	1	1.7	1	62.4	1	0.28	1	0.1	1	424	1
F	BKGDPT40-03-8	9397	1	0.38	0	3.8	1	63.5	1	0.56	1	0.08	1	585	1
F	BKGDPT41-03-10	10914	1	0.36	0	8.9	1	90.6	1	1.13	1	0.2	1	1151	1
F	BKGDPT41-03-12	10112	1	0.4	0	3.3	1	80.8	1	0.9	1	0.17	1	1050	1
F	BKGDPT41-03-14	9535	1	0.39	0	4.5	1	76	1	0.88	1	0.21	1	1111	1
F	BKGDPT41-03-2	10806	1	0.36	0	13.4	1	52.2	1	0.5	1	0.1	1	231	1
F	BKGDPT41-03-4	7338	1	0.37	0	11.8	1	54.2	1	0.49	1	0.1	1	265	1
F	BKGDPT41-03-6	10135	1	0.38	0	2.6	1	85.5	1	0.92	1	0.18	1	1018	1
F	BKGDPT41-03-8	10133	1	0.4	0	4.1	1	88	1	1.06	1	0.18	1	1010	1
F	BKGDPT42-03-2	14165	1	0.39	1	12.5	1	39.5	1	0.5	1	0.10	1	327	1
F	BKGDPT42-03-2 BKGDPT42-03-4	111144	1	0.39	1	12.5	1	39.3	1	0.72	1	0.07	1	698	1
F	BKGDPT42-03-6	9671	1	0.39	1	6.2	1	475.4	1	0.72	1	0.07	1	932	1
F	BKGDPT43-03-10	19090	1	0.37	1	6.3	1	88.4	1	1.03	1	0.03	0	1174	1
F	BKGDPT43-03-10 BKGDPT43-03-12	19090	1	0.37	0	2.5	1	58.4	1	0.59	1	0.03	0	623	1
F	BKGDPT43-03-12 BKGDPT43-03-14	15636	1	0.28	0	12.7	1	78.7	1	0.92	1	0.02	0	945	1
F	BKGDPT43-03-2	25516	1	0.28	0	9.1	1	59.2	1	1.65	1	0.02	0	716	1
F	BKGDP143-03-2 BKGDPT43-03-4	25352	1	0.28	0	9.1	1	161.3	1	2.75	1	0.05	0	924	1
F	BKGDPT43-03-6	23332	1	0.29	0	6	1	48.9	1	1.35	1	0.08	0	924 1152	1
		-	1		-	-	1				1	0.03	-	-	1
F F	BKGDPT43-03-8	21274		0.31	0	16.8 5.4		57.8 80.2	1	1.31	-	0.06	0	1250 1098	1
	BKGDPT44-03-10	10618	1		1		1		1		1		1		
F F	BKGDPT44-03-12	10339	1	0.39	0	4.6	1	55.1 72.4	1	0.55	1	0.12	1	945	
	BKGDPT44-03-14	7345	1	0.36	0	6.4				0.6	-	0.11	1	598	
F	BKGDPT44-03-2	6744	1	0.35	0	7.2	1	59.2	1	0.4	1	0.11	1	677	1
F	BKGDPT44-03-4	8629	1	0.71	1	9.1	1	149.7	1	1.21	1	0.13	1	537	1
F	BKGDPT44-03-6	11876	1	1.99	0	8.8	1	73.6	1	0.88	1	0.13	1	990	
F	BKGDPT44-03-8	11856	1	0.41	0	4.2	1	78.2	1	0.81	1	0.22	1	1203	1
F	BKGDPT45-03-2	10696	1	0.38	1	12.6	1	49.5	1	0.56	1	0.1	1	347	1
F	BKGDPT45-03-4	6466	1	0.68	1	13.3	1	61.8	1	0.55	1	0.07	1	509	1
F	BKGDPT46-03-2	7719	1	0.37	0	15.4	1	49.6	1	0.47	1	0.13	1	362	1
F	BKGDPT46-03-4	8725	1	0.38	0	24.8	1	50.4	1	0.71	1	0.14	1	671	1
F	BKGDPT46-03-6	12862	1	0.35	0	19.9	1	45.1	1	0.89	1	0.14	1	891	1
F	BKGDPT47-03-10	10473	1	0.55	1	8	1	73.1	1	0.61	1	0.13	1	832	1
F	BKGDPT47-03-12	10177	1	0.56	1	9.2	1	68.4	1	0.66	1	0.12	1	761	1
F	BKGDPT47-03-14	10215	1	0.74	1	15	1	66.4	1	0.77	1	0.15	1	749	1
F	BKGDPT47-03-2	8566	1	0.81	1	29.9	1	62.1	1	0.93	1	0.21	1	272	1
F	BKGDPT47-03-4	9443	1	1.75	0	22.3	1	92.3	1	1.17	1	0.3	1	261	1
F	BKGDPT47-03-6	9790	1	0.38	0	12.9	1	74.2	1	0.75	1	0.15	1	489	1
F	BKGDPT47-03-8	10913	1	0.44	1	17.8	1	87.4	1	0.71	1	0.16	1	776	1
G	BKGDPT48-03-10	11041	1	0.37	1	26.7	1	91.3	1	1.16	1	0.15	1	1025	1
G	BKGDPT48-03-12	8890	1	0.37	1	11	1	72.4	1	0.64	1	0.12	1	882	1
G	BKGDPT48-03-14	9821	1	0.41	1	14.1	1	60.3	1	0.72	1	0.12	1	892	1
G	BKGDPT48-03-2	7937	1	0.67	1	17	1	72.5	1	0.65	1	0.11	1	263	1
G	BKGDPT48-03-4	10708	1	2.38	1	93	1	54.7	1	1.94	1	0.25	1	220	1
G	BKGDPT48-03-6	10408	1	0.54	1	7.6	1	64	1	1.13	1	0.11	1	950	1
G	BKGDPT48-03-8	13325	1	1.89	0	15.2	1	81.5	1	0.91	1	0.11	1	738	1
G	BKGDPT49-03-10	12190	1	0.56	1	20.8	1	117.5	1	1.11	1	0.24	1	1502	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
G	BKGDPT49-03-12	12659	1	0.92	1	47.6	1	114.5	1	1.26	1	0.4	1	1489	1
G	BKGDPT49-03-14	9627	1	0.55	1	8	1	84.3	1	1.03	1	0.19	1	1097	1
G	BKGDPT49-03-2	13230	1	0.89	1	18.1	1	563.8	1	0.87	1	0.1	1	728	1
G	BKGDPT49-03-4	14112	1	0.42	1	9.3	1	169.1	1	1.64	1	0.15	1	1217	1
G	BKGDPT49-03-6	15013	1	0.79	1	8	1	396.9	1	1.96	1	0.34	1	1606	1
G	BKGDPT49-03-8	13032	1	0.73	1	5.7	1	39.2	1	1.01	1	0.26	1	1523	1
G	BKGDPT50-03-10	9671	1	0.39	0	2.9	1	79.8	1	1.08	1	0.13	1	1023	1
G	BKGDPT50-03-12	8968	1	0.38	0	0.6	1	82.7	1	0.7	1	0.09	1	956	1
G	BKGDPT50-03-14	7012	1	0.36	0	0.4	1	108.3	1	0.61	1	0.14	1	662	1
G	BKGDPT50-03-2	10965	1	0.38	0	0.4	1	54.1	1	0.42	1	0.04	1	475	1
G	BKGDPT50-03-4	13155	1	0.37	0	1.4	1	72.8	1	0.81	1	0.07	1	1127	1
G	BKGDPT50-03-6	10755	1	0.39	0	1.8	1	71.6	1	0.76	1	0.08	1	965	1
G	BKGDPT50-03-8	11533	1	0.38	0	1.7	1	73.5	1	0.81	1	0.1	1	1185	1
G	BKGDPT51-03-10	9541	1	0.34	0	5.4	1	70	1	0.71	1	0.05	1	1035	1
G	BKGDPT51-03-12	8992	1	0.34	1	5.6	1	81.1	1	0.55	1	0.04	1	1107	1
G	BKGDPT51-03-14	9691	1	0.35	1	9.4	1	277.1	1	0.73	1	0.11	1	1185	1
G	BKGDPT51-03-2	10789	1	0.36	1	13.9	1	84	1	0.86	1	0.08	1	624	<u> </u>
G	BKGDPT51-03-4	11803	1	0.38	1	4.6	1	51.8	1	0.57	1	0.08	1	374	1
G	BKGDPT51-03-6	8614	1	0.37	1	3.5	1	53	1	1.07	1	0.17	1	682	1
G	BKGDPT51-03-8	7855	1	0.39	1	2.4	1	39.3	1	0.5	1	0.04	1	774	1
G	BKGDPT52-03-10	9766	1	2.08	1	15	1	53.7	1	0.83	1	0.19	1	8324	1
G	BKGDPT52-03-10	10767	1	0.36	1	12.2	1	34.4	1	0.82	1	0.08	1	1794	1
G	BKGDPT52-03-12 BKGDPT52-03-14	10695	1	0.33	1	13.7	1	39.2	1	0.81	1	0.00	1	1207	1
G	BKGDPT52-03-14 BKGDPT52-03-2	10095	1	1.7	1	28.7	1	45.1	1	0.86	1	0.12	1	201	1
G	BKGDPT52-03-4	12965	1	0.39	1	9.3	1	44.9	1	0.63	1	0.12	1	361	1
G	BKGDPT52-03-6	12903	1	0.54	1	6.5	1	83.8	1	0.03	1	0.09	1	1224	1
G	BKGDPT52-03-8	11825	1	0.34	1	7.9	1	49.1	1	0.74	1	0.09	1	741	1
G	BKGDPT53-03-10	19053	1	0.39	1	5.7	1	107.2	1	0.72	1	0.09	0	1151	1
G	BKGDPT53-03-10 BKGDPT53-03-12	17033	1	0.82	1	4.7	1	107.2	1	0.78	1	0.02	0	1023	1
G	BKGDPT53-03-12 BKGDPT53-03-14	16302	1	1.37	1	4.7	1	100.5	1	0.78	1	0.02	0	1025	1
G	BKGDPT53-03-14 BKGDPT53-03-2	20455	1	1.37	1	10.5	1	66.9	1	0.68	1	0.05	0	511	1
G		20433	1	0.29	0	8.2	1	218.7	1	1.64	1	0.08	0	1543	1
G	BKGDPT53-03-4	22236	1	0.29	0	8.2 10.5	1		1		1	0.02	0		1
G	BKGDPT53-03-6	17983	1	0.32	0	29.2	1	213.2 100.9	-	1.43 0.93	1	0.03	0	1757 1300	1
	BKGDPT53-03-8		1		-				1		-		-		1
G G	BKGDPT54-03-10	9842 9245	1	0.36	0	4.3 3.3	1	92 104.4	1	0.71	1	0.08	1	1100 1068	
	BKGDPT54-03-12		1		÷		1		1	0.68	1	0.00	1		
G	BKGDPT54-03-14	9263	1	0.37	0	6	1	92.7	1	0.58	1	0.08	1	1152	1
G	BKGDPT54-03-2	12225	1	0.39	0	16.9 4.9	1	76.4	1	0.52	1	0.11	1	801	1
G	BKGDPT54-03-4	4319	1	0.37		,	1	32.4	1	0.32	1	0.16	1	512	1
G	BKGDPT54-03-6	10443	1	0.33	0	7.6	1	70.2	1	0.53	1	0.11	1	811 838	1
G	BKGDPT54-03-8	9353		0.38	0	6.5	-		•	0.7		0.14			1
G	BKGDPT55-03-10	9339	1	4.28	1	37.2	1	72.6	1	0.9	1	0.13	1	622	1
G	BKGDPT55-03-12	10348	1	1.68	0	27.5	1	71.3	1	0.9	1	0.11	1	756	1
G	BKGDPT55-03-14	7968	1	0.93	1	18.5	1	131.7	1	1.01	1	0.12	1	573	1
G	BKGDPT55-03-2	8304	1	0.9	1	17.7	1	69.7	1	0.82	1	0.11	1	611	1
G	BKGDPT55-03-4	10215	1	0.78	1	9.8	1	54.8	1	0.6	1	0.09	1	221	1
G	BKGDPT55-03-6	8345	1	0.37	1	13.1	1	52	1	0.62	1	0.11	1	405	1
G	BKGDPT55-03-8	8729	1	1.82	1	26.5	1	60.2	1	0.69	1	0.12	1	542	1
G	BKGDPT56-03-10	13445	1	0.99	1	9.1	1	79.7	1	0.93	1	0.14	1	1561	1
G	BKGDPT56-03-12	12335	1	0.41	1	6.9	1	94.6	1	1.15	1	0.21	1	1617	1
G	BKGDPT56-03-14	10119	1	0.71	1	4.5	1	107.5	1	1.17	1	0.22	1	1413	1
G	BKGDPT56-03-2	13237	1	0.36	1	10.8	1	70.5	1	0.43	1	0.16	1	443	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
G	BKGDPT56-03-4	8568	1	0.78	1	11.1	1	83.8	1	0.7	1	0.16	1	481	1
G	BKGDPT56-03-6	8079	1	0.39	0	8.1	1	127.3	1	0.67	1	0.17	1	721	1
G	BKGDPT56-03-8	10115	1	0.73	1	11.5	1	67.6	1	0.55	1	0.11	1	1218	1
G	BKGDPT57-03-10	13527	1	1.46	1	11.2	1	81.9	1	0.81	1	0.02	0	1005	1
G	BKGDPT57-03-12	11865	1	1.64	1	26.2	1	57.8	1	0.8	1	0.02	0	916	1
G	BKGDPT57-03-14	11560	1	0.59	1	18.4	1	50.4	1	0.71	1	0.02	0	807	1
G	BKGDPT57-03-2	22644	1	0.29	0	6.6	1	80.7	1	0.75	1	0.02	0	636	1
G	BKGDPT57-03-4	18549	1	0.28	0	5.8	1	153.4	1	1.5	1	0.02	0	1114	1
G	BKGDPT57-03-6	20192	1	0.37	1	15.3	1	97.2	1	0.83	1	0.06	0	1126	1
G	BKGDPT57-03-8	12961	1	1.13	1	7.9	1	70	1	0.7	1	0.02	0	868	1
G	BKGDPT58-03-10	10596	1	0.39	0	5.1	1	108.1	1	1.24	1	0.15	1	1124	1
G	BKGDPT58-03-12	10641	1	0.38	0	9.5	1	187.4	1	1.15	1	0.25	1	1202	1
G	BKGDPT58-03-14	10641	1	0.36	0	6.7	1	96.7	1	0.86	1	0.15	1	901	1
G	BKGDPT58-03-2	8253	1	0.36	0	4.6	1	38	1	0.24	1	0.1	1	200	1
G	BKGDPT58-03-4	7957	1	0.38	0	4.7	1	52.4	1	0.41	1	0.07	1	406	1
G	BKGDPT58-03-6	11864	1	0.34	0	6.2	1	92.8	1	1.12	1	0.16	1	1089	1
G	BKGDPT58-03-8	12967	1	0.39	0	13.8	1	125.8	1	1.42	1	0.21	1	1430	1
G	BKGDPT59-03-10	10142	1	1.26	1	14.9	1	57.1	1	0.74	1	0.02	0	685	1
G	BKGDPT59-03-12	10737	1	0.77	1	17.1	1	47	1	0.73	1	0.03	0	711	1
G	BKGDPT59-03-14	12264	1	0.73	1	10.1	1	61.1	1	0.53	1	0.02	0	864	1
G	BKGDPT59-03-2	24046	1	0.52	1	11.1	1	199.7	1	2.4	1	0.03	0	1117	1
G	BKGDPT59-03-4	20865	1	0.87	1	15.3	1	456.7	1	1.13	1	0.03	0	1272	1
G	BKGDPT59-03-6	12305	1	0.95	1	2.5	1	86.7	1	0.73	1	0.03	0	788	1
G	BKGDPT59-03-8	20685	1	0.35	1	2.9	1	113.8	1	1.06	1	0.03	0	1497	1
G	BKGDPT60-03-10	6879	1	0.68	1	13.9	1	52.8	1	0.78	1	0.21	1	786	1
G	BKGDPT60-03-12	7237	1	0.97	1	27.6	1	50.3	1	0.81	1	0.23	1	861	1
G	BKGDPT60-03-14	6247	1	1.25	1	19	1	51.1	1	0.74	1	0.29	1	751	1
G	BKGDPT60-03-2	7739	1	0.95	1	29.6	1	79.4	1	1.22	1	0.17	1	354	1
G	BKGDPT60-03-4	9307	1	0.37	0	11.9	1	70.1	1	0.56	1	0.14	1	354	1
G	BKGDPT60-03-6	5047	1	0.36	0	7	1	41.5	1	0.57	1	0.12	1	457	1
G	BKGDPT60-03-8	7611	1	0.99	1	10.2	1	43.8	1	0.54	1	0.14	1	625	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
D	BKGDPT31-03-2	17.7	1	12.9	1	23.5	1	42191	1	26.1	1	103.6	1	1783	1	283	1
D	BKGDPT31-03-4	16.5	1	29.9	1	25.2	1	35888	1	26.9	1	96.2	1	2689	1	1715	1
D	BKGDPT32-03-10	24.4	1	6.2	1	9	1	17802	1	15.1	1	61.2	1	1128	1	52	1
D	BKGDPT32-03-12	26.1	1	21.4	1	15.8	1	64337	1	31.2	1	148.2	1	1229	1	530	1
D	BKGDPT32-03-2	20.3	1	6	1	24	1	30535	1	11.4	1	90.4	1	3017	1	142	1
D	BKGDPT32-03-4	15.7	1	5.2	1	19.7	1	12175	1	10.9	1	42	1	2293	1	91	1
D	BKGDPT32-03-6	17	1	12.5	1	15.1	1	19481	1	15.8	1	59.5	1	1688	1	72	1
D	BKGDPT32-03-8	6.3	1	12	1	4.6	1	37041	1	15.3	1	98.9	1	1479	1	98	1
D	BKGDPT33-03-2	12.3	1	5.2	1	7.7	1	20757	1	9.7	1	68	1	946	1	200	1
D	BKGDPT33-03-4	18.2	1	10.6	1	14.2	1	32019	1	12.9	1	116.6	1	1864	1	105	1
<u>D</u>	BKGDPT33-03-6	10.6	1	58.7	1	16.3	1	51336	1	39.9	1	158.1	1	1347	1	719	1
E	BKGDPT34-03-10	12.2	1	21.5	1	9.4	1	21248	1	8.8	1	67.6	1	1657	1	160	1
Ē	BKGDPT34-03-12	10.5	1	19.6	1	12.3	1	28761	1	10.2	1	87.5	1	1974	1	195	1
E	BKGDPT34-03-14	14.5	1	9.3	1	8	1	25568	1	9.2	1	78.5	1	1768	1	119	1
E	BKGDPT34-03-2	23.6	1	9.5	1	8.6	1	32160	1	14.8	1	94.8	1	1420	1	255	1
E	BKGDPT34-03-2	18.3	1	72.5	1	21.2	1	36772	1	349.5	1	113.8	1	2694	1	9005	1
E	BKGDPT34-03-6	18.3	1	9.1	1	11.5	1	21072	1	9.7	1	79.9	1	2887	1	94	1
E	BKGDPT34-03-8	12.1	1	8.2	1	6.7	1	17274	1	8	1	64.3	1	1586	1	66	1
E	BKGDPT35-03-10	12.1	1	13.4	1	11.2	1	25803	1	10.1	1	54.9	1	1237	1	99	1
E	BKGDPT35-03-10 BKGDPT35-03-12	13.0	1	8.4	1	10.4	1	22288	1	7.5	1	45.4	1	1163	1	99	1
E	BKGDPT35-03-12 BKGDPT35-03-14	6.8	1	7.5	1	9.8	1	22238	1	8.4	1	47.8	1	1105	1	110	1
E	BKGDPT35-03-14 BKGDPT35-03-2	23.7	1	19.3	1	13.7	1	54372	1	20.3	1	113.2	1	839	1	729	1
E	BKGDPT35-03-2	14.8	1	5.8	1	8.9	1	17500	1	6.3	1	43.6	1	1169	1	47	1
E	BKGDPT35-03-6	14.8	1	5.8 6.6	1	8.9 11.2	1	31026	1	6.6	1	79.1	1	1360	1	98	1
			1		1		-		1		1		1		1		1
E	BKGDPT35-03-8	13.9 11.9	1	5.3 6.9	1	11.3 7.6	1	17775 26698	•	6 11.9		50.5 60.9	-	1318 899	1	50 47	1
	BKGDPT36-03-10		1		1		1		1		1		1	1228	1	-	1
E	BKGDPT36-03-12 BKGDPT36-03-14	14.7 18.7	1	9.5 11.9	1	8.9 16.5	1	25626 48449	1	15 13.5	1	40.6 68.4	1	1228	1	136 226	1
-			1		1		1		•		•		1		1	-	1
E	BKGDPT36-03-2	17.9	1	3.6	1	3	1	20633	1	11.5	1	38.8	1	1336	1	115	1
E	BKGDPT36-03-4	14.8	1	3.4	1	6.7	1	16254	1	7.5	1	37.9	1	1272	1	40	1
E	BKGDPT36-03-6	19.7	1	6.3	1	6.6	1	8373	1	11.7	1	40.2	1	1509	1	27	1
E	BKGDPT36-03-8	29.7	1	10.1	1	12.5	1	49097	1	14	1	59.6	1	704	1	77	1
E	BKGDPT37-03-10	9.4	1	7.8	1	12.1	1	24483	1	8.6	1	78	1	1793	1	97	1
E	BKGDPT37-03-12	6.6	1	8.8	1	18.5	1	39356	1	12.1	1	112.3	1	1853	1	146	1
E	BKGDPT37-03-14	8.9	1	7.9	1	11.6	1	29638	1	8.2	1	93.2	1	2019	1	154	1
E	BKGDPT37-03-2	15.9	1	6.4	1	12.9	1	24557	1	12	1	74.9	1	1747	1	86	1
E	BKGDPT37-03-4	18.6	1	7.2	1	12.8	1	28953	1	13.6	1	83.4	1	1537	1	137	1
E	BKGDPT37-03-6	9.9	1	37.5	1	9.6	1	32320	1	20.7	1	95.5	1	1700	1	546	1
E	BKGDPT37-03-8	8.9	1	9.6	1	12.5	1	24603	1	12.1	1	75.2	1	2041	1	125	1
F	BKGDPT38-03-10	12.1	1	8.2	1	7.4	1	14555	1	8.2	1	16.8	1	1631	1	102	1
F	BKGDPT38-03-12	13.2	1	6.2	1	10.4	1	35000	1	11.5	1	16.6	1	1720	1	99	1
F	BKGDPT38-03-14	10.7	1	4.3	1	8.2	1	19265	1	8.7	1	11.3	1	1158	1	161	1
F	BKGDPT38-03-2	6.3	1	7.9	1	5.1	1	10931	1	13.2	1	3.7	1	598	1	1340	1
F	BKGDPT38-03-4	12	1	13.5	1	6.6	1	19783	1	11.2	1	8.6	1	1053	1	327	1
F	BKGDPT38-03-6	32.3	1	6.7	1	13.7	1	40625	1	13.1	1	16.3	1	1394	1	299	1
F	BKGDPT38-03-8	13.1	1	15	1	17.3	1	26356	1	11.9	1	21.3	1	3682	1	357	1
F	BKGDPT39-03-10	17.5	1	44.1	1	15.9	1	17043	1	16	1	29.3	1	3170	1	116	1
F	BKGDPT39-03-12	9.6	1	4.9	1	4.3	1	7385	1	6.7	1	10.3	1	658	1	254	1
F	BKGDPT39-03-14	16	1	12.1	1	9.6	1	33455	1	11.4	1	20.8	1	1514	1	254	1
F	BKGDPT39-03-2	29.3	1	27.3	1	12	1	32211	1	24.5	1	15.8	1	880	1	718	1
F	BKGDPT39-03-4	14.7	1	13.7	1	9.3	1	47119	1	15	1	10.2	1	503	1	529	1
F	BKGDPT39-03-6	23.6	1	9.8	1	20.4	1	19789	1	13.5	1	38.7	1	3259	1	311	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
F	BKGDPT39-03-8	22.2	1	8.2	1	16.9	1	47493	1	9.8	1	32.6	1	3074	1	191	1
F	BKGDPT40-03-10	26.8	1	9.4	1	22.5	1	37500	1	14.2	1	28.8	1	3307	1	202	1
F	BKGDPT40-03-12	20.5	1	23.6	1	20.3	1	36097	1	16.1	1	30	1	3980	1	366	1
F	BKGDPT40-03-14	20	1	10.2	1	18.5	1	25707	1	12.8	1	29	1	3665	1	154	1
F	BKGDPT40-03-2	31	1	24.6	1	14.1	1	62699	1	26.3	1	14.5	1	1474	1	1254	1
F	BKGDPT40-03-4	14.5	1	10.4	1	12.4	1	16285	1	11.7	1	18.2	1	1520	1	396	1
F	BKGDPT40-03-6	14.8	1	2.8	1	5.9	1	39052	1	7.5	1	12.5	1	1433	1	115	1
F	BKGDPT40-03-8	14.8	1	6.3	1	12.4	1	25887	1	8.9	1	21	1	1690	1	102	1
F	BKGDPT41-03-10	20.5	1	19.5	1	20.4	1	27534	1	13.1	1	31	1	3504	1	314	1
F	BKGDPT41-03-12	18.3	1	15	1	19.7	1	25062	1	12.7	1	32.9	1	3130	1	231	1
F	BKGDPT41-03-14	19.9	1	9.7	1	18.1	1	22390	1	12.6	1	31.4	1	3069	1	308	1
F	BKGDPT41-03-2	20.6	1	5.1	1	10.5	1	36799	1	13.6	1	12.7	1	1002	1	112	1
F	BKGDPT41-03-4	12	1	5.2	1	9	1	21437	1	9.5	1	14.1	1	882	1	34	1
F	BKGDPT41-03-6	20.2	1	6.8	1	20.2	1	21429	1	9	1	29.8	1	3140	1	383	1
F	BKGDPT41-03-8	18.1	1	23	1	19.8	1	27273	1	13.2	1	29.1	1	3042	1	153	1
F	BKGDPT42-03-2	29.1	1	4.8	1	10.4	1	33172	1	11.9	1	33.1	1	1295	1	28	1
F	BKGDPT42-03-2 BKGDPT42-03-4	13.8	1	4.4	1	8.5	1	28605	1	9.3	1	10.5	1	2944	1	71	1
F	BKGDPT42-03-6	15.1	1	10.5	1	11.3	1	31808	1	9.5 6	1	37.1	1	2944	1	102	1
F	BKGDPT43-03-10	28.4	1	14.2	1	24.9	1	31100	1	10.5	1	105.3	1	3856	1	646	1
F	BKGDPT43-03-10 BKGDPT43-03-12	14	1	8.1	1	13.7	1	16877	1	8.1	1	57.6	1	2229	1	168	1
F	BKGDPT43-03-12 BKGDPT43-03-14	14	1	11.8	1	17.3	1	26303	1	10.9	1	89.1	1	2836	1	305	1
F F	BKGDP143-03-14 BKGDPT43-03-2	24.9	1	20.4	1	22.1	1	28797	1	10.9	1	73.1	1	3572	1	146	1
F	BKGDPT43-03-2	32	1	46.1	1	33.4	1	42638	1	13.8	1	101.5	1	5122	1	379	1
F	BKGDPT43-03-6	23.9	1	40.1	1	27.5	1	31519	1	13.3	1	93.5	1	4924	1	215	1
F			1		1	33.9	1		1	13.3	1	95.5	1	-	1	484	1
F	BKGDPT43-03-8	28.4	1	16.6 14.6	1		-	55032 27869	1	14.4		32.2	1	4662 3077	1	484	1
	BKGDPT44-03-10		1		1	18	1		1		1		1		1		1
F	BKGDPT44-03-12	13.2	1	11.6	1	15.2 9	1	22710 21333	1	9.7 21	1	22.6	1	2911	1	296 432	1
	BKGDPT44-03-14	15.4	1	15.5	1	· · ·	-		1		1	15.4	1	1430	1	-	1
F	BKGDPT44-03-2	9.3	1	5.2	1	6.7	1	14742	1	12.2	1	6.3	1	875	1	334	1
F	BKGDPT44-03-4	11.9	1	15.8	1	7.2	1	32956	1	23.8	1	6	1	955	1	960	1
F	BKGDPT44-03-6	15.8	1	29.1	1	15.4	1	90298	1	9.7	1	30.4	1	2988	1	1798	1
F	BKGDPT44-03-8	15.9	1	17.8	1	17.7	1	25031	1	13.7	1	33.4	1	3437	1	377	1
F	BKGDPT45-03-2	21.5	1	5	1	8	1	24490	1	11.5	1	24.4	1	1133	1	22	1
F	BKGDPT45-03-4	11	1	3.8	1	7.7	1	46466	1	13.1	1	5.5	1	1286	1	346	1
F	BKGDPT46-03-2	15.1	1	6.3	1	9.7	1	20337	1	16.3	1	16.4	1	1753	1	121	1
F	BKGDPT46-03-4	19.1	1	6.8	1	11.7	1	29123	1	20.2	1	17.7	1	2094	1	131	1
F	BKGDPT46-03-6	18.3	1	8	1	20.3	1	25492	1	14.4	1	46.8	1	4426	1	138	1
F	BKGDPT47-03-10	13.3	1	12	1	10	1	24142	1	12.2	1	20.4	1	2095	1	315	1
F	BKGDPT47-03-12	14	1	14.7	1	12.7	1	27594	1	13.3	1	20.3	1	1899	1	171	1
F	BKGDPT47-03-14	16.4	1	22.5	1	14.8	1	37560	1	20	1	21.2	1	1806	1	293	1
F	BKGDPT47-03-2	20.9	1	18.4	1	13.6	1	36763	1	26.2	1	18.2	1	1318	1	570	1
F	BKGDPT47-03-4	24.7	1	37.1	1	12.2	1	83163	1	27.4	1	10.5	1	1251	1	1006	1
F	BKGDPT47-03-6	14.3	1	12.3	1	12.3	1	34463	1	17.3	1	16.6	1	1320	1	119	1
F	BKGDPT47-03-8	13.4	1	7.7	1	12.6	1	37248	1	10.7	1	20.5	1	1922	1	159	1
G	BKGDPT48-03-10	18.4	1	18.9	1	15.1	1	48421	1	61.2	1	28.7	1	2433	1	278	1
G	BKGDPT48-03-12	14.8	1	16.2	1	10.3	1	29516	1	17.9	1	26.8	1	2231	1	238	1
G	BKGDPT48-03-14	20.5	1	8.2	1	10.6	1	25957	1	14.2	1	27.2	1	1998	1	123	1
G	BKGDPT48-03-2	12.6	1	24.8	1	9.2	1	25029	1	20.5	1	17.8	1	977	1	961	1
G	BKGDPT48-03-4	38.8	1	21.4	1	26	1	157025	1	48.1	1	14.6	1	1143	1	697	1
G	BKGDPT48-03-6	20.3	1	14.7	1	13.2	1	42890	1	18.2	1	18.5	1	3834	1	334	1
G	BKGDPT48-03-8	14.5	1	21.5	1	13.1	1	77241	1	17.8	1	25.2	1	1969	1	417	1
G	BKGDPT49-03-10	20.3	1	20.5	1	20.9	1	35419	1	14.8	1	35.9	1	4493	1	367	1

AREA LETTER	PROJ SAMPLE ID	Chromium	D Chromium	Cobalt	D Cobalt	Copper	D_Copper	Iron	D Iron	Lead	D Lead	Lithium	D Lithium	Magnesium	D_Magnesium	Manganese	D Manganese
G	BKGDPT49-03-12	27.4	1	31.8	1	24.9	1	47710	1	19	1	34	1	4822	1	1112	1
G	BKGDPT49-03-14	21.3	1	14.1	1	20.8	1	48881	1	14.8	1	36.1	1	3470	1	701	1
G	BKGDPT49-03-2	27.1	1	6.1	1	12	1	55066	1	20.1	1	17.5	1	1943	1	150	1
G	BKGDPT49-03-4	20.3	1	53	1	17.8	1	33333	1	17.9	1	26.4	1	3820	1	382	1
G	BKGDPT49-03-6	23.6	1	38.8	1	23	1	38642	1	24.8	1	35	1	6070	1	779	1
G	BKGDPT49-03-8	22.8	1	12.4	1	21	1	30323	1	13.9	1	33.9	1	4877	1	169	1
G	BKGDPT50-03-10	18.4	1	12.4	1	18.1	1	28136	1	8.8	1	32	1	2753	1	1535	1
G	BKGDPT50-03-12	18.1	1	10	1	14.1	1	35749	1	9.4	1	29.5	1	2555	1	1548	1
G	BKGDPT50-03-14	17.3	1	14.5	1	5.8	1	36667	1	11.9	1	16.8	1	1405	1	1988	1
G	BKGDPT50-03-2	10.8	1	3.5	1	6	1	23765	1	9.4	1	11.6	1	1071	1	31	1
G	BKGDPT50-03-4	17.1	1	8.7	1	18.5	1	30572	1	14.4	1	21.3	1	3276	1	103	1
G	BKGDPT50-03-6	17.5	1	9	1	17.7	1	26797	1	13.2	1	23.5	1	3191	1	164	1
G	BKGDPT50-03-8	18	1	10.5	1	19.3	1	27689	1	10.5	1	29.4	1	3622	1	171	1
G	BKGDPT51-03-10	14.7	1	16.7	1	16	1	31647	1	13.5	1	22.6	1	2153	1	247	1
G	BKGDPT51-03-12	12.4	1	19.9	1	12	1	35281	1	12.7	1	19.5	1	1913	1	434	1
G	BKGDPT51-03-14	14.4	1	15.1	1	13.6	1	23781	1	16.4	1	22.6	1	2140	1	251	1
G	BKGDPT51-03-2	18.5	1	21.4	1	9.9	1	33333	1	25.7	1	12.7	1	1378	1	2206	1
G	BKGDPT51-03-4	18.5	1	6.8	1	15.3	1	26309	1	11.9	1	24.1	1	2521	1	379	1
G	BKGDPT51-03-6	21.4	1	14.1	1	16.3	1	15301	1	24.2	1	22.3	1	2048	1	331	1
G	BKGDPT51-03-8	11.5	1	10.7	1	11	1	19076	1	8.2	1	21.1	1	1671	1	140	1
G	BKGDPT52-03-10	18.2	1	12.3	1	18.2	1	69871	1	15.5	1	47.1	1	3740	1	614	1
G	BKGDPT52-03-12	19.2	1	14	1	20.4	1	28910	1	15.4	1	45.5	1	4730	1	316	1
G	BKGDPT52-03-14	17.9	1	11	1	19.2	1	27901	1	14.1	1	46.6	1	4661	1	401	1
G	BKGDPT52-03-2	30.3	1	30.1	1	11	1	72370	1	31.8	1	23.6	1	1503	1	939	1
G	BKGDPT52-03-4	21.2	1	9.7	1	19	1	40336	1	15.5	1	47.4	1	3830	1	146	1
G	BKGDPT52-03-6	18.2	1	9.9	1	15.7	1	40326	1	11.5	1	50.2	1	3998	1	329	1
G	BKGDPT52-03-8	17.9	1	12	1	18.5	1	30213	1	12.4	1	52.4	1	4727	1	307	1
G	BKGDPT53-03-10	12.8	1	9.3	1	7	1	23195	1	12.4	1	60.1	1	2095	1	381	1
G	BKGDPT53-03-12	12.0	1	9.1	1	5.8	1	19810	1	12	1	56	1	1934	1	259	1
G	BKGDPT53-03-14	11.3	1	12.2	1	7.5	1	26521	1	9.6	1	59.7	1	1934	1	152	1
G	BKGDPT53-03-2	19.5	1	10.9	1	14.2	1	37201	1	17.2	1	75.4	1	2739	1	293	1
G	BKGDPT53-03-4	18.8	1	35.8	1	13.4	1	30498	1	16.5	1	81.9	1	3390	1	1750	1
G	BKGDPT53-03-6	24.8	1	17.1	1	17.7	1	36434	1	13.2	1	97.5	1	5116	1	217	1
G	BKGDPT53-03-8	13.9	1	15.9	1	16.5	1	33050	1	12.8	1	89.6	1	3244	1	673	1
G	BKGDPT54-03-10	17.5	1	14.2	1	9.1	1	27549	1	16	1	12.4	1	1299	1	985	1
G	BKGDPT54-03-12	12.6	1	18	1	8.3	1	28897	1	22.7	1	13.9	1	1307	1	662	1
G	BKGDPT54-03-14	11.4	1	14.6	1	9.3	1	29608	1	13.6	1	18.3	1	1605	1	482	1
G	BKGDPT54-03-2	19.7	1	8	1	15.8	1	29584	1	20.2	1	12.1	1	2445	1	345	1
G	BKGDPT54-03-4	7.2	1	6	1	5.8	1	23391	1	5.8	1	9.3	1	689	1	170	1
G	BKGDPT54-03-6	14.4	1	6.2	1	13.7	1	22054	1	13.7	1	10	1	2847	1	228	1
G	BKGDPT54-03-8	23.5	1	9.5	1	7.1	1	35059	1	17.3	1	10.6	1	1271	1	841	1
G	BKGDPT55-03-10	20.3	1	23.9	1	16.8	1	85730	1	19.4	1	26	1	1699	1	609	1
G	BKGDPT55-03-12	22	1	20.4	1	14.6	1	64759	1	21.7	1	24.2	1	1852	1	323	1
G	BKGDPT55-03-14	21	1	20.7	1	16.5	1	45516	1	21.1	1	24.4	1	1566	1	554	1
G	BKGDPT55-03-2	21.9	1	17.4	1	14.5	1	42807	1	14.5	1	26	1	1637	1	385	1
G	BKGDPT55-03-4	16.8	1	12.5	1	13.1	1	29594	1	13.8	1	22.6	1	2100	1	234	1
G	BKGDPT55-03-6	15.1	1	7	1	9.5	1	26714	1	13.2	1	16.2	1	1180	1	135	1
G	BKGDPT55-03-8	16.9	1	12.2	1	10.5	1	48606	1	11.1	1	21.3	1	1516	1	365	1
G	BKGDPT56-03-10	23.2	1	8.2	1	19.8	1	30252	1	15	1	29.7	1	3241	1	190	1
G	BKGDPT56-03-12	28.5	1	11.7	1	22	1	32216	1	12.1	1	31	1	3677	1	477	1
G	BKGDPT56-03-14	22.2	1	11.3	1	19	1	27435	1	14.8	1	28.7	1	3076	1	628	1
G	BKGDPT56-03-2	19.4	1	5.1	1	10.7	1	21300	1	14.6	1	13.2	1	2238	1	170	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
G	BKGDPT56-03-4	17.3	1	7.6	1	13.8	1	24821	1	12.3	1	15.5	1	1909	1	181	1
G	BKGDPT56-03-6	16.7	1	5.8	1	9.8	1	19088	1	11	1	15.7	1	1801	1	124	1
G	BKGDPT56-03-8	17.2	1	5.3	1	9.1	1	34943	1	7.7	1	29.7	1	1598	1	418	1
G	BKGDPT57-03-10	16.8	1	23.4	1	17.5	1	28502	1	11.6	1	73.1	1	1751	1	453	1
G	BKGDPT57-03-12	14.9	1	18.5	1	17	1	27437	1	10.7	1	62.9	1	1504	1	242	1
G	BKGDPT57-03-14	18.1	1	10.9	1	17.5	1	25635	1	7.6	1	65.8	1	1451	1	116	1
G	BKGDPT57-03-2	23.7	1	9.5	1	18.6	1	26805	1	14.3	1	72.9	1	3146	1	186	1
G	BKGDPT57-03-4	23.4	1	40.2	1	13.6	1	18668	1	11.1	1	63	1	2842	1	227	1
G	BKGDPT57-03-6	18.4	1	7.5	1	18.1	1	39904	1	11.3	1	98.2	1	2151	1	248	1
G	BKGDPT57-03-8	15.6	1	8.1	1	11.2	1	18668	1	8.6	1	55.4	1	1415	1	244	1
G	BKGDPT58-03-10	22.6	1	9.3	1	21.2	1	27950	1	11.4	1	30.3	1	3130	1	257	1
G	BKGDPT58-03-12	35.5	1	20.3	1	25.6	1	26510	1	14.7	1	25.3	1	3132	1	600	1
G	BKGDPT58-03-14	17.5	1	9	1	9.7	1	33916	1	14.8	1	18.8	1	1457	1	2145	1
G	BKGDPT58-03-2	12.3	1	2	1	5.6	1	13599	1	9	1	8.9	1	638	1	17	1
G	BKGDPT58-03-4	12.7	1	3.8	1	5.3	1	18884	1	9.6	1	12.4	1	909	1	49	1
G	BKGDPT58-03-6	23.1	1	15.6	1	28.3	1	31790	1	17.1	1	22.3	1	3191	1	227	1
G	BKGDPT58-03-8	22.5	1	18.4	1	20.8	1	31523	1	15.2	1	27.9	1	3894	1	264	1
G	BKGDPT59-03-10	9.6	1	25.2	1	12.4	1	21934	1	15.3	1	54.4	1	1215	1	371	1
G	BKGDPT59-03-12	11.8	1	8.7	1	13.3	1	23068	1	7.4	1	58.6	1	1272	1	106	1
G	BKGDPT59-03-14	17	1	7.8	1	10.8	1	18278	1	6.1	1	56.4	1	1521	1	83	1
G	BKGDPT59-03-2	20.9	1	77.5	1	17.7	1	35878	1	14.8	1	83.5	1	3919	1	411	1
G	BKGDPT59-03-4	17.4	1	15.9	1	22.9	1	30916	1	20.5	1	75.4	1	3804	1	453	1
G	BKGDPT59-03-6	10.8	1	9.7	1	15	1	19703	1	10.7	1	55.9	1	2515	1	477	1
G	BKGDPT59-03-8	19.7	1	14.1	1	15.1	1	25000	1	12.2	1	76.4	1	3832	1	365	1
G	BKGDPT60-03-10	14	1	19.4	1	13.3	1	31095	1	12.1	1	15.5	1	1032	1	303	1
G	BKGDPT60-03-12	15.9	1	15	1	15.6	1	30815	1	11.4	1	14.6	1	1204	1	152	1
G	BKGDPT60-03-14	14.6	1	11	1	15.3	1	24703	1	11.6	1	14.6	1	1129	1	175	1
G	BKGDPT60-03-2	22.8	1	44.2	1	11.6	1	47669	1	47.3	1	14.9	1	797	1	866	1
G	BKGDPT60-03-4	15.9	1	5.3	1	10.1	1	19594	1	13.6	1	17.1	1	1114	1	91	1
G	BKGDPT60-03-6	12.2	1	10.8	1	8.9	1	20686	1	9.1	1	10.9	1	664	1	102	1
G	BKGDPT60-03-8	12.2	1	11.8	1	8.6	1	44658	1	12.7	1	13.4	1	942	1	252	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
D	BKGDPT31-03-2	0.0228	0	28	1	1643	1	0.544	0	1.6	0	69	1	0.325	0
D	BKGDPT31-03-4	0.024	0	86.4	1	3406	1	2.336	1	0.66	0	98	1	5.474	1
D	BKGDPT32-03-10	0.0238	0	14	1	934	1	0.222	0	0.65	0	90	1	0.133	0
D	BKGDPT32-03-12	0.0487	1	62.7	1	913	1	0.563	0	1.65	0	66	1	0.336	0
D	BKGDPT32-03-2	0.096	1	18.7	1	1302	1	0.223	0	0.65	0	145	1	0.133	0
D	BKGDPT32-03-4	0.033	1	13.4	1	926	1	0.381	1	0.64	0	80	1	0.13	0
D	BKGDPT32-03-6	0.0243	1	12.9	1	1192	1	0.302	1	0.61	0	95	1	0.125	0
D	BKGDPT32-03-8	0.0508	1	16.4	1	931	1	0.521	0	1.53	0	108	1	0.311	0
D	BKGDPT33-03-2	0.0272	1	11	1	771	1	0.378	1	0.63	1	43	1	0.13	0
D	BKGDPT33-03-4	0.0221	0	19.4	1	1386	1	0.227	0	0.66	1	139	1	0.136	0
D	BKGDPT33-03-6	0.0186	0	21.5	1	1559	1	0.531	0	1.56	0	117	1	0.317	0
Е	BKGDPT34-03-10	0.0228	0	14.8	1	1597	1	0.537	1	0.66	0	140	1	0.136	0
E	BKGDPT34-03-12	0.0226	0	17.7	1	1625	1	0.369	1	0.68	0	148	1	0.138	0
Е	BKGDPT34-03-14	0.0226	0	15.2	1	1553	1	0.225	0	0.66	0	139	1	0.134	0
E	BKGDPT34-03-2	0.0228	0	10.4	1	1007	1	0.742	1	0.65	1	48	1	0.133	0
E	BKGDPT34-03-4	0.0212	0	30.3	1	2197	1	9.417	1	0.63	0	165	1	19.66	1
E	BKGDPT34-03-6	0.0212	0	18.5	1	2168	1	0.932	1	0.68	0	166	1	0.139	0
E	BKGDPT34-03-8	0.0219	0	12.7	1	1434	1	0.477	1	0.66	0	129	1	0.135	0
E	BKGDPT35-03-10	0.0219	0	20	1	1145	1	0.278	1	0.66	0	49	1	0.395	1
E	BKGDPT35-03-12	0.0234	0	17.9	1	965	1	0.306	1	0.67	0	47	1	0.164	1
E	BKGDPT35-03-14	0.0201	0	18.6	1	1151	1	0.357	1	0.68	0	50	1	0.274	1
E	BKGDPT35-03-2	0.0201	0	15.6	1	730	1	2.052	1	2.65	0	28	1	1.357	1
E	BKGDPT35-03-4	0.0232	0	10.4	1	1076	1	0.519	1	0.6	0	46	1	0.123	0
E	BKGDPT35-03-6	0.0232	0	14.6	1	1539	1	0.687	1	0.66	0	53	1	0.123	1
E	BKGDPT35-03-8	0.0237	1	13.8	1	1427	1	0.087	1	0.64	0	135	1	0.257	1
E	BKGDPT36-03-10	0.0373	0	17.9	1	881	1	0.238	0	0.64	0	778	1	0.126	0
E	BKGDPT36-03-10 BKGDPT36-03-12	0.023	0	17.9	1	1122	1	0.211	0	0.62	0	200	1	0.126	0
E	BKGDPT36-03-12 BKGDPT36-03-14	0.0221	0	35.8	1	975	1	0.228	0	1.65	0	200	1	0.136	0
			0	7.2	1		1		-		0		1	0.434	0
E E	BKGDPT36-03-2	0.0197	-		1	808	1	0.216	0	0.63	-	161	1		
	BKGDPT36-03-4		0	7.1	1	872	1			0.63	0	188	1	0.128	0
E	BKGDPT36-03-6	0.0226	0	12.6	1	1392	1	0.225	0	2.72	1	327	1	0.244	1
E	BKGDPT36-03-8	0.0227	0	30.2	1	503	1	1.081	0	14.8	1	230	1	0.646	0
E	BKGDPT37-03-10	0.0248	1	19.2	1	1713	1	0.22	0	0.64	0	134	1	0.131	0
E	BKGDPT37-03-12	0.0345	1	22.4	1	1669	1	0.524	0	1.53	0	145	1	0.313	0
E	BKGDPT37-03-14	0.0225	0	20	1	1704	1	0.223	0	0.65	0	163	1	0.133	0
Е	BKGDPT37-03-2	0.0234	0	11.9	1	1429	1	0.217	0	0.64	0	83	1	0.13	0
E	BKGDPT37-03-4	0.0218	0	12.5	1	1214	1	0.228	1	0.61	0	125	1	0.125	0
Е	BKGDPT37-03-6	0.0327	1	20.2	1	1520	1	0.67	1	0.63	1	116	1	0.391	1
E	BKGDPT37-03-8	0.0389	1	19.4	1	1723	1	0.202	0	0.59	0	130	1	0.12	0
F	BKGDPT38-03-10	0.0051	1	11.9	1	590	1	0.398	1	1.15	1	78	1	0.152	1
F	BKGDPT38-03-12	0.0209	1	10.3	1	1000	1	0.368	0	0.64	1	132	1	0.149	1
F	BKGDPT38-03-14	0.0176	1	9	1	579	1	0.392	1	1.43	1	106	1	0.106	1
F	BKGDPT38-03-2	0.016	1	7.3	1	213	1	0.473	1	0.96	1	51	1	0.125	1
F	BKGDPT38-03-4	0.0151	1	6.4	1	387	1	0.397	1	1.58	1	128	1	0.103	1
F	BKGDPT38-03-6	0.0097	1	15.9	1	505	1	0.357	1	3.15	1	79	1	0.118	1
F	BKGDPT38-03-8	0.0141	1	18.7	1	1030	1	0.376	1	1.97	1	148	1	0.137	1
F	BKGDPT39-03-10	0.0267	1	24.6	1	1253	1	0.412	0	0.18	1	92	1	0.197	1
F	BKGDPT39-03-12	0.0161	1	5.2	1	472	1	0.399	0	0.21	1	48	1	0.073	1
F	BKGDPT39-03-14	0.0313	1	10.6	1	1126	1	0.402	0	0.45	1	99	1	0.149	1
F	BKGDPT39-03-2	0.0198	1	18.3	1	549	1	0.365	1	2.6	1	33	1	0.154	1
F	BKGDPT39-03-4	0.0101	1	11.5	1	325	1	0.347	1	3.63	1	32	1	0.104	1
F	BKGDPT39-03-6	0.0202	1	32.6	1	1544	1	0.43	1	1.41	1	115	1	0.26	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
F	BKGDPT39-03-8	0.014	1	27.7	1	1266	1	0.433	1	3.5	1	107	1	0.23	1
F	BKGDPT40-03-10	0.0276	1	36.7	1	1745	1	0.428	1	2.73	1	121	1	0.257	1
F	BKGDPT40-03-12	0.0432	1	37.4	1	1696	1	0.367	1	2.64	1	151	1	0.27	1
F	BKGDPT40-03-14	0.0355	1	31.6	1	1710	1	0.39	0	1.82	1	159	1	0.205	1
F	BKGDPT40-03-2	0.0333	1	17.7	1	726	1	0.32	1	4.91	1	19	1	0.107	1
F	BKGDPT40-03-4	0.0246	1	12.7	1	491	1	0.376	1	1.15	1	12	1	0.187	1
F	BKGDPT40-03-6	0.0063	1	8.8	1	460	1	0.371	0	2.91	1	35	1	0.19	1
F	BKGDPT40-03-8	0.0236	1	14.3	1	714	1	0.344	0	1.97	1	51	1	0.158	1
F	BKGDPT41-03-10	0.026	1	38.2	1	1577	1	0.364	0	0.59	1	146	1	0.239	1
F	BKGDPT41-03-12	0.0125	1	28.3	1	1484	1	0.403	1	0.46	1	142	1	0.19	1
F	BKGDPT41-03-14	0.0318	1	29.3	1	1560	1	0.405	1	0.27	1	141	1	0.223	1
F	BKGDPT41-03-2	0.029	1	8.5	1	464	1	0.36	1	0.73	1	38	1	0.19	1
F	BKGDPT41-03-4	0.0105	1	8.4	1	495	1	0.338	1	0.41	1	45	1	0.151	1
F	BKGDPT41-03-6	0.0048	0	28.8	1	1256	1	0.403	1	0.31	1	118	1	0.212	1
F	BKGDPT41-03-8	0.0155	1	31.4	1	1430	1	0.388	1	0.38	1	138	1	0.2	1
F	BKGDPT42-03-2	0.0345	1	11.4	1	742	1	0.39	1	1.09	1	45	1	0.235	1
F	BKGDPT42-03-4	0.0056	1	9.2	1	1085	1	0.385	1	0.74	1	105	1	0.138	1
F	BKGDPT42-03-6	0.0421	1	21.1	1	1103	1	0.372	1	0.8	1	146	1	0.169	1
F	BKGDPT43-03-10	0.0421	0	44	1	3464	1	0.856	1	0.69	0	321	1	0.645	1
F	BKGDPT43-03-12	0.0241	0	15.4	1	1725	1	0.563	1	0.63	0	209	1	0.128	0
F	BKGDPT43-03-14	0.0200	1	20.2	1	2436	1	0.617	1	0.66	0	222	1	0.135	0
F	BKGDPT43-03-2	0.0307	0	37.4	1	2758	1	0.817	1	0.67	0	200	1	0.135	1
F	BKGDPT43-03-4	0.0255	0	61.3	1	4097	1	0.909	1	1.61	1	200	1	0.483	1
F	BKGDPT43-03-6	0.0233	0	38.6	1	4097	1	0.838	1	0.67	1	343	1	0.483	0
F	BKGDPT43-03-8	0.0244	1	41.7	1	4013	1	1.49	1	1.69	1	361	1	0.137	0
F	BKGDPT44-03-10	0.0200	1	34	1	1134	1	0.369	0	2.19	1	154	1	0.340	1
F	BKGDPT44-03-10 BKGDPT44-03-12	0.0174	1	20.1	1	1072	1	0.369	0	1.69	1	134	1	0.208	1
F	BKGDPT44-03-12 BKGDPT44-03-14	0.0211	1	12.7	1	476	1	0.378	0	1.69	1	76	1	0.138	1
F	BKGDPT44-03-14 BKGDPT44-03-2	0.0138	1	7.4	1	254	1	0.372	0	1.08	1	40	1		1
F	BKGDP144-03-2 BKGDPT44-03-4	0.0217	1	12.3	1	472	1	0.343	0	2.65	1	53	1	0.165 0.123	1
F	BKGDPT44-03-6	0.0132	1	29.1	1		1		0	6.92	1	102	1	0.123	1
F	BKGDP144-03-8	0.0422	1	29.1	1	1208	1	0.419	0	0.92 1.76	1	102	1	0.228	1
			1		•	1382	1		0		1		1		1
F F	BKGDPT45-03-2	0.0343	1	9.3	1	594	1	0.393		1.69		51		0.191	1
	BKGDPT45-03-4	0.0043	0	6.3	1	771	1	0.371	1	3.26	1	85	1	0.127	1
F	BKGDPT46-03-2	0.0157	1	10.1	1	484	1	0.367	0	1.62	1	109	1	0.147	1
F	BKGDPT46-03-4	0.025	1	14.2	1	526	1	0.379	0	2.18	1	154	1	0.146	1
F	BKGDPT46-03-6	0.0225	1	27.8	1	1117	1	0.351	0	2.03	1	228	1	0.155	1
F	BKGDPT47-03-10	0.0042	0	14.6	1	953	1	0.391	0	1.76	1	95	1	0.111	1
F	BKGDPT47-03-12	0.0063	1	17.1	1	921	1	0.371	0	2.03	1	98	1	0.123	1
F	BKGDPT47-03-14	0.0045	0	21.3	1	872	1	0.382	0	2.83	1	102	1	0.127	1
F	BKGDPT47-03-2	0.017	1	16.4	1	497	1	0.465	1	2.88	1	25	1	0.15	1
F	BKGDPT47-03-4	0.0132	1	25.5	1	425	1	0.359	0	6.91	1	34	1	0.109	1
F	BKGDPT47-03-6	0.0046	0	17.6	1	728	1	0.373	0	2.51	1	68	1	0.114	1
F	BKGDPT47-03-8	0.0045	0	17.4	1	805	1	0.372	0	2.73	1	85	1	0.144	1
G	BKGDPT48-03-10	0.0041	0	30.4	1	939	1	0.382	0	3.72	1	132	1	0.117	1
G	BKGDPT48-03-12	0.029	1	19.8	1	881	1	0.364	0	2.44	1	135	1	0.105	1
G	BKGDPT48-03-14	0.0238	1	17.6	1	969	1	0.362	0	2.05	1	146	1	0.103	1
G	BKGDPT48-03-2	0.0255	1	11.7	1	490	1	0.334	0	2.19	1	29	1	0.118	1
G	BKGDPT48-03-4	0.0243	1	27.9	1	296	1	0.365	1	14.29	1	43	1	0.132	1
G	BKGDPT48-03-6	0.0064	1	25.5	1	1364	1	0.376	1	3.26	1	139	1	0.108	1
G	BKGDPT48-03-8	0.0084	1	21.2	1	781	1	0.341	1	6.52	1	92	1	0.127	1
G	BKGDPT49-03-10	0.0437	1	34.9	1	1790	1	0.403	0	2.77	1	315	1	0.263	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
G	BKGDPT49-03-12	0.014	1	53.6	1	1692	1	0.372	0	3.98	1	303	1	0.316	1
G	BKGDPT49-03-14	0.0178	1	29.5	1	1190	1	0.377	0	3.78	1	228	1	0.208	1
G	BKGDPT49-03-2	0.0439	1	14.2	1	660	1	0.386	0	4.37	1	125	1	0.179	1
G	BKGDPT49-03-4	0.0075	1	37.1	1	1496	1	0.35	0	2.62	1	220	1	0.257	1
G	BKGDPT49-03-6	0.008	1	56.7	1	1997	1	0.428	0	3.13	1	303	1	0.282	1
G	BKGDPT49-03-8	0.0246	1	36.9	1	1910	1	0.37	0	2.39	1	314	1	0.245	1
G	BKGDPT50-03-10	0.0298	1	27	1	1352	1	0.391	0	0.77	1	132	1	0.216	1
G	BKGDPT50-03-12	0.0186	1	22.6	1	1186	1	0.355	0	0.95	1	104	1	0.133	1
G	BKGDPT50-03-14	0.0275	1	21.2	1	693	1	0.358	0	1.1	1	81	1	0.112	1
G	BKGDPT50-03-2	0.0258	1	7.6	1	611	1	0.361	0	0.64	1	83	1	0.122	1
G	BKGDPT50-03-4	0.0075	1	22.5	1	1376	1	0.37	0	0.83	1	125	1	0.156	1
G	BKGDPT50-03-6	0.0088	1	24.8	1	1352	1	0.369	0	0.75	1	124	1	0.183	1
G	BKGDPT50-03-8	0.0106	1	28.2	1	1434	1	0.384	0	0.72	1	153	1	0.205	1
G	BKGDPT51-03-10	0.0042	0	17.8	1	1058	1	0.368	0	0.93	1	193	1	0.117	1
G	BKGDPT51-03-12	0.0044	0	19.1	1	1013	1	0.324	1	1.33	1	186	1	0.086	1
G	BKGDPT51-03-14	0.0699	1	20.2	1	1201	1	0.382	1	0.74	1	208	1	0.124	1
G	BKGDPT51-03-2	0.0298	1	11.7	1	659	1	0.727	1	1.18	1	77	1	0.204	1
G	BKGDPT51-03-4	0.0220	1	17.9	1	1030	1	0.392	1	0.82	1	132	1	0.212	1
G	BKGDPT51-03-6	0.0281	1	30.5	1	931	1	0.388	1	0.42	1	142	1	0.159	1
G	BKGDPT51-03-8	0.0231	1	11.2	1	906	1	0.385	1	0.42	1	150	1	0.086	1
G	BKGDPT52-03-10	0.0331	1	35.5	1	1231	1	0.606	1	5.97	1	225	1	0.131	1
G	BKGDPT52-03-12	0.014	1	31.2	1	1374	1	0.354	1	2.53	1	209	1	0.131	1
G	BKGDPT52-03-12 BKGDPT52-03-14	0.0132	1	29.3	1	1374	1	0.342	1	2.33	1	202	1	0.135	1
G	BKGDPT52-03-14 BKGDPT52-03-2	0.0177	1	17.5	1	605	1	0.342	1	5.8	1	43	1	0.131	1
G	BKGDPT52-03-4	0.010	1	29.4	1	977	1	0.378	1	3.35	1	103	1	0.123	1
G	BKGDPT52-03-6	0.0659	1	33	1	1111	1	0.378	1	3.25	1	103	1	0.134	1
G	BKGDPT52-03-8	0.0513	1	30.1	1	1351	1	0.334	1	2.51	1	241	1	0.118	1
G	BKGDPT53-03-10	0.0226	0	16.9	1	2083	1	0.341	0	0.63	0	241	1	0.128	0
G	BKGDP153-03-10 BKGDPT53-03-12	0.0228	0	15.2	1	2085	1	0.217	0	0.65	0	202	1	0.129	0
G	BKGDP153-03-12 BKGDPT53-03-14	0.0221	-	15.2	1	2206	1	0.222	0	0.65	0	208	1	0.133	0
			0				1		-				1		
G	BKGDPT53-03-2	0.022	0	20.8	1	1806 2722	1	0.551 0.711	0	1.61	0	197	1	0.33	0
	BKGDPT53-03-4		-		1		1		-	0.66	-	358	1		1
G	BKGDPT53-03-6	0.0244	0	43.8	1	4780	1	0.248	0	0.73	0	464	1	0.149	0
G	BKGDPT53-03-8	0.0208	0	49	1	2892	1	0.441	1	0.68	0	321	1	0.139	0
G	BKGDPT54-03-10	0.0175	1	11.5	1	799	1	0.373	0	108.74	0	135	1	0.142	1
G	BKGDPT54-03-12	0.0165	1	13.5	1	841	1	0.368	0	0.95	1	128	1	0.097	1
G	BKGDPT54-03-14	0.0121	1	13.3	1	898	1	0.369	0	0.88	1	132	1	0.104	1
G	BKGDPT54-03-2	0.0828	1	12.7	1	620	1	0.379	1	0.7	1	130	1	0.199	1
G	BKGDPT54-03-4	0.0045	0	13.4	1	446	1	0.389	0	0.68	1	72	1	0.118	1
G	BKGDPT54-03-6	0.0146	1	11.6	1	680	1	0.348	0	0.54	1	112	1	0.214	1
G	BKGDPT54-03-8	0.0173	1	14.2	1	547	1	0.379	0	0.97	1	100	1	0.109	1
G	BKGDPT55-03-10	0.0127	1	29	1	928	1	0.349	1	6.82	1	74	1	0.124	1
G	BKGDPT55-03-12	0.0205	1	22.2	1	1057	1	0.364	1	5.34	1	84	1	0.129	1
G	BKGDPT55-03-14	0.0045	1	23.2	1	840	1	0.355	1	4.02	1	69	1	0.113	1
G	BKGDPT55-03-2	0.0139	1	22.2	1	750	1	0.371	1	3.77	1	75	1	0.108	1
G	BKGDPT55-03-4	0.0218	1	16	1	848	1	0.387	1	2.61	1	40	1	0.138	1
G	BKGDPT55-03-6	0.033	1	13.2	1	563	1	0.336	0	2.22	1	66	1	0.088	1
G	BKGDPT55-03-8	0.0087	1	17.5	1	624	1	0.334	0	3.79	1	70	1	0.087	1
G	BKGDPT56-03-10	0.0099	1	27.4	1	1134	1	0.393	0	2.74	1	279	1	0.288	1
G	BKGDPT56-03-12	0.026	1	33.4	1	1114	1	0.383	0	2.8	1	281	1	0.237	1
G	BKGDPT56-03-14	0.0229	1	26.2	1	1145	1	0.387	0	2.23	1	217	1	0.217	1
G	BKGDPT56-03-2	0.0467	1	10.2	1	664	1	0.341	0	1.87	1	57	1	0.248	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
G	BKGDPT56-03-4	0.0085	1	15.2	1	616	1	0.382	0	1.3	1	82	1	0.242	1
G	BKGDPT56-03-6	0.0046	0	16.3	1	648	1	0.375	1	0.28	1	122	1	0.208	1
G	BKGDPT56-03-8	0.0203	1	11.4	1	845	1	0.356	1	0.71	1	194	1	0.257	1
G	BKGDPT57-03-10	0.0232	0	22.5	1	1425	1	0.843	1	0.65	0	99	1	0.44	1
G	BKGDPT57-03-12	0.0231	0	24.3	1	1185	1	0.44	1	0.64	0	90	1	0.131	0
G	BKGDPT57-03-14	0.0227	0	24.2	1	1270	1	0.386	1	0.66	0	87	1	0.135	0
G	BKGDPT57-03-2	0.0245	0	21.7	1	2044	1	0.856	1	0.66	0	119	1	0.135	0
G	BKGDPT57-03-4	0.0232	0	22.4	1	1665	1	0.581	1	0.65	0	187	1	0.132	0
G	BKGDPT57-03-6	0.0231	0	21.2	1	1791	1	0.575	0	1.68	1	178	1	0.344	0
G	BKGDPT57-03-8	0.0221	0	14.7	1	1332	1	0.69	1	0.62	0	102	1	0.252	1
G	BKGDPT58-03-10	0.0214	1	30.1	1	1149	1	0.409	1	0.23	1	292	1	0.289	1
G	BKGDPT58-03-12	0.0308	1	35.9	1	1393	1	0.391	1	0.11	0	265	1	0.274	1
G	BKGDPT58-03-14	0.0142	1	17.7	1	974	1	0.375	1	0.61	1	167	1	0.15	1
G	BKGDPT58-03-2	0.022	1	4.9	1	287	1	0.349	1	0.11	0	36	1	0.218	1
G	BKGDPT58-03-4	0.0139	1	7.7	1	420	1	0.373	1	0.11	0	124	1	0.208	1
G	BKGDPT58-03-6	0.0048	1	34.7	1	1147	1	0.367	0	0.39	1	275	1	0.259	1
G	BKGDPT58-03-8	0.0086	1	42.9	1	1576	1	0.401	1	0.12	0	389	1	0.281	1
G	BKGDPT59-03-10	0.0236	0	20.3	1	1175	1	0.538	1	0.65	0	98	1	0.229	1
G	BKGDPT59-03-12	0.0222	0	21.9	1	1284	1	0.545	1	0.67	0	88	1	0.138	0
G	BKGDPT59-03-14	0.0218	0	16.6	1	1344	1	0.358	1	0.64	0	81	1	0.13	0
G	BKGDPT59-03-2	0.0248	0	43.5	1	2659	1	0.302	1	0.68	0	178	1	0.14	0
G	BKGDPT59-03-4	0.0239	0	44.8	1	2621	1	0.239	0	0.7	0	244	1	0.142	0
G	BKGDPT59-03-6	0.0227	0	19.2	1	1797	1	0.232	0	0.68	0	145	1	0.139	0
G	BKGDPT59-03-8	0.0251	0	25.8	1	3071	1	0.239	0	0.7	0	234	1	0.142	0
G	BKGDPT60-03-10	0.0045	0	20.7	1	568	1	0.384	1	0.12	0	76	1	0.377	1
G	BKGDPT60-03-12	0.0079	1	28.6	1	569	1	0.37	1	0.11	0	86	1	0.391	1
G	BKGDPT60-03-14	0.0249	1	23	1	615	1	0.385	1	0.12	0	82	1	0.355	1
G	BKGDPT60-03-2	0.0345	1	16.1	1	505	1	0.464	1	0.12	0	22	1	0.185	1
G	BKGDPT60-03-4	0.0262	1	11.2	1	553	1	0.387	1	0.11	0	49	1	0.197	1
G	BKGDPT60-03-6	0.0181	1	11.2	1	526	1	0.366	1	0.11	0	44	1	0.123	1
G	BKGDPT60-03-8	0.0046	0	12.7	1	765	1	0.364	0	0.57	1	52	1	0.145	1

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
D	BKGDPT31-03-2	3.93	1	26.3	1	89.4	1
D	BKGDPT31-03-4	6.71	1	46.8	1	222.6	1
D	BKGDPT32-03-10	2.83	1	36	1	43.2	1
D	BKGDPT32-03-12	4.17	1	77.1	1	172.3	1
D	BKGDPT32-03-2	3.67	1	40	1	83.9	1
D	BKGDPT32-03-4	2.98	1	29.3	1	57.2	1
D	BKGDPT32-03-6	3.58	1	31.2	1	47.5	1
D	BKGDPT32-03-8	3.01	1	22.2	1	47.6	1
D	BKGDPT33-03-2	2.95	1	31.7	1	31.1	1
D	BKGDPT33-03-4	3.10	1	47.7	1	54.7	1
D	BKGDPT33-03-6	2.89	1	48.2	1	56.9	1
Е	BKGDPT34-03-10	3.52	1	31.5	1	41.9	1
E	BKGDPT34-03-12	2.83	1	28.2	1	54.9	1
E	BKGDPT34-03-14	3.52	1	31.4	1	51.1	1
E	BKGDPT34-03-2	3.31	1	31.6	1	31.6	1
E	BKGDPT34-03-4	4.02	1	41.1	1	56.2	1
E	BKGDPT34-03-6	3.40	1	35.6	1	49.2	1
E	BKGDPT34-03-8	3.28	1	27.5	1	30.3	1
E	BKGDPT35-03-10	4.08	1	43.3	1	57.2	1
E	BKGDPT35-03-12	3.73	1	33	1	52.9	1
E	BKGDPT35-03-12 BKGDPT35-03-14	4.23	1	32.4	1	59.8	1
E	BKGDPT35-03-2	2.89	1	64	1	59.6	1
E	BKGDPT35-03-2	4.62	1	27.3	1	32.4	1
E	BKGDPT35-03-6	5.04	1	44.6	1	49.9	1
E	BKGDPT35-03-8	3.73	1	41.4	1	42.3	1
E	BKGDPT36-03-10	3.37	1	34.8	1	34.1	1
E	BKGDPT36-03-10 BKGDPT36-03-12	3.43	1	45.8	1	55.4	1
E	BKGDPT36-03-12 BKGDPT36-03-14	4.65	1	43.8	1	111.7	1
E	BKGDPT36-03-14 BKGDPT36-03-2	3.58	1	35.2	1	31.5	1
E		3.28	1	38.6	1	22	1
E	BKGDPT36-03-4	3.37	1	39.2	1	29.4	1
	BKGDPT36-03-6						1
E	BKGDPT36-03-8	3.75	1	51.6	1	52.9	-
E	BKGDPT37-03-10	3.22	1	31.7	1	56.1	1
E	BKGDPT37-03-12	3.61	-	57.8	1	68	-
E	BKGDPT37-03-14	3.49	1	31.4	1	60.9	1
E	BKGDPT37-03-2	3.52	1	36.1	1	37.1	1
E	BKGDPT37-03-4	3.73	1	37.2	1	38.6	1
E	BKGDPT37-03-6	3.87	1	36.4	1	49.2	1
E	BKGDPT37-03-8	3.49	1	29.7	1	57.5	1
F	BKGDPT38-03-10	4.23	1	26.2	1	38.1	1
F	BKGDPT38-03-12	3.25	1	38.2	1	50	1
F	BKGDPT38-03-14	3.25	1	25.1	1	30.7	1
F	BKGDPT38-03-2	2.83	1	16.9	1	16.5	1
F	BKGDPT38-03-4	3.58	1	23.8	1	21.6	1
F	BKGDPT38-03-6	3.22	1	34.3	1	36.3	1
F	BKGDPT38-03-8	3.55	1	34.3	1	76.9	1
F	BKGDPT39-03-10	4.02	1	28.3	1	58.9	1
F	BKGDPT39-03-12	3.40	1	18.6	1	14.1	1
F	BKGDPT39-03-14	3.22	1	39.2	1	44.2	1
F	BKGDPT39-03-2	2.59	1	31.6	1	33.8	1
F	BKGDPT39-03-4	2.21	1	33.6	1	37.1	1
F	BKGDPT39-03-6	4.44	1	30.5	1	75.2	1

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
F	BKGDPT39-03-8	3.43	1	37.2	1	84.6	1
F	BKGDPT40-03-10	6.26	1	38.7	1	79.6	1
F	BKGDPT40-03-12	3.96	1	29	1	76.4	1
F	BKGDPT40-03-14	3.96	1	33.7	1	73.4	1
F	BKGDPT40-03-2	2.68	1	62.3	1	62.8	1
F	BKGDPT40-03-4	3.13	1	17.9	1	31.7	1
F	BKGDPT40-03-6	2.80	1	30.6	1	36.8	1
F	BKGDPT40-03-8	3.40	1	27.8	1	38.7	1
F	BKGDPT41-03-10	3.84	1	29.5	1	74.6	1
F	BKGDPT41-03-12	4.26	1	29.2	1	69	1
F	BKGDPT41-03-14	3.64	1	30.1	1	69.1	1
F	BKGDPT41-03-2	3.25	1	46.6	1	20.2	1
F	BKGDPT41-03-4	2.53	1	23.3	1	18.5	1
F	BKGDPT41-03-6	4.14	1	28.6	1	64.7	1
F	BKGDPT41-03-8	4.08	1	33.9	1	72	1
F	BKGDPT42-03-2	2.65	1	68.9	1	28.3	1
F	BKGDPT42-03-4	3.19	1	33.8	1	71.8	1
F	BKGDPT42-03-6	3.55	1	24.4	1	68.1	1
F	BKGDPT43-03-10	4.11	1	39.1	1	118.8	1
F	BKGDPT43-03-12	3.22	1	27	1	49.2	1
F	BKGDPT43-03-12	3.64	1	38.8	1	60.4	1
F	BKGDPT43-03-2	3.84	1	47	1	63.8	1
F	BKGDPT43-03-4	3.90	1	44.2	1	92.2	1
F	BKGDPT43-03-6	4.08	1	44.2	1	82.5	1
F	BKGDPT43-03-8	4.03	1	44.7	1	88.5	1
F	BKGDP143-03-10	4.03	1	33.5	1	79.1	1
F	BKGDPT44-03-10 BKGDPT44-03-12	3.22	1	30.1	1	68.4	1
F	BKGDPT44-03-12 BKGDPT44-03-14	3.52	1	31.6	1	38.3	1
F	BKGDPT44-03-14 BKGDPT44-03-2	3.04	1	21.4	1	26.3	1
F	BKGDPT44-03-2 BKGDPT44-03-4	2.80	1	32.8	1	31.6	1
F		4.29	1	40.1	1	114.9	1
F	BKGDPT44-03-6		1		1		1
F	BKGDPT44-03-8	4.11		35.9		83.6	-
F F	BKGDPT45-03-2	2.92	1	43.6	1	23.8	1
	BKGDPT45-03-4	2.77	-	26.5	1	84.2	-
F	BKGDPT46-03-2	3.04	1	29.3	1	36.3	1
F	BKGDPT46-03-4	2.50	1	32	1	48.1	1
F	BKGDPT46-03-6	2.83	1	37.8	1	64	1
F	BKGDPT47-03-10	2.92	1	30.3	1	49.5	1
F	BKGDPT47-03-12	3.31	1	29.8	1	53.7	1
F	BKGDPT47-03-14	3.19	1	38.3	1	64	1
F	BKGDPT47-03-2	2.80	1	45.3	1	64.4	1
F	BKGDPT47-03-4	2.77	1	58.9	1	71.4	1
F	BKGDPT47-03-6	3.37	1	31	1	41.5	1
F	BKGDPT47-03-8	3.25	1	34.8	1	53.1	1
G	BKGDPT48-03-10	3.28	1	48.4	1	94.9	1
G	BKGDPT48-03-12	2.89	1	34.9	1	64.6	1
G	BKGDPT48-03-14	3.78	1	36.5	1	54.8	1
G	BKGDPT48-03-2	3.10	1	33.3	1	37.3	1
G	BKGDPT48-03-4	2.71	1	100.6	1	92.9	1
G	BKGDPT48-03-6	3.10	1	35.4	1	86.5	1
G	BKGDPT48-03-8	3.22	1	65.1	1	99.3	1
G	BKGDPT49-03-10	4.11	1	38	1	84.1	1

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
G	BKGDPT49-03-12	4.23	1	37.2	1	87	1
G	BKGDPT49-03-14	3.84	1	36.9	1	83.5	1
G	BKGDPT49-03-2	3.34	1	52.4	1	58.3	1
G	BKGDPT49-03-4	4.05	1	33.9	1	71.4	1
G	BKGDPT49-03-6	3.93	1	34.7	1	90.2	1
G	BKGDPT49-03-8	3.96	1	34.7	1	79.6	1
G	BKGDPT50-03-10	3.46	1	33.6	1	77.8	1
G	BKGDPT50-03-12	3.73	1	35.1	1	76.5	1
G	BKGDPT50-03-14	3.67	1	44.6	1	52.4	1
G	BKGDPT50-03-2	3.28	1	32.6	1	20	1
G	BKGDPT50-03-4	3.49	1	36.8	1	66.3	1
G	BKGDPT50-03-6	3.22	1	33	1	67.5	1
G	BKGDPT50-03-8	4.11	1	31.1	1	77.8	1
G	BKGDPT51-03-10	3.73	1	33.3	1	59.9	1
G	BKGDPT51-03-12	2.86	1	38	1	71.1	1
G	BKGDPT51-03-14	3.28	1	30.1	1	58.4	1
G	BKGDPT51-03-2	4.02	1	50	1	39.5	1
G	BKGDPT51-03-4	4.02	1	35	1	60.2	1
G	BKGDPT51-03-6	3.55	1	28.7	1	51.6	1
G	BKGDPT51-03-8	3.43	1	28.7	1	44.7	1
G	BKGDPT52-03-10	3.87	1	33.8	1	110.8	1
G	BKGDPT52-03-10 BKGDPT52-03-12	3.25	1	34.9	1	77.2	1
G	BKGDPT52-03-12 BKGDPT52-03-14	2.68	1	34.3	1	95.2	1
G	BKGDPT52-03-2	3.07	1	76.1	-	62.1	1
G	BKGDPT52-03-4	3.07	1	45	1	107.6	1
G		3.07	1	38	1	107.6	1
-	BKGDPT52-03-6					-	-
G	BKGDPT52-03-8	2.68	1	38 38.7	1	105.1 45.6	1
-	BKGDPT53-03-10	3.73	1		1		1
G	BKGDPT53-03-12	3.73	1	33.6	1	42.9	1
G	BKGDPT53-03-14	3.81	1	35.4	1	44.8	1
G	BKGDPT53-03-2	3.96	1	50.6	1	61.4	1
G	BKGDPT53-03-4	4.92	1	42.3	1	64.2	1
G	BKGDPT53-03-6	4.20	1	43.8	1	82.8	1
G	BKGDPT53-03-8	3.13	1	41.9	1	71.6	1
G	BKGDPT54-03-10	3.37	1	31.2	1	32.8	1
G	BKGDPT54-03-12	3.25	1	30.1	1	40.4	1
G	BKGDPT54-03-14	3.58	1	29.8	1	48.5	1
G	BKGDPT54-03-2	4.29	1	40.5	1	56.4	1
G	BKGDPT54-03-4	3.64	1	28.3	1	58.5	1
G	BKGDPT54-03-6	2.98	1	29.5	1	58.2	1
G	BKGDPT54-03-8	3.07	1	42	1	26.8	1
G	BKGDPT55-03-10	2.80	1	59.1	1	92.6	1
G	BKGDPT55-03-12	3.07	1	45.2	1	87.7	1
G	BKGDPT55-03-14	3.01	1	41.4	1	69.8	1
G	BKGDPT55-03-2	3.37	1	42.5	1	84.6	1
G	BKGDPT55-03-4	3.90	1	33.4	1	56.9	1
G	BKGDPT55-03-6	2.86	1	38.3	1	45.3	1
G	BKGDPT55-03-8	3.19	1	50.5	1	85.3	1
G	BKGDPT56-03-10	4.35	1	32.7	1	55.9	1
G	BKGDPT56-03-12	3.84	1	32.5	1	80.2	1
G	BKGDPT56-03-14	3.46	1	36.1	1	75.5	1
G	BKGDPT56-03-2	3.28	1	35.7	1	43.2	1

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
G	BKGDPT56-03-4	3.81	1	30.9	1	46.7	1
G	BKGDPT56-03-6	3.43	1	26.1	1	35.8	1
G	BKGDPT56-03-8	3.43	1	43	1	29.5	1
G	BKGDPT57-03-10	4.44	1	44.9	1	71.9	1
G	BKGDPT57-03-12	3.73	1	42	1	71.6	1
G	BKGDPT57-03-14	3.22	1	44.6	1	75.8	1
G	BKGDPT57-03-2	3.61	1	43.8	1	59.6	1
G	BKGDPT57-03-4	3.52	1	35.3	1	49.5	1
G	BKGDPT57-03-6	3.75	1	48.1	1	43.5	1
G	BKGDPT57-03-8	3.34	1	31.3	1	48.8	1
G	BKGDPT58-03-10	3.64	1	31.6	1	71.8	1
G	BKGDPT58-03-12	3.64	1	29.8	1	69.8	1
G	BKGDPT58-03-14	4.65	1	45.9	1	45.2	1
G	BKGDPT58-03-2	3.07	1	24.3	1	11.2	1
G	BKGDPT58-03-4	2.71	1	26	1	15	1
G	BKGDPT58-03-6	3.64	1	33.4	1	65.7	1
G	BKGDPT58-03-8	4.26	1	32.8	1	70.1	1
G	BKGDPT59-03-10	4.35	1	34.8	1	58.7	1
G	BKGDPT59-03-12	3.96	1	41.6	1	64.3	1
G	BKGDPT59-03-14	4.08	1	39.6	1	59	1
G	BKGDPT59-03-2	3.67	1	44.9	1	66.3	1
G	BKGDPT59-03-4	3.78	1	34.4	1	75.1	1
G	BKGDPT59-03-6	3.49	1	26.8	1	56.4	1
G	BKGDPT59-03-8	3.93	1	38.8	1	75.8	1
G	BKGDPT60-03-10	3.75	1	35.8	1	60.3	1
G	BKGDPT60-03-12	4.29	1	36.4	1	77.1	1
G	BKGDPT60-03-14	5.07	1	32.8	1	74.5	1
G	BKGDPT60-03-2	2.65	1	60	1	35.4	1
G	BKGDPT60-03-4	3.64	1	31.1	1	27.4	1
G	BKGDPT60-03-6	2.80	1	25.9	1	24.9	1
G	BKGDPT60-03-8	3.01	1	45.9	1	51.7	1

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
D	BKGDPT31-04-2	0.031	0	0.028	0	0.042	0	0.019	0	0.469	0
D	BKGDPT31-04-4	0.03	0	0.023	0	0.057	0	0.057	0	0.47	0
D	BKGDPT32-04-10	0.033	0	0.069	0	0.058	0	0.038	0	0.444	0
D	BKGDPT32-04-12	0.019	0	0.071	0	0.042	0	0.031	0	0.469	0
D	BKGDPT32-04-2	0.056	0	0.068	0	0.042	0	0.026	0	0.501	0
D	BKGDPT32-04-4	0.052	0	0.063	0	0.031	0	0.043	0	0.46	0
D	BKGDPT32-04-6	0.062	0	0.074	0	0.029	0	0.04	0	0.425	0
D	BKGDPT32-04-8	0.033	0	0.055	0	0.049	0	0.053	0	0.458	0
D	BKGDPT33-04-2	0.065	0	0.054	0	0.025	0	0.025	0	0.456	0
D	BKGDPT33-04-4	0.074	0	0.046	0	0.038	0	0.045	0	0.495	0
D	BKGDPT33-04-6	0.049	0	0.065	0	0.083	0	0.055	0	0.448	0
E	BKGDPT34-04-10	0.035	0	0.024	0	0.034	0	0.047	0	0.418	0
E	BKGDPT34-04-12	0.038	0	0.032	0	0.071	0	0.05	0	0.412	0
E	BKGDPT34-04-14	0.052	0	0.03	0	0.047	0	0.02	0	0.407	0
E	BKGDPT34-04-2	0.035	0	0.048	0	0.046	0	0.025	0	0.401	0
E	BKGDPT34-04-4	0.029	0	0.078	0	0.036	0	0.033	0	0.426	0
Е	BKGDPT34-04-6	0.027	0	0.059	0	0.034	0	0.041	0	0.457	0
E	BKGDPT34-04-8	0.03	0	0.067	0	0.027	0	0.027	0	0.411	0
E	BKGDPT35-04-10	0.024	0	0.042	0	0.05	0	0.034	0	0.403	0
E	BKGDPT35-04-12	0.023	0	0.036	0	0.066	0	0.061	0	0.441	0
E	BKGDPT35-04-14	0.017	0	0.037	0	0.063	0	0.038	0	0.431	0
E	BKGDPT35-04-2	0.044	0	0.051	0	0.057	0	0.037	0	0.39	0
E	BKGDPT35-04-4	0.065	0	0.078	0	0.095	0	0.059	0	0.414	0
E	BKGDPT35-04-6	0.032	0	0.051	0	0.042	0	0.058	0	0.407	0
E	BKGDPT35-04-8	0.032	0	0.035	0	0.05	0	0.042	0	0.42	0
Е	BKGDPT36-04-10	0.042	0	0.039	0	0.035	0	0.033	0	0.413	0
E	BKGDPT36-04-12	0.054	0	0.04	0	0.033	0	0.039	0	0.415	0
E	BKGDPT36-04-14	0.025	0	0.046	0	0.02	0	0.02	0	0.416	0
E	BKGDPT36-04-2	0.019	0	0.052	0	0.046	0	0.029	0	0.445	0
E	BKGDPT36-04-4	0.048	0	0.056	0	0.047	0	0.021	0	0.438	0
E	BKGDPT36-04-6	0.042	0	0.043	0	0.05	0	0.041	0	0.417	0
E	BKGDPT36-04-8	0.036	0	0.062	0	0.033	0	0.018	0	0.448	0
E	BKGDPT37-04-10	0.058	0	0.077	0	0.063	0	0.045	0	0.422	0
E	BKGDPT37-04-12	0.094	0	0.044	0	0.044	0	0.019	0	0.425	0
E	BKGDPT37-04-14	0.08	0	0.072	0		0		0	0.466	0
<u>Е</u> Е	BKGDPT37-04-2 BKGDPT37-04-4	0.046	0	0.043	0	0.029	0	0.029	0	0.472	0
E	BKGDP137-04-4 BKGDPT37-04-6	0.029	0	0.04	0	0.028	0	0.018	0	0.402	0
E	BKGDP137-04-8	0.015	0	0.033	0	0.079	0	0.079	0	0.365	0
F	BKGDPT38-04-10	0.053	0	0.068	0	0.037	0	0.034	0	0.465	0
F	BKGDPT38-04-10 BKGDPT38-04-12	0.029	0	0.068	0	0.037	0	0.037	0	0.465	0
F	BKGDPT38-04-12 BKGDPT38-04-14	0.029	0	0.06	0	0.029	0	0.029	0	0.426	0
F	BKGDPT38-04-14 BKGDPT38-04-2	0.033	0	0.054	0	0.089	0	0.036	0	0.481	0
F	BKGDPT38-04-2 BKGDPT38-04-4	0.043	0	0.072	0	0.026	0	0.026	0	0.488	0
F	BKGDPT38-04-4 BKGDPT38-04-6	0.043	0	0.102	0	0.036	0	0.036	0	0.449	0
F	BKGDPT38-04-8	0.079	0	0.102	0	0.020	0	0.039	0	0.480	0
F	BKGDPT39-04-10	0.046	0	0.061	0	0.024	0	0.039	0	0.423	0
F	BKGDPT39-04-10 BKGDPT39-04-12	0.040	0	0.001	0	0.026	0	0.041	0	0.403	0
F	BKGDPT39-04-12 BKGDPT39-04-14	0.045	0	0.053	0	0.043	0	0.079	0	0.463	0
F	BKGDPT39-04-14 BKGDPT39-04-2	0.026	0	0.035	0	0.073	0	0.04	0	0.366	0
F	BKGDPT39-04-2 BKGDPT39-04-4	0.020	0	0.033	0	0.054	0	0.054	0	0.392	0
F	BKGDPT39-04-6	0.027	0	0.054	0	0.047	0	0.047	0	0.479	0
F	BKGDPT39-04-0 BKGDPT39-04-8	0.037	0	0.06	0	0.027	0	0.027	0	0.479	0
F	BKGDPT40-04-10	0.046	0	0.103	0	0.039	0	0.024	0	0.439	0
F	BKGDPT40-04-10 BKGDPT40-04-12	0.040	0	0.074	0	0.033	0	0.052	0	0.459	0
F	BKGDPT40-04-12 BKGDPT40-04-14	0.027	0	0.076	0	0.031	0	0.032	0	0.402	0
F	BKGDPT40-04-14 BKGDPT40-04-2	0.044	0	0.070	0	0.051	0	0.051	0	0.37	0
F	BKGDPT40-04-2 BKGDPT40-04-4	0.023	0	0.055	0	0.023	0	0.023	0	0.355	0

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
F	BKGDPT40-04-6	0.026	0	0.055	0	0.02	0	0.02	0	0.298	0
F	BKGDPT40-04-8	0.057	0	0.047	0	0.017	0	0.017	0	0.307	0
F	BKGDPT41-04-10	0.034	0	0.048	0	0.035	0	0.033	0	0.463	0
F	BKGDPT41-04-12	0.056	0	0.054	0	0.04	0	0.029	0	0.473	0
F	BKGDPT41-04-14	0.045	0	0.052	0	0.032	0	0.017	0	0.469	0
F	BKGDPT41-04-2	0.036	0	0.038	0	0.079	0	0.073	0	0.39	0
F	BKGDPT41-04-4	0.041	0	0.056	0	0.04	0	0.04	0	0.417	0
F	BKGDPT41-04-6	0.021	0	0.047	0	0.042	0	0.029	0	0.509	0
F	BKGDPT41-04-8	0.057	0	0.021	0	0.017	0	0.03	0	0.476	0
F	BKGDPT42-04-2	0.039	0	0.082	0	0.03	0	0.039	0	0.387	0
F	BKGDPT42-04-4	0.033	0	0.056	0	0.05	0	0.032	0	0.358	0
F	BKGDPT42-04-6	0.018	0	0.056	0	0.046	0	0.037	0	0.37	0
F	BKGDPT43-04-10	0.03	0	0.038	0	0.034	0	0.048	0	0.432	0
F	BKGDPT43-04-12	0.056	0	0.056	0	0.047	0	0.047	0	0.441	0
F	BKGDPT43-04-14	0.043	0	0.077	0	0.032	0	0.038	0	0.444	0
F	BKGDPT43-04-2	0.036	0	0.027	0	0.031	0	0.045	0	0.433	0
F	BKGDPT43-04-4	0.041	0	0.07	0	0.031	0	0.031	0	0.458	0
F	BKGDPT43-04-6	0.061	0	0.063	0	0.047	0	0.021	0	0.438	0
F	BKGDPT43-04-8	0.052	0	0.051	0	0.061	0	0.057	0	0.438	0
F	BKGDPT44-04-10	0.023	0	0.057	0	0.041	0	0.034	0	0.467	0
F	BKGDPT44-04-12	0.025	0	0.034	0	0.028	0	0.028	0	0.496	0
F	BKGDPT44-04-12 BKGDPT44-04-14	0.039	0	0.035	0	0.032	0	0.041	0	0.478	0
F	BKGDPT44-04-2	0.018	0	0.077	0	0.017	0	0.038	0	0.498	0
F	BKGDPT44-04-4	0.031	0	0.028	0	0.034	0	0.029	0	0.453	0
F	BKGDPT44-04-6	0.02	0	0.066	0	0.029	0	0.029	0	0.49	0
F	BKGDPT44-04-0 BKGDPT44-04-8	0.023	0	0.035	0	0.029	0	0.029	0	0.443	0
F	BKGDPT45-04-2	0.054	0	0.066	0	0.033	0	0.02	0	0.385	0
F	BKGDPT45-04-2 BKGDPT45-04-4	0.054	0	0.065	0	0.025	0	0.025	0	0.373	0
F	BKGDPT46-04-2	0.032	0	0.05	0	0.047	0	0.023	0	0.4	0
F	BKGDPT46-04-2	0.023	0	0.064	0	0.037	0	0.023	0	0.455	0
F	BKGDPT46-04-6	0.035	0	0.066	0	0.043	0	0.043	0	0.433	0
F	BKGDPT47-04-10	0.035	0	0.043	0	0.043	0	0.043	0	0.415	0
F	BKGDPT47-04-10 BKGDPT47-04-12	0.041	0	0.043	0	0.025	0	0.025	0	0.405	0
F	BKGDPT47-04-12 BKGDPT47-04-14	0.045	0	0.044	0	0.023	0	0.023	0	0.432	0
F	BKGDPT47-04-14 BKGDPT47-04-2	0.043	0	0.028	0	0.034	0	0.034	0	0.428	0
F	BKGDPT47-04-2	0.043	0	0.028	0	0.030	0	0.030	0	0.399	0
F	BKGDPT47-04-4 BKGDPT47-04-6	0.040	0	0.037	0	0.024	0	0.024	0	0.411	0
F	BKGDPT47-04-8	0.049	0	0.028	0	0.027	0	0.044	0	0.351	0
G	BKGDPT48-04-10	0.04	0	0.042	0	0.028	0	0.048	0	0.331	0
G	BKGDPT48-04-10 BKGDPT48-04-12	0.074	0	0.041	0	0.047	0	0.054	0	0.375	0
G	BKGDPT48-04-12 BKGDPT48-04-14	0.067	0	0.041	0	0.087	0	0.056	0	0.375	0
G	BKGDPT48-04-14 BKGDPT48-04-2	0.067	0	0.063	0	0.071	0	0.056	0	0.409	0
G	BKGDP148-04-2 BKGDPT48-04-4	0.073	0	0.045	0	0.057	0	0.039	0	0.36	0
G	BKGDPT48-04-4 BKGDPT48-04-6	0.04	0	0.061	0	0.044	0	0.064	0	0.387	0
G		0.003		0.055		0.038	0	0.078	0		0
G	BKGDPT48-04-8 BKGDPT49-04-10	0.031	0	0.11 0.046	0	0.035	0	0.032	0	0.348 0.572	0
G	BKGDP149-04-10 BKGDPT49-04-12	0.061	0	0.046	0	0.098	0	0.072	0	0.572	0
G		0.037	0	0.039	0	0.111 0.101	0	0.034	0	0.534	0
G	BKGDPT49-04-14 BKGDPT49-04-2	0.03		0.036	0	0.101	-	0.077		0.565	0
			0				0		0		0
G	BKGDPT49-04-4	0.08	0	0.066	0	0.076	0	0.049	0	0.556	0
G	BKGDPT49-04-6	0.076	0	0.033	0	0.05	0	0.04	0	0.563	0
G	BKGDPT49-04-8	0.028	0	0.05	0	0.068	0	0.054	0	0.588	0
G	BKGDPT50-04-10	0.037	0	0.038	0	0.018	0	0.037	0	0.453	0
G	BKGDPT50-04-12	0.029	0	0.043	0	0.034	0	0.05	0	0.453	0
G	BKGDPT50-04-14	0.068	0	0.062	0	0.039	0	0.039	0	0.374	0
G	BKGDPT50-04-2	0.05	0	0.066	0	0.043	0	0.064	0	0.426	0
G	BKGDPT50-04-4	0.032	0	0.05	0	0.038	0	0.033	0	0.428	0
G	BKGDPT50-04-6	0.047	0	0.056	0	0.05	0	0.046	0	0.382	0

AREA LETTER	PROJ SAMPLE ID	Americium-241	D Americium-241	Neptunium-237	D Neptunium-237	Plutonium-238	D Plutonium-238	Plutonium-239/240	D Plutonium-239/240	Technetium-99	D Technetium-99
G	BKGDPT50-04-8	0.074	0	0.048	0	0.035	0	0.047	0	0.4	0
G	BKGDPT51-04-10	0.021	0	0.028	0	0.034	0	0.017	0	0.381	0
G	BKGDPT51-04-12	0.019	0	0.061	0	0.051	0	0.046	0	0.33	0
G	BKGDPT51-04-14	0.044	0	0.088	0	0.055	0	0.051	0	0.423	0
G	BKGDPT51-04-2	0.056	0	0.076	0	0.054	0	0.035	0	0.476	0
G	BKGDPT51-04-4	0.038	0	0.056	0	0.033	0	0.048	0	0.432	0
G	BKGDPT51-04-6	0.053	0	0.049	0	0.04	0	0.037	0	0.416	0
G	BKGDPT51-04-8	0.042	0	0.06	0	0.039	0	0.039	0	0.427	0
G	BKGDPT52-04-10	0.118	0	0.06	0	0.029	0	0.029	0	0.381	0
G	BKGDPT52-04-12	0.105	0	0.05	0	0.045	0	0.038	0	0.379	0
G	BKGDPT52-04-14	0.111	0	0.073	0	0.041	0	0.028	0	0.382	0
G	BKGDPT52-04-2	0.141	0	0.074	0	0.029	0	0.036	0	0.376	0
G	BKGDPT52-04-4	0.087	0	0.075	0	0.02	0	0.032	0	0.415	0
G	BKGDPT52-04-6	0.058	0	0.058	0	0.05	0	0.033	0	0.385	0
G	BKGDPT52-04-8	0.067	0	0.063	0	0.051	0	0.04	0	0.414	0
G	BKGDPT53-04-10	0.071	0	0.05	0	0.055	0	0.065	0	0.324	0
G	BKGDPT53-04-12	0.043	0	0.052	0	0.033	0	0.033	0	0.308	0
G	BKGDPT53-04-14	0.025	0	0.026	0	0.039	0	0.035	0	0.299	0
G	BKGDPT53-04-2	0.027	0	0.062	0	0.022	0	0.034	0	0.334	0
G	BKGDPT53-04-4	0.054	0	0.028	0	0.071	0	0.05	0	0.329	0
G	BKGDPT53-04-6	0.045	0	0.082	0	0.043	0	0.029	0	0.348	0
G	BKGDPT53-04-8	0.028	0	0.042	0	0.065	0	0.047	0	0.298	0
G	BKGDPT54-04-10	0.052	0	0.135	0	0.065	0	0.042	0	0.403	0
G	BKGDPT54-04-12	0.046	0	0.052	0	0.052	0	0.041	0	0.372	0
G	BKGDPT54-04-14	0.03	0	0.06	0	0.031	0	0.04	0	0.38	0
G	BKGDPT54-04-2	0.018	0	0.058	0	0.047	0	0.025	0	0.369	0
G	BKGDPT54-04-4	0.038	0	0.078	0	0.045	0	0.049	0	0.432	0
G	BKGDPT54-04-6	0.04	0	0.052	0	0.033	0	0.029	0	0.372	0
G	BKGDPT54-04-8	0.052 0.027	0	0.058	0	0.041	0	0.035	0	0.379	0
G	BKGDPT55-04-10 BKGDPT55-04-12	0.027	0	0.048	0	0.027	0	0.017	0	0.359	0
G	BKGDP155-04-12 BKGDPT55-04-14	0.043	0	0.07	0	0.048	0	0.031	0	0.333	0
G	BKGDP155-04-14 BKGDPT55-04-2	0.04	0	0.041	0	0.042	0	0.033	0	0.382	0
G	BKGDPT55-04-2 BKGDPT55-04-4	0.042	0	0.038	0	0.017	0	0.017	0	0.39	0
G	BKGDPT55-04-6	0.040	0	0.047	0	0.083	0	0.017	0	0.39	0
G	BKGDPT55-04-8	0.064	0	0.042	0	0.089	0	0.056	0	0.366	0
G	BKGDPT56-04-10	0.004	0	0.020	0	0.042	0	0.039	0	0.418	0
G	BKGDPT56-04-12	0.044	0	0.084	0	0.042	0	0.037	0	0.472	0
G	BKGDPT56-04-12	0.029	0	0.067	0	0.039	0	0.057	0	0.466	0
G	BKGDPT56-04-2	0.018	0	0.029	0	0.029	0	0.026	0	0.473	0
G	BKGDPT56-04-4	0.017	0	0.053	0	0.04	0	0.020	0	0.428	0
G	BKGDPT56-04-6	0.024	0	0.036	0	0.028	0	0.032	0	0.420	0
G	BKGDPT56-04-8	0.044	0	0.046	0	0.021	0	0.039	0	0.416	0
G	BKGDPT57-04-10	0.036	0	0.051	0	0.064	0	0.05	0	0.391	0
G	BKGDPT57-04-12	0.041	0	0.035	0	0.078	0	0.048	0	0.517	0
G	BKGDPT57-04-14	0.028	0	0.066	0	0.082	0	0.045	0	0.505	0
G	BKGDPT57-04-2	0.035	0	0.04	0	0.033	0	0.037	0	0.428	1
G	BKGDPT57-04-4	0.038	0	0.041	0	0.041	0	0.032	0	0.383	0
G	BKGDPT57-04-6	0.028	0	0.031	0	0.059	0	0.021	0	0.413	0
G	BKGDPT57-04-8	0.017	0	0.057	0	0.031	0	0.031	0	0.383	0
G	BKGDPT58-04-10	0.043	0	0.038	0	0.083	0	0.044	0	0.415	0
G	BKGDPT58-04-12	0.051	0	0.04	0	0.064	0	0.04	0	0.434	0
G	BKGDPT58-04-14	0.085	0	0.057	0	0.063	0	0.035	0	0.393	0
G	BKGDPT58-04-2	0.027	0	0.035	0	0.096	0	0.065	0	0.358	0
G	BKGDPT58-04-4	0.066	0	0.036	0	0.09	0	0.027	0	0.411	0
G	BKGDPT58-04-6	0.044	0	0.027	0	0.025	0	0.029	0	0.382	0
G	BKGDPT58-04-8	0.071	0	0.037	0	0.067	0	0.024	0	0.469	0
G	BKGDPT59-04-10	0.048	0	0.031	0	0.051	0	0.047	0	0.506	0

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
G	BKGDPT59-04-12	0.039	0	0.043	0	0.034	0	0.046	0	0.523	0
G	BKGDPT59-04-14	0.051	0	0.043	0	0.049	0	0.072	0	0.5	0
G	BKGDPT59-04-2	0.051	0	0.058	0	0.072	0	0.04	0	0.546	0
G	BKGDPT59-04-4	0.018	0	0.036	0	0.075	0	0.048	0	0.541	0
G	BKGDPT59-04-6	0.041	0	0.056	0	0.106	0	0.077	0	0.52	0
G	BKGDPT59-04-8	0.027	0	0.04	0	0.049	0	0.033	0	0.575	0
G	BKGDPT60-04-10	0.072	0	0.068	0	0.04	0	0.034	0	0.383	0
G	BKGDPT60-04-12	0.077	0	0.068	0	0.043	0	0.021	0	0.416	0
G	BKGDPT60-04-14	0.055	0	0.05	0	0.02	0	0.041	0	0.384	0
G	BKGDPT60-04-2	0.047	0	0.048	0	0.061	0	0.052	0	0.371	0
G	BKGDPT60-04-4	0.08	0	0.046	0	0.045	0	0.045	0	0.464	0
G	BKGDPT60-04-6	0.056	0	0.065	0	0.061	0	0.046	0	0.368	0
G	BKGDPT60-04-8	0.071	0	0.041	0	0.055	0	0.054	0	0.381	0

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
D	BKGDPT31-04-2	1.31	1	1	1	1.4	1	1.03	1	0.048	1	1.32	1
D	BKGDPT31-04-4	1.68	1	2.81	1	1.37	1	2.03	1	0.112	1	2.25	1
D	BKGDPT32-04-10	1.23	1	1.09	1	1.06	1	1.06	1	0.077	0	0.95	1
D	BKGDPT32-04-12	1.24	1	1.46	1	1.19	1	1.27	1	0.065	0	1.4	1
D	BKGDPT32-04-2	1.45	1	1.57	1	1.17	1	1.39	1	0.096	0	1.23	1
D	BKGDPT32-04-4	1.08	1	1.13	1	1.38	1	1.06	1	0.129	0	1	1
D	BKGDPT32-04-6	1.33	1	1.32	1	1.19	1	1.38	1	0.064	1	1.2	1
D	BKGDPT32-04-8	1.28	1	1.16	1	1.05	1	0.84	1	0.061	0	1.01	1
D	BKGDPT33-04-2	1.34	1	0.95	1	1.05	1	0.88	1	0.08	0	0.99	1
D	BKGDPT33-04-4	1.34	1	1.05	1	1.22	1	0.89	1	0.063	1	1.04	1
D	BKGDPT33-04-6	1.45	1	1.02	1	1.26	1	0.97	1	0.051	0	0.97	1
E	BKGDPT34-04-10	1.18	1	1.25	1	1.27	1	1.24	1	0.054	0	1.18	1
Е	BKGDPT34-04-12	1.46	1	1.24	1	1.56	1	0.99	1	0.074	0	0.95	1
E	BKGDPT34-04-14	1.49	1	1.18	1	1.42	1	1.05	1	0.048	0	1.18	1
Е	BKGDPT34-04-2	1.3	1	1.36	1	1.33	1	1.09	1	0.059	0	1.11	1
Е	BKGDPT34-04-4	1.27	1	1.19	1	1.42	1	1.37	1	0.083	1	1.35	1
Е	BKGDPT34-04-6	1.33	1	1.15	1	1.39	1	1.4	1	0.071	1	1.14	1
Е	BKGDPT34-04-8	1.46	1	1.26	1	1.53	1	1.3	1	0.074	1	1.1	1
Е	BKGDPT35-04-10	1.25	1	1.39	1	0.98	1	1.22	1	0.042	1	1.37	1
Е	BKGDPT35-04-12	1.01	1	1.33	1	1.03	1	1.29	1	0.108	1	1.25	1
Е	BKGDPT35-04-14	1.2	1	1.33	1	1.22	1	1.33	1	0.076	1	1.42	1
E	BKGDPT35-04-2	1.28	1	1.41	1	1.4	1	0.98	1	0.074	1	0.97	1
E	BKGDPT35-04-4	1.42	1	1.88	1	1.32	1	1.62	1	0.074	1	1.55	1
E	BKGDPT35-04-6	1.37	1	1.71	1	1.28	1	1.72	1	0.077	1	1.69	1
E	BKGDPT35-04-8	1.35	1	1.6	1	1.33	1	1.04	1	0.063	1	1.25	1
E	BKGDPT36-04-10	1.46	1	1.21	1	1.19	1	1.15	1	0.107	1	1.13	1
E	BKGDPT36-04-12	1.17	1	1.37	1	1.14	1	1.11	1	0.062	0	1.15	1
E	BKGDPT36-04-14	1.21	1	1.59	1	1.08	1	1.61	1	0.082	1	1.56	1
E	BKGDPT36-04-2	1.32	1	1.4	1	1.22	1	0.95	1	0.077	0	1.2	1
E	BKGDPT36-04-4	1.33	1	1.1	1	1.08	1	1.05	1	0.076	1	1.1	1
E	BKGDPT36-04-6	1.26	1	0.9	1	1.15	1	1.13	1	0.066	1	1.13	1
E	BKGDPT36-04-8	1.47	1	1.36	1	1.34	1	1.08	1	0.128	1	1.26	1
E	BKGDPT37-04-10	1.41	1	1.17	1	1.43	1	1.06	1	0.08	1	1.08	1
E	BKGDPT37-04-12	1.46	1	1.3	1	1.39	1	0.95	1	0.063	1	1.21	1
E	BKGDPT37-04-14	1.42	1	1.48	1	1.47	1	1.11	1	0.054	0	1.17	1
E	BKGDPT37-04-2	1.52	1	1	1	1.35	1	1.17	1	0.08	1	1.18	1
E	BKGDPT37-04-4	1.45	1	1.25	1	1.49	1	1.14	1	0.105	1	1.25	1
E	BKGDPT37-04-6	1.67	1	1.27	1	1.44	1	1.09	1	0.079	1	1.3	1
E	BKGDPT37-04-8	1.58	1	1.25	1	1.71	1	1.28	1	0.073	1	1.17	1
F	BKGDPT38-04-10	1.49	1	1.36	1	1.49	1	1.13	1	0.04	0	1.42	1
F	BKGDPT38-04-12	1.63	1	1.33	1	1.62	1	1.29	1	0.104	1	1.09	1
F	BKGDPT38-04-14	1.44	1	1.32	1	1.32	1	0.94	1	0.076	0	1.09	1
F	BKGDPT38-04-2	1.03	1	1.02	1	1.11	1	0.92	1	0.065	1	0.95	1
F	BKGDPT38-04-4	1.45	1	1.01	1	1.3	1	1	1	0.065	0	1.2	1
F	BKGDPT38-04-6	1.38	1	1.15	1	1.37	1	1.31	1	0.078	0	1.08	1
F	BKGDPT38-04-8	1.46	1	1.5	1	1.54	1	1.11	1	0.052	1	1.19	1
F	BKGDPT39-04-10	1.42	1	1.16	1	1.42	1	1.12	1	0.066	0	1.35	1
F	BKGDPT39-04-12	1.3	1	1.15	1	1.12	1	1.19	1	0.108	0	1.14	1
F	BKGDPT39-04-14	1.45	1	1.16	1	1.42	1	1.22	1	0.091	1	1.08	1
F	BKGDPT39-04-2	1.16	1	1.02	1	1.16	1	1.06	1	0.052	0	0.87	1
F	BKGDPT39-04-4	0.79	1	0.85	1	0.86	1	0.81	1	0.075	0	0.74	1
F	BKGDPT39-04-6	1.73	1	1.41	1	1.78	1	1.5	1	0.125	1	1.49	1
F	BKGDPT39-04-8	1.61	1	1.17	1	1.58	1	1.29	1	0.08	1	1.15	1
F	BKGDPT40-04-10	1.76	1	1.76	1	1.52	1	1.64	1	0.121	1	2.1	1
F	BKGDPT40-04-12	1.51	1	1.57	1	1.62	1	1.34	1	0.076	0	1.33	1
F	BKGDPT40-04-14	1.62	1	1.38	1	1.6	1	1.51	1	0.073	1	1.33	1
F	BKGDPT40-04-2	1.2	1	0.85	1	1.04	1	0.88	1	0.053	0	0.9	1
F	BKGDPT40-04-4	1.34	1	1.41	1	1.23	1	1.04	1	0.051	0	1.05	1

AREA LETTER	PROJ SAMPLE ID	Thorium-228	D Thorium-228	Thorium-230	D Thorium-230	Thorium-232	D Thorium-232	Uranium-233/234	D Uranium-233/234	Uranium-235/236	D Uranium-235/236	Uranium-238	D Uranium-238
F	BKGDPT40-04-6	1.31	1	1.16	1	1.13	1	0.79	1	0.078	1	0.94	1
F	BKGDPT40-04-8	1.44	1	1.34	1	1.11	1	1.1	1	0.04	0	1.14	1
F	BKGDPT41-04-10	1.68	1	1.88	1	1.55	1	1.31	1	0.048	1	1.29	1
F	BKGDPT41-04-12	1.75	1	1.4	1	1.62	1	1.22	1	0.099	1	1.43	1
F	BKGDPT41-04-14	1.99	1	1.95	1	1.85	1	1.14	1	0.044	1	1.22	1
F	BKGDPT41-04-2	1.32	1	1.19	1	1.47	1	1.04	1	0.044	0	1.09	1
F	BKGDPT41-04-4	1.41	1	1.44	1	1.26	1	0.99	1	0.052	1	0.85	1
F	BKGDPT41-04-6	1.6	1	1.39	1	1.65	1	1.53	1	0.093	1	1.39	1
F	BKGDPT41-04-8	1.52	1	1.68	1	1.52	1	1.53	1	0.101	1	1.37	1
F	BKGDPT42-04-2	1.54	1	1.2	1	1.44	1	0.93	1	0.078	1	0.89	1
F	BKGDPT42-04-4	1.81	1	1.11	1	1.45	1	1.07	1	0.106	0	1.07	1
F	BKGDPT42-04-6	1.68	1	1.21	1	1.61	1	0.96	1	0.092	1	1.19	1
F	BKGDPT43-04-10	1.64	1	1.63	1	1.86	1	1.28	1	0.055	0	1.38	1
F	BKGDPT43-04-12	1.31	1	1.28	1	1.49	1	1.03	1	0.029	0	1.08	1
F	BKGDPT43-04-14	1.31	1	1.19	1	1.38	1	1.07	1	0.053	0	1.22	1
F	BKGDPT43-04-2	1.73	1	1.47	1	1.92	1	1.48	1	0.055	0	1.29	1
F	BKGDPT43-04-2	1.75	1	1.47	1	1.92	1	1.43	1	0.138	0	1.31	1
F	BKGDPT43-04-6	2.1	1	1.62	1	1.89	1	1.02	1	0.058	0	1.37	1
F	BKGDPT43-04-8	1.46	1	1.43	1	1.53	1	1.24	1	0.063	0	1.37	1
F	BKGDPT44-04-10	1.40	1	1.45	1	1.35	1	1.24	1	0.065	1	1.35	1
F	BKGDPT44-04-10 BKGDPT44-04-12	1.38	1	1.05	1	1.33	1	0.84	1	0.038	0	1.08	1
F	BKGDPT44-04-12	1.33	1	1.03	1	1.03	1	1.17	1	0.053	0	1.18	1
F	BKGDPT44-04-14 BKGDPT44-04-2	0.98	1	1.05	1	1.05	1	0.89	1	0.061	0	1.02	1
F	BKGDPT44-04-2	1.47	1	1.05	1	1.42	1	0.97	1	0.069	0	0.94	1
F	BKGDPT44-04-4 BKGDPT44-04-6	1.47	1	1.49	1	1.42	1	1.44	1	0.009	1	1.44	1
F	BKGDPT44-04-8	1.47	1	1.49	1	1.47	1	1.44	1	0.048	1	1.38	1
F	BKGDPT45-04-2	1.78	1	1.05	1	1.70	1	0.99	1	0.048	1	0.98	1
F	BKGDPT45-04-2 BKGDPT45-04-4	1.78	1	1.05	1	1.57	1	0.99	1	0.073	1	0.98	1
F	BKGDPT45-04-4 BKGDPT46-04-2	1.78	1	0.9	1	1.6	1	0.92	1	0.041	0	1.02	1
F	BKGDP146-04-2 BKGDPT46-04-4	1.1	1	0.9	1	0.98	1	0.92	1	0.05	0	0.84	1
F	BKGDPT46-04-4 BKGDPT46-04-6	1.25	1	1.18	1	1.47	1	1.19	1	0.048	0	0.84	1
F		1.67	1	0.99	1	1.47	1	1.19	1	0.072	0	0.93	1
-	BKGDPT47-04-10		1		1		1						1
F	BKGDPT47-04-12	1.45	1	1.16	1	1.4	1	0.93	1	0.049	0	1.11 1.07	1
	BKGDPT47-04-14 BKGDPT47-04-2	0.96	1	1.11	1	0.96	1	0.82	1	0.062 0.054	0	0.94	1
F			1		1	1.17	1	0.82	1	0.054	0	0.94	1
F	BKGDPT47-04-4	1.24	1	1.13	1		1		1	0.054	0	1.13	1
F	BKGDPT47-04-6	1.58	1	1.33	1	1.33 1.54	1	1.05	1		0	1.13	1
	BKGDPT47-04-8			1.19	1	1.54	1	1.01	1	0.092	1	1.09	1
G	BKGDPT48-04-10	1.56	1		1		1		1	0.0=	0		1
G	BKGDPT48-04-12	1.58		1.17		1.51		0.97	1	0.051	1	0.97	
G	BKGDPT48-04-14	1.67	1	1.11	1	1.81	1	1.13	1	0.061	1	1.27	1
G	BKGDPT48-04-2	1.46	1	1.11	1	1.49	1	1.12	1	0.115	1	1.04	1
G	BKGDPT48-04-4		1	1.25	1	1.31	1		1	01000	1	0.07	1
G	BKGDPT48-04-6	1.61	1	1.21	1	1.43	1	0.98	1	0.023	0	1.04	1
G	BKGDPT48-04-8	1.56	1	0.86	1	1.31	1	0.89	1	0.034	1	1.08	1
G	BKGDPT49-04-10	1.68	1	1.54	1	1.54	1	1.21	1	0.091	0	1.38	1
G	BKGDPT49-04-12	1.51	1	1.18	1	1.31	1	1.14	1	0.116	1	1.42	1
G	BKGDPT49-04-14	1.8	1	1.19	1	1.93	1	1.29	1	0.084	0	1.29	1
G	BKGDPT49-04-2	1.53	1	1.45	1	1.43	1	1.06	1	0.093	0	1.12	1
G	BKGDPT49-04-4	1.56	1	1.52	1	1.39	1	1.57	1	0.076	1	1.36	1
G	BKGDPT49-04-6	1.8	1	1.3	1	1.8	1	1.17	1	0.085	1	1.32	1
G	BKGDPT49-04-8	1.65	1	1.33	1	1.74	1	1.21	1	0.066	0	1.33	1
G	BKGDPT50-04-10	1.53	1	1.32	1	1.66	1	1.43	1	0.036	0	1.16	1
G	BKGDPT50-04-12	1.7	1	1.28	1	1.62	1	1.07	1	0.035	1	1.25	1
G	BKGDPT50-04-14	1.39	1	1.1	1	1.27	1	1.03	1	0.062	1	1.23	1
G	BKGDPT50-04-2	1.42	1	1.07	1	1.27	1	0.95	1	0.06	1	1.1	1
G	BKGDPT50-04-4	1.68	1	1.14	1	1.56	1	1.11	1	0.08	0	1.17	1
G	BKGDPT50-04-6	1.67	1	1.25	1	1.52	1	1.12	1	0.05	1	1.08	1

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
G	BKGDPT50-04-8	1.79	1	1.23	1	1.62	1	1.09	1	0.051	0	1.38	1
G	BKGDPT51-04-10	1.53	1	1.06	1	1.53	1	1.08	1	0.089	1	1.25	1
G	BKGDPT51-04-12	1.53	1	1.16	1	1.65	1	0.92	1	0.084	1	0.96	1
G	BKGDPT51-04-14	1.59	1	1.37	1	1.28	1	1.18	1	0.089	1	1.1	1
G	BKGDPT51-04-2	1.73	1	1.42	1	1.5	1	1.16	1	0.07	1	1.35	1
G	BKGDPT51-04-4	1.53	1	1.33	1	1.35	1	1.44	1	0.073	1	1.44	1
G	BKGDPT51-04-6	1.93	1	1.67	1	1.7	1	1.18	1	0.038	1	1.19	1
G	BKGDPT51-04-8	1.42	1	1.27	1	1.68	1	1.26	1	0.075	0	1.15	1
G	BKGDPT52-04-10	1.74	1	1.17	1	1.74	1	1.23	1	0.038	1	1.3	1
G	BKGDPT52-04-12	1.76	1	0.89	1	1.57	1	1.28	1	0.053	1	1.09	1
G	BKGDPT52-04-14	1.61	1	1.22	1	1.74	1	1.05	1	0.073	1	0.9	1
G	BKGDPT52-04-2	1.7	1	1.26	1	1.48	1	1.03	1	0.103	1	1.03	1
G	BKGDPT52-04-4	1.8	1	1.32	1	1.81	1	1.03	1	0.065	1	1.03	1
G	BKGDPT52-04-6	1.85	1	1.7	1	1.66	1	1.76	1	0.062	1	1.25	1
G	BKGDPT52-04-8	1.95	1	1.21	1	1.73	1	0.95	1	0.045	1	0.9	1
G	BKGDPT53-04-10	1.67	1	1.42	1	1.79	1	0.96	1	0.055	1	1.25	1
G	BKGDPT53-04-12	1.36	1	1.19	1	1.39	1	1.05	1	0.046	1	1.25	1
G	BKGDPT53-04-14	1.58	1	2.03	1	2.38	1	1.51	1	0.071	1	1.28	1
G	BKGDPT53-04-2	1.33	1	1.18	1	1.42	1	1.14	1	0.057	1	1.33	1
G	BKGDPT53-04-4	1.75	1	1.46	1	1.69	1	1.4	1	0.093	0	1.65	1
G	BKGDPT53-04-6	1.85	1	1.47	1	1.69	1	1.02	1	0.116	1	1.41	1
G	BKGDPT53-04-8	1.97	1	1.48	1	1.71	1	1.24	1	0.112	1	1.05	1
G	BKGDPT54-04-10	1.35	1	1.31	1	1.58	1	1.3	1	0.066	1	1.13	1
G	BKGDPT54-04-12	1.52	1	1.37	1	1.45	1	1.25	1	0.093	1	1.09	1
G	BKGDPT54-04-14	1.58	1	1.25	1	1.55	1	1.3	1	0.134	1	1.2	1
G	BKGDPT54-04-2	1.22	1	1.52	1	1.34	1	1.28	1	0.105	1	1.44	1
G	BKGDPT54-04-4	1	1	1.37	1	1.29	1	0.98	1	0.085	1	1.22	1
G	BKGDPT54-04-6	1.24	1	1.28	1	1.25	1	1.1	1	0.083	1	1	1
G	BKGDPT54-04-8	1.32	1	1.27	1	1.51	1	1.26	1	0.05	1	1.03	1
G	BKGDPT55-04-10	1.23	1	0.89	1	1.29	1	0.83	1	0.061	1	0.94	1
G	BKGDPT55-04-12	1.45	1	1.28	1	1.59	1	1.02	1	0.061	1	1.03	1
G	BKGDPT55-04-14	1.37	1	1.07	1	1.42	1	0.96	1	0.029	0	1.01	1
G	BKGDPT55-04-2	1.45	1	1.09	1	1.35	1	1.03	1	0.074	1	1.13	1
G	BKGDPT55-04-4	1.5	1	1.29	1	1.35	1	1.28	1	0.054	0	1.31	1
G	BKGDPT55-04-6	1.42	1	1.13	1	1.56	1	1.01	1	0.048	1	0.96	1
G	BKGDPT55-04-8	1.37	1	1	1	1.4	1	1.14	1	0.056	0	1.07	1
G	BKGDPT56-04-10	1.79	1	1.46	1	1.7	1	1.52	1	0.089	0	1.46	1
G	BKGDPT56-04-12	1.8	1	1.35	1	1.78	1	1.13	1	0.103	1	1.29	1
G	BKGDPT56-04-14	1.4	1	1.28	1	1.43	1	1.21	1	0.079	1	1.16	1
G	BKGDPT56-04-2	1.25	1	1.46	1	1.23	1	1	1	0.05	1	1.1	1
G	BKGDPT56-04-4	1.26	1	1.28	1	1.24	1	1.06	1	0.027	0	1.28	1
G	BKGDPT56-04-6	1.15	1	1.17	1	1.21	1	1.02	1	0.067	1	1.15	1
G	BKGDPT56-04-8	1.46	1	0.93	1	1.29	1	0.98	1	0.072	0	1.15	1
G	BKGDPT57-04-10	1.33	1	1.58	1	1.11	1	1.36	1	0.134	1	1.49	1
G	BKGDPT57-04-12	1.6	1	1.62	1	1.17	1	1.26	1	0.082	1	1.25	1
G	BKGDPT57-04-14	1.1	1	1.27	1	1.2	1	1.07	1	0.059	1	1.08	1
G	BKGDPT57-04-2	1.29	1	1.14	1	1.55	1	1.18	1	0.052	1	1.21	1
G	BKGDPT57-04-4	1.58	1	1.41	1	1.46	1	1.22	1	0.05	1	1.18	1
G	BKGDPT57-04-6	1.29	1	1.23	1	1.6	1	1.36	1	0.1	1	1.26	1
G	BKGDPT57-04-8	1.39	1	1.19	1	1.33	1	1.19	1	0.114	1	1.12	1
G	BKGDPT58-04-10	1.73	1	1.45	1	1.69	1	1.08	1	0.06	1	1.22	1
G	BKGDPT58-04-12	1.43	1	1.29	1	1.52	1	1.41	1	0.122	1	1.22	1
G	BKGDPT58-04-14	1.59	1	1.38	1	1.53	1	1.72	1	0.042	0	1.56	1
G	BKGDPT58-04-2	1.05	1	1.05	1	1.08	1	1	1	0.074	1	1.03	1
G	BKGDPT58-04-4	1.43	1	1.19	1	1.27	1	0.96	1	0.066	1	0.91	1
G	BKGDPT58-04-6	1.75	1	1.34	1	1.6	1	1.16	1	0.076	1	1.22	1
G	BKGDPT58-04-8	1.52	1	1.23	1	1.74	1	1.39	1	0.109	0	1.43	1
G	BKGDPT59-04-10	1.19	1	1.58	1	1.01	1	1.36	1	0.117	1	1.46	1

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
G	BKGDPT59-04-12	1.43	1	1.34	1	1.34	1	1.32	1	0.061	1	1.33	1
G	BKGDPT59-04-14	1.3	1	1.2	1	1.34	1	1.16	1	0.102	1	1.37	1
G	BKGDPT59-04-2	1.76	1	1.56	1	1.69	1	1.53	1	0.165	1	1.23	1
G	BKGDPT59-04-4	1.93	1	1.58	1	1.81	1	1.4	1	0.076	1	1.27	1
G	BKGDPT59-04-6	1.62	1	1.16	1	1.5	1	1.19	1	0.068	1	1.17	1
G	BKGDPT59-04-8	1.4	1	1.15	1	1.47	1	1.11	1	0.066	1	1.32	1
G	BKGDPT60-04-10	1.55	1	1.35	1	1.27	1	1.45	1	0.074	1	1.26	1
G	BKGDPT60-04-12	1.23	1	1.33	1	1.22	1	1.11	1	0.074	1	1.44	1
G	BKGDPT60-04-14	1.34	1	1.45	1	1.14	1	1.37	1	0.054	1	1.7	1
G	BKGDPT60-04-2	1.42	1	1.13	1	1.28	1	0.96	1	0.055	1	0.89	1
G	BKGDPT60-04-4	1.34	1	1.37	1	1.29	1	1.21	1	0.07	0	1.22	1
G	BKGDPT60-04-6	1.22	1	1.01	1	1.13	1	0.76	1	0.046	0	0.94	1
G	BKGDPT60-04-8	1.09	1	1.24	1	0.99	1	1.08	1	0.07	1	1.01	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
Е	BKGDPT35-03-16	8443	1	0.36	1	21.4	1	50.7	1	0.56	1	0.03	0	435	1
Е	BKGDPT35-03-18	8806	1	0.9	1	31.4	1	49.1	1	0.75	1	0.02	0	460	1
Е	BKGDPT35-03-20	8489	1	0.67	1	25.6	1	45.7	1	0.62	1	0.02	0	444	1
Е	BKGDPT35-03-22	7827	1	1.26	1	45.8	1	64.8	1	0.96	1	0.12	0	299	1
E	BKGDPT36-03-20	8583	1	2.42	1	20.9	1	48.7	1	0.76	1	0.28	1	515	1
F	BKGDPT41-03-18	5594	1	0.5	1	2.4	1	36.7	1	0.42	1	0.12	1	459	1
F	BKGDPT41-03-20	5678	1	0.42	0	8.3	1	42	1	0.46	1	0.12	1	423	1
F	BKGDPT41-03-22	6197	1	0.51	1	2	1	50.8	1	0.48	1	0.11	1	428	1
G	BKGDPT57-03-16	10616	1	1.12	1	19.2	1	49.6	1	0.72	1	0.02	0	779	1
G	BKGDPT57-03-18	9801	1	1.07	1	21.8	1	43.7	1	0.58	1	0.11	1	728	1
G	BKGDPT57-03-20	8508	1	1.43	1	15.1	1	34.8	1	0.66	1	0.33	1	489	1
G	BKGDPT57-03-22	9975	1	1.25	1	7.2	1	43.1	1	0.81	1	0.21	1	569	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
Е	BKGDPT35-03-16	11.4	1	7.5	1	12.2	1	23412	1	8.6	1	51.4	1	1035	1	137	1
Е	BKGDPT35-03-18	14.1	1	8.6	1	11.5	1	30639	1	9.6	1	66	1	1017	1	130	1
Е	BKGDPT35-03-20	12.2	1	6.3	1	8.6	1	26328	1	8.8	1	59	1	1031	1	103	1
Е	BKGDPT35-03-22	20.8	1	11.8	1	18.8	1	47547	1	12.9	1	105.1	1	804	1	402	1
E	BKGDPT36-03-20	12.6	1	8.5	1	18	1	30132	1	13.2	1	51.4	1	1162	1	102	1
F	BKGDPT41-03-18	10.9	1	12.2	1	14.6	1	18825	1	11.2	1	20.7	1	1562	1	235	1
F	BKGDPT41-03-20	11.6	1	15.2	1	14	1	17686	1	13	1	23.4	1	1689	1	214	1
F	BKGDPT41-03-22	12.9	1	9.5	1	12.2	1	16261	1	9.2	1	24.1	1	1818	1	233	1
G	BKGDPT57-03-16	16.1	1	10.2	1	17.7	1	26759	1	8.3	1	67.6	1	1307	1	187	1
G	BKGDPT57-03-18	19.1	1	7.3	1	12.1	1	26675	1	7.4	1	68.6	1	1177	1	101	1
G	BKGDPT57-03-20	14.2	1	10.6	1	15.8	1	26658	1	9.2	1	65.4	1	995	1	119	1
G	BKGDPT57-03-22	17.8	1	12.8	1	17.2	1	17669	1	10.1	1	52.3	1	1328	1	121	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
Е	BKGDPT35-03-16	0.024	0	18.6	1	1070	1	0.455	1	0.7	0	48	1	0.142	0
Е	BKGDPT35-03-18	0.0229	0	22.6	1	1075	1	0.432	1	0.61	0	48	1	0.125	0
E	BKGDPT35-03-20	0.023	0	20.3	1	1129	1	0.491	1	0.66	0	48	1	0.164	1
Е	BKGDPT35-03-22	0.0208	0	31.2	1	937	1	1.1	0	3.22	1	49	1	0.737	1
E	BKGDPT36-03-20	0.0218	0	31.8	1	1309	1	0.216	0	2.03	1	61	1	0.323	1
F	BKGDPT41-03-18	0.0095	1	17	1	547	1	0.439	1	1.34	1	92	1	0.095	1
F	BKGDPT41-03-20	0.013	1	14.4	1	616	1	0.419	1	1.28	1	82	1	0.101	1
F	BKGDPT41-03-22	0.009	1	14.7	1	689	1	0.421	1	1.18	1	74	1	0.11	1
G	BKGDPT57-03-16	0.0358	1	21.9	1	1144	1	0.352	1	0.67	0	127	1	0.211	1
G	BKGDPT57-03-18	0.0303	1	22.5	1	1048	1	0.548	1	0.62	0	75	1	0.132	1
G	BKGDPT57-03-20	0.023	0	35.7	1	1087	1	0.358	1	0.66	0	71	1	0.134	0
G	BKGDPT57-03-22	0.0264	1	31.7	1	1303	1	0.376	1	0.67	0	91	1	0.153	1

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
Е	BKGDPT35-03-16	3.93	1	30.5	1	61.9	1
E	BKGDPT35-03-18	4.41	1	38.7	1	71.4	1
E	BKGDPT35-03-20	3.58	1	38.4	1	63	1
E	BKGDPT35-03-22	4.26	1	47.4	1	105.5	1
Е	BKGDPT36-03-20	6.02	1	54.1	1	105.2	1
F	BKGDPT41-03-18	2.38	1	20.7	1	51.4	1
F	BKGDPT41-03-20	3.10	1	23.9	1	49.2	1
F	BKGDPT41-03-22	2.74	1	19	1	51	1
G	BKGDPT57-03-16	3.84	1	36.4	1	69.6	1
G	BKGDPT57-03-18	3.28	1	33.7	1	64	1
G	BKGDPT57-03-20	4.41	1	45.4	1	85.1	1
G	BKGDPT57-03-22	3.40	1	39.7	1	94	1

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
Е	BKGDPT35-04-16	0.013	0	0.048	0	0.05	0	0.042	0	0.422	0
Е	BKGDPT35-04-18	0.012	0	0.023	0	0.052	0	0.035	0	0.387	0
Е	BKGDPT35-04-20	0.064	0	0.055	0	0.052	0	0.038	0	0.419	0
E	BKGDPT35-04-22	0.045	0	0.04	0	0.054	0	0.044	0	0.407	0
E	BKGDPT36-04-20	0.058	0	0.058	0	0.042	0	0.05	0	0.429	0
F	BKGDPT41-04-18	0.042	0	0.035	0	0.043	0	0.018	0	0.514	0
F	BKGDPT41-04-20	0.039	0	0.071	0	0.036	0	0.033	0	0.488	0
F	BKGDPT41-04-22	0.037	0	0.056	0	0.031	0	0.034	0	0.433	0
G	BKGDPT57-04-16	0.033	0	0.062	0	0.05	0	0.032	0	0.518	0
G	BKGDPT57-04-18	0.054	0	0.046	0	0.035	0	0.016	0	0.419	0
G	BKGDPT57-04-20	0.047	0	0.034	0	0.053	0	0.07	0	0.411	0
G	BKGDPT57-04-22	0.028	0	0.06	0	0.016	0	0.036	0	0.409	0

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
E	BKGDPT35-04-16	1.46	1	1.74	1	1.22	1	1.24	1	0.089	1	1.32	1
Е	BKGDPT35-04-18	1.33	1	1.46	1	1.41	1	1.4	1	0.12	1	1.48	1
E	BKGDPT35-04-20	1.3	1	1.26	1	1.13	1	1.25	1	0.062	1	1.2	1
Е	BKGDPT35-04-22	1.17	1	1.4	1	0.95	1	1.37	1	0.061	1	1.43	1
E	BKGDPT36-04-20	1.21	1	2.34	1	1.2	1	1.98	1	0.115	1	2.02	1
F	BKGDPT41-04-18	1.28	1	1.16	1	1.1	1	0.7	1	0.03	1	0.8	1
F	BKGDPT41-04-20	1.23	1	1.45	1	1.37	1	0.95	1	0.085	1	1.04	1
F	BKGDPT41-04-22	1.46	1	1.24	1	1.18	1	0.91	1	0.078	1	0.92	1
G	BKGDPT57-04-16	1.33	1	1.37	1	1.01	1	1.15	1	0.138	1	1.29	1
G	BKGDPT57-04-18	1.24	1	1.48	1	1.35	1	1	1	0.085	1	1.1	1
G	BKGDPT57-04-20	1.27	1	1.58	1	1.14	1	1.1	1	0.047	0	1.48	1
G	BKGDPT57-04-22	1.28	1	1.43	1	1.16	1	1.27	1	0.078	0	1.14	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
D	BKGDPT32-03-14	8126	1	3.45	1	90.1	1	74.7	1	0.76	1	0.71	1	662	1
Е	BKGDPT34-03-CP2	6168	1	2.93	1	25.2	1	41.6	1	1.44	1	2.07	1	505	1
Е	BKGDPT34-07-CP2	5199	1	2.93	1	24.6	1	41.6	1	0.86	1	0.69	1	424	1
Е	BKGDPT35-03-CMP	8014	1	1.65	1	23.2	1	56.3	1	0.78	1	0.06	0	564	1
Е	BKGDPT36-03-CMP	8535	1	6.07	1	74.9	1	54.7	1	1.43	1	0.12	0	466	1
Е	BKGDPT37-03-CMP	6622	1	2.15	1	8.5	1	28.1	1	0.72	1	0.15	1	463	1
F	BKGDPT38-03-CMP	4091	1	1.76	0	34.8	1	36.1	1	0.85	1	1.02	1	1732	1
F	BKGDPT39-03-CMP	6120	1	4.43	1	13.9	1	44.2	1	1.02	1	1.06	1	10460	1
F	BKGDPT40-03-CMP	4932	1	1.67	0	23.6	1	42.2	1	0.76	1	0.34	1	1783	1
F	BKGDPT41-03-CMP	5955	1	0.37	0	1.7	1	32.6	1	0.5	1	0.56	1	559	1
F	BKGDPT43-03-CMP	5229	1	2.18	1	37.6	1	36.8	1	0.93	1	1.18	1	464	1
F	BKGDPT44-03-CMP	6068	1	0.99	1	3.3	1	26.7	1	0.54	1	0.2	1	155	1
F	BKGDPT47-03-CMP	10564	1	1.75	0	22.4	1	56.4	1	1.4	1	0.19	1	730	1
G	BKGDPT48-03-38	7658	1	0.73	1	15.8	1	54.1	1	0.6	1	0.22	1	634	1
G	BKGDPT48-03-40	10875	1	0.54	1	21	1	86.6	1	0.83	1	0.14	1	991	1
G	BKGDPT48-03-42	11480	1	1.11	1	20.6	1	70.4	1	0.87	1	0.12	1	1156	1
G	BKGDPT48-03-44	10567	1	0.59	1	16.4	1	69.9	1	0.83	1	0.11	1	1125	1
G	BKGDPT48-03-46	10151	1	0.64	1	8.4	1	54.9	1	1.05	1	0.12	1	960	1
G	BKGDPT48-03-CMP	13220	1	2.16	1	2.9	1	60.6	1	0.82	1	0.15	1	716	1
G	BKGDPT49-03-CMP	4628	1	0.8	1	53.2	1	32.7	1	0.53	1	0.36	1	1294	1
G	BKGDPT49-03-CP2	5078	1	1.63	0	9.9	1	32.2	1	0.89	1	0.25	1	1376	1
G	BKGDPT49-07-CP2	4888	1	1.74	1	9.8	1	32.2	1	0.89	1	0.25	1	1141	1
G	BKGDPT50-03-CMP	5110	1	0.76	1	8.5	1	46.7	1	0.72	1	0.27	1	1731	1
G	BKGDPT50-07-CMP	5110	1	1.77	0	8.5	1	46.7	1	0.72	1	0.19	1	1312	1
G	BKGDPT51-03-CMP	6085	1	2.23	1	29.7	1	60.9	1	0.94	1	0.75	1	569	1
G	BKGDPT53-03-CMP	8199	1	1.31	1	23.6	1	67.3	1	0.78	1	0.02	0	509	1
G	BKGDPT54-03-CMP	5374	1	1.92	0	8.6	1	106.2	1	0.64	1	0.4	1	842	1
G	BKGDPT55-03-CMP	5092	1	1.59	1	12.2	1	48.6	1	0.52	1	0.42	1	2691	1
G	BKGDPT55-03-CP2	5656	1	12.89	1	9.6	1	29.6	1	0.71	1	0.76	1	1678	1
G	BKGDPT56-03-CMP	5488	1	4.07	1	157	1	42.9	1	1.07	1	1.59	1	406	1
G	BKGDPT57-03-CMP	9080	1	3.23	1	23.9	1	62.6	1	0.88	1	0.12	1	481	1
G	BKGDPT58-03-CMP	4794	1	0.94	1	16	1	47.3	1	0.72	1	0.46	1	384	1
G	BKGDPT59-03-CMP	10541	1	2.96	1	30.9	1	60.1	1	1.42	1	0.11	0	408	1
G	BKGDPT60-03-CMP	7059	1	1.73	0	16.1	1	58.8	1	0.74	1	0.71	1	599	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
D	BKGDPT32-03-14	10.6	1	21.5	1	14.1	1	66514	1	16.6	1	168	1	925	1	706	1
Е	BKGDPT34-03-CP2	21.1	1	12	1	14.3	1	80257	1	27.3	1	12.1	1	1180	1	646	1
Е	BKGDPT34-07-CP2	19.7	1	11.9	1	11.1	1	80257	1	18.1	1	12.1	1	917	1	646	1
Е	BKGDPT35-03-CMP	16.2	1	12.6	1	25.4	1	51300	1	17.7	1	140.7	1	1217	1	475	1
Е	BKGDPT36-03-CMP	5.6	1	21.6	1	20.8	1	99760	1	26.2	1	229.3	1	980	1	687	1
Е	BKGDPT37-03-CMP	11.3	1	10.5	1	13.4	1	30639	1	11	1	81.4	1	935	1	282	1
F	BKGDPT38-03-CMP	13.9	1	14.9	1	13.8	1	62285	1	11	1	8.5	1	844	1	989	1
F	BKGDPT39-03-CMP	24.5	1	16.9	1	18.8	1	142689	1	31.3	1	12.4	1	1333	1	3054	1
F	BKGDPT40-03-CMP	17.8	1	14.6	1	10.9	1	76298	1	16.1	1	13.5	1	1332	1	977	1
F	BKGDPT41-03-CMP	16.3	1	8.9	1	13	1	18523	1	15.1	1	20	1	1782	1	205	1
F	BKGDPT43-03-CMP	17.9	1	25.2	1	12.6	1	75459	1	21.9	1	9.7	1	1170	1	798	1
F	BKGDPT44-03-CMP	18.3	1	6.7	1	11.6	1	10746	1	14.4	1	16.5	1	1266	1	100	1
F	BKGDPT47-03-CMP	18.5	1	21.7	1	19.1	1	63406	1	23.1	1	28.8	1	2267	1	974	1
G	BKGDPT48-03-38	23.8	1	12.2	1	10.4	1	30856	1	12.4	1	31.4	1	2331	1	285	1
G	BKGDPT48-03-40	20.1	1	13.9	1	18.2	1	33606	1	14.5	1	45.6	1	3384	1	225	1
G	BKGDPT48-03-42	20.8	1	12	1	19.1	1	32717	1	16.2	1	46.5	1	3919	1	222	1
G	BKGDPT48-03-44	20.4	1	14.9	1	16	1	32986	1	16.1	1	47.3	1	3750	1	291	1
G	BKGDPT48-03-46	16.8	1	12.6	1	15.5	1	42491	1	20.3	1	36.3	1	2771	1	340	1
G	BKGDPT48-03-CMP	14.6	1	9.1	1	133.3	1	106554	1	31.5	1	26	1	2079	1	1175	1
G	BKGDPT49-03-CMP	17	1	14	1	10.3	1	50549	1	12.9	1	11.9	1	1270	1	634	1
G	BKGDPT49-03-CP2	19.2	1	15	1	11.1	1	73937	1	16.7	1	13.1	1	1879	1	793	1
G	BKGDPT49-07-CP2	19	1	15	1	11.1	1	53244	1	16.7	1	13.1	1	1879	1	648	1
G	BKGDPT50-03-CMP	23	1	13.5	1	11.6	1	69222	1	26.4	1	17.4	1	1777	1	1336	1
G	BKGDPT50-07-CMP	23	1	11	1	10.6	1	69222	1	10.7	1	17.3	1	1545	1	1094	1
G	BKGDPT51-03-CMP	26.7	1	17.2	1	12.4	1	80139	1	16.3	1	13.7	1	1099	1	651	1
G	BKGDPT53-03-CMP	10.7	1	12.7	1	11.6	1	35322	1	13.7	1	69.6	1	998	1	301	1
G	BKGDPT54-03-CMP	16.2	1	11.6	1	9.8	1	62319	1	9.6	1	12.2	1	1112	1	760	1
G	BKGDPT55-03-CMP	19.2	1	10.9	1	10.3	1	104388	1	11.9	1	12.9	1	2725	1	1559	1
G	BKGDPT55-03-CP2	16	1	9.5	1	12.7	1	125556	1	18	1	11.1	1	1511	1	1039	1
G	BKGDPT56-03-CMP	27.9	1	24.1	1	18.6	1	114302	1	17.4	1	7.9	1	763	1	619	1
G	BKGDPT57-03-CMP	20	1	15.1	1	20	1	39904	1	21.5	1	85.9	1	996	1	524	1
G	BKGDPT58-03-CMP	16.6	1	12.6	1	10.1	1	37220	1	11.2	1	9.7	1	697	1	344	1
G	BKGDPT59-03-CMP	8.5	1	22.6	1	13.9	1	83065	1	48.7	1	118.7	1	1060	1	695	1
G	BKGDPT60-03-CMP	24.4	1	12.1	1	13.3	1	62588	1	15.8	1	16.9	1	1506	1	396	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
D	BKGDPT32-03-14	0.0209	0	76.9	1	822	1	0.511	0	1.5	0	43	1	0.606	1
Е	BKGDPT34-03-CP2	0.0121	1	69.7	1	609	1	0.349	0	7.07	1	57	1	0.261	1
Е	BKGDPT34-07-CP2	0.0081	1	42.4	1	472	1	0.375	0	7.07	1	57	1	0.225	1
Е	BKGDPT35-03-CMP	0.0227	0	37.4	1	1164	1	0.779	1	1.58	0	50	1	0.444	1
Е	BKGDPT36-03-CMP	0.0257	1	61	1	957	1	1.067	0	3.12	1	70	1	0.637	0
Е	BKGDPT37-03-CMP	0.0359	1	26.8	1	888	1	0.446	1	0.67	0	59	1	0.136	0
F	BKGDPT38-03-CMP	0.0085	1	34.6	1	296	1	0.83	1	4.94	1	76	1	0.246	1
F	BKGDPT39-03-CMP	0.017	1	29.8	1	420	1	0.751	1	10.99	1	121	1	0.284	1
F	BKGDPT40-03-CMP	0.0102	1	31.2	1	497	1	0.366	0	6.07	1	63	1	0.191	1
F	BKGDPT41-03-CMP	0.0086	1	20.4	1	808	1	0.381	1	0.68	1	83	1	0.22	1
F	BKGDPT43-03-CMP	0.0039	1	58.7	1	817	1	0.378	1	1.55	1	61	1	0.229	1
F	BKGDPT44-03-CMP	0.0101	1	13.8	1	788	1	0.36	0	0.73	1	53	1	0.125	1
F	BKGDPT47-03-CMP	0.0143	1	30.5	1	1146	1	0.371	0	5.62	1	131	1	0.116	1
G	BKGDPT48-03-38	0.0697	1	22.3	1	963	1	0.35	1	2.39	1	86	1	0.112	1
G	BKGDPT48-03-40	0.0041	0	29.1	1	1669	1	0.368	1	2.66	1	124	1	0.167	1
G	BKGDPT48-03-42	0.0045	0	29.4	1	1595	1	0.362	1	2.67	1	149	1	0.17	1
G	BKGDPT48-03-44	0.0045	0	31.9	1	1516	1	0.381	1	2.55	1	134	1	0.162	1
G	BKGDPT48-03-46	0.0392	1	29.6	1	1099	1	0.334	1	3.32	1	154	1	0.147	1
G	BKGDPT48-03-CMP	0.0125	1	24.5	1	904	1	0.369	1	9.11	1	94	1	0.128	1
G	BKGDPT49-03-CMP	0.0092	1	26.9	1	502	1	0.375	0	4.21	1	63	1	0.195	1
G	BKGDPT49-03-CP2	0.0283	1	37.8	1	531	1	0.328	0	6.14	1	52	1	0.166	1
G	BKGDPT49-07-CP2	0.0185	1	37.8	1	531	1	0.366	1	4.09	1	48	1	0.166	1
G	BKGDPT50-03-CMP	0.0157	1	33.7	1	754	1	0.338	0	0.85	1	87	1	0.185	1
G	BKGDPT50-07-CMP	0.0137	1	26.1	1	754	1	0.343	1	0.85	1	82	1	0.185	1
G	BKGDPT51-03-CMP	0.113	1	43.4	1	819	1	0.359	1	0.96	1	76	1	0.361	1
G	BKGDPT53-03-CMP	0.0229	0	31.3	1	1112	1	0.212	0	0.62	0	42	1	0.126	0
G	BKGDPT54-03-CMP	0.022	1	26.1	1	700	1	0.356	0	0.7	1	75	1	0.169	1
G	BKGDPT55-03-CMP	0.0126	1	21.6	1	515	1	0.401	1	8.89	1	97	1	0.164	1
G	BKGDPT55-03-CP2	0.0121	1	26.6	1	406	1	0.346	1	10.39	1	54	1	0.128	1
G	BKGDPT56-03-CMP	0.0079	1	65.3	1	712	1	0.364	1	4.38	1	37	1	0.327	1
G	BKGDPT57-03-CMP	0.0238	0	34.3	1	1127	1	1.493	1	1.66	0	65	1	0.381	1
G	BKGDPT58-03-CMP	0.0093	1	35.3	1	503	1	0.379	1	0.43	1	28	1	0.193	1
G	BKGDPT59-03-CMP	0.021	0	57.1	1	1406	1	1.021	0	7.95	1	43	1	0.611	0
G	BKGDPT60-03-CMP	0.0142	1	49.6	1	972	1	0.342	1	1.01	1	88	1	0.392	1

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
D	BKGDPT32-03-14	4.71	1	36.8	1	233.1	1
Е	BKGDPT34-03-CP2	4.62	1	57.6	1	130.8	1
Е	BKGDPT34-07-CP2	4.62	1	43.9	1	119.2	1
Е	BKGDPT35-03-CMP	4.11	1	51.1	1	109.6	1
Е	BKGDPT36-03-CMP	7.81	1	55.5	1	190.9	1
Е	BKGDPT37-03-CMP	3.90	1	37.3	1	82.1	1
F	BKGDPT38-03-CMP	3.87	1	31.4	1	84.8	1
F	BKGDPT39-03-CMP	4.38	1	72.3	1	138	1
F	BKGDPT40-03-CMP	2.74	1	35.3	1	78.6	1
F	BKGDPT41-03-CMP	3.25	1	24	1	60	1
F	BKGDPT43-03-CMP	4.14	1	46	1	135.3	1
F	BKGDPT44-03-CMP	3.73	1	37.5	1	63.5	1
F	BKGDPT47-03-CMP	2.65	1	49.8	1	106.6	1
G	BKGDPT48-03-38	2.59	1	57.3	1	66.7	1
G	BKGDPT48-03-40	2.83	1	39.4	1	94.9	1
G	BKGDPT48-03-42	2.95	1	41	1	91.7	1
G	BKGDPT48-03-44	3.31	1	38.8	1	90.9	1
G	BKGDPT48-03-46	0.12	0	42.7	1	98.7	1
G	BKGDPT48-03-CMP	2.89	1	77.1	1	111.4	1
G	BKGDPT49-03-CMP	3.84	1	30.6	1	81.9	1
G	BKGDPT49-03-CP2	3.81	1	47.7	1	92.1	1
G	BKGDPT49-07-CP2	3.61	1	36	1	79.3	1
G	BKGDPT50-03-CMP	3.22	1	55.6	1	73.4	1
G	BKGDPT50-07-CMP	3.19	1	55.6	1	73.4	1
G	BKGDPT51-03-CMP	5.10	1	52.4	1	151.3	1
G	BKGDPT53-03-CMP	3.64	1	40.1	1	97	1
G	BKGDPT54-03-CMP	3.40	1	46.9	1	102.3	1
G	BKGDPT55-03-CMP	3.31	1	36.1	1	69.5	1
G	BKGDPT55-03-CP2	3.55	1	70.3	1	292.2	1
G	BKGDPT56-03-CMP	4.77	1	71.3	1	189.5	1
G	BKGDPT57-03-CMP	5.36	1	55.2	1	95.9	1
G	BKGDPT58-03-CMP	4.20	1	34	1	79.3	1
G	BKGDPT59-03-CMP	6.35	1	92.6	1	182	1
G	BKGDPT60-03-CMP	7.87	1	45.6	1	156.5	1

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
D	BKGDPT32-04-14	0.032	0	0.069	0	0.057	0	0.047	0	0.418	0
E	BKGDPT34-04-CP2	0.015	0	0.048	0	0.021	0	0.021	0	0.401	0
E	BKGDPT34-08-CP2	0.015	0	0.048	0	0.021	0	0.021	0	0.399	0
Е	BKGDPT35-04-CMP	0.017	0	0.024	0	0.083	0	0.055	0	0.387	0
E	BKGDPT36-04-CMP	0.035	0	0.036	0	0.07	0	0.053	0	0.436	0
Е	BKGDPT37-04-CMP	0.027	0	0.039	0	0.047	0	0.042	0	0.468	0
F	BKGDPT38-04-CMP	0.042	0	0.054	0	0.028	0	0.052	0	0.457	0
F	BKGDPT39-04-CMP	0.044	0	0.044	0	0.048	0	0.048	0	0.43	0
F	BKGDPT40-04-CMP	0.046	0	0.06	0	0.029	0	0.029	0	0.385	0
F	BKGDPT41-04-CMP	0.052	0	0.058	0	0.044	0	0.091	0	0.402	0
F	BKGDPT43-04-CMP	0.044	0	0.05	0	0.042	0	0.054	0	0.436	0
F	BKGDPT44-04-CMP	0.018	0	0.033	0	0.022	0	0.022	0	0.388	0
F	BKGDPT47-04-CMP	0.038	0	0.072	0	0.027	0	0.031	0	0.422	0
G	BKGDPT48-04-38	0.083	0	0.054	0	0.049	0	0.037	0	0.365	0
G	BKGDPT48-04-40	0.067	0	0.049	0	0.018	0	0.04	0	0.331	0
G	BKGDPT48-04-42	0.163	0	0.056	0	0.045	0	0.036	0	0.384	0
G	BKGDPT48-04-44	0.069	0	0.084	0	0.046	0	0.039	0	0.346	0
G	BKGDPT48-04-46	0.067	0	0.048	0	0.034	0	0.041	0	0.364	0
G	BKGDPT48-04-CMP	0.054	0	0.076	0	0.036	0	0.048	0	0.358	0
G	BKGDPT49-02-CMP	0.029	0	0.051	0	0.037	0	0.023	0	0.436	0
G	BKGDPT49-04-CP2	0.018	0	0.071	0	0.058	0	0.051	0	0.34	0
G	BKGDPT49-08-CP2	0.019	0	0.072	0	0.102	0	0.072	0	0.365	0
G	BKGDPT50-04-CMP	0.027	0	0.049	0	0.025	0	0.016	0	0.397	0
G	BKGDPT50-08-CMP	0.033	0	0.048	0	0.026	0	0.016	0	0.395	0
G	BKGDPT51-04-CMP	0.047	0	0.064	0	0.068	0	0.083	0	0.363	0
G	BKGDPT53-04-CMP	0.024	0	0.043	0	0.049	0	0.045	0	0.305	0
G	BKGDPT54-04-CMP	0.082	0	0.04	0	0.026	0	0.036	0	0.393	0
G	BKGDPT55-04-CMP	0.067	0	0.034	0	0.068	0	0.023	0	0.397	0
G	BKGDPT55-04-CP2	0.046	0	0.107	0	0.036	0	0.036	0	0.364	0
G	BKGDPT56-04-CMP	0.023	0	0.058	0	0.039	0	0.039	0	0.427	0
G	BKGDPT57-04-CMP	0.026	0	0.068	0	0.04	0	0.053	0	0.4	0
G	BKGDPT58-04-CMP	0.063	0	0.057	0	0.057	0	0.02	0	0.392	0
G	BKGDPT59-04-CMP	0.032	0	0.048	0	0.067	0	0.049	0	0.461	0
G	BKGDPT60-04-CMP	0.08	0	0.07	0	0.055	0	0.08	0	0.373	0

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
D	BKGDPT32-04-14	1	1	1.75	1	1.06	1	1.6	1	0.134	1	1.58	1
Е	BKGDPT34-04-CP2	1.09	1	1.54	1	1.25	1	1.45	1	0.052	0	1.55	1
E	BKGDPT34-08-CP2	1.08	1	1.53	1	1.24	1	1.42	1	0.052	0	1.55	1
Е	BKGDPT35-04-CMP	1.07	1	1.48	1	1.39	1	1.35	1	0.104	1	1.38	1
E	BKGDPT36-04-CMP	1	1	2.68	1	1.08	1	2.39	1	0.175	1	2.62	1
Е	BKGDPT37-04-CMP	1.2	1	1.38	1	0.96	1	1.31	1	0.111	1	1.31	1
F	BKGDPT38-04-CMP	0.96	1	1.36	1	1.03	1	1.06	1	0.085	0	1.3	1
F	BKGDPT39-04-CMP	1.11	1	1.44	1	0.92	1	1.5	1	0.082	1	1.47	1
F	BKGDPT40-04-CMP	0.94	1	0.97	1	0.85	1	1	1	0.057	1	0.92	1
F	BKGDPT41-04-CMP	1.21	1	1.2	1	1.36	1	1.07	1	0.043	1	1.09	1
F	BKGDPT43-04-CMP	0.8	1	1.16	1	0.89	1	1.04	1	0.029	1	1.39	1
F	BKGDPT44-04-CMP	1.34	1	1.11	1	1.22	1	1.18	1	0.083	1	1.25	1
F	BKGDPT47-04-CMP	1.67	1	1.27	1	1.43	1	0.76	1	0.041	0	0.89	1
G	BKGDPT48-04-38	1.07	1	0.83	1	0.88	1	0.75	1	0.05	0	0.87	1
G	BKGDPT48-04-40	1.66	1	1.05	1	1.3	1	0.92	1	0.085	1	0.95	1
G	BKGDPT48-04-42	1.43	1	1.05	1	1.34	1	0.99	1	0.071	0	0.99	1
G	BKGDPT48-04-44	1.56	1	1.24	1	1.81	1	1.18	1	0.102	0	1.11	1
G	BKGDPT48-04-46	1.64	1	1.2	1	1.5	1	1.14	1	0.133	0	0.04	0
G	BKGDPT48-04-CMP	1.55	1	1.07	1	1.49	1	0.73	1	0.062	0	0.97	1
G	BKGDPT49-02-CMP	1.1	1	1.34	1	0.93	1	1.01	1	0.068	1	1.29	1
G	BKGDPT49-04-CP2	1.05	1	1.19	1	0.91	1	1.13	1	0.091	1	1.28	1
G	BKGDPT49-08-CP2	0.97	1	1.15	1	0.91	1	1.1	1	0.053	1	1.21	1
G	BKGDPT50-04-CMP	1.27	1	1.06	1	1.18	1	1.16	1	0.03	0	1.08	1
G	BKGDPT50-08-CMP	1.08	1	1.02	1	0.76	1	1.15	1	0.06	0	1.07	1
G	BKGDPT51-04-CMP	1.3	1	1.99	1	1.14	1	1.72	1	0.064	0	1.71	1
G	BKGDPT53-04-CMP	0.9	1	1.43	1	0.76	1	1.16	1	0.093	1	1.22	1
G	BKGDPT54-04-CMP	1.06	1	1.12	1	0.92	1	1.35	1	0.085	0	1.14	1
G	BKGDPT55-04-CMP	1.07	1	1.04	1	1.12	1	1.18	1	0.046	0	1.11	1
G	BKGDPT55-04-CP2	1.2	1	1.1	1	1.13	1	0.96	1	0.067	0	1.19	1
G	BKGDPT56-04-CMP	0.88	1	1.9	1	1.07	1	1.71	1	0.073	1	1.6	1
G	BKGDPT57-04-CMP	1.25	1	1.96	1	1.34	1	1.73	1	0.128	1	1.8	1
G	BKGDPT58-04-CMP	0.92	1	1.16	1	0.88	1	1.17	1	0.062	1	1.41	1
G	BKGDPT59-04-CMP	1.12	1	1.98	1	0.98	1	2.13	1	0.146	1	2.13	1
G	BKGDPT60-04-CMP	1.19	1	3.04	1	1.05	1	2.45	1	0.092	1	2.64	1

Table I.13. PORTS Background Data: Areas H, I and J(0-1 feet below ground surface) Metals

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
Н	BKGHA01-03-SS	11747	1	0.62	1	6	1	111.9	1	0.82	1	0.04	1	567	1
Н	BKGHA02-03-SS	14085	1	0.58	0	6.5	1	74.9	1	0.65	1	0.01	0	335	1
Н	BKGHA03-03-SS	11671	1	0.97	1	36.6	1	55.9	1	1.19	1	0.07	0	285	1
Н	BKGHA04-03-SS	11066	1	0.85	1	4.9	1	87.4	1	0.34	1	0.01	0	1105	1
Н	BKGHA05-03-SS	9625	1	0.68	1	4.2	1	42.6	1	0.26	1	0.01	0	156	1
Н	BKGHA06-03-SS	12517	1	0.93	1	6.2	1	86.8	1	0.67	1	0.01	0	601	1
Н	BKGHA07-03-SS	14935	1	1.23	1	8.6	1	63.2	1	0.5	1	0.01	0	229	1
Н	BKGHA08-03-SS	15239	1	1.42	1	8.6	1	59.6	1	0.49	1	0.01	0	281	1
Н	BKGHA09-03-SS	13595	1	1.08	1	6.8	1	62	1	0.63	1	0.01	0	175	1
Н	BKGHA10-03-SS	14928	1	0.66	0	8.8	1	79.3	1	0.64	1	0.13	1	211	1
Н	BKGHA11-03-SS	13111	1	0.93	1	8	1	56.8	1	0.62	1	0.01	0	278	1
Н	BKGHA12-03-SS*	8342	1	1.46	1	11.2	1	97.7	1	0.69	1	0.37	1	2915	1
Н	BKGHA13-03-SS*	9352	1	2.37	1	15.3	1	151.6	1	0.94	1	0.48	1	4340	1
Н	BKGHA14-03-SS	9152	1	1.88	1	12.7	1	110.3	1	0.73	1	0.29	1	4195	1
Н	BKGHA15-03-SS	12043	1	0.76	1	11.7	1	93.9	1	0.82	1	0.03	0	321	1
Н	BKGHA16-03-SS	6686	1	6.45	1	48	1	44	1	1.27	1	0.12	0	887	1
Н	BKGHA17-03-SS	11499	1	5.33	1	42.9	1	100.3	1	0.81	1	0.52	1	2987	1
Н	BKGHA18-03-SS	16905	1	2.76	1	29.4	1	98.4	1	1.19	1	0.21	1	217	1
Н	BKGHA19-03-SS**	13630	1	1.29	1	67	1	111.5	1	61.07	1	57.27	1	368	1
Н	BKGHA20-03-SS	12079	1	1.34	1	6.9	1	92.4	1	0.8	1	0.04	1	1599	1
Н	BKGHA21-03-SS	12425	1	2.73	1	19.2	1	153.4	1	1.15	1	0.76	1	2301	1
Н	BKGHA22-03-SS	10742	1	1.42	1	15.3	1	127.9	1	1.12	1	0.93	1	3769	1
Н	BKGHA23-03-SS	11023	1	1.44	1	10.4	1	49.6	1	0.77	1	0.01	0	549	1
Н	BKGHA24-03-SS	10490	1	0.78	1	8	1	102.2	1	0.8	1	0.01	0	814	1
Н	BKGHA25-03-SS	11220	1	0.93	1	8.4	1	108.7	1	0.87	1	0.09	1	565	1

AREA_LETTER	PROJ_SAMPLE_ID	Aluminum	D_Aluminum	Antimony	D_Antimony	Arsenic	D_Arsenic	Barium	D_Barium	Beryllium	D_Beryllium	Cadmium	D_Cadmium	Calcium	D_Calcium
Ι	BKGHA26-03-SS	14060	1	0.53	0	7.6	1	76.6	1	0.73	1	0.01	0	202	1
I	BKGHA27-03-SS	9148	1	0.52	0	5.3	1	76.9	1	0.68	1	0.48	1	732	1
I	BKGHA28-03-SS	10636	1	0.51	0	6.1	1	60.4	1	0.56	1	0.06	1	729	1
Ι	BKGHA29-03-SS	15700	1	2.79	1	7.8	1	53.3	1	0.54	1	0.01	0	291	1
I	BKGHA30-03-SS	11606	1	0.53	0	11.1	1	93.1	1	0.85	1	0.01	0	401	1
I	BKGHA31-03-SS	13316	1	0.85	1	9.3	1	98.7	1	1.24	1	0.07	0	595	1
Ι	BKGHA32-03-SS	23438	1	1.42	1	12.7	1	79	1	1.09	1	0.07	0	1078	1
Ι	BKGHA33-03-SS	11511	1	0.7	1	7.7	1	34.5	1	0.4	1	0.01	0	71	1
Ι	BKGHA34-03-SS	12760	1	0.53	0	6.1	1	82.5	1	0.78	1	0.01	0	356	1
Ι	BKGHA35-03-SS	10719	1	0.51	0	4.9	1	37.1	1	0.36	1	0.01	0	100	1
Ι	BKGHA36-03-SS	9136	1	0.52	0	4.6	1	60.3	1	0.49	1	0.01	0	416	1
Ι	BKGHA37-03-SS	13926	1	1.78	1	6.7	1	64.2	1	0.81	1	0.13	1	135	1
Ι	BKGHA38-03-SS	10175	1	1.66	1	28.7	1	85.1	1	1.31	1	0.06	0	537	1
Ι	BKGHA39-03-SS	14428	1	0.51	0	6.6	1	34.8	1	0.41	1	0.01	0	81	1
Ι	BKGHA40-03-SS	10617	1	0.74	1	7.6	1	124.3	1	1.23	1	0.17	1	765	1
Ι	BKGHA41-03-SS	15056	1	1.91	1	19.4	1	67.3	1	1.76	1	0.07	0	158	1
Ι	BKGHA42-03-SS	11855	1	1.88	1	27.8	1	61.9	1	1.16	1	0.06	0	89	1
Ι	BKGHA43-03-SS	6450	1	0.75	1	7.2	1	25	1	0.34	1	0.01	0	343	1
Ι	BKGHA44-03-SS	7063	1	0.55	1	5.9	1	33.3	1	0.29	1	0.01	0	81	1
Ι	BKGHA45-03-SS	13086	1	0.53	0	6.3	1	91.9	1	0.92	1	0.01	0	328	1
Ι	BKGHA46-03-SS	7304	1	0.6	1	6	1	31.9	1	0.47	1	0.01	0	114	1
Ι	BKGHA47-03-SS	8812	1	0.64	1	7.7	1	40	1	0.32	1	0.01	0	1426	1
Ι	BKGHA48-03-SS	8096	1	0.5	0	4.8	1	52.6	1	0.42	1	0.02	1	448	1
Ι	BKGHA49-03-SS	9553	1	0.51	0	4	1	46.3	1	0.47	1	0.01	0	115	1
Ι	BKGHA50-03-SS	13270	1	1.8	1	18.2	1	157.4	1	1.28	1	0.03	0	1235	1
Ι	BKGHA51-03-SS	11822	1	0.55	0	8.2	1	138.4	1	0.78	1	0.07	1	692	1
Ι	BKGHA52-03-SS	10816	1	0.54	0	7	1	140.1	1	0.94	1	0.01	0	691	1
Ι	BKGHA53-03-SS	13631	1	0.71	1	8.1	1	138.8	1	1.07	1	0.03	0	658	1
Ι	BKGHA54-03-SS	12034	1	0.58	0	6.3	1	142.7	1	0.76	1	0.01	0	725	1
Ι	BKGHA55-03-SS	11550	1	0.54	0	4.8	1	148.2	1	0.83	1	0.02	1	531	1
J	BKGHA56-03-SS	8491	1	1.25	1	14.4	1	58.3	1	0.71	1	0.06	0	1059	1
J	BKGHA57-03-SS	4871	1	0.48	0	4.3	1	52.6	1	0.4	1	0.02	1	676	1
J	BKGHA58-03-SS	8263	1	0.5	0	5.8	1	81.8	1	0.45	1	0.01	0	534	1
J	BKGHA59-03-SS	3640	1	0.51	0	4.7	1	46.8	1	0.39	1	0.09	1	802	1
J	BKGHA60-03-SS	3849	1	0.58	1	5.1	1	70.1	1	0.42	1	0.18	1	2581	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
Н	BKGHA01-03-SS	13	1	14.1	1	14	1	11226	1	19.6	1	19.7	1	997	1	1213	1
Н	BKGHA02-03-SS	14.6	1	13.3	1	10	1	13507	1	19.3	1	19.4	1	1286	1	831	1
Н	BKGHA03-03-SS	13.2	1	13.5	1	8.2	1	67352	1	33.4	1	96.3	1	1077	1	528	1
Н	BKGHA04-03-SS	10.7	1	7.2	1	5.5	1	10282	1	15.1	1	21.9	1	1275	1	472	1
Н	BKGHA05-03-SS	9.2	1	5.8	1	3.9	1	8365	1	29.8	1	16.5	1	814	1	126	1
Н	BKGHA06-03-SS	13.4	1	12.2	1	5.8	1	12136	1	16.1	1	16.3	1	1052	1	940	1
Н	BKGHA07-03-SS	15.1	1	9.2	1	7.8	1	15195	1	14.8	1	38.3	1	1178	1	371	1
Н	BKGHA08-03-SS	15.4	1	9.8	1	10.1	1	16877	1	12.7	1	30.6	1	1385	1	355	1
Н	BKGHA09-03-SS	10.6	1	13.9	1	6.5	1	15556	1	14.1	1	26.8	1	1105	1	656	1
Н	BKGHA10-03-SS	15.8	1	19.1	1	7.4	1	15582	1	18.8	1	27.1	1	1171	1	1239	1
Н	BKGHA11-03-SS	16.2	1	11.7	1	6.7	1	16967	1	14.4	1	26.9	1	1031	1	545	1
Н	BKGHA12-03-SS*	13.3	1	11.8	1	12.4	1	18593	1	13.8	1	35.6	1	1734	1	598	1
Н	BKGHA13-03-SS*	19.2	1	14.7	1	14.9	1	25183	1	18	1	38.6	1	2482	1	743	1
Н	BKGHA14-03-SS	6.2	1	12.7	1	18	1	18391	1	32	1	33.6	1	1292	1	746	1
Н	BKGHA15-03-SS	19.5	1	14.1	1	6.1	1	31091	1	19.5	1	35.4	1	975	1	1409	1
Н	BKGHA16-03-SS	4.3	0	16.9	1	5.6	0	76905	1	26.9	1	85.2	1	1128	1	964	1
Н	BKGHA17-03-SS	44.6	1	33.3	1	5.8	0	106228	1	36.4	1	64.9	1	2191	1	2134	1
Н	BKGHA18-03-SS	12.9	1	16.8	1	19.4	1	25748	1	26.9	1	53.7	1	1573	1	1625	1
Н	BKGHA19-03-SS**	70.9	1	63.3	1	66.1	1	17955	1	68.2	1	82.2	1	1796	1	467	1
Н	BKGHA20-03-SS	9.6	1	7.8	1	10.2	1	15867	1	11.4	1	29.4	1	2042	1	556	1
Н	BKGHA21-03-SS	12.3	1	24.5	1	14.7	1	16712	1	22.2	1	51.1	1	1300	1	1521	1
Н	BKGHA22-03-SS	6.6	1	12.1	1	15.6	1	20920	1	18.8	1	41.2	1	1182	1	1119	1
Н	BKGHA23-03-SS	7.4	1	10.2	1	8.8	1	18149	1	10.9	1	38.6	1	1340	1	440	1
Н	BKGHA24-03-SS	7.1	1	10.8	1	7.3	1	15097	1	13.4	1	26.5	1	1147	1	932	1
Н	BKGHA25-03-SS	7.2	1	15.2	1	10.3	1	11370	1	16.3	1	29.8	1	1141	1	1011	1

AREA_LETTER	PROJ_SAMPLE_ID	Chromium	D_Chromium	Cobalt	D_Cobalt	Copper	D_Copper	Iron	D_Iron	Lead	D_Lead	Lithium	D_Lithium	Magnesium	D_Magnesium	Manganese	D_Manganese
I	BKGHA26-03-SS	13.7	1	11.3	1	6.6	1	14980	1	12.5	1	50.5	1	1260	1	741	1
I	BKGHA27-03-SS	7.8	1	8.9	1	7.3	1	9342	1	17.2	1	24.4	1	1074	1	821	1
I	BKGHA28-03-SS	9.2	1	15.6	1	8.4	1	11125	1	12.1	1	33.4	1	1084	1	658	1
Ι	BKGHA29-03-SS	15.2	1	5.3	1	9.8	1	16304	1	9.7	1	72.2	1	1787	1	103	1
I	BKGHA30-03-SS	13.1	1	11.9	1	5.1	1	12128	1	15.9	1	37.3	1	1020	1	1034	1
I	BKGHA31-03-SS	22.5	1	15.6	1	9	1	26120	1	23.7	1	53	1	1077	1	1254	1
I	BKGHA32-03-SS	28.3	1	8.6	1	14.8	1	30990	1	15.6	1	63	1	2370	1	247	1
I	BKGHA33-03-SS	11.9	1	4.1	1	4.7	1	15356	1	9.2	1	63.3	1	959	1	98	1
Ι	BKGHA34-03-SS	14.6	1	13.4	1	6.5	1	12733	1	13.7	1	20.6	1	1125	1	714	1
Ι	BKGHA35-03-SS	10.1	1	4.5	1	3.3	1	9962	1	12.2	1	36.9	1	784	1	130	1
Ι	BKGHA36-03-SS	9.6	1	6.2	1	4	1	7885	1	19.1	1	16.1	1	819	1	481	1
Ι	BKGHA37-03-SS	11.6	1	11.9	1	10	1	13395	1	12.2	1	48	1	1235	1	944	1
Ι	BKGHA38-03-SS	14.2	1	23.6	1	12.9	1	43820	1	36	1	77.8	1	981	1	1885	1
Ι	BKGHA39-03-SS	16.4	1	3.3	1	5.5	1	14055	1	5.5	1	34.1	1	1036	1	51	1
Ι	BKGHA40-03-SS	8.9	1	16.8	1	8.5	1	13882	1	24.3	1	32	1	1117	1	1992	1
Ι	BKGHA41-03-SS	31	1	24.5	1	3.6	1	106775	1	30.6	1	110.3	1	1198	1	1143	1
Ι	BKGHA42-03-SS	14.9	1	24	1	19.4	1	38374	1	25.3	1	84.4	1	1219	1	743	1
Ι	BKGHA43-03-SS	6.7	1	3.7	1	4.2	1	15055	1	17.1	1	34.5	1	847	1	158	1
Ι	BKGHA44-03-SS	6.8	1	2.6	1	4.4	1	9867	1	10.1	1	21.8	1	549	1	56	1
Ι	BKGHA45-03-SS	10.6	1	16	1	6.5	1	11417	1	18.8	1	41.6	1	1089	1	1364	1
Ι	BKGHA46-03-SS	7	1	5.2	1	4.3	1	9498	1	13.2	1	25.4	1	615	1	311	1
Ι	BKGHA47-03-SS	9.7	1	3.7	1	7.3	1	13638	1	9.3	1	35.7	1	1400	1	72	1
Ι	BKGHA48-03-SS	9.1	1	6.2	1	4.4	1	8071	1	19.9	1	15.5	1	797	1	548	1
Ι	BKGHA49-03-SS	10.1	1	7.3	1	5.2	1	9454	1	7.7	1	10.7	1	952	1	182	1
Ι	BKGHA50-03-SS	26.7	1	17.8	1	9.3	1	30665	1	28.9	1	39.5	1	1075	1	1940	1
Ι	BKGHA51-03-SS	13.4	1	13.2	1	7.8	1	12055	1	31.9	1	12	1	1105	1	1630	1
Ι	BKGHA52-03-SS	12.5	1	14.1	1	7.4	1	14694	1	18.4	1	19.7	1	969	1	1483	1
Ι	BKGHA53-03-SS	16.5	1	17.1	1	7.5	1	22057	1	17	1	23.2	1	1139	1	1561	1
Ι	BKGHA54-03-SS	13.4	1	11.8	1	9.1	1	13121	1	14.3	1	16	1	1239	1	1219	1
Ι	BKGHA55-03-SS	11.2	1	12.5	1	6.1	1	10189	1	14.6	1	14.2	1	1151	1	1005	1
J	BKGHA56-03-SS	10.2	1	17.1	1	6.5	1	37972	1	21.8	1	63.9	1	1108	1	646	1
J	BKGHA57-03-SS	7.2	1	4.8	1	5.5	1	8897	1	5.5	1	5.3	1	648	1	526	1
J	BKGHA58-03-SS	9.6	1	7.4	1	8	1	11267	1	9.7	1	9.5	1	934	1	597	1
J	BKGHA59-03-SS	4.9	1	4.7	1	6.1	1	8472	1	6.5	1	9.8	1	555	1	467	1
J	BKGHA60-03-SS	5	1	4.6	1	7.1	1	7919	1	13.3	1	9.9	1	729	1	636	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
Н	BKGHA01-03-SS	0.055	1	12.1	1	893	1	1.121	1	0.35	0	30	1	1.245	1
Н	BKGHA02-03-SS	0.0628	1	13.3	1	990	1	0.803	1	0.39	0	29	1	0.652	1
Н	BKGHA03-03-SS	0.0343	1	25.8	1	1127	1	0.623	0	1.83	0	30	1	0.373	0
Н	BKGHA04-03-SS	0.0347	1	9.8	1	978	1	0.648	1	0.34	0	27	1	0.263	1
Н	BKGHA05-03-SS	0.0282	1	7.4	1	719	1	0.474	1	0.34	0	23	1	0.07	0
Н	BKGHA06-03-SS	0.0437	1	11.6	1	872	1	1.091	1	0.38	0	32	1	0.871	1
Н	BKGHA07-03-SS	0.0257	0	10.7	1	1271	1	0.722	1	0.36	0	32	1	0.096	1
Н	BKGHA08-03-SS	0.0491	1	14.9	1	1155	1	0.739	1	0.35	0	30	1	0.072	0
Н	BKGHA09-03-SS	0.0348	1	11.2	1	944	1	0.81	1	0.36	0	27	1	0.074	0
Н	BKGHA10-03-SS	0.0386	1	14.9	1	1158	1	1.188	1	0.45	0	33	1	1.172	1
Н	BKGHA11-03-SS	0.037	1	16.3	1	924	1	0.892	1	0.36	0	28	1	0.338	1
Н	BKGHA12-03-SS*	0.059	1	23.5	1	1148	1	0.683	1	0.35	0	29	1	0.072	0
Н	BKGHA13-03-SS*	0.0636	1	31.4	1	1284	1	1.175	1	0.67	0	35	1	0.141	1
Н	BKGHA14-03-SS	0.1652	1	13.6	1	1710	1	1.27	1	0.4	0	29	1	0.302	1
Н	BKGHA15-03-SS	0.0409	1	19.3	1	815	1	0.961	1	0.71	0	23	1	0.961	1
Н	BKGHA16-03-SS	0.0222	0	27.1	1	831	1	1.067	0	3.13	0	30	1	0.639	0
Н	BKGHA17-03-SS	0.0227	0	61.7	1	1123	1	1.151	1	3.26	0	32	1	0.668	0
Н	BKGHA18-03-SS	0.0689	1	26.4	1	2354	1	3.628	1	0.74	0	51	1	1.795	1
Н	BKGHA19-03-SS**	0.0298	1	66.2	1	2346	1	53.997	1	53.87	1	97	1	49.672	1
Н	BKGHA20-03-SS	0.0397	1	18.9	1	1943	1	0.814	1	0.34	0	42	1	0.069	0
Н	BKGHA21-03-SS	0.0716	1	35.8	1	1575	1	2.041	1	0.38	0	31	1	2.726	1
Н	BKGHA22-03-SS	0.0855	1	27.3	1	1325	1	1.766	1	0.42	0	36	1	0.688	1
Н	BKGHA23-03-SS	0.0227	0	13.2	1	1267	1	0.503	1	0.34	0	32	1	0.069	0
Н	BKGHA24-03-SS	0.0498	1	12.9	1	991	1	0.932	1	0.36	0	26	1	0.39	1
Н	BKGHA25-03-SS	0.0533	1	18.4	1	1507	1	1.432	1	0.35	0	31	1	1.152	1

AREA_LETTER	PROJ_SAMPLE_ID	Mercury	D_Mercury	Nickel	D_Nickel	Potassium	D_Potassium	Selenium	D_Selenium	Silver	D_Silver	Sodium	D_Sodium	Thallium	D_Thallium
I	BKGHA26-03-SS	0.0331	1	12.5	1	1076	1	0.904	1	0.37	0	34	1	0.614	1
I	BKGHA27-03-SS	0.036	1	13.3	1	875	1	1.009	1	0.36	0	18	1	0.99	1
I	BKGHA28-03-SS	0.0488	1	13.6	1	758	1	0.96	1	0.34	0	22	1	0.735	1
Ι	BKGHA29-03-SS	0.0226	0	12.8	1	1667	1	0.516	1	0.56	1	51	1	0.067	0
Ι	BKGHA30-03-SS	0.0441	1	12.1	1	755	1	1.232	1	0.36	0	22	1	1.124	1
Ι	BKGHA31-03-SS	0.0323	1	15.7	1	948	1	1.142	1	1.81	0	15	1	0.571	1
Ι	BKGHA32-03-SS	0.0371	1	17.2	1	1471	1	1.026	1	1.77	0	28	1	0.361	0
Ι	BKGHA33-03-SS	0.0275	1	7	1	1037	1	0.434	1	0.34	0	32	1	0.069	0
I	BKGHA34-03-SS	0.0389	1	11.3	1	715	1	0.873	1	0.36	0	22	1	0.452	1
I	BKGHA35-03-SS	0.0242	0	9.2	1	702	1	0.591	1	0.35	0	23	1	0.072	0
I	BKGHA36-03-SS	0.0406	1	7.8	1	522	1	0.856	1	0.35	0	17	1	0.359	1
I	BKGHA37-03-SS	0.0408	1	12.8	1	1103	1	1.353	1	0.38	1	32	1	0.686	1
I	BKGHA38-03-SS	0.0371	1	18.6	1	821	1	1.985	1	1.74	0	12	1	1.835	1
Ι	BKGHA39-03-SS	0.0366	1	7.9	1	964	1	0.396	1	0.35	0	24	1	0.072	0
I	BKGHA40-03-SS	0.0371	1	18.5	1	722	1	2.031	1	0.36	0	19	1	2.648	1
I	BKGHA41-03-SS	0.0442	1	23.8	1	735	1	1.267	1	3.84	1	14	1	0.359	0
I	BKGHA42-03-SS	0.0356	1	162.6	1	950	1	1.155	1	1.68	0	26	1	0.592	1
Ι	BKGHA43-03-SS	0.0351	1	7.8	1	640	1	0.492	1	0.34	0	17	1	0.069	0
Ι	BKGHA44-03-SS	0.0314	1	5.2	1	483	1	0.364	1	0.33	0	13	1	0.068	0
I	BKGHA45-03-SS	0.0623	1	12.5	1	879	1	1.43	1	0.72	1	26	1	1.563	1
I	BKGHA46-03-SS	0.0385	1	5.9	1	594	1	0.526	1	0.32	0	16	1	0.146	1
I	BKGHA47-03-SS	0.0403	1	9	1	651	1	0.538	1	0.39	0	22	1	0.08	0
I	BKGHA48-03-SS	0.06	1	7.2	1	569	1	0.88	1	1.01	1	19	1	0.389	1
Ι	BKGHA49-03-SS	0.027	1	9.8	1	540	1	0.486	1	0.34	0	20	1	0.071	0
I	BKGHA50-03-SS	0.0775	1	18.3	1	1236	1	1.628	1	0.74	0	32	1	1.886	1
I	BKGHA51-03-SS	0.0884	1	13.7	1	810	1	1.671	1	0.39	0	28	1	2.137	1
I	BKGHA52-03-SS	0.0595	1	16.3	1	963	1	1.306	1	0.39	0	29	1	1.619	1
Ι	BKGHA53-03-SS	0.0581	1	14	1	1088	1	1.05	1	0.69	0	29	1	1.549	1
Ι	BKGHA54-03-SS	0.0525	1	14.4	1	1086	1	0.922	1	0.4	0	32	1	1.175	1
Ι	BKGHA55-03-SS	0.052	1	13.2	1	674	1	0.829	1	0.38	0	27	1	0.981	1
J	BKGHA56-03-SS	0.0388	1	11.5	1	693	1	0.596	1	1.6	0	19	1	0.329	0
J	BKGHA57-03-SS	0.0266	1	9.9	1	515	1	0.573	1	0.33	0	21	1	0.48	1
J	BKGHA58-03-SS	0.0302	1	12.1	1	748	1	0.68	1	0.33	0	21	1	0.495	1
J	BKGHA59-03-SS	0.0243	0	10.6	1	378	1	0.524	1	0.34	0	15	1	0.548	1
J	BKGHA60-03-SS	0.0259	1	9.9	1	463	1	0.9	1	0.32	0	19	1	0.771	1

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
Н	BKGHA01-03-SS	3.4568	1	23.2	1	39.5	1
Н	BKGHA02-03-SS	3.3078	1	26.5	1	49.9	1
Н	BKGHA03-03-SS	2.9204	1	113.5	1	57.6	1
Н	BKGHA04-03-SS	3.1886	1	20.3	1	46	1
Н	BKGHA05-03-SS	2.8608	1	18.6	1	30.1	1
Н	BKGHA06-03-SS	3.278	1	24.5	1	39.6	1
Н	BKGHA07-03-SS	4.5594	1	30.6	1	39.2	1
Н	BKGHA08-03-SS	5.215	1	30.4	1	58.1	1
Н	BKGHA09-03-SS	3.6654	1	28.9	1	38.7	1
Н	BKGHA10-03-SS	3.9038	1	32.2	1	54.5	1
Н	BKGHA11-03-SS	5.215	1	27.2	1	57.7	1
Н	BKGHA12-03-SS*	5.3044	1	30.3	1	98.6	1
Н	BKGHA13-03-SS*	6.5262	1	36.8	1	127.1	1
Н	BKGHA14-03-SS	3.129	1	30.9	1	138.9	1
Н	BKGHA15-03-SS	3.4568	1	37.4	1	62.9	1
Н	BKGHA16-03-SS	2.682	1	46.2	1	88.3	1
Н	BKGHA17-03-SS	3.3376	1	79.5	1	196.1	1
Н	BKGHA18-03-SS	6.3474	1	94.9	1	109	1
Н	BKGHA19-03-SS**	3.0098	1	98.7	1	114.7	1
Н	BKGHA20-03-SS	3.725	1	30.8	1	54.9	1
Н	BKGHA21-03-SS	4.2912	1	64	1	138.4	1
Н	BKGHA22-03-SS	2.9204	1	46.3	1	140.1	1
Н	BKGHA23-03-SS	2.9502	1	35.6	1	47.1	1
Н	BKGHA24-03-SS	3.9634	1	23.7	1	45.2	1
Н	BKGHA25-03-SS	3.7548	1	23.2	1	81.1	1

DOE/PPPO/03-0667&D1 FBP-ER-RCRA-WD-RPT-0189 Revision 1 April 2015

AREA_LETTER	PROJ_SAMPLE_ID	Total Uranium	D_Total Uranium	Vanadium	D_Vanadium	Zinc	D_Zinc
Ι	BKGHA26-03-SS	3.129	1	28.6	1	42.6	1
Ι	BKGHA27-03-SS	3.1886	1	16.1	1	50.8	1
Ι	BKGHA28-03-SS	3.3078	1	20.2	1	44.6	1
Ι	BKGHA29-03-SS	2.98	1	33.3	1	42.6	1
Ι	BKGHA30-03-SS	3.278	1	23	1	40.7	1
Ι	BKGHA31-03-SS	3.5164	1	23	1	55.7	1
Ι	BKGHA32-03-SS	3.278	1	43.1	1	62.6	1
Ι	BKGHA33-03-SS	3.3376	1	28.5	1	30.8	1
Ι	BKGHA34-03-SS	3.4568	1	23.3	1	42.6	1
Ι	BKGHA35-03-SS	3.3376	1	20.4	1	38	1
I	BKGHA36-03-SS	2.7118	1	17.4	1	37.3	1
I	BKGHA37-03-SS	3.129	1	23.1	1	47.6	1
Ι	BKGHA38-03-SS	3.4866	1	43.1	1	67.2	1
Ι	BKGHA39-03-SS	2.9204	1	31.2	1	27.4	1
Ι	BKGHA40-03-SS	3.427	1	20.7	1	50.5	1
Ι	BKGHA41-03-SS	3.6356	1	55.5	1	192	1
Ι	BKGHA42-03-SS	3.2482	1	41.9	1	66.1	1
Ι	BKGHA43-03-SS	3.0694	1	19.3	1	28	1
Ι	BKGHA44-03-SS	2.98	1	18.4	1	20.5	1
Ι	BKGHA45-03-SS	3.278	1	24	1	49.3	1
Ι	BKGHA46-03-SS	2.8906	1	15.3	1	27	1
Ι	BKGHA47-03-SS	3.3078	1	20.4	1	38.4	1
Ι	BKGHA48-03-SS	2.5926	1	13.3	1	39.6	1
Ι	BKGHA49-03-SS	2.9204	1	18.4	1	30.4	1
Ι	BKGHA50-03-SS	3.0992	1	40.3	1	53.3	1
Ι	BKGHA51-03-SS	2.8608	1	23	1	63.4	1
Ι	BKGHA52-03-SS	3.1588	1	22.2	1	48	1
Ι	BKGHA53-03-SS	2.9502	1	30.9	1	46.5	1
Ι	BKGHA54-03-SS	3.2482	1	22.9	1	46	1
Ι	BKGHA55-03-SS	2.7714	1	20.4	1	53.8	1
J	BKGHA56-03-SS	2.7416	1	26.9	1	56	1
J	BKGHA57-03-SS	2.0264	1	13	1	36.7	1
J	BKGHA58-03-SS	2.682	1	18	1	46.9	1
J	BKGHA59-03-SS	2.0264	1	9.6	1	32.4	1
Ĵ	BKGHA60-03-SS	2.2648	1	10.3	1	40.3	1

Table I.14. PORTS Background Data: Areas H, I and J(0-1 feet below ground surface) Radionuclides

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
Н	BKGHA01-04-SS	0.023	0	0.057	0	0.017	0	0.014	0	0.442	0
Н	BKGHA02-04-SS	0.026	0	0.057	0	0.028	0	0.028	1	0.589	0
Н	BKGHA03-04-SS	0.022	0	0.043	0	0.034	0	0.017	0	0.451	0
Н	BKGHA04-04-SS	0.017	0	0.042	0	0.03	0	0.015	0	0.445	0
Н	BKGHA05-04-SS	0.014	0	0.029	0	0.02	0	0.016	1	0.456	0
Н	BKGHA06-04-SS	0.018	0	0.041	0	0.021	0	0.024	0	0.46	0
Н	BKGHA07-04-SS	0.025	0	0.048	0	0.041	0	0.025	0	0.44	0
Н	BKGHA08-04-SS	0.029	0	0.039	0	0.019	0	0.022	1	0.477	0
Н	BKGHA09-04-SS	0.018	0	0.033	0	0.068	0	0.031	0	0.448	0
Н	BKGHA10-04-SS	0.041	0	0.056	0	0.103	0	0.04	0	0.66	0
Н	BKGHA11-04-SS	0.019	0	0.052	0	0.033	0	0.029	0	0.479	0
Н	BKGHA12-04-SS*	0.025	0	0.032	0	0.021	0	0.034	1	0.415	0
Н	BKGHA13-04-SS*	0.027	1	0.026	0	0.015	0	0.055	1	8.46	1
Н	BKGHA14-04-SS	0.017	0	0.052	0	0.017	0	0.014	0	0.5	0
Н	BKGHA15-04-SS	0.034	0	0.06	0	0.03	0	0.024	1	0.481	0
Н	BKGHA16-04-SS	0.021	0	0.034	0	0.017	0	0.017	0	0.349	0
Н	BKGHA17-04-SS	0.019	0	0.068	0	0.015	0	0.015	0	0.452	0
Н	BKGHA18-04-SS	0.024	0	0.03	0	0.018	0	0.027	0	0.415	0
Н	BKGHA19-04-SS	0.02	0	0.088	0	0.005	0	0.02	0	0.435	0
Н	BKGHA20-04-SS	0.031	0	0.029	0	0.014	0	0.014	0	0.389	0
Н	BKGHA21-04-SS	0.017	0	0.055	0	0.021	0	0.024	1	0.548	0
Н	BKGHA22-04-SS	0.019	0	0.049	0	0.017	0	0.031	1	0.632	0
Н	BKGHA23-04-SS	0.019	0	0.046	0	0.05	0	0.016	0	0.431	0
Н	BKGHA24-04-SS	0.017	0	0.047	0	0.036	0	0.018	0	0.418	0
Н	BKGHA25-04-SS	0.054	0	0.057	0	0.06	0	0.023	0	0.497	0

AREA_LETTER	PROJ_SAMPLE_ID	Americium-241	D_Americium-241	Neptunium-237	D_Neptunium-237	Plutonium-238	D_Plutonium-238	Plutonium-239/240	D_Plutonium-239/240	Technetium-99	D_Technetium-99
Ι	BKGHA26-04-SS	0.016	0	0.051	0	0.032	0	0.021	0	0.468	0
I	BKGHA27-04-SS	0.025	0	0.039	0	0.025	0	0.02	0	0.47	0
Ι	BKGHA28-04-SS	0.033	0	0.039	0	0.006	0	0.006	0	0.419	0
I	BKGHA29-04-SS	0.017	0	0.034	0	0.015	0	0.006	0	0.442	0
Ι	BKGHA30-04-SS	0.02	0	0.055	0	0.021	0	0.018	0	0.486	0
I	BKGHA31-04-SS	0.026	0	0.069	0	0.025	0	0.027	0	0.567	0
Ι	BKGHA32-04-SS	0.064	0	0.04	0	0.024	0	0.012	0	1.126	0
Ι	BKGHA33-04-SS	0.024	0	0.031	0	0.017	0	0.014	0	0.461	0
Ι	BKGHA34-04-SS	0.061	0	0.054	0	0.018	0	0.024	1	0.505	0
Ι	BKGHA35-04-SS	0.02	0	0.046	0	0.028	0	0.019	0	0.478	0
Ι	BKGHA36-04-SS	0.027	0	0.053	0	0.063	0	0.041	0	0.402	0
Ι	BKGHA37-04-SS	0.024	0	0.033	0	0.018	0	0.018	0	0.487	0
Ι	BKGHA38-04-SS	0.049	0	0.05	0	0.022	0	0.024	0	0.456	0
Ι	BKGHA39-04-SS	0.014	0	0.032	0	0.028	0	0.035	0	0.386	0
Ι	BKGHA40-04-SS	0.04	0	0.054	0	0.017	0	0.017	0	0.514	0
Ι	BKGHA41-04-SS	0.018	0	0.045	0	0.008	0	0.012	0	0.381	0
Ι	BKGHA42-04-SS	0.084	0	0.06	0	0.023	0	0.028	0	0.59	0
Ι	BKGHA43-04-SS	0.053	0	0.036	0	0.024	0	0.024	0	0.399	0
Ι	BKGHA44-04-SS	0.018	0	0.039	0	0.006	0	0.016	0	0.337	0
Ι	BKGHA45-04-SS	0.031	0	0.037	0	0.019	0	0.021	0	0.475	0
Ι	BKGHA46-04-SS	0.014	0	0.048	0	0.025	0	0.015	0	0.379	0
Ι	BKGHA47-04-SS	0.047	0	0.049	0	0.02	0	0.02	0	1.164	0
Ι	BKGHA48-04-SS	0.026	0	0.049	0	0.021	0	0.032	0	0.349	0
Ι	BKGHA49-04-SS	0.072	0	0.044	0	0.032	0	0.023	0	0.583	0
Ι	BKGHA50-04-SS	0.014	0	0.032	0	0.015	0	0.019	0	0.551	0
Ι	BKGHA51-04-SS	0.033	0	0.032	0	0.005	0	0.024	0	0.408	0
Ι	BKGHA52-04-SS	0.03	0	0.055	0	0.026	0	0.024	0	0.448	0
Ι	BKGHA53-04-SS	0.077	0	0.059	0	0.015	0	0.017	0	0.493	0
Ι	BKGHA54-04-SS	0.026	0	0.065	0	0.007	0	0.025	0	0.612	0
Ι	BKGHA55-04-SS	0.047	0	0.085	0	0.034	0	0.023	0	0.592	0
J	BKGHA56-04-SS	0.067	0	0.035	0	0.021	0	0.021	0	0.38	0
J	BKGHA57-04-SS	0.02	0	0.056	0	0.01	0	0.01	0	0.468	0
J	BKGHA58-04-SS	0.023	0	0.025	0	0.021	0	0.021	0	0.356	0
J	BKGHA59-04-SS	0.019	0	0.057	0	0.016	1	0.029	1	0.658	0
J	BKGHA60-04-SS	0.032	0	0.024	0	0.046	0	0.033	0	0.366	0

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
Н	BKGHA01-04-SS	1.2	1	1.53	1	1.17	1	1.06	1	0.077	1	1.16	1
Н	BKGHA02-04-SS	1.07	1	1.31	1	1.03	1	0.92	1	0.042	0	1.11	1
Н	BKGHA03-04-SS	1.26	1	1.26	1	1.23	1	1.01	1	0.071	1	0.98	1
Н	BKGHA04-04-SS	1.09	1	1.19	1	1.09	1	1.02	1	0.088	1	1.07	1
Н	BKGHA05-04-SS	0.86	1	1.04	1	0.9	1	0.79	1	0.089	1	0.96	1
Н	BKGHA06-04-SS	0.8	1	1.37	1	0.88	1	1.16	1	0.066	0	1.1	1
Н	BKGHA07-04-SS	1.3	1	1.36	1	1.16	1	1.53	1	0.128	1	1.53	1
Н	BKGHA08-04-SS	1.09	1	1.31	1	1.17	1	1.7	1	0.136	1	1.75	1
Н	BKGHA09-04-SS	1.1	1	1.11	1	1.12	1	1.15	1	0.062	1	1.23	1
Н	BKGHA10-04-SS	1.26	1	1.14	1	1.08	1	1.5	1	0.122	0	1.31	1
Н	BKGHA11-04-SS	1.01	1	1.14	1	0.78	1	1.71	1	0.082	1	1.75	1
Н	BKGHA12-04-SS	1.11	1	1.39	1	1.01	1	6.07	1	0.271	1	1.78	1
Н	BKGHA13-04-SS	1.22	1	1.87	1	0.97	1	7.41	1	0.318	1	2.19	1
Н	BKGHA14-04-SS	0.97	1	1.14	1	1.11	1	0.9	1	0.019	0	1.05	1
Н	BKGHA15-04-SS	0.89	1	1.13	1	0.76	1	0.99	1	0.056	0	1.16	1
Н	BKGHA16-04-SS	0.89	1	0.95	1	0.92	1	0.97	1	0.013	0	0.9	1
Н	BKGHA17-04-SS	0.83	1	1.26	1	0.73	1	0.96	1	0.065	1	1.12	1
Н	BKGHA18-04-SS	1.39	1	2.6	1	1.52	1	2.09	1	0.098	0	2.13	1
Н	BKGHA19-04-SS	0.89	1	1.72	1	1.03	1	1.2	1	0.016	0	1.01	1
Н	BKGHA20-04-SS	1.02	1	1.44	1	1.09	1	1.03	1	0.04	0	1.25	1
Н	BKGHA21-04-SS	1.29	1	2.49	1	1.21	1	1.25	1	0.084	1	1.44	1
Н	BKGHA22-04-SS	1.16	1	1.84	1	1.16	1	0.96	1	0.042	1	0.98	1
Н	BKGHA23-04-SS	1.13	1	1.17	1	1.2	1	1.08	1	0.065	1	0.99	1
Н	BKGHA24-04-SS	1.11	1	1.2	1	1.11	1	1.21	1	0.063	0	1.33	1
Н	BKGHA25-04-SS	1.37	1	1.32	1	1.16	1	1.42	1	0.077	1	1.26	1

AREA_LETTER	PROJ_SAMPLE_ID	Thorium-228	D_Thorium-228	Thorium-230	D_Thorium-230	Thorium-232	D_Thorium-232	Uranium-233/234	D_Uranium-233/234	Uranium-235/236	D_Uranium-235/236	Uranium-238	D_Uranium-238
I	BKGHA26-04-SS	1.03	1	1.05	1	1.03	1	1.2	1	0.062	1	1.05	1
Ι	BKGHA27-04-SS	1.08	1	1.06	1	0.86	1	0.93	1	0.056	1	1.07	1
Ι	BKGHA28-04-SS	1.25	1	1.54	1	1.27	1	1.1	1	0.06	1	1.11	1
Ι	BKGHA29-04-SS	1.35	1	1.16	1	1.43	1	0.93	1	0.084	1	1	1
Ι	BKGHA30-04-SS	1.07	1	1.41	1	1.07	1	1.07	1	0.054	1	1.1	1
Ι	BKGHA31-04-SS	1.04	1	1.25	1	1.1	1	0.99	1	0.09	1	1.18	1
Ι	BKGHA32-04-SS	1.48	1	1.19	1	1.27	1	0.87	1	0.065	1	1.1	1
Ι	BKGHA33-04-SS	1.18	1	1.03	1	1.09	1	0.94	1	0.091	1	1.12	1
Ι	BKGHA34-04-SS	1.17	1	1.11	1	1.04	1	0.94	1	0.07	0	1.16	1
Ι	BKGHA35-04-SS	1.06	1	1.29	1	1.02	1	0.92	1	0.055	1	1.12	1
Ι	BKGHA36-04-SS	1.03	1	1.08	1	0.9	1	0.86	1	0.072	0	0.91	1
Ι	BKGHA37-04-SS	1.19	1	1.01	1	0.92	1	0.94	1	0.06	0	1.05	1
Ι	BKGHA38-04-SS	1.25	1	1.05	1	1.14	1	1.06	1	0.086	1	1.17	1
Ι	BKGHA39-04-SS	1	1	0.97	1	1.01	1	0.74	1	0.043	0	0.98	1
Ι	BKGHA40-04-SS	1.34	1	1.11	1	1.25	1	1.05	1	0.074	0	1.15	1
Ι	BKGHA41-04-SS	1.42	1	1.18	1	1.24	1	1.05	1	0.06	1	1.22	1
Ι	BKGHA42-04-SS	1.22	1	1.11	1	1.46	1	1.12	1	0.072	0	1.09	1
Ι	BKGHA43-04-SS	1.33	1	0.98	1	0.91	1	0.84	1	0.063	1	1.03	1
Ι	BKGHA44-04-SS	1.06	1	0.97	1	0.89	1	0.85	1	0.045	1	1	1
Ι	BKGHA45-04-SS	1.12	1	1.06	1	0.96	1	0.9	1	0.094	1	1.1	1
Ι	BKGHA46-04-SS	1.18	1	0.86	1	1.22	1	0.68	1	0.061	1	0.97	1
Ι	BKGHA47-04-SS	1.18	1	0.99	1	1.05	1	0.94	1	0.051	0	1.11	1
Ι	BKGHA48-04-SS	0.82	1	0.93	1	0.94	1	0.92	1	0.04	1	0.87	1
Ι	BKGHA49-04-SS	0.87	1	0.91	1	0.86	1	0.92	1	0.05	0	0.98	1
Ι	BKGHA50-04-SS	1.23	1	1.26	1	1.17	1	0.92	1	0.043	1	1.04	1
Ι	BKGHA51-04-SS	0.99	1	0.95	1	1.04	1	0.87	1	0.069	1	0.96	1
Ι	BKGHA52-04-SS	1.1	1	1.31	1	1.11	1	0.93	1	0.061	0	1.06	1
Ι	BKGHA53-04-SS	1.25	1	1.13	1	0.88	1	0.97	1	0.068	1	0.99	1
Ι	BKGHA54-04-SS	0.78	1	1.37	1	1.04	1	1.12	1	0.045	0	1.09	1
Ι	BKGHA55-04-SS	0.85	1	1.17	1	0.83	1	1.05	1	0.065	1	0.93	1
J	BKGHA56-04-SS	1.07	1	0.87	1	1.08	1	0.86	1	0.041	0	0.92	1
J	BKGHA57-04-SS	0.43	1	0.93	1	0.5	1	0.67	1	0.056	0	0.68	1
J	BKGHA58-04-SS	0.94	1	1.28	1	0.92	1	0.91	1	0.072	1	0.9	1
J	BKGHA59-04-SS	0.35	1	0.92	1	0.41	1	0.65	1	0.031	1	0.68	1
J	BKGHA60-04-SS	0.77	1	1.04	1	0.5	1	0.74	1	0.061	1	0.76	1

APPENDIX J: BACKGROUND CONCENTRATION DEVELOPMENT SUPPORTING DOCUMENTATION

This page is intentionally left blank

								UTL Calcu	lation Wo	rk								UB C	Calcula	tion Work			
				relation Coef ribution dete						U'l	۲L					tion Coeff S Imputed	icient using Values			UB usinį	g ROS Imj	outed Values	UB for
Analyte	Percent ND	Maximum Detect	Normal	Gamma	Lognormal	Normal	Normal KM Est.	Gamma WH (KM Est. if NDs)	Gamma HW (KM Est. if NDs)	Gamma ROS- WH	Gamma ROS- HW	Lognormal	Lognormal KM Est.	Lognormal ROS	Normal	Gamma	Lognormal	Q1	Q3	Normal	Gamma	Lognormal	data sets without NDs
Metals			•	•		•									•								
Aluminum	0	15700	0.994	0.991	0.989	16131		16763	16866			17217											
Antimony	12	1.38	0.972 (No NDs)	0.964 (ROS Est.)	0.977 (ROS Est.)	1.724	1.616	1.8	1.815	1.779	1.809	2.782	1.936	1.9									
Arsenic	0	13.1	0.976	0.962	0.96	14		15	15.01			15.3											
Barium	0	138.6	0.971	0.94		165		187	191														
Beryllium	0	0.87	0.974	0.948	0.945	1.0		1	1.09			1.142											
Cadmium	4	0.47	0.985 (No NDs)			0.534	0.5																
Chromium	0	18.7	0.989	0.995	0.994	18.59		19	19.49			19.95											
Cobalt	0	12.2	0.981	0.974	0.973	13		14	13.64			13.89											
Copper	0	22.3	0.973	0.956	0.957	25		27	27.27			28.18											
Iron	0	24758	0.976	0.964	0.965	27241		28191	28340			28839											
Lead	0	16.6	0.97	0.959	0.957	18		19	18.99			19.39											
Lithium	0	61	0.947	0.968	0.975	55.25		56	56.33			57											
Manganese	0	988	0.975	0.959	0.965	1133		1228	1245			1307											
Mercury	60	0.0455	0.956 (No NDs)	0.978 (No NDs)	0.971 (No NDs)	0.0427	0.0396	0	0.040			0.0518	0.0404										
Nickel	0	29.1	0.993	0.987	0.985	30		31	31.24			31.67											
Selenium	0	1.039	0.984	0.966	0.958	1.1		1	1.319			1.444											
Silver	64	2.67	0.952 (No NDs)	0.989 (No NDs)	0.992 (No NDs)	2.128	2.042	2	2.043			2.626	2	3.125									
Thallium	0	1.199	0.987	0.979	0.98	1.3		1	1.48			1.591											
Total Uranium	0	5.255	0.988	0.983	0.98	5.5		6	5.805			5.957											
Vanadium	0	41.9	0.991	0.984	0.969	44		45.77	46.12			47											
Zinc	0	93.7	0.955	0.928	0.936	111		118	119			123.3											
Radionuclides																							
Plutonium-239/240	100																						
Thorium-228	0	1.18	0.977	0.964	0.969	1.3		1.386	1.398			1.44											
Thorium-230	0	2.4	0.981	0.968	0.965	2.6		2.739	2.764			2.9											
Thorium-232	0	1.23	0.965			1.4																	
Uranium-233/234	0	1.67	0.988	0.978	0.975	1.8		1.878	1.898			2.0											
Uranium-235/236	16	0.113	0.979 (No NDs)	0.982 (ROS Est.)	0.986 (ROS Est.)	0.126	0.122	0.135	0.137	0.13	0.136	0.179	0.148	0.14									
Uranium-238	0	1.76	0.987	0.983	0.979	1.8		1.934	1.949			2.0											

Table J-1. Surface Soil (0-1 ft) Areas AB Background Concentration Development

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g) Distributions estimated at a 5% significance level

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

Table J-2. Subsurface Soil (1-10 ft) Areas AB Background Concentration Development

								UTL Calc	ulation Wo	ork								UB Ca	alcula	tion Worl	Σ.		
				relation Coe ribution det						UT	ΓL					tion Coeff 5 Imputed	ficient using I Values			UB u	sing ROS Values	Imputed	UB for
Analyte	Percent ND	Maximum Detect	Normal	Gamma	Lognormal	Normal	Normal KM Est.	Gamma WH (KM Est. if NDs)	Gamma HW (KM Est. if NDs)	Gamma ROS- WH	Gamma ROS- HW	Lognormal	Lognormal KM Est.	Lognormal ROS	Normal	Gamma	Lognormal	Q1	Q3	Normal	Gamma	Lognormal	data sets without NDs
Metals		I	1	I	1	Ļ					1			1		1				1			
Aluminum	0	8189			0.964							11784											
Antimony	48	1.27	0.983 (No NDs)	0.977 (ROS Est.)	0.975 (No NDs)	1.345	1.3	1	1.454	1.509	1.556	2.032	1.56	1.581									
Arsenic	0	10.6	0.986	0.977	0.975	12		13	12.92			13.53											
Barium	0	89.9		0.968	0.983			86	87.29			93											
Beryllium	8	0.8	0.961	0.99 (ROS Est.)	0.988 (ROS Est.)	0.702	0.691	1	0.857	0.9	0.902	1.126	1.024	1.013									
Cadmium	56	0.29	0.916 (No NDs)	0.957 (No NDs)	0.985 (ROS Est.)	0.23	0.222	0	0.236			0.326	0.249	0.3									
Chromium	0	18.2	0.954	0.98	0.99	15.8		17	16.94			18											
Cobalt	0	11.9	0.905	0.937	0.969	9.688		10	9.939			10											
Copper	8	21.8	0.943 (No NDs)	0.977 (ROS Est.)	0.986 (ROS Est.)	19.35	18.99	22	22.89	21.19	21.71	31.86	26.49	22									
Iron	0	24086	0.946	0.972	0.984	21026		21886	22051			22658											
Lead	0	13.4	0.94	0.979	0.983	11.62		12	12.49			13											
Lithium	0	59.8	0.945	0.979	0.981	54.22		57	57.59			60											
Manganese	0	888		0.929	0.952			741	744.5			760											
Mercury	92	0.047																					
Nickel	0	28.2	0.925	0.957	0.976	23.71		24	24.5			25											
Selenium	56	2.543	0.979 (No NDs)	0.98 (No NDs)	0.955 (No NDs)	2.145	2.114	2.5	2.598			3.984	3.119										
Silver	60	4.76	0.967 (No NDs)	0.954 (No NDs)	0.971 (No NDs)	4.786	4.665	5	5.578			9.053	6										
Thallium	36	0.964	0.934 (No NDs)	0.977 (ROS Est.)	0.969 (No NDs)	0.858	0.833	1	0.942	1.0	0.998	1.263	1.037	0.95									
Total Uranium	0	3.638	0.946	0.973	0.982	3.219		3	3.399			3.5											
Vanadium	0	35.4	0.961	0.984	0.987	31.18		34.95	35.82			40											
Zinc	0	90	0.928	0.962	0.959	73.69		80	81.79			88.99											
Radionuclides																							
Plutonium-239/240	100																						
Thorium-228	0	1.16			0.975							1.1											
Thorium-230	0	1.74	0.956	0.984	0.986	1.62		1.718	1.736			1.8											
Thorium-232	0	1.15	0.939	0.986	0.992	0.967		1.073	1.098			1.2											
Uranium-233/234	0	1.31	0.935	0.972	0.98	1.106		1.168	1.181			1.2											
Uranium-235/236	32	0.048		0.977 (ROS Est.)			0.0534	0.0569	0.0575	0.05	0.0545	0.0655	0.0597	0.06									
Uranium-238	0	1.22	0.947	0.973	0.982	1.082		1.134	1.144			1.2											

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g)

Distributions estimated at a 5% significance level

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

UTL Calculation Work Correlation Coefficient Correlation Coefficient using UTL (if distribution determined) **ROS Imputed Values** Percent Maximum Analyte Gamma Gamma ND Detect Gamma Gamma WH HW Normal Lognormal Lognormal Normal | Gamma | Lognormal Lognormal Normal ROS-ROS-Normal Gamma Lognormal KM Est. (KM Est. (KM Est. ROS KM Est. WH HW if NDs) if NDs) Metals Aluminum 0 22760 0.971 24477 ---------------------------------0.961 0.985 0.98 37 2.24 1.857 1.79 2.0 2.112 2.606 2.918 3.319 2.395 2.527 Antimony (No NDs) (No NDs) (ROS Est.) 34.2 0 Arsenic ----0.973 0.981 ----28 28.71 -------31 -----------Barium 0 109.2 0.991 0.993 0.988 108.5 114 114.4 117.5 -----------------0 1.23 0.978 0.995 0.997 1.133 1.204 1.2 Beryllium ----1 ------------0.941 0.958 0.97 Cadmium 37 0.19 0.269 0.261 0 0.426 0.235 0.238 1.05 0.661 0.2 (No NDs) (ROS Est.) (ROS Est. Chromium 0 31.2 0.961 0.987 0.994 29.11 31 31.13 32 ----------------Cobalt 0 29.5 0.931 0.978 0.981 25.12 27 27.08 ----------28 -------0 Copper 18.2 0.941 0.976 0.979 16.72 ----18 17.82 ------19 ------0 128668 Iron 0.961 86080 ---------------------------------Lead 0 49.6 ---0.925 -----------33 -----------------------Lithium 0 100.3 ---------Manganese 0 1806 0.981 0.972 0.966 1858 2399 2556 3426 ------------------0.989 0.982 20 0.0563 0.060 0.0754 0.0577 0.0601 Mercury 0.066 0 0.0607 ------------(ROS Est.) (ROS Est.) 0.941 22 23 Nickel 0 25.4 0.973 0.985 20.93 21.91 -------------------0.971 0.97 33 Selenium 1.468 1 1.317 1.8 2.011 1.702 1.492 -------------(ROS Est.) (ROS Est. 0.968 0.981 Silver 47 11.85 7 7.127 ----10.83 10.32 11 --------------(No NDs) (ROS Est.) Thallium 13 1.706 0.816* 0.921* 0.898* 0.975 Total Uranium 0 4.232 0.982 0.986 3.99 ----4 4.032 -------4.1 --------Vanadium 0 88.4 0.927 0.973 0.984 70.85 ---74.23 74.99 -------78 -------161.4 Zinc 0 --------0.936 -----------------------93 --------Radionuclides Plutonium-239/240 87 0.024 Thorium-228 0 1.74 0.965 0.979 0.983 1.6 1.626 1.629 1.6 -----------------Thorium-230 0 1.66 0.965 0.972 1.581 1.583 1.6 -------------------------Thorium-232 0 1.63 0.973 0.985 0.989 1.525 1.548 1.551 1.6 -----------------Uranium-233/234 1.35 0.988 0.991 0 0.981 1.276 ----1.289 1.291 --------1.3 -------0.989 0.991 0.986 0.0953 Uranium-235/236 50 0.09 0.0916 0.10 0.1 0.09 0.091 0.124 0.105 0.0909 (No NDs) (No NDs) (No NDs) Uranium-238 0 1.42 1.339 1.351 1.353 0.975 0.982 0.986 ----------1.4 -------

Table J-3. Surface Soil (0-1 ft) Areas DEFG Background Concentration Development

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g)

Distributions estimated at a 5% significance level

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

UB C	alcula	tion Work			
		UB using	g ROS Imj	puted Values	UB for
Q1	Q3	Normal	Gamma	Lognormal	data sets without NDs

_						
	10	51				113
	0.132	0.210	NA	NA	0.3	
	0.132	0.210	NA	NA	0.3	
	0.132	0.210	NA	NA	0.3	
	0.132	0.210	NA	NA	0.3	
	0.132	0.210	NA	NA	0.3	
	0.132	0.210	NA	NA	0.3	
	0.132	0.210	NA	NA	0.3	

								UTL Calc	ulation W	ork								UB C	Calculat	tion Work			
			Cor	relation Coe	efficient			012 0440							Correla	tion Coeff	icient using						
				tribution de						UT	Ľ					S Imputed	0			UB using	g ROS Im	puted Values	TID C
Analyte	Percent ND	Maximum Detect	Normal	Gamma	Lognormal	Normal	Normal KM Est.	Gamma WH (KM Est. if NDs)	Gamma HW (KM Est. if NDs)	Gamma ROS- WH	Gamma ROS- HW	Lognormal	Lognormal KM Est.	Lognormal ROS	Normal	Gamma	Lognormal	Q1	Q3	Normal	Gamma	Lognormal	UB for data sets without NDs
Metals																							
Aluminum	0	25516			0.991							20717											
Antimony	40	4.28													0.900*	0.989*	0.993*	0.27	0.90	NA	NA	1.8	
Arsenic	0	93																6	15				29
Barium	0	1529																56	88				136
Beryllium	0	2.75			0.991							1.6											
Cadmium	35	1.46													0.864*	0.846*	0.989*	0.05	0.14	NA	NA	0.3	
Chromium	0	38.8		0.998	0.994			29	29.71			30.78											
Cobalt	0	77.5			0.995							37											
Copper	0	33.9		0.998	0.993			26	26.6			28.21											
Iron	0	157025			0.983							62782											
Lead	0	349.5																11	16				23
Lithium	0	158.1																18	60				123
Manganese	0	9005			0.994							1491											
Mercury	36	0.096		0.989 (No NDs)	0.997 (ROS Est.)			0.0497	0.0512			0.0599	0.0587	0.052									
Nickel	0	86.4		0.984	0.999			46.68	47.31			50											
Selenium	47	9.417													0.562*	0.755*	0.932*	0.221	0.388	NA	NA	0.6	
Silver	36	14.8		0.951 (No NDs)	0.993 (No NDs)			5.306	5.56			7.828	7										
Thallium	26	19.66													0.427*	0.569*	0.853*	0.11	0.21	NA	NA	0.4	
Total Uranium	0	6.705	0.961	0.974	0.989	4.671		4.701	4.708			4.7											
Vanadium	0	100.6			0.983							58											
Zinc	0	222.6		0.972				117	118.6														
Radionuclides																							
Plutonium-239/240	100																						
Thorium-228	0	2.1	0.997	0.995	0.991	1.9		1.916	1.921			1.939											
Thorium-230	0	2.81		0.96	0.984			1.732	1.734			1.7											
Thorium-232	0	2.38	0.993	0.995	0.996	1.853		1.884	1.888			1.9											
Uranium-233/234	0	2.03		0.991	0.996			1.559	1.561			1.6											
Uranium-235/236	35	0.165		0.996 (ROS Est.)	0.996 (No NDs)			0.124	0.127	0.12	0.12	0.143	0.136	0.119									
Uranium-238	0	2.25	0.961	0.974	0.989	1.568		1.578	1.58			1.6											

Table J-4. Unsaturated Minford (1-16 ft) Areas DEFG Background Concentration Development

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g)

Distributions estimated at a 5% significance level

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

UTL Calculation Work Correlation Coefficient Correlation Coefficient using UTL (if distribution determined) **ROS Imputed Values** Percent Maximum Analyte Gamma Gamma ND Detect Gamma Gamma WH HW Normal Lognormal Lognormal Normal Gamma Lognormal Normal ROS-ROS-Lognormal Normal | Gamma | Lognormal (KM Est. KM Est. ROS KM Est. KM Est. HW WH if NDs) if NDs) Metals 10616 0.948 0.943 12698 13689 13859 14463 Aluminum 0.961 0 ------------------0.939 0.98 0.981 Antimony 8 2.42 2.622 2.522 3 3.261 3.5 3.767 5.16 3.995 4.367 (No NDs) (ROS Est.) (No NDs) 0 45.8 195.7 0.969 0.971 0.939 53.06 86 97.72 Arsenic -----------------0 72 Barium 64.8 0.952 0.96 0.966 67.92 ---70 70.71 -------------0.988 0.992 0.991 1.085 1.247 Beryllium 0 0.96 1.2 1.19 ----------------0.965 0.908 0.977 Cadmium 42 0.33 0.411 0.396 0.713 0.729 0.865 2.489 1.367 0.7 1 (No NDs) (ROS Est.) (ROS Est.) 25.47 Chromium 0 20.8 0.953 0.971 0.969 23.4 25 25 ------------------15.2 0.987 0.995 0.995 17.19 19 19 19.85 Cobalt 0 ------------------0.966 0 18.8 0.977 0.965 23 25 25.35 26.61 Copper ------------------0 47547 48976 56423 0.912 0.942 0.955 52804 53556 Iron ---------------Lead 0 13.2 0.953 0.958 0.967 15.56 16 16.41 13 -----------------105.1 Lithium 0 0.948 0.93 120 195.9 ------------------------0 402 Manganese 0.887 0.949 0.945 415.1 465 475.4 519.7 ---------------0.948 0.944 0.946 50 0.0358 0.0413 0.041 0 0.0475 0.0525 0.0524 Mercury ----------(No NDs) (No NDs) (No NDs) Nickel 0 35.7 0.961 0.965 0.972 43.49 48 49.29 53 ---------------0.984 0.985 0.974 Selenium 17 0.548 0.729 0.634 0.627 0.632 1.25 0.753 1 0.709 0.6 (No NDs) (ROS Est.) (ROS Est.) 0.896 0.957 0.953 Silver 58 3.22 3.467 3.22 4 3.766 7.162 4.237 6.164 ------(ROS Est.) (No NDs) (No NDs) 0.934 0.928 Thallium 25 0.737 0.861 0.985 0.773 0.836 ----1 0.719 0.8 -------(ROS Est.) (No NDs) Total Uranium 6.02 0.962 0.977 6.388 7.2 0 0.986 ----7 6.9 -------------0 Vanadium 54.1 0.978 0.972 74.55 84 0.987 65 ---76.41 --------------0 139 105.5 0.956 0.967 0.97 128 140.7 148 Zinc -----------------Radionuclides Plutonium-239/240 100 Thorium-228 0 1.46 0.954 0.958 0.962 1.5 ----1.551 1.553 -------1.6 -------0.925 Thorium-230 0 2.34 ---0.908 2.336 ---2.383 2.392 -------2.4 ------Thorium-232 0.981 0.98 0.982 0 1.41 1.565 ---1.602 1.608 ------1.6 -------Uranium-233/234 0 1.98 0.965 0.975 2.072 2.223 2.251 2.4 0.948 -------------------0.984 0.982 0.981 Uranium-235/236 17 0.138 0.176 0.17 0.214 0.224 0.21 0.22 0.313 0.274 0.261 (No NDs) (ROS Est.) (ROS Est.)

2.289

2.315

Table J-5. Saturated Minford (16-30 ft) Areas EFG Background Concentration Development

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g)

0.986

2.144

Distributions estimated at a 5% significance level

0

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

2.02

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

0.962

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

0.977

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

Uranium-238

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

2.4

UB C	alcula	tion Work			
		UB using	g ROS Imj	puted Values	UB for
Q1	Q3	Normal	Gamma	Lognormal	data sets without NDs

Table J-6. Gallia Areas DEFG Background Concentration Development

								UTL Calc	ulation Wo	rk								UB C	alcula	tion Work			1
				relation Coef tribution dete						U	ΓL					tion Coeff S Imputed	ficient using I Values			UB using	g ROS Im	puted Values	UB for
Analyte	Percent ND	Maximum Detect	Normal	Gamma	Lognormal	Normal	Normal KM Est.	Gamma WH (KM Est. if NDs)	HW	Gamma ROS- WH	Gamma ROS- HW	Lognormal	Lognormal KM Est.	Lognormal ROS	Normal	Gamma	Lognormal	Q1	Q3	Normal	Gamma	Lognormal	data sets without NDs
Metals													1				1					1	
Aluminum	0	13220																5132	8451				13430
Antimony	24	12.89		0.948 (ROS Est.)	0.984 (No NDs)			7.10	7.283	7.907	8.561	8.862	8.4	8.537									
Arsenic	0	157			0.98							129											
Barium	0	106.2	0.965	0.989	0.992	89.43		95	95.84			100											
Beryllium	0	1.44		0.96	0.975			1.459	1.469			1.5											
Cadmium	12	2.07		0.996 (ROS Est.)	0.99 (ROS Est.)			1.86	2.041	2.0	2.26	3.338	3.547	2.603									
Chromium	0	27.9	0.987			29																	
Cobalt	0	25.2			0.98							27											
Copper	0	25.4																11.1	17.65				27
Iron	0	142689	0.983	0.991	0.971	131949		155228	161182			189521											
Lead	0	48.7			0.974							38											
Lithium	0	168																12	46				97
Manganese	0	3054		0.947	0.983			2070	2145			2558											
Mercury	24	0.113			0.956 (No NDs)							0.0776	0.067										
Nickel	0	76.9			0.979							78											
Selenium	39	0.83													0.911*	0.913*	0.897*	0.256	0.379	NA	0.6	0.48	
Silver	15	10.99	0.962 (No NDs)	0.97 (No NDs)	0.968 (No NDs)	10.61	10.5	14	15.22	15.93	18.62	23.76	22.46	22.79									
Thallium	12	0.606		0.972 (ROS Est.)	0.976 (ROS Est.)			0.48	0.483	0.489	0.497	0.581	0.502	0.5									
Total Uranium	3	7.867		0.965 (ROS Est.)	0.981 (ROS Est.)			9	9.445	7.207	7.278	18.2	14.37	7.3									
Vanadium	0	92.6	0.961	0.985	0.99	80.75		84.34	85.03			88											
Zinc	0	292.2			0.971							244											
Radionuclides																							
Plutonium-239/240	100																						
Thorium-228	0	1.67		0.972	0.979			1.708	1.713			1.7											
Thorium-230	0	3.04			0.952							2.5											
Thorium-232	0	1.81	0.974	0.987	0.989	1.644		1.691	1.698			1.7											
Uranium-233/234	0	2.45			0.977							2.3											
Uranium-235/236	44	0.175	0.985 (No NDs)		0.987 (No NDs)	0.152	0.151	0.171	0.175	0.17	0.175	0.213	0.195	0.178									
Uranium-238	3	2.64		0.965 (ROS Est.)	0.981 (ROS Est.)	2.373	2.355	2.939	3.17	2.419	2.442	6.1	4.821	2.5									

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g)

Distributions estimated at a 5% significance level

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

Table J-7. Subsurface Soil (0-1 ft) Areas HIJ Background Concentration Development

							UTL	Calculatio	n Work									UB (Calculati	on Work			
			(i	Correlation Coeff if distribution dete						U	۲L					tion Coeff S Imputed	ïcient using l Values			UB using	g ROS Im	puted Values	UB for
Analyte	Percent ND	Maximum Detect	Normal	Gamma	Lognormal	Normal	Normal KM Est.	Gamma WH (KM Est. if NDs)	Gamma HW (KM Est. if NDs)	Gamma ROS- WH	Gamma ROS- HW	Lognormal	Lognormal KM Est.	Lognormal ROS	Normal	Gamma	Lognormal	Q1	Q3	Normal	Gamma	Lognormal	data sets without NDs
Metals							1	I		1					I	I							
Aluminum	0	23438	0.971			18049																	
Antimony	34	6.45			0.988 (ROS Est.)							4.188	3.254	4.1									
Arsenic	0	67																6	12				20
Barium	0	157.4	0.979	0.988	0.992	150.4		165	168.7			182											
Beryllium	0	1.76	0.973	0.988	0.988	1.413		2	1.58			1.7											
Cadmium	67	0.93		0.986 (No NDs)	0.995 (ROS Est.)			0	0.351			0.501	0.356	0.9									
Chromium	2	70.9													0.788*	0.901*	0.969*	9.125	14.830	NA	NA	23	
Cobalt	0	63.3		0.926	0.984			33	33.38			37											
Copper	3	66.1													0.676*	0.796*	0.949*	5.500	9.675	NA	NA	16	
Iron	0	106775																11236	18331				28974
Lead	0	68.2		0.957	0.991			41	41.4			44											
Lithium	0	110.3		0.994	0.994			97	100.4			116											
Manganese	0	2134	0.979	0.977		1919		2505	2701														
Mercury	12	0.165			0.98 (ROS Est.)									0.094									
Nickel	0	162.6																11	18				29
Selenium	4	3.628		0.959 (No NDs, ROS)	0.99 (No NDs, ROS)			2	2.206	2.192	2.22	2.4	2.327	2.333									
Silver	91	4																					
Thallium	33	2.726		0.992 (No NDs)	0.987 (No NDs)			3	2.9	3.235	3.855	5.995	4.635	3.361									
Total Uranium	0	6.347																3	3				4.3
Vanadium	0	113.5																20	33				52
Zinc	0	196.1																40	58				86
Radionuclides					•											•					1	•	
Plutonium-239/240	86	0.031																					
Thorium-228	0	1.48	0.97			1.5																	
Thorium-230	0	2.6																1.0	1.3				1.7
Thorium-232	0	1.52	0.974			1.5																	
Uranium-233/234	0	2.09																0.9	1.1				1.4
Uranium-235/236	38	0.136	0.958 (No NDs)	0.988 (ROS Est.)	0.987 (ROS Est.)	0.111	0.113	0.139	0.146	0.11	0.12	0.168	0.181	0.129									
Uranium-238	0	2.13																1.0	1.2				1.4

All metal concentrations are reported in milligrams per kilogram (mg/kg) and all radionuclide results are reported in picocuries per gram (pCi/g)

Distributions estimated at a 5% significance level

Upper Tolerance Limits (UTLs) represent 95% UTL with 95% coverage

*Regression on Order Statistics (ROS) distribution correlation coefficient recorded; however, data not distributed

NA indicates unreliable data generated using imputed values

Upper Bound (UB) Equation: UB = Q3 + k(Q3-Q1); k value is 1.5; Q1 is the 25th percentile value; Q3 is the 75th percentile value

Yellow highlighted value is the selected background value

KM = Kaplan-Meier

HW = Hawkins-Wixley

WH = Wilson-Hilferty

ND = Non-detected value

--- = Value not determined because distribution or analysis does not apply

This page is intentionally left blank.