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PREFACE

The purpose of this report is to describe computer programs that provide improved methods of
determining the concentrations appropriate for use in ORO risk assessments.  According to EPA, because
of uncertainty associated with any estimate of exposure concentration,  the 95% upper confidence limit of
the arithmetic mean will be used for the  reasonable maximum exposure in risk assessment.  The SAS
macros described in the report provide an efficient way of calculating this value, as well as other important
summary statistics.  It is especially noteworthy that the programs include methods that are appropriate
when nondetects are present, when the distribution of the underlying data is unknown, and when both
situations apply.  This work was performed under Work Breakdown Structure 1.4.12.2.3.04.05.03
(Activity Data Sheet 8304).  This Work Breakdown Structure is entitled Risk Assessment: Decision
Support.  The ultimate objective of this report is to provide and explain new statistical software that should
be applied to improve the concentration estimates applied in ORO risk assessments.  This document was
previously released as a draft with the document number ES/ER/TM-211.
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EXECUTIVE SUMMARY

In order to estimate the potential health or environmental effects of a particular substance in a given
medium at a particular location, an estimate is needed of the concentration of the substance that is present.
Under current Environmental Protection Agency (EPA) guidance for risk assessment (EPA 1992, 1995a), the
average concentration is the value of the exposure to be used in such estimation.  

 Because only a finite number of samples can be taken, the average concentration cannot be determined
precisely.  For this reason, EPA requires that a 95% upper confidence limit (95% UCL) on the arithmetic
average concentration be calculated to estimate exposure concentration used in risk assessments.  The 95%
UCL of the average concentration is the value that, when calculated for an infinitely large number of randomly
drawn subsets of site data, will equal or exceed the true average 95% of the time.

Commonly used methods for calculating exact confidence limits on the mean require assumptions about
the underlying distribution of values.  For example, it is commonly assumed that the data are either normally
or lognormally distributed.  Lognormal data are data that are normally distributed after the logarithms of the
data (to any base) are taken.  Before this transformation has been made, the distribution of the data is skewed
with a long right tail.  Frequently samples of concentrations of contaminants in the environment appear to have
a lognormal distribution. 

The problem of nondetects (also called left censoring) occurs commonly for environmental data.  A
“nondetect” is an observation that is below the level of detection of the analytical method.  The limit of
detection is generally defined as the lowest concentration that can be determined to be statistically different
from a blank specimen.  The limit of detection is an imprecise quantity that can vary from sample to sample
and laboratory to laboratory.    Several methods of low reliability are commonly used when analyzing left-
censored data.  These include substituting 0 for nondetects, substituting the detection limit divided by 2 for
nondetects, or procedures which involve graphing the data and replacing the nondetects with values that fit the
assumed underlying distributions.  

In either the normal or lognormal case, it is possible to estimate exact confidence limits on the mean using
an uncensored random sample from the distribution.  When there is censoring, approximations are needed.  

This report describes macros developed for use with SAS software1.  These macros simplify calculation
of 95% UCLs and of other environmental summary statistics based on the normal and lognormal models, as
well as on a nonparametric method.  Two of the macros account for nondetects in ways that are more
sophisticated than commonly used methods.  This is important  because environmental data are often left
censored.    The summary statistics provided by the macros are needed for Baseline Risk Assessment Reports
and in other applications in environmental restoration.

The SAS macros described in this report should provide the basis for development of exposure
concentrations for all ORO risk assessments in which the sample selection procedure emulates simple random
sampling.  While the methods provide a more reliable way of analyzing data that are left censored, it is
important to realize that these  methods are also applicable to normal and lognormal data that are not censored.
 (See report BJC/OR-271 for an overview of the data evaluation process.)  It is recommended that much weight
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be given to the Product Limit Estimate (PLE) approach because it is free of assumptions about the underlying
distributions, and it is particularly well adapted for handling nondetects. It will often be necessary to report the
confidence limits and other summary statistics for the lognormal and normal distributions, which are also easily
calculated using these macros.  However,  it should be realized that the lognormal approach, in particular, can
sometimes lead to large errors in estimating confidence limits.  When the 95% UCL of the lognormal mean is
many times larger than the 95% UCL of the PLE mean, there would seem to be good reason to apply the latter
in risk estimation.  
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1.  INTRODUCTION

In order to estimate the potential health or environmental effects of a particular substance in a given
medium at a particular location, an estimate is needed of the concentration of the substance that is present.
Under current Environmental Protection Agency (EPA) guidance for risk assessment (EPA 1992, 1995), the
average concentration is the desired value of the exposure to be used in such estimation.  The average is
suggested for use based on the following: 

(1) carcinogenic and chronic noncarcinogenic toxicity criteria are based on estimated lifetime
average exposures to low levels of such substances; 

(2) the average concentration is most representative of the concentration to which individuals
would be exposed over time at a site.

The average of interest is actually the time-averaged concentration.  In some cases, this is approximated
using the spatial average.  For example, if the medium is contaminated soil, then the spatially-averaged
concentration can be used to approximate the time-averaged concentration if one assumes that the exposed
individual moves randomly across the exposure area.

Because it is impractical to characterize sites completely regarding the exposure concentration, it is
necessary to address the uncertainty when estimating the average using a finite number of samples.  Indeed,
EPA (1989, pp. 6-19 and 22) requires that an estimate of the upper 95 percent confidence limit (95% UCL)
on the arithmetic average concentration be calculated, and that the smaller of the maximum detected
concentration and the 95% UCL be used to estimate the exposure concentration used in risk assessments.  

In risk assessment, the reasonable maximum exposure (RME) is the maximum exposure that is reasonably
expected to occur at a site.  It is important to realize that according to EPA (1989, p. 6-19) the statistic that
is used for the RME is the 95% UCL on the arithmetic average.  The emphasis in this report is on more reliable
methods for calculating the 95% UCL.  The 95% UCL of the average concentration is the value that, when
calculated for an infinitely large number of randomly drawn subsets of site data, will equal or exceed the true
average 95% of the time.

The validity of any estimate of the 95% UCL is dependant on the quality of the data used.  Much of the
theory behind summary statistics such as means and UCLs is based on the assumption that the data values used
were obtained by random sampling.  EPA (1995b) provides a discussion of the importance of random sampling
and how it can be accomplished.  

Commonly used methods for calculating exact confidence limits on the mean require assumptions about
the underlying distribution of values.  For example, it is commonly assumed that the data are either normally
or lognormally distributed.  In both of these cases, it is possible to estimate exact confidence limits on the mean
using an uncensored random sample from the distribution.  Lognormal data are data that are normally
distributed after the logarithms of the data (to any base) are taken.  Before this transformation has been made,
the distribution of the data is skewed with a long right tail.  Frequently samples of concentrations of
contaminants in the environment appear to have a lognormal distribution. This is the main reason why much
of this report deals with methods for calculating the mean for the lognormal distribution, together with
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estimates of the uncertainty about it.  Despite the seemingly simple connection between the normal and
lognormal distributions, the methods of calculating means, and their degree of uncertainty, differ substantially.

EPA (1995b) discusses methods for testing whether data fit the normal or lognormal distributions.  (For
the lognormal case, usually the natural logarithms of the data are taken and the transformed data are tested to
see if they follow the normal distribution.)   Often the number of samples is far too sparse to provide any means
of reliably determining the shape of the underlying distribution.  On the other hand, large sample sizes can lead
to the rejection of a particular distribution even though, in actuality, the distribution may be adequate.  In some
instances, neither the normal nor the lognormal distribution is appropriate.  The above difficulties are one of
the reasons why a nonparametric estimate, together with estimates of the uncertainty about it, is particularly
attractive.  Nonparametric approaches are not dependent upon one’s guessing correctly which type of
underlying distribution is appropriate.  For very small sample sizes, EPA (1995b) recommends that
nonparametric hypothesis tests “be selected during Step 3 of the DQA Process in order to avoid incorrectly
assuming that the data are normally distributed when, instead, there is simply not enough information to make
this determination.”  (Step 3 of the DQA process is the one that involves selection of the “most appropriate
procedure for summarizing and analyzing the data”.)  The nonparametric approach that will be considered is
based on the product limit estimate (PLE ; Kaplan and Meier, 1958).  

The problem of  left censoring occurs commonly for environmental data.   “Left censoring” means that
some of the observations (often denoted “U” or “*”) are below the level of detection of the analytical method.
(Often a sizeable fraction of the observations are nondetects.)   For example, assume that a given instrument
under particular sampling conditions cannot detect a concentration of substance R equal to, or lower than, 0.30
units.  Perhaps 20 samples are tested and only 12 of them yield detectable concentrations, perhaps ranging from
0.32 to 3.40 units/gram of soil.  The remaining samples are reported as nondetects of value 0.30U.  These 8
samples are important because they show that 8 of 20 samples were  # 0.30 units per gram of soil.  It is
possible that all of them were zero units per gram of soil..  

The limit of detection is a statistical concept not a chemical concept.  The limit of detection is generally
defined as the lowest concentration that can be determined to be statistically different from a blank specimen.
The limit of detection is an imprecise quantity that can vary from sample to sample because of variations in
matrix interference, calibrations, dilutions, etc.  Detection limits are especially likely to vary when samples
combine data collected by different laboratories.

With this report, three macros for use with SAS software are being made available. This report provides
background, explanation,  and discussion of the three macros and their output. The macros, together with brief
descriptions, are as follows:

1. Macro “logconf” provides summary statistics for lognormal data that are uncensored.  Two methods
are applied depending primarily on sample size.  When any more than a slight proportion of the data is left
censored, it is inappropriate to use this macro.  Instead, use the two macros described below.

2. Macro “lnor”provides summary statistics for the lognormal distribution, as well as for the normal
distribution, that take into consideration left-censoring of data.  When there is no censoring, the normal-based
approach reduces to computing ordinary sample means, standard deviations, confidence limits, etc.  The
lognormal-based approach reduces to a method called Cox’s direct method (see section 3).
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3. Macro “ple” is a nonparametric alternative that provides summary statistics for the product limit
estimate (PLE).  It is well adapted for application when the data are left censored.   When there is no censoring,
it provides the same results as the ordinary mean and its confidence limits.  

Only a univariate approach will be taken in this report.  That is, concentrations for only one analyte (a
chemical or radionuclide) will be considered at a time.  This contrasts with a multivariate approach, where
concentrations of several analytes are considered simultaneously.   When conducting Baseline Risk
Assessments, it is also important to report information on the percentiles of the exposure concentrations.  The
50th percentile (called the  50%-ile in the computer output of the macros) is the median, and in certain
situations the median provides a better measure of the average than the arithmetic mean.  (In the normal
distribution, the mean, the median, and the mode are identical.)  Confidence bounds (or limits) of percentiles
are termed tolerance bounds (or limits).  In this report confidence limits of estimates of the mean will always
be referred to as confidence limits, and confidence limits of percentiles will always be referred to as tolerance
bounds.  The lnor and ple macros report whatever percentiles are requested, together with their tolerance
bounds.   (For normal or lognormal-based tolerance bounds, use the LNOR macro even in the all-detects case.)

It is important to realize that these three macros do not take into consideration the statistical complications
caused by  right-censored data or by the clustering of data.   It is the responsibility of those who apply these
macros to realize these limitations, so as to avoid reporting inappropriate measures of concentrations.  Right
censoring could result if some of the sampled concentrations were so high that they exceeded the upper limit
of the measurement device.  It would seem that technical adjustments such as further dilution of samples or the
use of a less sensitive scale (for radiation) could eliminate the reporting of environmental data that are right
censored.   Clustered data, in which certain regions of an area of interest are oversampled, violate the
assumption that the data constitute a random sample.  As stressed earlier, valid application of the macros
assumes that the data are collected by random sampling.  If it is known that this is not the case, appropriate
caution must be made in the presentation and the interpretation of the data.

In addition to the summary statistics mentioned above, the lnor.sas and ple.sas macros also provide the
following  basic summary statistics and characteristics of the concentration data that must be reported in a
Baseline Risk Assessment:  

• total number of samples
• number of samples that are detects
• frequency of detection
• minimum value (including nondetects)
• minimum detected concentration
• maximum detected concentration
• minimum nondetected concentration
• maximum nondetected concentration
• maximum value
• ordinary mean (i.e., the usual arithmetic mean or sample average)
• ordinary standard error of the mean
• 95% LCL of the ordinary mean
• 95% UCL of the ordinary mean
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2.  BACKGROUND STATISTICAL INFORMATION

Some basic statistical concepts will be reviewed briefly to provide background for the mathematical
explanations that will be provided for the procedures implemented by the macros.  After  the concepts have
been introduced in terms of the population of all possible values, explanations will be provided for random
samples drawn from those populations.  

The set of all possible values for a particular attribute is called the sample space, and a random variable
is any function from a sample space S to the real numbers.  In most instances in this report, the sample space
of interest is that of all possible concentration values, and the random variable is the concentration in a given
exposure area.

Let X denote a random variable.  The cumulative distribution function, or cdf, denoted by  is givenFX(x)
by

Associated with a (continuous) random variable X is the probability density function (pdf), denoted by
fX(x), which gives probabilities that X is in an interval, as follows:

This expression can intuitively be interpreted as “adding up” the continuum of the “probabilities” fX(x)
for a<X<b.

There is a simple relationship between the cdf and pdf for a given random variable (in fact, this is
sometimes given as the definition of the pdf):

The average, or expected value, of a random variable is, intuitively, the weighted sum of all possible
values of the random variable; i.e., each possible outcome is multiplied by its probability of occurring and these
products are summed.  The precise definition of the expected value or the mean (µ) of a random variable X,
denoted by F = E[X], is given by
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x ' j
n

i'1

xi

n

It is necessary to make statements about the concentration of interest in order to perform a risk
assessment.  An example of such a statement would be a 95% UCL for  the mean.  These statements must be
made with only a small subset of all possible concentrations.  The process of making such statements is called
statistical inference.

Only a small subset of the entire population can be known, and without knowing the underlying
distribution completely, it is impossible to make statements about it with complete (i.e., 100%) confidence.
However, if the subset is collected appropriately, statements can be made with a specified level of confidence.
The most widely used method of collecting data appropriately is random sampling.  In essence, the idea in
random sampling is that every member of a population has an equal chance of being selected.  Methods for
sampling data randomly are discussed by EPA (1995b).   Biased sampling is a broad term applied to any
method of collecting a subset such that one does not obtain a representative picture of the population.   For
valid application of the statistical methods discussed in this report, it is essential that data be collected using
methods that protect against bias. 

Thus only a finite number of samples from a given distribution can be used to estimate its expected value.
Consider n observations x1, x2,...,xn.  If preferential sampling does not occur spatially or over time, then the
samples are considered random and independent.  If the values are correlated, they are referred to as clustered.
Different statistical methods must be used with data that are correlated, clustered or otherwise interdependent.
The methods discussed in the report are not appropriate for such data.  

Let x denote a random variable in a sample drawn from a population.  The sample cumulative distribution
function denoted by , is given by    F̂n(x)

                                                      F̂n (x) ' No. of sample values # x
n

This function provides a convenient and familiar way to summarize and display data.  A plot of
versus x makes it easy to visualize the sample, and it provides information on the percentiles and theF̂n(x)

dispersion of the data.  It is also useful for ascertaining the distributional shape of the population from which
the sample was taken.  

To estimate the true mean of the distribution that is being sampled, the arithmetic mean (or sample mean)
is calculated by summing the values of the samples and dividing by the number of samples as shown below.
In this report the sample mean is usually referred to as the  “ordinary mean”.

In the common situation of random sampling with no censoring,  is  an unbiased estimate of the mean.x̄
(“Unbiased” means that if a large number of sample means is calculated, the average of these sample means
will approach the true mean.)
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Var(X) ' E(X 2) & µ2

s 2 '

j
n

i'1
(xi & x̄)2

n&1

x̄ & µ

s / n

The variance of a random variable provides a measure of the spread in a probability distribution.  When
the variance is small, it is more likely that the sampled values will be close to the mean of the distribution. The
variance is defined mathematically as follows:

An unbiased estimate of the sample variance is given by

The sample standard deviation is the square root of the estimate of the sample variance and is more
commonly reported than the sample variance.

  

3.  CALCULATION OF CONFIDENCE LIMITS: UNCENSORED CASE

3.1 CONFIDENCE LIMITS OF THE MEAN OF NORMALLY DISTRIBUTED UNCENSORED
DATA

In this section the concept of the upper and lower 95% confidence limits of the mean (95% UCL and LCL)
will be developed for the case where an analyte’s concentration distribution is assumed to be normally
distributed and the data are both uncensored and unclustered.  In the previous section, the basis for the
estimation of the sample mean and sample variance were described.  The summary statistics are to be
calculated for all analytes of  the data set, independently and one analyte at a time.  All three macros provide
the 95% UCL, and the lnor and ple macros also provide the 95% LCL.  As noted in the introduction, for risk
analysis the 95% UCL is more important.

As was the case for calculation of the sample mean, let x1, x2,..., xn denote a random sample of n values
from a normal distribution with unknown mean and variance of µ and F2, respectively.  If   denotes thex̄
sample mean and s denotes the sample standard deviation, then it is known that (see, e.g., Casella and Berger
1990, p. 226) the distribution of the ratio depends only on the number of samples n.  This distribution is called
Student’s t-distribution with n-1 degrees of freedom, and it is denoted by tn-1. 

The 95% UCL is then given by
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UCL ' x̄ % tn&1(0.95) s

n

LCL ' x̄ & tn&1(0.95) s

n

SE '
s

n

and the 95% LCL by

where  is the upper 95th percentile of the t-distribution with n-1 degrees of freedom.tn&1(0.95)
 
Another common summary statistic, which has importance in calculation of confidence limits for the

sample mean, is the standard error of the mean (SE, or, as it is referred to in the output of the macros,
“Ordinary mean std. err.”).  It is defined as follows:

It is obvious that the SE is part of the equation for the confidence limits given above.  The proper number
to use for multiplication by the SE can be read directly from the t-table, which is found, for example, in EPA
(1995b, p.  A-11).  In that table the number to use is found in the column headed by “.95" and in the row
headed by “n”.  (It should be noted that “n” in the table means degrees of freedom, which in this case is n - 1.)

3.2 UPPER CONFIDENCE LIMIT OF THE  LOGNORMAL MEAN OF UNCENSORED DATA

The objective here is to demonstrate how to estimate the mean and its 95% UCL for data that are
lognormal, and for which there is no censoring.  The approaches described provide the basis for the calculations
in the macro named logconf.  Again, the statistics are to be calculated for all analytes of the data set that are
lognormally distributed, and they must be calculated independently, one analyte at a time.  Unlike the other
macros, the logconf macro does not calculate lower confidence limits or any tolerance bounds.  Also, unlike
the other macros, the user cannot select other confidence limits (or tolerance bounds) besides those at the 95%
level.  These capabilities may be incorporated into later versions of the macros.

Intuitively it might seem possible that one could calculate the  mean of a lognormal distribution simply
by calculating the logarithms of the data points, finding the mean of those logarithms using the methods
described above, and then simply finding the  antilogarithm of the answer.  However, that approach does not
work.  To see why, let Z be a random variable having a standard normal distribution (i.e., a mean of 0 and a
variance of 1).  The quantity  then has a lognormal distribution with a logscale mean of µ and a logscalee FZ % µ

variance of F2.  The expectation of , that is E[ ], is thuse FZ % µ e FZ % µ
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m
%4

&4

e Fz%µ 1

2B
e &z 2/2dz ' e µm

%4

&4

1

2B
e &(z 2

&2Fz%F2)/2e F2/2dz ' e µ%F2/2m
%4

&4

1

2B
e (z&F)2/2dz,

UCL ' e
( µ̂ % 0.5 F̂2

%
F̂ H1&"

n&1
)

95% UCL ' e
µ̂ %

F̂2

2
% 1.645 F̂2

n
%

F̂4

2(n%1)

which is  because the last integral (i.e., ) is 1.  The point here is that the expectatione µ%F2/2 m
%4

&4

1

2B
e (z&F)2/2dz

of  is  , not e FZ % µ e µ % F2/2 e µ.

Let x1, x2,..., xn denote a random sample from a lognormal distribution (i.e., F is the arithmetic mean of
log (x1), log (x2), …, log (xn)), with unknown mean µ and variance F2.  If  denotes the logscale sample meanµ̂
and   denotes the log-scale sample standard deviation, then Land (1971) showed that a UCL (optimal in aF̂
sense) can be calculated by

where H1-" depends on the confidence level ", the standard deviation, and the sample size.

This method of calculating the 95% UCL is implemented in the SAS macro named logconf.  It applies
a table of H values that was derived for every sample size from 3 to 1001, and for sample standard deviations
ranging from 0.1 to 10.0 (after the log transformation) at intervals of 0.1.  The H-values were calculated using
a computer program (Lyon and Land 1999) that is an implementation of methods described by Land (1971,
1972).

When an exact H value was not located in the table, the H value to apply was derived using linear
interpolation from values present in the table.  If the sample standard deviation was less than 0.1, the H value
for a sample standard deviation equal to 0.1 was used. Likewise if the sample standard deviation was greater
than 10.0, the H value calculated for a sample standard deviation equal to 10.0 was used. 

When the sample size was greater than 1001, the macro logconf applies "Cox's Method" (Land 1971) to
calculate the UCL as shown below

in which 1.645 is the 95 percentile of the standard normal cumulative distribution function.

This equation can be used as long as  is approximately normally distributed.  For sample sizesµ̂ %
F̂2

2
of 1000 or more, this holds by the Central Limit Theorem.  Unless standard deviations are unusual, Land's
method and Cox's method generally yield similar 95% UCLs for a sample size of  1000.  As noted, the macro
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logconf automatically applies the method appropriate for the data.  The logconf macro simplifies the
calculation of summary statistics of lognormal data that are not censored by eliminating the present need of
looking up tabulated values and of interpolating between them.  If there are extensive data, and if they contain
no more than a few nondetects, it would still be of interest to apply the  macro logconf to see how its results
compare to the results from the applications (described in detail below) that are preferred when data are left
censored.  

4.  CALCULATION OF THE MEAN, CONFIDENCE LIMITS, AND
TOLERANCE BOUNDS THAT APPLY WHEN DATA ARE EITHER

UNCENSORED OR LEFT CENSORED

4.1  LOGNORMAL AND NORMAL MODEL ESTIMATES

This section deals specifically with left-censored data that fit either a normal or a lognormal distribution.
 If examination of the data shows them to be consistent with the normal distribution, most of the derivations
shown below apply without transforming the data logarithmically.  On the other hand, if the data appear to be
lognormal, then the derivations are exactly as shown below.  Estimation under the normal model is simpler and
will not be discussed here.  For a discussion of estimation under both models, see Lawless (1982). 

Regardless of whether the normal or lognormal approach is used, it seems advisable to apply the product
limit estimate methods (using SAS macro ple described in the next subsection) for comparison with other
values when there is an appreciable number of  nondetects.  The difficulty of determining the underlying
distribution of the data becomes more extreme when the data contain many nondetects.  Application of the PLE
avoids the problem of tying the statistical estimates to a particular distribution when the true distribution may
be unknown.  The lognormal distribution is the most commonly used distribution for modeling environmental
contaminant data (EPA 1995b).  As will be shown below, in some situations the lognormal estimates may
appear absurdly large, and in other instances they may not seem conservative enough (i.e., the PLE 95% UCL
is much higher). 

 
The following discussion points out the statistical foundation for the method applied in the macro named

lnor.  While this method has some similarity to what Land (1971) called "Cox's Method", it goes beyond that
method by providing a mechanism to account for nondetects.   While the macro is suitable when the data are
left censored, it can also be applied when there are not any nondetects.  However, for uncensored data, known
to be lognormal, for which the sample sizes are smaller than 1001, the macro logconf should be applied.

It should be noted that the macro lnor calculates both the lognormal and normal model estimates.  As will
be described in detail later, the actual concentration values (not their logs) are input to the macro.  To derive
the lognormal estimates, the macro, of course, begins by calculating the logarithms.  For the normal model
estimates, it does the calculation without a transformation to logarithms.  While comparison of the results of
the two methods is useful, knowledge about the underlying distribution, when available, indicates which result
is applicable.  

Again let µ denote the log-scale mean, and let denote the log-scale variance.  Because the lognormalF2

mean is , if  is a  confidence interval for  ,  is a  confidence interval fore
µ %

F2

2
(L, U) 1&" µ%F2/2 e (L, U) 1&"
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Var µ̂ %
F̂2

2
'

F2

n
%

F4

2(n&1)
.

F̂2

n
%

F̂4

2(n%1)

L ' k
x detect

1
Fx

N log(x)&µ
F k

x detection limit
M log(x)&µ

F
,

the lognormal mean.  This argument provides the basis, in both the left-censored and all-detects cases, for the
lognormal confidence limits and tolerance bounds  discussed here.  For the case of all detects, the approach is
called Cox’s direct method (Land 1972).  (This approach was developed in the previous section for application
in the macro logconf when the sample size exceeds 1001.)  

First consider the case of all detects.  Let  and denote the sample mean and variance of the data afterµ̂ F̂2

logarithms have been taken.  Then   and  are known to be optimal in a sense: they are unbiased completeµ̂ F̂2

sufficient statistics for  and  (see, for example, Wilks 1962), and  is the minimum varianceµ F2 µ̂%F̂2/2
unbiased estimate (MVUE)  of .µ%F2/2

The variance of  is  because  and are (statistically) independent.  It isµ̂ % F̂2/2 Var(µ̂)%Var(F̂2/2) µ̂ F̂2

known that  has a chi-square distribution with  degrees of freedom.  From this it can be shown(n&1)F̂2/F2 n&1
that , and thusVar(F̂2) ' 2F4/(n&1)

In the above equation,   and .  Because as logarithms the data are

F2

n
' Var (µ̂)

F4

2(n&1)
' Var (

F̂2

2
)

normally distributed, the sample mean and variance are independent and there is no need to deal with an
estimate of the covariance.  

Because , the value of  is unbiased for , andE [F̂4] ' (n%1)F4/(n&1) (n&1)F̂4/(n%1) F4

becomes the MVUE of .  In Cox's direct method, this variance estimate is then usedVar(µ̂%F̂2/2)
with  (i.e., the point estimate) to compute confidence limits for, or tests about, .   By the Centralµ̂%F̂2/2 µ%F2/2
Limit Theorem, the distribution of   is  approximately normal.  The confidence limits (when expressedµ̂%F̂2/2
as logarithms) are symmetrical about the mean just as they are for the non-logarithmic methods.  The
confidence limits reported in the output are asymmetrical because they are found by taking the antilogarithms.

With left-censored data, an analogous approach is used.  Let  denote the  observations withxi ,..., xn n
Pidenoting the detection limit for the observation if it is a nondetect.  The maximum likelihood estimatesi th

(MLEs) of  and  are computed by maximizing the likelihood (L) of the following equationµ F
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&

M2log(L)

Mµ2

M2log(L)
MµMF

M2log(L)
MµMF

M2log(L)

MF2
µ̃ , F̃.

a b

b c
,

A B

B C
'

1

ac&b 2

c &b

&b a
.

M2log(L)
MµMJ

'
M2log(L)
MµMF

MF
MJ

'
1
2
M2log(L)
MµMF

J&1/2,

where  and  are the standard normal density and distribution function (see Lawless).  The values ofN M
µ and F that result in the maximum value of L are called the maximum likelihood estimates (MLEs), and they
are called  and , respectively.  The SAS Lifereg procedure (SAS/STAT PROC LIFEREG) computes theseµ̃ F̃
MLE's.

When there is  censoring,  and  are not independent, and thus the covariance of  and  is nonzero.µ̃ F̃ µ̃ F̃
The variances and covariance of  and can be estimated by inverting the information matrix.µ̃ F̃

The inverse of the above information matrix provides an estimate of the covariance matrix of the MLE's
(see Wilks 1962).  Denoting the parts of the above information matrix with letters as follows

it can be shown by direct matrix multiplication that  its inverse is

The SAS Lifereg procedure is used to compute this inverse, which provides the estimate of the covariance
matrix of  and .  With this information on the variability of the estimates, it is possible to calculateµ̃ F̃
confidence limits.

The goal is to estimate .  The variance of  can be estimated as above (using variable C).µ % F2/2 F̃
However, the variance of is needed in order to compute confidence limits for   To compute theF̃2 µ % F2/2.
variance of   it is necessary to move beyond the regular SAS routines and to parameterize the likelihood,F̃2,
alternatively, in terms of  and  instead of  and , where .  The MLE  is just , and theµ J µ F J ' F2 J̃ F̃2

covariance estimates for the MLE's  and  can be inferred from the  and parameterization results usingµ̃ J̃ µ F
the chain rule of partial differentiation:

and
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M2log(L)

MJ2
'

M2log(L)

MF2

1
4
J&1 &

Mlog(L)
MF

1
4
J&3/2.

A D

D G

µ̃ '
1
nj

n

i'1
xi , J̃ '

1
nj

n

i'1
(xi&x̄)2,

Var µ̃ %
J̃
2

' Var(µ̃) %
1
4

Var(J̃) % Cov(µ̃ , J̃ ),

Var(µ̃ % zpF̃) ' Var(µ̃) % z 2
p Var(F̃) % 2 zpCov(µ̃ , F̃),

(Notice that reduces to  at the MLE because   is zero.)  In thisM2log(L)/MJ2 (M2log(L)/MF2)J&1/4 Mlog(L)
MFway the following covariance matrix estimate

is derived for the MLE's  and , where  and .µ̃ J̃ D'2J̃&1/2B G'4J̃1C

It is straightforward to verify that in the uncensored case

, and .  (  and  are 0 in the uncensored case.)  A ' J̃/n G ' 2J̃2/n B D

However, because , and  (from similar results for ),  theE(J̃) ' (n&1)J/n E(J̃2) ' (n 2&1)J2/n 2 F̂2

adjusted estimate of   is used instead of , the adjusted estimate  is used insteadJ ' F2, nJ̃/(n&1), J̃ nA/(n&1)
of , and the adjusted estimate  is used instead of .  (Then the expectation of A [n/(n&1)][n 2/(n 2&1)]G G G
becomes , which is the variance of .)  In order that the censored case reduces continuously2J2/(n&1) n J̃ /(n&1)
to Cox's direct method as the detection limits approach 0, these same adjustments are made in the censored case
as well.  Then,  is estimated by , and its variance,µ%F2/2 µ̃%J̃/2

is estimated by  the sum of the terms , which correspond to the three terms on the right sideA % G/4 % D
of the equation above. 

Tolerance bounds, that is, confidence limits for lognormal quantiles, can be computed in much the same
way.  Let  denote the   quantile of the standard normal distribution.  On the log scale, the  quantilezp p th p th

is , which can be estimated by plugging in estimates of  and   Tolerance bounds for the estimate µ % zpF µ F. µ̃ % zp F̃
can be computed  using an estimate of

namely  and by treating  as (approximately) normal.  Tolerance bounds forA % z 2
p C % 2 zpB , µ̃ % zp F̃

the same quantiles on the original scale can then be obtained by exponentiating the log-scale confidence bounds
as follows:
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e
µ̃ % z"F̃ % t(1&") A % z 2

p B % 2zpC
,

P(Xp # U(p)) ' 1&",

P[ x # U(F(x)) ] ' 1&",

P[ U &1(x) # F(x) ] ' 1&",

TB(p) ' µ̃ % zpF̃ ± t1&" A % z 2
p B % 2zpC .

[F̃2 & Ct 2
1&"]z 2

p & 2[(TB(p) & µ̃)F̃ % t 2
1&"B]zp % (TB(p) & µ̃)2 & t 2

1&"A ' 0,

where  is the confidence level, and  is the  quantile of the t-distribution (with degrees1&" t(1&") 1&" n&1
of freedom).  For ,  , and the quantiles (on either scale) are medians.  When there are only detects,p ' .50 zp' 0
the median estimate on the original scale is the geometric mean (on the log scale). 

To illustrate how quantile estimates and tolerance bounds can be used, confidence limits will be computed
for the underlying lognormal distribution itself.  Suppose that  is the  quantile (on the original scale), andXp p th

that   is a  upper confidence limit for   (Note that the percentile is the same as the  U(p) 1&" Xp. 90th 0.9th

quantile.)  Then

where, P is the probability.  From this, a lower confidence limit for , the cumulative distributionF(x)
function at  can be derived as follows.x ,

hence

where  denotes the (functional) inverse of   That is,  is a  lower tolerance bound for U &1 U . U &1(x) 1&" F(x) .
 Likewise, upper tolerance  bounds  for  can be derived from the lower tolerance bounds  for F(x) Xp .

On the log scale, tolerance bounds for  are of the formXp

where TB(p) stands for the tolerance bound for Xp.  This reduces algebraically to

which is a quadratic equation in   The two solutions arezp .

           
                                   and 

&g & g 2 & 4dh
2d

&g % g 2 & 4dh
2d
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F̃(x) ' k
j such that x )

j > x

nj & mj

nj

;

where   and  Thed ' F̃2 & Ct 2
1&" , g ' &2[(TB(p) & µ̃)F̃ % t 2

1&"B] , h ' (TB(p) & µ̃)2 & t 2
1&"A .

following shows how to invert , and thus how to compute tolerance bounds for :  substitute   for TB F(x) log(x) TB(p)
in  and  and computeg h ,

       
                           and   M &g & g 2 & 4dh

2d
M &g % g 2 & 4dh

2d
,

      
which are the lower and  upper  confidence bounds for respectively.  These tolerance bounds1&" F(x) ,

are illustrated in Figure 1 for lead in groundwater in the Upper East Fork Poplar Creek watershed.  These data
are discussed more in section 6.

4.2  PRODUCT LIMIT ESTIMATES

The product limit estimate (PLE) is a statistical distribution function estimate, like the sample distribution
function, except that the PLE adjusts for censoring.  Like the sample distribution function, the PLE is not
premised on any underlying distribution model, and the PLE reduces to the sample distribution function as
detection limits (for nondetects) approach zero.  As discussed below, the PLE can be used to compute mean
estimates as well as standard errors for those estimates.  Besides being a good mean estimate in its own right,
the PLE-based mean estimate and its standard error provide a good reference for parametric (e.g., lognormal)
estimates.  It is often impossible to know what underlying distribution is appropriate for a particular data
analysis.  Goodness-of-fit tests are often used to determine whether data fit a particular distribution.  When
samples are small, however, as is often the case for environmental data, it is impossible to test adequately
whether the data fit a particular distribution.  Another well-known problem with such tests is that they have
a tendency to reject even adequate models when the sample size is large.  For these reasons, it is a good idea
to compare any parametric estimate with the comparable PLE-based estimate.

The PLE is calculated using the macro ple from a set of observations, which are measurements in the case
of detects and detection limits in the case of nondetects.  Even if detection limits are known for detected values,
they are not used in calculations.  It is important to keep in mind that the macro PLE is adapted for left-
censored data and non-censored data, but not for right-censored data.

The method of the PLE and confidence limits will be presented in two ways, first mathematically and then
with a simple example that is explained geometrically.  This approach is being taken because the underlying
concept is straightforward, and those features can be overlooked if there is only a mathematical presentation,
which of necessity requires a large number of variables to explain.  The mathematical presentation is important
for completeness and because, for some, it will be easy to understand.

4.2.1  Mathematical Explanation of the PLE and its Application

The PLE, which is called  below, is defined as follows.  For  observations,  (detection limitsF̃ n x1, ... , xn
or actual measurements), let  denote the (say)  distinct values at which detects are observed.x )

1 < ... < x )

n ) n )

 For , let  denote the number of detects at , and let  denote the number of   Alsoj ' 1 ,..., n ) mj x )

j nj xi # x )

j .
let  denote the smallest .  Then for ,  for x(1) xi x $ x )

n ) F̃(x) ' 1.; x )

1 # x < x )

n ) ,
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P(A|B) '
P(A_B)

P(B)
,

P(X#yi) ' P(X#yi|X#yi%1)×P(X#yi%1) ' P(X#yi|X#yi%1)×P(X#yi%1|X#yi%2)×P(X#yi%2)
' ... ' P(X#yi|X#yi%1)×P(X#yi%1|X#yi%2)×...×P(X#yk&1|X#yk)×P(X#yk) .

max
j'1 ,..., k

|yj & yj&1| 6 0.

for ,  and for ,  is either 0 or undefined, the latter if therex(1) # x < x )

1 F̃(x) ' F̃(x )

1) ; 0 # x < x(1) F̃(x)
is a nondetect at x(1).

To understand the PLE, it is necessary to understand the concept of conditional probability.  Let
—read “probability of  given "—denote the conditional probability of event  given event .P(A|B) A B A B

Introductory probability texts explain that

where  is the probability that the events  and  both occur.P(A_B) A B

As its name suggests, the PLE is a limit of a product of probabilities.  Consider  arbitrary pointsk
  Then for 0 # y1 # ... # yk . i ' 1, ..., k , F(yi) '

Consider estimating .  When there is no censoring, the proportion of observations less than or equalF(yi )
to is used.  When there is censoring, however, that proportion may be indeterminate because it is ambiguousyi
whether any nondetects with detection limits greater than actually exceed   To account for censoring, theyi yi .
individual factors in the above product are estimated.

For each  let  denote the number of  unambiguously.  Only nondetects whose detection limitsj , cj xi # yj
are less than or equal to  and detects whose values are less than or equal to  are counted in .  Let  beyj yj cj dj
the number of detects between  (exclusive) and  (inclusive).  To estimate , mightyj&1 yj P(X#yj|X#yj%1) cj /cj%1
be used.  That would be a good estimate unless there are nondetects with detection limits between  (inclusive)yj
and  (exclusive).  Then even if the actual (but censored) values corresponding to the detectionyj%1 cj%1 > cj
limits are all less than  (as well as ) and  is 0.  yj yj%1 dj%1

Instead, to estimate , it is better to use .  That is, those nondetects areP(X#yj|X#yj%1) (cj%1& dj%1)/cj%1
ignored whose detection limit is between  and , because their actual values relative to  are ambiguous.yj yj%1 yj
 Note that   is , except possibly for any nondetects whose detection limits are between  and .cj%1&dj%1 cj yj yj%1
To minimize the effect of nondetects whose detection limits are between  and , the  partition is madeyj yj%1 yj
as fine as possible.  That is,   is taken to be the largest detect value,   is set to 0, k is taken to be large (i.e.,yk y0

), and the are taken so that k 6 4 yi
)s

It can be shown (see Kaplan and Meier 1958) that in the limit as , the estimate obtained byk 6 4
substituting these estimates for the individual factors in the product expression for , is the PLE.F(yi)

As with the sample distribution function, a mean estimate can be computed from the PLE:
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µ̂ ' j
n )

i'1
x )

i [F̃(x )

i ) & F̃(x )

i&1)],

V̂ '
D

D&1 j
n )
&1

i'1
a 2

i

mi%1

ni%1(ni%1 & mi%1)
,

ai ' j
i

j'1
(x )

j%1 & x )

j )F̃(x )

j ),

95% UCL ' µ̂ % tn&1(0.95) V̂

95% LCL ' µ̂ & tn&1(0.95) V̂

ˆVar(F̃(x)) ' F̃(x)2 j
j such that x )

j > x

mj

nj(nj&mj)
.

where   An estimate  of the variance of  can be determined similarly as followsx0 ' 0. V̂ µ̂

where  is the total number of detects, andD

for   For details see Kaplan and Meier (1958, Sections 2.3 and 6.2).  A geometrici ' 1, ... , n )&1.
interpretation of  is given in the next section.V̂

Once the variance of the mean has been determined, the calculation of the confidence limits, as shown
below, resembles that of the ordinary mean, except that there is no need to divide the square root of the variance
by the square root of the sample size to obtain the standard error of the mean.  This is because the method of
calculation of already accounts for the number of samples.  Thus, in the output of the macros, the “PLEV̂
mean standard error” is simply .V̂

The values multiplied by the standard error of the mean are taken from the t-distribution with n-1 degrees
of freedom, just as they were when calculating confidence limits for the ordinary mean.

Thus far attention has been on the PLE for mean estimation; however, the PLE itself is a distribution
function estimate.  Confidence limits for the PLE as a distribution function estimate are discussed in Kaplan
and Meier (1958, Sections 2.2 and 6.1) and Lawless (1982, Section 2.3.2).  The confidence limits are derived
from an estimate of the variance of the PLE at each   The variance estimate (in the left-censored case) isx.
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P[ F(Xp) # U(Xp) ] ' P[ p # U(Xp) ] ' P[U &1(p) # Xp ] ' 1&" .

Confidence limits for , based on this variance estimate, are computed in the usual way (i.e., byF(x)
assuming  to be approximately normal).   and 95% tolerance bounds for  are illustrated in Figure 4 forF̃(x) F̃ F
the groundwater lead data.  (The same data are considered in Figure 3 based on macro lnor.)

Figures 3 and 4 contrast the lognormal and PLE cumulative distribution function estimates.  The
lognormal (parametric) analysis yields a smooth curve, which contrasts sharply with the nonparametric PLE
analysis which yields a granular step-function. The granularity of the PLE is especially striking when the
sample size (or the number of distinct values at which detects occur) is small.  The granularity should not be
considered a drawback unless the smooth alternative is also better, which would be true only if the underlying
distribution is approximately lognormal.

Recall that for the lognormal model tolerance bounds were derived from which it was possible to compute
confidence limits for the estimates for the probability distribution function    For the PLE, steps are carriedF.
out in reverse order.  That is, both quantile estimates and tolerance bounds are derived from the distribution
function estimate (i.e., the PLE) and confidence bounds just discussed.  For the  quantile  and for p th Xp , U(x) ,
the  upper confidence bound for 1&" F(x)

That is,  is a  lower tolerance  bound for   Figure 2 shows clearly that the PLE and itsU &1(p) 1&" Xp .
confidence limits are step functions—that is, they have flat spots.  For this reason their inverses, which are
needed to calculate  tolerance bounds, are not uniquely defined.   To invert a function with flat spots (i.e., to
find the value on the x-axis that corresponds to the value p on the y-axis), it is necessary to choose from
multiple values (i.e., from the inverse image).  The following rule was applied to deal with this problem in the
calculation of quantile estimates and confidence tolerance bounds in the ple macro.  When the choice is to result
in a lower tolerance bound (for ), the smallest value is chosen; when the choice is to result in an upperXp
tolerance bound, the largest value is chosen.  When the choice is to result in a point estimate, the average of
the largest and smallest values is taken. This approach is conservative in that it leads to the widest tolerance
bounds.

4.2.2  Simple Example of Calculation of the PLE

In this section the steps for computing the PLE mean, its standard error, and its 95% confidence limits
are demonstrated using an example.  The following randomly sampled measurements of an analyte were
reported (concentrations in Fgram of analyte/gram of soil):  0.10U, .20, 1.30, 0.70, 0.40, 0.70, 0.10U, 0.26,
0.31U, 0.80, and 1.10.  The U following a number indicates that it is a nondetect.  To compute the PLE, first
arrange the data in decreasing order, as shown below.  

1.30
1.10
.80
.70
.70
.40
.31U
.26
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.20

.10U

.10U

These data are shown in Table 1, with one row for each of the measurements for which a detected
measurement was found.  The lowest concentration was included even though it  was a nondetect.

Table 1.   The steps in the calculation of the product limit estimate (PLE)

       Concentration           (B)       (C) B - C Terms multiplied Value of          
  of sample, in    No. of detects or      No. of    B together to PLE  just to             

FFgram/gram nondetects ## this      detects to calculate the left of the
          of soil concentration      at this the PLE concentration

     concentration          

1.30 11 1 10/11 = 0.909 1 x 0.909 0.909
1.10 10 1 9/10 = 0.9 0.909 x 0.9 0.818
0.80 9 1 8/9 = 0.889 0.818 x 0.889 0.727
0.70 8 2 6/8 = 0.75 0.727 x 0.75 0.545
0.40              6 1 5/6 = 0.833 0.545 x 0.833 0.454

 0.26 4 1 3/4 = 0.75 0.454 x 0.75 0.341
0.20 3 1 2/3 = 0.667 0.341 x 0.667 0.227
0.10U 2 0 2/2 = 1 0.227 x 1         0.*

*When the smallest concentration is a detect, this calculated value is 0.  Otherwise it must be set equal to zero, as it has been here.

Values from Table 1 should then be graphed, as shown in Fig. 1.  The values on the X-axis come from
the first column in Table 1, and the values on the Y-axis from the last column.

 Fig. 1.  The step function which is the cumulative distribution function 
       for the sample used in the example.
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The value of  is calculated by finding the area between the step function and a line drawn horizontallyµ̂
above the step function at the probability value of 1.0, as shown below.   The value of both the SE and the 95%
confidence limits of   are calculated using the  steps which are explicitly explained below.   Begin by drawingµ̂
the rectangles shown in Fig. 2 using  the same figure constructed above.

Fig. 2.  The  step function shown in Fig. 1 with the addition of labeled rectangles.

The steps to be carried out are as follows. 

1. Calculate the areas of all rectangles.
2. The of the PLE is equal to the sum of all rectangles A-H, that is, of all rectangles above theµ̂

step function.
3a. If the smallest concentration is a nondetect, as in the example above, find the areas of the

following rectangles or groups of rectangles (all of those below the step function except for the
left-most one, which in this figure is I): J, J+K, J+K+L, J+K+L+M, J+K+L+M+N,  and lastly
for this particular step function, J+K+L+M+N+O.

 or 
3b. If the smallest concentration is a detect, find the areas of the following rectangles or groups

of rectangles (all of those below the step function): I, I+J, I+J+K, I+J+K+L, I+J+K+L+M,
I+J+K+L+M+N, and lastly for this particular step function,  I+J+K+L+M+N+O.

4. Square the grouped areas.  
5. When the smallest concentration is a nondetect, as in the example, start with rectangle J (i.e,

the next to the left-most rectangle under the step function), divide each squared area calculated
in step 3 by the product of B x (B-C) found in Table 1 for the row of the PLE (shown in the
last column) that matches the top of the tallest rectangle included in the area.  For example, the
top of rectangle J is at the PLE of 0.341.  Since B is 4 and C is 1 in the row for the PLE of
0.341, divide the squared area of rectangle J by 12,  which is the  product of 4 times 3, which
is 4 x (4 - 1).  Working toward the top of the Table 1, the top of the combined rectangles (J+K)
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is at the PLE of 0.454.  Following the same rule, divide the squared area of combined
rectangles (J+K) by 30.  Continue this procedure until reaching the top of Table 1.  If the
smallest concentration is a detect, the procedure is identical except that you begin with the left-
most rectangle under the step function, or, in a figure like this one, with rectangle I.

6. Multiply each of the resulting quantities by the value of C from the same row of the same PLE
in Table 1.  In this example, C is always 1 except in the row of PLE 0.545, for which C is 2.
This means that the quantity calculated in step 5 for combined rectangles J+K+L must be
multiplied by 2.

7. The sum of all  terms found in step 6 is the variance uncorrected for the degrees of  freedom.
8. The degrees of freedom correction involves multiplying the uncorrected variance by the number

of detects and dividing by (the number of detects - 1).
9. The resulting term is .  V̂
10. Take the square root of  to obtain the SE of V̂ µ̂ .
11. Use the t-table to find the correct number to multiply times the SE to calculate the 95% LCL

and UCL.  One of many places where this table can be found is on page A-11 of EPA (1995b).
Select the value for column .95 on the row for the proper number of degrees of freedom.  To
be consistent with the macro ple, the number of degrees of freedom for this step should equal
the total sample size minus 1.  That is, this step is not restricted to the number of detects.

Tables 2 and 3 show the calculations for the above steps for the example.  

Table 2.  Calculations of areas of rectangles in Figure 2

            Rectangle                            Height                     Width                                Area
                                                         (units)                       (units)                       (units-squared)

A 1 .1 .1
B .773 .1 .0772
C .659 .06 .0395
D .545 .14 .0764
E .455 .3 .1364
F .273 .1 .0273
G .182 .3 .0545
H .091 .2 .0182
I .227 .1 .0227
J .341 .06 .0205
K .454 .14 .0640
L .545 .3 .1636
M .727 .1 .0727
N .818 .3 .2455
O .909 .2 .1818

The sum of the areas of all rectangles above the step function, which in this example includes rectangles
A-H,  is 0.530.  This sum is the  of the PLE.µ̂
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95% UCL ' 0.530 % (1.812 x 0.1214) ' 0.530 % 0.220 ' 0.750

95% LCL ' 0.530 & (1.812 x 0.1214) ' 0.530 & 0.220 ' 0.310

Table 3.  Remaining steps involved in the calculation of the SE of the mean of the PLE

Rectangles included A = area              A2         (D)                      (C)          A2 x C
in area                  (units squared)                This is product   N o .  o f           

     D
                                                                         o f  n u m b e r s     

detects from
                                                                          s h o w n           

Table 1
                                                         

J .0205 .00042 4 x 3 1 .000035
J+K .0841 .00071 6 x 5 1 .000236
J+K+L .2477 .06137 8 x 6 2 .002557
J+K+L+M .3205 .10269 9 x 8 1 .001426
J+K+L+M+N .5659 .32025 10 x 9 1 .003558
J+K+L+M+N+O .7477 .55910 11 x 10 1 .005083

Sum of the values in the right column of Table 3 = uncorrected  = .012895V̂
Degrees of freedom correction = 8 ÷ (8-1) = 1.1429

 = 1.1429 x  .012895 = 0.01474V̂

SE =  =  = 0.1214V̂ 0.01474

The sample size was 11.  There are thus 10 degrees of freedom.  To calculate the 95% confidence limits,
the appropriate term from the t-distribution is 1.812.

Accordingly, 

It is interesting to note that when there are no nondetects present in a sample, the ordinary mean and its
confidence limits are identical to those computed for the PLE.

5.  USING THE SAS MACROS

The objective here is to discuss how to use the three SAS macros described in the report.  Examples are
presented in Section 6.  The macros themselves are in Appendices A, B, and C..  It is assumed that the user
has a basic familiarity with SAS, particularly in regard to what SAS data sets are like.  For an introduction
to SAS see SAS (1990).

To use the SAS macros, a SAS data set containing the input variables must be created.  The variables are
(1) a result variable, which is the analysis result, or in the case of a nondetect, the detection limit; (2) a
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qualifier variable, "U" or blank, which indicates whether the observation is a nondetect ("U") or detect (blank)
; (3) group variables (if any), which define the groups for which statistics are to be computed; (4) a parameter
variable, which names the chemical analyte to which the data apply (e.g., Aluminum); and (5) any ID variables
that the user may wish to carry along with the statistics computed for each group and analyte.

For the lnor macro only, an additional variable is needed.  It is termed lower, and it provides a lower
bound for each observation.  Usually the value of lower is 0 for a non-detect and identical to the result variable
for a detect.  In certain cases, however, the value for lower might reasonably be taken as neither 0 nor the
result.  This occurs, for example when several duplicates at a site are to be combined into a single observation
for that site, with the recorded observation being the (mathematical) composite observation.  To illustrate,
suppose there are two observations at a site, one a detect, say D, and the other, say L, the detection limit for
a nondetect.  The detect is a single value, but the nondetect, if not for the censoring, could have been any value
between 0 and L.   Therefore, if not for the censoring, the average of the two observations could have been
anywhere between D/2 and (D+L)/2.  The average (or composite) is between D/2 and (D+L)/2, and is said to
be interval censored.  In the lnor macro, the values of (D+L)/2 and D/2 are assigned to the variables result and
lower, respectively.  When the macro lnor is applied to interval censored data, it applies these two variables
when it uses the SAS Lifereg procedure.

The SAS macros must be accessible from the SAS program that calls them.  They can either be included
as part of the program code, or they can be called using the SAS autocall facility.  To use the autocall facility,
include

sasautos = 'directory'

in a SAS options statement.   The macros should be in files in the directory named, with file name lnor.sas
(for the lnor macro), ple.sas (for the ple macro), or logconf.sas (for the logconf macro).

To use the macros in a SAS program, include the statements

%lnor(input, output, group, result, lower, qual, parm, id, confid, toler),
or
%ple(input, output, group, result, qual, parm, id, confid, toler),
or
 %logconf(input, output, group, result, parm, id).

Here "input" is the input data set, which can have any valid data set name, not just "input"; "output" refers
to the name given to the data set of summary statistics computed with the macro (again, any name, not just
"output"), and so on.  The term "confid" refers to the desired confidence level for upper and lower confidence
bounds, for example, .95.  For "toler" it is necessary to substitute a space-delimited list of values for which
quantile estimates and tolerance bounds are to be computed (e.g., .75 .90 .99).  

The calling of the macros is illustrated in the next section.  At present macro logconf computes confidence
limits of means and tolerance bounds of percentiles at only the 95% level.  In order to run the macro logconf,
the user must also have a copy of, or access to, the hfun SAS data set.  A copy of that data set can be found
at the same website as this report.
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6. AN EXAMPLE

Here the macros logconf, lnor, and ple are applied to several samples of lead concentrations (mg/L) from
groundwater in wells at the Y-12 fuel station in the Upper East Fork Poplar Creek watershed at Oak Ridge,
Tennessee.  The data, which are in Table 4 (located at end of text), consist of time series, one for each station
(i.e., well).  It is assumed that there is no trend over time and that it is reasonable to treat the data as a random
sample.  The data illustrate the structure appropriate for input to the three SAS macros.  The processing groups
are the different stations. The U’s indicate observations that are nondetects.  Figures 3 and 4 (located at end
of text) were computed from this data set for station ST-006.  The lead concentration data used for illustration
are taken from an early listing of the data, which was before they were subjected to careful quality assurance
examination. 

Table 5 (located at end of text) contains a description of the contents (SAS proc contents output) of the
data set produced by calling lnor.sas for the data in Table 4.  Table 6 (located at end of text) lists the output
(i.e., the parameters and summary statistics) produced by the lnor macro for the data in Table 4.  Table 7
(located at end of text) contains a description of the contents of the data set produced by calling ple.sas for the
data in Table 4.  Table 8 (at end of text) lists the output produced by the ple macro for the data in Table 4.
The ordinary mean statistics found in tables containing summary statistics are computed by straightforward
substitution of detection limits for nondetects and by proceeding with mean-and-standard-error calculations
that are usual for the all-detects case.  

Tables 9 (at end of text) contains additional data from groundwater in wells at the same source.  These
data, which lack nondetects, are in the format required by the logconf macro. Table 10 (at end of text) contains
a description of the contents (SAS proc contents output) of the data set produced by calling logconf.sas for the
Y-12 fuel station data.  Table 11 (at end of text) lists the output produced by the logconf macro for the data
in Table 9.  The SAS program used to print the data in Tables  4 and 9, to call the SAS macros, and to produce
Tables 5-8 and 10-11 is listed in Appendix D.

7.  DISCUSSION

The three SAS macros reported here provide a variety of methods for computing confidence limits for
environmental data.  They also provide several approaches for dealing with left-censored data, which are
common when making environmental measurements.

A recent publication (Schmoyer et al., 1996) has considerable relevance to the application of these
programs.  It addresses the uncertainty regarding whether the lognormal distribution is the best model for mean
estimation of concentrations of analytes in the environment.  The authors simulated data sets for lognormal,
truncated normal, and gamma data for a range of sample sizes and coefficients of variation.  They found that
with the small sample sizes typical of environmental data, when using the Shapiro-Wilk test it was difficult to
detect departures from lognormality that were important in the sense of appreciably degrading the performance
of lognormal-based estimates and tests.  They concluded that “(i) the lognormal distribution may be too heavy
tailed to be a reasonable statistical model, and (ii) alternatives may be better than the lognormal-based
methods.”  They pointed out that there is “usually no physical basis for lognormality, normality, or any other
distribution.”  They concluded from their simulations that “lognormal-based statistics might not be as good as
the ordinary sample mean and t-test, if there are complete (i.e. uncensored) data, or as good as means or tests
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computed from the product limit estimate (PLE; Kaplan and Meier, 1958), when there is random left
censoring.”

Because the lognormal approach is standard in the analysis of concentrations of analytes in the
environment, it would be remiss not to provide statistical methods for the lognormal distribution.  The macros
lnor and logconf serve this purpose.  The implementation in the lnor macro of modifications, both for the
lognormal and normal models, that address left-censoring of data make application of the lognormal and normal
model approaches much more reliable for environmental data.  These methods are more solidly grounded in
theory than such methods as substituting 0 for nondetects, substituting the detection level divided by 2 for
nondetects, or procedures which involve graphing the data and replacing the nondetects with values that fit
assumed underlying distributions.  The logconf macro simplifies the calculation of summary statistics for
uncensored lognormal data by eliminating the need of looking up tabulated values and of interpolating between
them. 

A feature of the PLE that is of practical importance when dealing with left-censored data is that it works
well even when there are nondetects at different detection levels that overlap detected concentrations.  In some
other methods, which are based on percentiles or trimming, measurements and detection limits cannot be
arbitrarily interleaved.

As noted earlier, all of the macros except for logconf  provide both upper and lower confidence limits and
tolerance bounds.  It is perhaps more obvious why the upper limits are important, and especially the 95% UCL,
because of the EPA guidance that in risk analysis either the 95% UCL or  the highest concentration reported
should be used, depending on which is lower.  It is important to realize that the LCLs also have important
applications.  For example, if the 95% LCL is less than zero, there is reason to question whether the
contaminant is even present.  In such a case, and if the 95% UCL were high enough to cause concern, the great
width of the confidence limits would strongly suggest the need for additional sampling before recommending
that action be take.  A second example of the importance of having LCLs occurs in situations in which the 95%
UCL is high enough to exceed an action level for a contaminant at a site.  When that happens, if the 95% LCL
also exceeds the action level, it is clear that action should be considered.

Some additional comparisons between the methods applied in the macros are worth considering when
deciding which of the 95% UCLs of means are reasonable candidates as input concentrations in risk analysis.
 Ordinary means are conservative (upwardly biased) concentration estimates, and the 95% UCLs of the
ordinary means are likewise conservative.  They are upwardly biased because the nondetects are treated as
actual concentrations, which means that some very small values are likely to be treated as substantially larger
ones in the analysis.  In the eight examples using actual environmental data, which were compared in this report
for both the lnor and ple macros, this upward bias could be substantial because usually a high proportion of
the samples were nondetects.

In the eight examples, the 95% UCL of the normal model mean calculated by the lnor macro, when
compared to that of the ordinary mean (Table 6), was always smaller with a mean ratio (i.e., normal ÷
ordinary) between them being 0.679 with a minimum of 0.341 and a maximum of 0.923.   In our examples,
a lot of the normal-model estimates are negative, suggesting that the normal-model is not appropriate in this
situation.  (Indeed, 5 of the 8 estimates of the mean were negative.)

In the eight examples, the 95% UCLs of the PLE, which corrects for nondetection, were always smaller
than those of the ordinary mean (Table 8) .  The mean ratio of the 95% UCLs between them (i.e., ordinary ÷
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PLE) was 1.38 with a minimum of 1.01 and a maximum of 2.80.  Since the ordinary UCL is upwardly biased,
ratios no larger than this provide little reason for concern that use of the 95% UCL of the PLE would lead to
any important underestimation of risk.

Much larger differences were found between the 95% UCLs of the ordinary mean and the lognormal mean,
as calculated using the lnor macro (Table 6).   In the examples, the median ratio of the 95% UCLs between
them (i.e., lognormal ÷ ordinary) was 3.86 with a minimum of 1.15 and a maximum of 6146.  Three of the 8
examples had a ratio of 12.8 or higher. The lognormal 95% UCL at station ST-007, which yielded the ratio
of 6146,  is enormous compared to the ordinary UCL.  It is important to realize that that estimate is not a
mistake.  Instead it illustrates a fundamental problem and practical difficulty of the lognormal model.  The
problem is that the right tail of the lognormal distribution is extremely heavy.  For mean estimates and
confidence limits, this leads to occasional anomalous results such as this. This difficulty is discussed in detail
by Schmoyer et al. (1996), where—as noted earlier—advantages of the PLE over the lognormal approach are
demonstrated in computer simulations.  For the ST-007 UCL the problem can be seen (though not so glaringly)
in the log-scale standard deviation (_LS_STD), which is much bigger in this case than for the other stations.
Even the two ratios between 12 and 24 represent probable overestimates that could seriously impact risk
estimates.  This is because there is usually a linear relationship between exposure concentrations and risk
estimates, and thus a decision to apply uncritically the lognormal estimate of the 95% UCL could result in risk
estimates over an order of magnitude too high.  There is always the possibility, however remote, in such a
situation that the underlying distribution is lognormal, in which case the large estimate might be valid.  For this
reason, unless the lognormal distribution can be discounted on statistical grounds, the large estimate should
be reported.  However, there would seem to be good reason in such a case to apply instead in risk estimation
the 95% UCL of the PLE mean, which, as shown above, is likely to have a magnitude much more similar to
that of the 95% UCL of the ordinary mean.

In our example, for both the ple and lnor macros, 50, 75, and 90th percentiles were estimated.  For the
lnor macro, both lognormal and normal-based percentiles are calculated.  These estimates and confidence
(tolerance) bounds may be compared.  The PLE estimates and tolerance bounds generally assume data values,
and are thus coarser.  In many cases, the upper tolerance bounds for the 90th percentiles cannot be computed
at all.  That happens when the lower confidence bound for PLE distribution estimate is below .90.   It could
happen for other quantiles as well.

In view of the many uncertainties in the calculation of means, confidence limits, and tolerance bounds for
environmental data, it is advisable to compare the output for the three macros.  When the data are left censored
to more than a trivial extent, the logconf macro is inappropriate.  Unless the data to be used in a risk
assessment are clearly not lognormal, the results of the statistics computed for the lognormal distribution should
be reported.  However, it is strongly recommended that those confidence limits and tolerance bounds be
compared with those found using the ple macro.  In many cases the upper 95% UCL of the PLE mean would
be the most appropriate concentration to apply in risk analysis.

The SAS macros described in this report should provide the basis for development of exposure
concentrations for all ORO risk assessments in which the sample selection procedure emulates simple random
sampling.   See report BJC/OR-271 (Bechtel Jacobs 1999) for an overview of the data evaluation process. 
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Table 4. Groundwater lead concentrations (mg/L) from Y-12 Fuel Station1

                  Monitoring          Date                 Analytical                    lower (for            Qualifier
                  station                  collected           result/detection          lnor.sas)
                                                                          limit          
 ST-001 19JUN90          .0073            .0073                
               26SEP90  .0054            .0054                
               06DEC90          .0020            .         U
               08MAR91          .0020            .       U    
                18JUN91          .0020            .             U    
                25SEP91          .0070            .0070                
                14DEC91          .0020            .           U    
               08MAR92          .0020            .               U    
              07MAY92          .0020            .               U    
                19AUG92          .0020            .               U    
                09NOV92          .0020            .              U    
                10MAR93          .0020            .               U    
                21JUN93          .0020            .               U    
               22SEP93          .0250            .               U    
                16NOV93          .0250            .               U    

 ST-002         04MAY89          .0120            .0120                
                24AUG89          .0020            .               U    
               03NOV89          .0054            .0054                
                26FEB90          .0020            .               U    
                17MAY90          .0020            .               U    
                04AUG90          .0020            .               U    
                23OCT90          .0020            .               U    
               24JAN91          .0020            .               U    
                19APR91          .0078            .0078                
                29JUL91          .0200            .0200                
                09OCT91          .0020            .               U    
                11JAN92          .0160            .0160                
                14APR92          .0020            .               U    
                27JUL92          .0020            .               U    
               20OCT92          .0020            .               U    
                02FEB93          .0020            .               U    
                16APR93          .0056            .0056                
                04AUG93          .0250            .               U    
                14OCT93          .0250            .               U    

 ST-003        08MAY89          .0350            .0350                
                25AUG89          .0091            .0091                
                04NOV89          .0110            .0110                
                27FEB90          .0057            .0057                
                17MAY90          .0210            .0210                
                04AUG90          .0020            .               U    
                23OCT90          .0042            .0042                
                25JAN91          .0020            .               U    
                19APR91          .0020            .               U    
                30JUL91          .0020            .               U    
                09OCT91          .0067            .0067                
                    11JAN92          .0020            .               U    
                14APR92          .0020            .               U    
                29JUL92          .0020            .               U    
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Table 4 (continued)

                  Monitoring          Date                  Analytical                 lower (for            Qualifier
                  station                  collected           result/detection          lnor.sas)
                                                                          limit          
 ST-004         04MAY89          .0071            .0071                
                24AUG89          .0020            .               U    
                04NOV89          .0020            .               U    
                27FEB90          .0042            .0042                
                17MAY90          .0360            .0360                
                04AUG90          .0020           .               U    
                23OCT90          .0020            .               U    
                24JAN91          .0120            .0120                
                19APR91          .0020            .               U    
                29JUL91          .0020            .               U    
                09OCT91          .0046            .0046                
                11JAN92          .0020            .               U    
                14APR92          .0020            .               U    
                27JUL92          .0020            .               U    
                22OCT92          .0071            .0071                
                03FEB93          .0020           .               U    
                19APR93          .0020            .               U    
                06AUG93          .0250            .               U    
                14OCT93          .0250            .               U    

 ST-005         23OCT90          .0820            .0820                
                08MAY89          .0110            .0110                
                24AUG89          .0020            .               U    
                04NOV89          .0020            .               U    
                26FEB90          .0055            .0055                
                18MAY90          .0310            .0310                
                06AUG90          .0020            .               U    
                24JAN91          .0020            .               U    
                19APR91          .0020            .               U    
                29JUL91         .0150            .0150                
                09OCT91          .0280            .0280                
                11JAN92          .0020            .               U    
                14APR92          .0020            .               U    
                27JUL92          .0100            .0100                
                22OCT92          .0020           .               U    
                02FEB93          .0020            .               U    
                16APR93          .0020            .               U    
                05AUG93          .0250            .               U    
                14OCT93          .0250           .               U    

 ST-006        04MAY89          .0640            .0640                
                25JAN91          .0610            .0610                
                09OCT91          .0700            .0700                

14APR92          .0620            .0620                
                24AUG89          .0049            .0049                
                07NOV89          .0020            .               U    
                26FEB90          .0020            .               U    
                18MAY90          .0085            .0085                
                06AUG90          .0060            .0060                
                23OCT90          .0020            .               U    
                19APR91          .0020            .               U    
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 Table 4 (continued)

                  Monitoring         Date                   Analytical                 lower (for            Qualifier
                  station                 collected            result/detection         lnor.sas)
                                                                          limit          

ST-006 29JUL91          .0020            .               U    
                continued 11JAN92          .0020           .               U    
                         27JUL92          .0042            .0042                

20OCT92          .0020            .               U    
                02FEB93          .0020            .               U    
                19APR93          .0110            .0110                
                05AUG93          .0250            .               U    
                14OCT93          .0250            .               U    

ST-007  08MAY92          .1400            .1400                
                20AUG92          .0800            .0800                
                09MAR91          .0020            .               U    
                18JUN91          .0020            .               U    
                26SEP91          .0190            .0190                
                14DEC91          .0020            .               U    
                12MAR92          .0020            .               U    
                10NOV92          .0068            .0068                
                11MAR93          .0020            .               U    
                23JUN93          .0020            .               U    
                27SEP93          .0250            .               U    
                19NOV93          .0250            .               U    

 ST-008         08MAR91          .0064            .0064                
                20JUN91          .0054            .0054                
                25SEP91          .0020            .               U    
                14DEC91          .0170            .0170                
                08MAR92          .0140            .0140                
                06MAY92          .0062            .0062                
                19AUG92          .0220            .0220                
                09NOV92          .0210            .0210                
                10MAR93          .0056            .0056                
                18JUN93          .0170            .0170                
                22SEP93          .0250            .               U    
                15NOV93          .0250            .                            U 
1The data in this table are from an early listing of the data, which  was before they had been subjected to careful quality assurance examination.
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Table 5.  SAS macro lnor.sas output data set contents for groundwater lead (Y-12 Fuel Station)

                 
CONTENTS PROCEDURE

Data Set Name: WORK.OUTPUT Observations: 8  
Member Type: DATA                 Variables: 40 
Engine:   V611               Indexes:  0  
Created:     7:19 Monday, Sep 23, 1996 Observation Length:   349
Last Modified: 7:19 Monday, Sep 23, 1996 Deleted Observations: 0  
Protection:                                    Compressed:           NO 
Data Set Type:                                 Sorted:               YES
Label:                                                                  

-----Engine/Host Dependent Information-----

   Data Set Page Size:       32768   
   Number of Data Set Pages: 1       
   File Format:            607     
   First Data Page:          1       
   Max Obs per Page:         93      
   Obs in First Data Page:   8       
   File Name:                /usr/tmp/SAS_worka00000548/outputl.ssd01
   Inode Number:             5282
   Access Permission:        rw-r--r--
   Owner Name:              schmoyer
   File Size (bytes):        40960

-----Alphabetic List of Variables and Attributes-----
 
 #   Variable   Type   Len   Pos   Format Label
2 ANALYSIS Char  35  10 $35.                                
11 LOWER    Num    8 109                                       
1   STATION    Char    10     0   $10.                                
9   _AR_LCL    Num      8    93            Ordinary mean, LCL (p=.95) 
4   _AR_MN     Num      8    53            Ordinary mean              
7   _AR_SEM    Num      8    77           Ordinary mean, std. err.   
10   _AR_UCL    Num      8   101            Ordinary mean, UCL (p=.95) 
8   _DET       Num      8    85            Detects                    
25   _LN_LCL    Num      8   221            Lognormal mean, LCL (p=.95)
24   _LN_MN     Num      8   213            Lognormal mean             
26   _LN_UCL    Num      8   229            Lognormal mean, UCL (p=.95)
21   _LS_MN     Num      8   189            Ln-scale mean              
23   _LS_SEM    Num      8   205            Ln-scale mean, std. err.   
22   _LS_STD    Num      8   197            Ln-scale std. dev.         
12   _LT500     Num      8   117                                       
13   _LT750     Num      8   125                                       
14   _LT900     Num      8   133                                       
 6   _MAX       Num      8    69            Maximum                    
 5   _MIN       Num      8    61            Minimum                    
27   _NL500     Num      8   237                                       
28   _NL750     Num      8   245                                       
29   _NL900     Num      8   253                                       
30   _NQ500     Num      8   261                                       
31   _NQ750     Num      8   269                                       
32   _NQ900     Num      8   277   
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Table 5 (continued)

 #   Variable   Type   Len   Pos   Format Label
33   _NU500     Num      8   285
34   _NU750     Num      8   293                                       
35   _NU900     Num      8   301                                       
39   _N_LCL     Num      8   333            Normal mean, LCL (p=.95)   
36   _N_MN      Num      8   309            Normal mean                
38  _N_SEM     Num      8   325            Normal mean, std. err.     
37   _N_STD     Num      8   317            Normal scale std. dev.     
40   _N_UCL     Num      8   341            Normal mean, UCL (p=.95)   
3   _OBS       Num      8    45            Observed                   
15   _QU500     Num      8   141                                       
16  _QU750     Num      8   149                                       
17   _QU900     Num      8   157                                       
18   _UT500     Num      8   165                                       
19   _UT750     Num      8   173                                       
20   _UT900     Num      8   181          
                             
-----Sort Information-----

Sortedby:     STATION ANALYSIS
Validated:     YES             
Character Set: ASCII         
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Table 6. Output of sas macro lnor.sas for groundwater lead (Y-12 Fuel Station)1

     Ordinary mean  Ordinary
Station    Observed  Detects  Minimum  Maximum    LCL (p=.95)   mean

ST-001   15  3 .002 0.025 .0023642 0.005980
ST-002 19 6 .002    0.025      .0040552 0.007305
ST-003 14 7 .002    0.035  .0031129  0.007621
ST-004 19 6 .002    0.036      .0035510    0.007526      
ST-005 19  7  .002   0.082  .0055121 0.013289
ST-006 19  9 .002 0.070 .0088167   0.018821
ST-007 12 4 .002    0.140      .0036627    0.025650
ST-008 12 9 .002    0.025      .0095179    0.013883
 
           Ordinary mean   Ordinary mean Lognormal mean Lognormal
Station      UCL (p=.95)      std. err.      LCL (p=.95)       mean

ST-001  0.009596 0.002053 .0005677 0.00269 
ST-002 0.010555 0.001874 .0013973 0.00726 
ST-003 0.012130 0.002546 .0024582 0.01112 
ST-004 0.011502 0.002292 .0013533 0.00656 
ST-005 0.021067 0.004485 .0020880  0.03244 
ST-006 0.028825 0.005769 .0045854 0.04117 
ST-007 0.047637 0.012243 .0003124  0.30242 
ST-008 0.018249 0.002431 .0073280 0.01228 
 

Lognormal mean 95% LTB Estimate 95% UTB 95% LTB
Station      UCL (p=.95) 50%-ile 50%-ile 50%-ile 75%-ile
ST-001  0.013      .0001093   .0006545   0.003919   .0006132
ST-002             0.038      .0003122   .0011131   0.003969   .0015330
ST-003             0.050      .0008549   .0023732   0.006588   .0029288
ST-004             0.032      .0003091   .0010737   0.003730   .0014653
ST-005             0.504      .0003024   .0013421   0.005957   .0021501
ST-006             0.370      .0008040   .0026223   0.008552   .0042257
ST-007         292.770     .0000542   .0009075   0.015196   .0009633
ST-008           0.021      .0054525   .0086904   0.013851   .0090535

 Estimate 95% UTB   95% LTB  Estimate   95% UTB  Ln-scale
Station 75%-ile   75%-ile   90%-ile   90%-ile   90%-ile    mean
ST-001    0.001958  0.006252  0.001681  0.005250   0.01640  -7.33166
ST-002    0.003969  0.010273  0.004077  0.012460   0.03808  -6.80057
ST-003     0.007437  0.018886  0.006335  0.020792   0.06824  -6.04352
ST-004    0.003743  0.009561  0.003848  0.011517   0.03447  -6.83666
ST-005    0.007037  0.023031  0.007388  0.031265   0.13230  -6.61352
ST-006     0.012240  0.035454  0.012934  0.048978   0.18546  -5.94371
ST-007    0.008199  0.069790  0.004728  0.059449   0.74758  -7.00481
ST-008    0.014869  0.024420  0.013140  0.024110   0.04424  -4.74553
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Table 6 (continued)

             Ln-scale mean  Ln-scale  Normal mean   Normal   Normal mean
Station       std. err.  std. dev.  LCL (p=.95)    mean    UCL (p=.95)
ST-001        1.01618     1.68173    -0.00485   -0.000791   0.003269  
ST-002         0.73317     1.93638    -0.01034   -0.002213   0.005916  
ST-003         0.57657     1.75745    -0.00805    0.001326   0.010699  
ST-004         0.71807     1.90218    -0.01650   -0.005310   0.005877  
ST-005         0.85940     2.52391    -0.03219   -0.009634   0.012920  
ST-006         0.68174     2.34679    -0.02148    0.000005   0.021494  
ST-007        1.56921     3.40848    -0.11127   -0.033658   0.043953  
ST-008        0.25957     0.83164     0.00675    0.011187   0.015621  

Normal   Normal Model Normal Model Normal Model
           Normal mean scale std.    95% LTB      Estimate     95% UTB
Station      std. err.    dev.       50%-ile      50%-ile      50%-ile
ST-001       0.002305   0.004408    -0.00485     -0.000791   0.003269  
ST-002       0.004688   0.012515    -0.01034     -0.002213   0.005916  
ST-003       0.005293   0.016053    -0.00805      0.001326    0.010699  
ST-004       0.006452   0.017235    -0.01650     -0.005310    0.005877  
ST-005       0.013006   0.038182    -0.03219     -0.009634    0.012920  
ST-006       0.012392   0.042469    -0.02148      0.000005    0.021494  
ST-007       0.043216   0.093615    -0.11127     -0.033658    0.043953  
ST-008       0.002469   0.007811     0.00675      0.011187    0.015621  

           Normal Model   Normal Model   Normal Model   Normal Model
              95% LTB        Estimate       95% UTB        95% LTB
Station       75%-ile        75%-ile        75%-ile        90%-ile
ST-001       -0.000989      0.002081      0.005152       0.001859  
ST-002       -0.000213      0.006004      0.012220       0.006077  
ST-003       0.003196      0.011760       0.020324      0.010429  
ST-004       -0.002609     0.006005       0.014618       0.006295  
ST-005       -0.002651      0.015432       0.033514       0.016478  
ST-006        0.008650      0.027886       0.047122      0.029159  
ST-007       -0.032186      0.026796       0.085778       0.012416  
ST-008        0.011479      0.016231       0.020983       0.014972  

Normal Model    Normal Model
              Estimate        95% UTB
Station       90%-ile         90%-ile
ST-001       0.004667         0.00747  
ST-002       0.013399         0.02072  
ST-003      0.021151         0.03187  
ST-004       0.016189         0.02608  
ST-005       0.037992         0.05951  
ST-006       0.052980         0.07680  
ST-007       0.081207         0.15000  
ST-008       0.020771         0.02657  

1A few of the columns of lesser important information have been omitted from this table to save space.
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Table  7 .  SAS macro ple.sas output data set contents for groundwater lead (Y-12 Fuel Station)

                 
CONTENTS PROCEDURE

Data Set Name: WORK.OUTPUT Observations: 8  
Member Type: DATA                 Variables: 23
Engine:   V611               Indexes:  0  
Created:     7:20 Monday, Sep 23, 1996 Observation Length:   213
Last Modified: 7:20 Monday, Sep 23, 1996 Deleted Observations: 0  
Protection:                                    Compressed:           NO 
Data Set Type:                                 Sorted:               YES
Label:                                                                  

-----Engine/Host Dependent Information-----

   Data Set Page Size:       24576  
   Number of Data Set Pages: 1       
   File Format:            607     
   First Data Page:          1       
   Max Obs per Page:         115
   Obs in First Data Page:   8       
   File Name:               /usr/tmp/SAS_worka00000548/outputp.ssd01
   Inode Number:             5290
   Access Permission:        rw-r--r--
   Owner Name:              schmoyer
   File Size (bytes):        32768

-----Alphabetic List of Variables and Attributes-----
 
 #   Variable   Type   Len   Pos   Format Label
 2   ANALYSIS   Char    35    10   $35.                               
 1   STATION    Char    10     0   $10.                               
 9   _AR_LCL    Num      8    93   Ordinary mean, LCL (p=.95)
 4   _AR_MN     Num      8    53  Ordinary mean             
 7   _AR_SEM    Num      8    77  

Ordinary mean, std. err.  
10   _AR_UCL    Num      8   101            Ordinary mean, UCL (p=.95)
 8   _DET       Num      8    85            Detects                   
16   _LT50      Num      8   149                                      
17   _LT75      Num      8   157                                      
18   _LT90      Num      8   165                                      
 6   _MAX       Num      8    69            Maximum                   
 5   _MIN       Num      8    61            Minimum                   
 3   _OBS       Num      8    45            Observed                  
 22   _PL_LCL    Num      8   197            PLE mean, LCL (p=.95)     
 11   _PL_MN     Num      8   109            PLE mean                  
 12   _PL_SEM    Num      8   117            PLE mean, std. err.       
 23   _PL_UCL    Num      8   205            PLE mean, UCL (p=.95)     
 13   _QU50      Num      8   125                                      
 14   _QU75      Num      8   133                                      
 15   _QU90      Num      8   141                                      
 19   _UT50      Num      8   173                                      
 20   _UT75      Num      8   181                                      
 21   _UT90      Num     8   189                            
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Table 7 (continued)

                 
-----Sort Information-----

Sortedby:     STATION ANALYSIS
Validated:     YES             
Character Set: ASCII         
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Table 8. Output of SAS macro ple.sas  for groundwater lead (Y-12 Fuel Station)1

                                                Ordinary mean  Ordinary
Station    Observed  Detects  Minimum  Maximum    LCL (p=.95)   mean
ST-001      15        3       .002    0.025      .0023642    0.005980
ST-002       19        6       .002   0.025      .0040552    0.007305
ST-003        14        7       .002    0.035      .0031129    0.007621
ST-004        19        6       .002   0.036      .0035510    0.007526
ST-005        19        7       .002    0.082      .0055121    0.013289
ST-006        19        9       .002    0.070      .0088167    0.018821
ST-007        12        4       .002    0.140      .0036627    0.025650
ST-008        12        9       .002   0.025      .0095179    0.013883

          Ordinary mean    Ordinary mean      PLE mean
Station      UCL (p=.95)       std. err.      LCL (p=.95)    PLE mean
ST-001        0.009596         0.002053        .0026744      0.003054
ST-002        0.010555         0.001874        .0032712      0.005224
ST-003        0.012130         0.002546        .0032505      0.007621
ST-004        0.011502         0.002292        .0021256      0.005270
ST-005       0.021067         0.004485        .0034500      0.011120
ST-006        0.028825         0.005769        .0063935      0.016599
ST-007        0.047637         0.012243        .0000000      0.022271
ST-008        0.018249         0.002431        .0077189      0.011660

             PLE mean    PLE mean   95%LTB Estimate  95% UTB  95% LTB
Station     UCL (p=.95)  std. err.  50%-ile  50%-ile  50%-ile  75%-ile
ST-001       0.003433    0.000215    .0020   0.0020   0.0020    .0020 
ST-002       0.007176    0.001126    .0020   0.0020   0.0054    .0020 
ST-003       0.011992    0.002468    .0020   0.0031   0.0091    .0042 
ST-004       0.008414    0.001813    .0020   0.0020   0.0042    .0020 
ST-005      0.018791   0.004423    .0020   0.0020   0.0100    .0020 
ST-006      0.026805    0.005885    .0020   0.0042   0.0085    .0049 
ST-007       0.046237    0.013345    .0020   0.0020   0.0068    .0020 
ST-008       0.015601    0.002195    .0056   0.0102   0.0170    .0064 

           Estimate     95% UTB     95% LTB    Estimate     95% UTB
Station     75%-ile     75%-ile     90%-ile     90%-ile     90%-ile
ST-001     0.0020      0.0070      0.0020      0.0070      0.0073 
ST-002      0.0056      0.0120      0.0056      0.0160      0.0200 
ST-003      0.0091      0.0350      0.0091      0.0210       .     
ST-004      0.0046      0.0071      0.0046      0.0120       .     
ST-005      0.0110      0.0310      0.0110      0.0310       .     
ST-006     0.0110      0.0640      0.0085      0.0640       .     
ST-007      0.0190      0.1400      0.0068      0.0800       .     
ST-008     0.0170      0.0220      0.0170      0.0215      0.0220 

           
1A few of the columns of lesser important information have been omitted from this table to save space.
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Table 9. Groundwater barium concentrations (mg/L) from Y-12 Fuel Station1

 Monitoring Date Analytical
 station                         collected  result
 STB-01 19JUN90 0.32

26SEP90  0.26   
          06DEC90  0.24   

08MAR91   0.22  
18JUN91        0.22   

               25SEP91        0.27   
                      14DEC91        0.22   
                                08MAR92        0.23   
                                07MAY92        0.21   
                                19AUG92        0.24   
                                09NOV92        0.20   
                                10MAR93        0.23   
                                21JUN93        0.22   
                                22SEP93        0.24   
                                16NOV93        0.21   

STB-02         08MAY89        0.09   
                                25AUG89        0.08   
                                04NOV89        0.08   
                                27FEB90        0.06   
                                17MAY90        0.12   
                                04AUG90        0.06   
                                23OCT90        0.10   
                                25JAN91        0.09   
                                19APR91        0.04   
                                30JUL91        0.06   
                                09OCT91        0.11   
                                11JAN92        0.04   
                                14APR92        0.05   
                                29JUL92        0.07   

STB-03         04MAY89        0.59   
                                24AUG89        0.58   
                                04NOV89        0.58   
                                27FEB90        0.58   
                                17MAY90        1.30   
                                04AUG90        0.50   
                                23OCT90        0.52   
                                24JAN91        0.97   
                                19APR91        0.50   
                                29JUL91        0.51   
                                09OCT91        0.53   
                                11JAN92        0.47   
                                14APR92        0.47   
                                27JUL92        0.45   
                                22OCT92        0.57   
                                03FEB93        0.54   
                                19APR93        0.48   
                                06AUG93        0.57   
                                14OCT93        0.57   
1This early listing of the barium data is used for demonstration purposes only, recognizing that barium is not considered to be a site-related
contaminant.
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     Table 10. SAS macro logconf.sas output data set contents for groundwater barium 
(Y-12 Fuel Station)

 CONTENTS PROCEDURE

Data Set Name: WORK.OUTPUTL Observations: 3 
Member Type:   DATA   Variables:            6 
Engine:        V611                         Indexes:              0 
Created:       7:30 Wednesday, Sep 25, 1996     Observation Length:   77
Last Modified: 7:30 Wednesday, Sep 25, 1996 Deleted Observations: 0 
Protection:                                     Compressed:           NO
Data Set Type:                                  Sorted:               NO
Label:                                                                  

-----Engine/Host Dependent Information-----

Data Set Page Size:       8192    
Number of Data Set Pages: 1       
File Format:              607     
First Data Page:          1       
Max Obs per Page:         106     
Obs in First Data Page:   3       
File Name:                /tmp/SAS_worka00002577/outputl.ssd01
Inode Number:             7681
Access Permission:        rw-r--r--
Owner Name:               schmoyer
File Size (bytes):        16384

-----Alphabetic List of Variables and Attributes-----
 
#   Variable   Type   Len   Pos   Format   Label
2   ANALYSIS   Char    35    10   $35.                                 
4   MEAN       Num      8    53            Log-scale mean              
5   STAND      Num      8    61            Log-scale standard deviation
1   STATION    Char    10     0   $10.                                 
6   UCL_95     Num      8    69            Land's lognormal 95% UCL    
3   _OBS       Num      8    45            Observed               
     

Table 11. Output of SAS macro logconf.sas for groundwater barium (Y-12 Fuel Station)

Log-scale      Land's
     Log-scale     standard    lognormal
Station Observed       mean      deviation     95% UCL
STB-02           14        -2.64814     0.35203      0.09089 
STB-01           15        -1.45359     0.11812      0.24876 
STB-03           19        -0.55913     0.25686      0.65937 
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The lnor macro is listed below.

/********************************************************************\
*     SAS macro lnor: Calculate lognormal and normal-based statistics for analytes       
*      that have one or more detects.                                                                                  
*                                                                                                                                         
*    © 1999                                                                                                                         
*     Lockheed Martin Energy Research Corporation                                                       
*     All rights reserved                                                                                                      
*                                                  
*    Neither the Government nor LMER makes any warrantee, express or implied, or    
*    assumes any liability or responsibility for the use of this software.                    *                     
                                                                                                                 
\********************************************************************/

*NOTE:  Nonpositive or missing &RESULT values, validation rejects, and any
other data that is not wanted should not be entered into these calculations.
Validation rejects will be treated as detects.  Proc lifereg will drop
nonpositive values from the lognormal model analyses, but proc means will
include them when it calculates the number of observations (_obs), which
will then be used incorrectly to adjust the lifereg estimates.;

%macro
LNOR (input, output, group, result, lower, qual, parm, id, confid, toler);

*MACRO ARGUMENTS:
input--name of input data set.
output--name of output data set.
group--list of variables (delimited by spaces) that defines groups (e.g.,
   sites) over which statistics are to be computed.
result--variable that gives analysis result or, in the case of a nondetect,
   the detection limit.
lower--same as result for detects.  For simple nondetects, missing (.).  Can
   also be a numeric value less than result, namely, for interval censoring.
   For example, if an observation represents an average for two duplicates,
   one of which is a detect, at say X, the other a nondetect at say L, then
   the average is between (X+0)/2 and (X+L)/2.  Then take lower=X/2,  and
   result=(X+L)/2.
qual--qualifier variable, "U" for nondetect, "I" for interval-censored.
   Anything else is treated as a detect.
parm--variable that names the analytes (e.g., Aluminium, Arsensic).
id--list of ID variables to be carried along.
confid--confidence level, between 0 and 1 (e.g., .95), for confidence limits.
toler--space delimited list of values for which tolerance bounds should be
   computed.
;
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data _null_;
length toll $ 100;
if index(' '||"&TOLER",'.') > 0 then do;
toll='q='||trim(left("&TOLER"));
call symput('TOLER',trim(left(toll)));
end;
run;

  proc sort  data = &INPUT  out = detects;
    where &RESULT ^= .;
    by &GROUP &PARM &QUAL;
  run;

  data detects
       nondet;

    set detects;
    by &GROUP &PARM;

    if &QUAL in ('U','I') then cen=1;
    else cen=0;

    retain _keep_ 0;

    if first.&PARM then do;

      if &QUAL = ' ' then _keep_ = 1;  /* At least one detect */
      else _keep_ = 0;                 /* All non-detects */

    end;

    if _keep_ then output detects;
    else output nondet;
    drop _keep_;

  run;

  /* Calculate mean, minimum, maximum, number of observations for detects */

  proc means  data = detects  noprint;
    by &GROUP &PARM;
    var cen &RESULT;
    id &ID;
    output out = stat  (drop = _freq_ _type_)
           sum    (cen) = _ndt
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           n      (&RESULT) = _obs
           mean   (&RESULT) = _ar_mn
           min    (&RESULT) = _min
           max    (&RESULT) = _max
           stderr (&RESULT) = _ar_sem;
  run;

  data stat;

    set stat;

    label _det    = "Detects"
          _ar_lcl = "Ordinary mean, LCL (p=&CONFID)"
          _ar_ucl = "Ordinary mean, UCL (p=&CONFID)"
    ;

    _det = _obs - _ndt;  /* Number of detects */

    if _obs > 1 then do;

      _ar_ucl = _ar_mn + _ar_sem * tinv (&CONFID, _obs - 1);
      _ar_lcl = max (0, _ar_mn - _ar_sem * tinv (&CONFID, _obs - 1));

    end;

  run;

  /* Calculate mean, minimum, maximum, number of observations for
  nondetects */

  proc means  data = nondet  noprint;
    by &GROUP &PARM;
    var &RESULT;
    id &ID;
    output out = nonstat (drop = _freq_ _type_)
           n    (&RESULT) = _obs
           mean (&RESULT) = _ar_mn
           min  (&RESULT) = _min
           max  (&RESULT) = _max;
  run;

  /* Proc lifereg is used to compute lognormal-based maximum likelihood
     estimates.  The information required to bias-adjust the estimate
     (subsequent data step) is output.  Bias is due to inequality Ef(X)
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     ne f(EX), for nonlinear f and nondegenerate X.*/

  proc lifereg  data = detects  covout  outest = estm  noprint;
    by &GROUP &PARM;
    model (&LOWER, &RESULT) = / dist = lnormal  covb;
*censoring: 0=uncensored, 1=right, 2=left, 3=interval;
output out=toler
&TOLER
predicted=pred
std_err=se_pred;
  run;

data toler;
merge toler stat (keep = &GROUP &PARM _obs);
by &GROUP &PARM;

proc sort data=toler;
by &GROUP &PARM _prob_;

data toler; set toler;
by &GROUP &PARM _prob_;
if first._prob_; 

      if _obs > 1 then df_adj = sqrt( _obs / (_obs - 1));
      else df_adj = .;
*degrees-of-freedom adjustment same as below for all stats;

_ut=pred*exp(tinv(&CONFID,_obs-1)*se_pred*df_adj/pred);
_lt=pred*exp(tinv(1- &CONFID,_obs-1)*se_pred*df_adj/pred);
rename pred=_qu;
prob_lab=_prob_;
_prob_=round(1000*_prob_,1);
keep &PARM &GROUP pred _ut _lt _prob_ prob_lab;

data _lt;
set toler;
length label $40;
label='Lognormal '||trim(left(prob_lab))||' LTB'||" (p=&CONFID)";
rename label=prob_lab;
drop prob_lab;

proc transpose data=_lt prefix=_lt out=_lt;
by &GROUP &PARM; 
var _lt;
id _prob_;
idlabel prob_lab;

data _qu;
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set toler;
length label $40;
label='Lognormal '||trim(left(prob_lab))||' Quantile Estimate';
rename label=prob_lab;
drop prob_lab;

proc transpose data=_qu prefix=_qu out=_qu;
by &GROUP &PARM; 
var _qu;
id _prob_;
idlabel prob_lab;

data _ut;
set toler;
length label $40;
label='Lognormal '||trim(left(prob_lab))||' UTB'||" (p=&CONFID)";
rename label=prob_lab;
drop prob_lab;

proc transpose data=_ut prefix=_ut out=_ut;
by &GROUP &PARM; 
var _ut;
id _prob_;
idlabel prob_lab;

data tol;
merge _lt _qu _ut;
by &GROUP &PARM;

proc datasets nolist;
delete _lt _qu _ut;

  /* Merge LIFEREG output data set with stat. Extract parameter
     estimates from estm and adjust the estimates if the data
     are uncensored. Basically, the adjustments involve removing
     the bias inherent in the MLE of the variance in the case of
     uncensored data. Calculate arithmetic mean and confidence
     limits and output estimates to the SAS data set &OUTPUT. */

  data output;

    merge stat estm tol;
    by &GROUP &PARM;

    drop _name_  _type_  intercep _scale_ _shape1_ _ndt
         _ls_var _ls_cov _ls_sev  _cin_   _dist_   _lnlike_ _model_ _label_;
    retain _ls_mn _ls_var _ls_std _ls_sem _ls_sev _ls_cov;
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    label _ln_mn  = "Lognormal mean"
          _ln_lcl = "Lognormal mean, LCL (p=&CONFID)"
          _ln_ucl = "Lognormal mean, UCL (p=&CONFID)"
          _ls_mn  = "Ln-scale mean"
          _ls_std = "Ln-scale std. dev."
          _ls_sem = "Ln-scale mean, std. err."
          _obs    = "Observed"
          _ar_mn  = "Ordinary mean"
          _min    = "Minimum"
          _max    = "Maximum"
          _ar_sem = "Ordinary mean, std. err."
    ;

    if _type_ = "PARMS" then do;
      _ls_mn  = intercep;
      * Log-scale Mean--mu tilde in report;
      _ls_var = _scale_ ** 2;
      * Log-scale sample variance--tau tilde in report;
    end;

    else if _type_ = "COV" and _name_ = "INTERCPT" then do;
      _ls_sem = intercep;          
      * Variance estimate for mean--A in report;

      _ls_cov = 2*sqrt (_ls_var)*_scale_;
      * Covariance estimate for mean and variance--D in report;
    end;

    else if _type_ = "COV" and _name_ = "SCALE" then
      _ls_sev = 4 * _ls_var * _scale_;
      * Variance estimate for variance--G in report;

    if last.&PARM then do;

      if _obs > 1 then do;
      _ls_var = _ls_var * _obs / (_obs - 1);
      _ls_sem = _ls_sem * _obs / (_obs - 1);
      _ls_sev = _ls_sev*(_obs*_obs*_obs / ((_obs-1)*(_obs-1)*(_obs+1)));

      _ln_mn = exp (_ls_mn + (_ls_var / 2));  /* lognormal mean estimate */
      _cin_=sqrt(_ls_sem+_ls_sev/4+_ls_cov) * tinv (&CONFID, (_obs - 1));
      _ln_lcl = _ln_mn * exp (-_cin_);  /* LCL */
      _ln_ucl = _ln_mn * exp ( _cin_);  /* UCL */

      if _min <= 0 then do;
        _ln_mn  = .;  _ln_lcl = .;  _ln_ucl = .; 

_ls_mn  = .;  _ls_std = .;  _ls_sem = .;
      end;
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      _ls_std = sqrt (_ls_var);
      _ls_sem=sqrt(_ls_sem);

      end;

      else do;
      _ls_var = .; _ls_sem = .; _ls_sev=.; _ls_std=.;
      end;

      output;

      _ls_mn  = .;  _ls_var = .;  _ls_sem = .;
      _ls_sev = .;  _ls_cov = .;

    end;

  run;

  /* Proc lifereg is also used to compute normal-based maximum likelihood
     estimates.*/

  proc lifereg  data = detects  covout  outest = estn  noprint;
    by &GROUP &PARM;
    model (&LOWER, &RESULT) = / dist = normal  covb;
*censoring: 0=uncensored, 1=right, 2=left, 3=interval;
output out=tolern
&TOLER
predicted=pred
std_err=se_pred;
  run;

data tolern;
merge tolern stat (keep = &GROUP &PARM _obs);
by &GROUP &PARM;

proc sort data=tolern;
by &GROUP &PARM _prob_;

data tolern; set tolern;
by &GROUP &PARM _prob_;
if first._prob_; 

      if _obs > 1 then df_adj = sqrt( _obs / (_obs - 1));
      else df_adj = .;
*degrees-of-freedom adjustment same as below for all stats;

_ut=pred+tinv(&CONFID,_obs-1)*se_pred*df_adj;
_lt=pred+tinv(1- &CONFID,_obs-1)*se_pred*df_adj;
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rename pred=_qu;
prob_lab=_prob_;
_prob_=round(1000*_prob_,1);
keep &PARM &GROUP pred _ut _lt _prob_ prob_lab;

data nltb;
set toler;
length label $40;
label='Normal '||trim(left(prob_lab))||' LTB'||" (p=&CONFID)";
rename label=prob_lab;
drop prob_lab;

proc transpose data=nltb prefix=_nl out=nltb;
by &GROUP &PARM; 
var _lt;
id _prob_;
idlabel prob_lab;

data nqua;
set toler;
length label $40;
label='Normal '||trim(left(prob_lab))||' Quantile Estimate';
rename label=prob_lab;
drop prob_lab;

proc transpose data=nqua prefix=_nq out=nqua;
by &GROUP &PARM; 
var _qu;
id _prob_;
idlabel prob_lab;

data nutb;
set toler;
length label $40;
label='Normal '||trim(left(prob_lab))||' UTB'||" (p=&CONFID)";
rename label=prob_lab;
drop prob_lab;

proc transpose data=nutb prefix=_nu out=nutb;
by &GROUP &PARM; 
var _ut;
id _prob_;
idlabel prob_lab;

data ntol;
merge nltb nqua nutb;
by &GROUP &PARM;
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proc datasets nolist;
delete nltb nqua nutb;

  /* Merge LIFEREG output data set with stat. Extract parameter
     estimates from estm and adjust the estimates if the data
     are uncensored. Basically, the adjustments involve removing
     the bias inherent in the MLE of the variance in the case of
     uncensored data. Calculate arithmetic mean and confidence
     limits and output estimates to the SAS data set &OUTPUT. */

  data outputn;

    merge stat estn ntol;
    by &GROUP &PARM;

    drop _name_  _type_  intercep _scale_ _shape1_ _ndt
         _n_var _dist_   _lnlike_ _model_ _label_

 lower _ar_lcl _ar_mn _ar_sem _ar_ucl _det _max
 _min _obs;

    retain _n_mn _n_var _n_std _n_sem;

    label _n_mn  = "Normal mean"
          _n_lcl = "Normal mean, LCL (p=&CONFID)"
          _n_ucl = "Normal mean, UCL (p=&CONFID)"
          _n_std = "Normal scale std. dev."
          _n_sem = "Normal mean, std. err."
    ;

    if _type_ = "PARMS" then do;

      _n_mn  = intercep;      /* Mean */
      _n_var = _scale_ ** 2;  /* Variance */

      if _obs > 1 then _n_var = _n_var * _obs / (_obs - 1); 
      else _n_var = .;

      _n_std = sqrt (_n_var);

    end;

    else if _type_ = "COV" and _name_ = "INTERCPT" then do;

      _n_sem = sqrt (intercep);             /* Standard error of mean */

      if _obs > 1 then _n_sem = _n_sem * sqrt (_obs / (_obs - 1));
      else _n_sem = .;
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    end;

    if last.&PARM then do;

      /* Compute normal lower and upper confidence limits */

        _n_ucl = _n_mn + tinv (&CONFID, (_obs - 1)) * _n_sem;
        _n_lcl = _n_mn - tinv (&CONFID, (_obs - 1)) * _n_sem;

      if _min <= 0 then do;
        _n_mn  = .;  _n_lcl = .;  _n_ucl = .;
        _n_std = .;  _n_sem = .;
      end;

      output;

      _n_mn  = .;  _n_var = .;  _n_sem = .; 

    end;

  run;

data &OUTPUT;
merge output outputn;
by &GROUP &PARM;

  data &OUTPUT;

    set &OUTPUT (in = in1)  /* Summary statistics for detects */
        nonstat (in = in2); /* Summary statistics for nondetects */

  run;

  proc sort  data = &OUTPUT;
    by &GROUP &PARM;
  run;

%MEND lnor;
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The ple macro is listed below.

   /********************************************************************\
   *                                                                   
   *   ple.sas: Calculate statistics based on the product limit estimate                                  
   *   (PLE), also known as Kaplan-Meier estimate, at least in the                                     
   *   setting of right-censored (failure-time) data.                                                              
   *                                                                                                                                       
   *    © 1999
   *     Lockheed Martin Energy Research Corporation                                                      
   *     All rights reserved

                  *                                     
   *    Neither the Government nor LMER makes any warrantee, express or implied, or 
   *    assumes any liability or responsibility for the use of this software.  
   \********************************************************************/

*NOTE:  Nonpositive or missing &RESULT values, validation rejects, and any
other data that is not wanted should not be entered into these calculations.
Validation rejects will be treated as detects.  The PLE calculations were
not designed to handle nonpositive &RESULT values, but proc means will
include them when it calculates the number of observations (_obs_), which
will then be used incorrectly to compute PLE-based estimates.;

*Labels for tolerance bounds could fail if there are too many, because
of length 200 limit for character variables in SAS.  (Limitation to be
removed in Version 7.);

%macro ple (input, output, group, result, qual, parm, id, confid, toler);

*MACRO ARGUMENTS:
input--name of input data set.
output--name of output data set.
group--list of variables (delimited by spaces) that defines groups (e.g.,
   sites) over which statistics are to be computed.
result--variable that gives analysis result or, in the case of a nondetect,
   the detection limit.
qual--"U" for nondetect, "I" for interval censored.  Otherwise, a detect.
   "I" treated as nondetect.
parm--variable that names the analytes (e.g., Aluminium, Arsensic).
id--list of ID variables to be carried along.
confid--condfidence level, between 0 and 1 (e.g., .95), for confidence limits.
toler--space delimited list of values for which tolerance bounds should be
   computed.
;

  %local P L U N TOL;
  %let TOL = 1.e-10;  /* Rounding tolerance */
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  data _null_;
  length newt newltb newqua newutb $ 100 labell labelq labelu $200 g $ 8;
  newt=translate('.00001 '||"&TOLER",'.',' ');
  newltb='';
  newqua='';
  newutb='';
  labell='';
  labelq='';
  labelu='';
  n=0;
  g='0';
  do until (g=' ');
  number=put(g,8.);

  if number ne 0 then do;
    newltb=trim(left(newltb))||' _lt'||trim(left(g));
    newqua=trim(left(newqua))||' _qu'||trim(left(g));
    newutb=trim(left(newutb))||' _ut'||trim(left(g));
  end;
   if number gt 0 then do;
labell=
trim(left(labell))||' _lt'||trim(left(g))||"='."||trim(left(g))||' LTB '||"(p=&confid)'";

labelq=
trim(left(labelq))||' _qu'||trim(left(g))||"='."||trim(left(g))||" quantile estimate'";

labelu=
trim(left(labelu))||' _ut'||trim(left(g))||"='."||trim(left(g))||' UTB '||"(p=&confid)'";
  end;

  n=n+1;
  g=scan(newt,n,'.');
  end;
  call symput('L',trim(left(newltb)));
  call symput('P',trim(left(newqua)));
  call symput('U',trim(left(newutb)));
  call symput('TOLER','.00001 '||"&TOLER");
  call symput('labell',trim(left(labell)));
  call symput('labelq',trim(left(labelq)));
  call symput('labelu',trim(left(labelu)));
  run;

  data _null_;
  array qnt &P;
  call symput('N',trim(left(dim(qnt))));
  run;
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  proc sort  data = &INPUT  out = aggr;
    where &RESULT ^= .;
    by &GROUP &PARM &QUAL;
  run;

  data detects
       nondet;

    set aggr;
    by &GROUP &PARM;

    if &QUAL in ('U','I') then cen=1;
    else cen=0;

    retain _keep_ 0;

    if first.&PARM then do;

      if cen = 0 then _keep_ = 1;  /* At least one detect */
      else _keep_ = 0;                 /* All non-detects */

    end;

    if _keep_ then output detects;
    else output nondet;

  run;

  /* Calculate mean, minimum, maximum, number of observations for detects */

  proc means  data = detects  noprint;
    by &GROUP &PARM;
    var cen &RESULT;
    output out = stat  (drop = _freq_ _type_)
           sum    (CEN) = _ndt
           n      (&RESULT) = _obs
           mean   (&RESULT) = _ar_mn
           min    (&RESULT) = _min
           max    (&RESULT) = _max
           stderr (&RESULT) = _ar_sem;
  run;

  data stat;
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    set stat;

    label _det    = "Detects"
          _ar_lcl = "Ordinary mean, LCL (p=&CONFID)"
          _ar_ucl = "Ordinary mean, UCL (p=&CONFID)"
    ;

    _det = _obs - _ndt;  /* Number of detects */

    if _obs > 1 then do;

      _ar_ucl = _ar_mn + _ar_sem * tinv (&CONFID, _obs - 1);
      _ar_lcl = max (0, _ar_mn - _ar_sem * tinv (&CONFID, _obs - 1));

    end;

  run;

  /* Calculate mean, minimum, maximum, number of observations for detects */

  proc means  data = nondet  noprint;
    by &GROUP &PARM;
    var &RESULT;
    id &ID;
    output out = nonstat (drop = _freq_ _type_)
           n    (&RESULT) = _obs
           mean (&RESULT) = _ar_mn
           min  (&RESULT) = _min
           max  (&RESULT) = _max;
  run;

/* Begin SAS code for product limit estimation.  Means and standard
   errors, upper confidence limits for means, and percentiles and their
   upper and lower confidence limits are computed, all based on PLEs.
   The percentiles are computed using the PLE with averaging (as in the
   SAS Proc Univariate default method - "empirical distribution function
   with averaging").  Because of discreteness, percentile estimates can
   be off when sample sizes are small.  (What is the fortieth percentile
   for a sample of size 1?)  Therefore percentile estimates should always
   be interpreted in light of sample sizes and confidence bounds. */

  proc sort  data = detects;
    by &GROUP &PARM descending &RESULT &QUAL;
  run;
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      *PLE requires pass through data in order of descending &RESULT;
/* Pass through to compute PLE, PLE mean, and statistic "a" (defined on
   page 98 in STATISTICAL MODELS AND METHODS FOR LIFETIME DATA by J. F.
   Lawless (1982), John Wiley & Sons, New York) used to compute standard
   error of PLE mean (in subsequent pass through data) */

  data ple (keep = enter remain ple &RESULT last &QUAL &PARM &ID
                   &GROUP a se_ple lcb_ple ucb_ple)
       ple_mn (keep = &PARM &GROUP &QUAL _obs _ndt _det _pl_mn bias1);

    merge detects (in = in1)
          stat    (in = in2);
    by &GROUP &PARM;

    if in1 and in2;

     retain censored tot_cen enter remain ple _pl_mn se_ple last ss;

    label _pl_mn  = "PLE mean"
    ;

    &RESULT = max (&RESULT, 0);

    if first.&PARM then do;
      ss       = 0;
      censored = 0;
      tot_cen  = 0;
      enter    = _obs;
      remain   = _obs;
      ple      = 1;
      _pl_mn   = 0;
      last     = &RESULT;
    end;

    /* Note: if &QUAL = ' ', observation is treated as a detect */

    if &QUAL in ('U','I') then do;
      censored = censored + 1;  /* Sum number of nondetects */
      tot_cen  = tot_cen + 1;
    end;

    else do;

      ss     = ss + (enter - remain) / (enter * remain);
      _pl_mn = _pl_mn + (last - &RESULT) * (1 - ple);  /* ple mean */
      a      = (last - &RESULT) * ple;
      se_ple = ple * sqrt(ss);
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      /* Calculate lower and upper confidence limits for ple */

      lcb_ple = max (0, ple - (se_ple * probit (&CONFID)));
      ucb_ple = min (1, ple + (se_ple * probit (&CONFID)));

      /* Compute exact confidence limits where censoring has no effect */

      if tot_cen = 0 then do;

        freq = round (_obs * ple, 1);

        if freq = _obs then ucb_ple = 1.0;
        else ucb_ple = betainv (&CONFID, freq + 1, _obs - freq);

        if freq = 0 then lcb_ple = 0.0;
        else lcb_ple = 1.0 - betainv (&CONFID, _obs - freq + 1, freq);

      end;

      /* Output standard error, lower and upper confidence limits
         for ple. */

      output ple;

      enter    = remain - censored;
      remain   = enter - 1;
      ple      = ple * remain / enter;
      censored = 0;
      last     = &RESULT;

    end;

    /* Calculate confidence limits at origin - needed for percentile
       estimates Also calculate mean */

    if last.&PARM then do;

      a=0;
      bias1=0;

      if &QUAL in ('U','I') then do;

        ss     = ss + (enter - remain) / (enter * remain);
        se_ple = ple * sqrt(ss);
        /* Calculate lower and upper confidence limits for ple */

        lcb_ple = max (0, ple - (se_ple * probit (&CONFID)));
        ucb_ple = min (1, ple + (se_ple * probit (&CONFID)));
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        /* Compute exact confidence limits where censoring has no effect */

        if tot_cen = 0 then do;
  
          freq = round (_obs * ple, 1);

          if freq = _obs then ucb_ple = 1.0;
          else ucb_ple = betainv (&CONFID, freq + 1, _obs - freq);

          if freq = 0 then lcb_ple = 0.0;
          else lcb_ple = 1.0 - betainv (&CONFID, _obs - freq + 1, freq);

        end;

      output ple;
      bias1=-(&RESULT-last)*ple;
      end;

      ple     = 0;
      &RESULT = 0;
      _pl_mn  = _pl_mn + (last - &RESULT) * (1 - ple);

      /* Output ple mean, ordinary mean, and std. error of ord. mean */

      output ple_mn;

      ucb_ple = 1 - (1 - &CONFID)**(1 / _obs);
      lcb_ple = 0;
      a       = 0;
      se_ple  = .;
      enter   = 0.1;
      remain  = 0.1;

      /* Output standard error, lower and upper confidence limits
         for ple */

      output ple;

    end;

  run;

  proc sort  data = ple;
    by &GROUP &PARM &RESULT ple;
  run;

*print here for ple distribution function estimates;
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*proc print data=ple;
*by &GROUP &PARM;
*id &GROUP &PARM;

  /* Compute standard errors of PLE means using statistic "a" computed
     above, as on page 98 in text by Lawless (see above)
     Also eliminate superfluous points to actual PLEs */

  data ple_se (keep = &PARM &GROUP &QUAL &ID _pl_sem)
       ple_cb (keep = &PARM &GROUP &QUAL &ID ple se_ple
                      &RESULT lcb_ple ucb_ple);

    set ple;
    by &GROUP &PARM &RESULT;

    retain sa _pl_sem 0;

    /* Output ple, and std. error, LCL, and UCL of ples */

    if last.&RESULT then output ple_cb;

    sa = sa + a;

    /* Compute standard error of ple mean */

    _pl_sem = _pl_sem + sa * sa * (enter - remain) / (enter * remain);

    /* Output standard error of ple mean */

    if last.&PARM then do;
       output ple_se;
       sa      = 0;
       _pl_sem = 0;
    end;

  run;

  /* Compute percentile estimates and their confidence bounds by
     inverting PLEs and their upper and lower confidence bounds.
     Where PLE is constant, use U-inverse (p) = inf{x|U(x) >= p}, and
     L-inverse (p) = sup{x|L(x) <= p}, and point estimate is average
     of upper and lower extremes. */

  data ple_cb;

    set ple_cb;
    by &GROUP &PARM;
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    array pct (i) &P;  /* Percentiles */
    array lcb (i) &L;  /* LTB */
    array ucb (i) &U; /* UTB */
    array qnt (&N) _temporary_ (&TOLER);

    /*Code variables indicate whether percentiles and corresponding
      lcb's and ucb's have been reached during passage through data.*/

    array codex (i) codex1 - codex&N;
    array codel (i) codel1 - codel&N;
    array codeu (i) codeu1 - codeu&N;

    keep &PARM &GROUP &ID
         &P &L &U;

    retain lastx  codex1 - codex&N  codel1 - codel&N  codeu1 - codeu&N
                  &P &L &U;

    if first.&PARM then do;

      lastx = .;

      /* Set percentiles and confidence bounds to missing and zero
         to denote not defined */

      do over pct;
        pct   = .;
        ucb   = .;
        lcb   = .;
        codex = 0;
        codel = 0;
        codeu = 0;
      end;

    end;

    /* Rounding to ensure exact matches are not missed */

    do over pct;

      /* code values = 0 denote not yet defined
         code values = 1 denote partially done
         code values = 2 denote done            */

      if codel = 0 and round (ucb_ple - qnt(i), &TOL) ge 0 then do;
        codel = 2;
        lcb   = &RESULT;  /* Set lower confidence bound */
      end;
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      if round (lcb_ple - qnt(i), &TOL) > 0 then do;
        if codeu = 0 then do;
          codeu = 2;
          ucb   = &RESULT;  /* Set upper confidence bound */
        end;
      end;

      else do;
        ucb   = .;
        codeu = 0;
      end;

      if codex = 0 then do;

        if round (ple - qnt(i), &TOL) = 0 then codex = 1;

        else if round (ple - qnt(i), &TOL) > 0 then do;
          codex = 2;
          pct   = &RESULT;  /* Percentiles */
        end;

      end;

      else if codex = 1 and round (ple - qnt(i), &TOL) > 0 then do;
        codex = 2;
        pct   = (lastx + &RESULT) / 2;  /* Percentiles */
      end;

    end;

    lastx = &RESULT;

    if last.&PARM then output;

  run;

  data ple_mn;

    merge ple_mn
          ple_se
          ple_cb;
    by &GROUP &PARM;

    label _pl_sem = "PLE mean, std. err."
          _pl_lcl = "PLE mean, LCL (p=&CONFID)"
          _pl_ucl = "PLE mean, UCL (p=&CONFID)"
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  _det = 'Detects'
    ;

    /* Use t-distribution with n-1 df here. Alternatives might be
       normal distribution or t with (n-_ndt) df. */

    /* Standard error of ple mean */

    if _det > 1 then _pl_sem = sqrt (_pl_sem * _det / (_det - 1));
    else _pl_sem = .;

    /* Confidence limits */

    if _obs > 1 then do;
      _pl_ucl = _pl_mn + (_pl_sem * tinv (&CONFID, _obs - 1));
      _pl_lcl = _pl_mn - (_pl_sem * tinv (&CONFID, _obs - 1));
    end;

    drop _lt00001 _qu00001 _ut00001;

  run;

  /* End SAS code for PLE-based statistics. */

  data detects;

    merge stat (in = in1)
          ple_mn  (in = in3);
    by &GROUP &PARM;

    drop _ndt _avg_ _var_ _cov_ _sem_ _sev_ bias1 &QUAL;
    retain _avg_ _var_ _sem_ _sev_ _cov_;

    label _obs    = "Observed"
          _ar_mn  = "Ordinary mean"
          _min    = "Minimum"
          _max    = "Maximum"
          _ar_sem = "Ordinary mean, std. err."
    ;

    if last.&PARM then do;

     /*  COMPUTE BIAS ADJUSTED PRODUCT LIMIT ESTIMATES & LIMITS   */

          _pl_mn = _pl_mn - bias1;
          _pl_lcl=max(0,_pl_lcl - bias1);
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          _pl_ucl=_pl_ucl - bias1;

     ;

      output;

      _avg_ = .;  _var_ = .;  _sem_ = .;  _sev_ = .;  _cov_ = .;

    end;

  run;

  data &OUTPUT;

    set detects (in = in1)  /* Summary statistics for detects */
        nonstat (in = in2); /* Summary statistics for nondetects */

if in2 then _det=0;
        label &labell;
        label &labelq;
        label &labelu;

  run;

  proc sort  data = &OUTPUT;
    by &GROUP &PARM;
  run;

%MEND ple;
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The logconf macro is listed below.

   /********************************************************************\
   *                                                                                                                            
   * logconf.sas: Calculate statistics based on the longnormal distribution when
   * there is no censoring.                                                                                                                 
                    *
   *    © 1999
   *     Lockheed Martin Energy Research Corporation                                                      
   *     All rights reserved
   *                      
   *    Neither the Government nor LMER makes any warrantee, express or implied, or 
   *    assumes any liability or responsibility for the use of this software.  
   *                                                                                                                            
   \********************************************************************/

%macro logconf(INPUT, OUTPUT, GROUP, RESULT, PARM, ID);

libname temp '/home/sun4/u5/schmoyer/lyon/project/macros';
*Put hfun.ssd01 SAS data set with Land H-function values
in same directory as macros; 

data &output;
set &INPUT;
lresult=log(&RESULT);

proc sort data=&output;
by &GROUP &PARM;

proc means data=&output noprint;
var lresult;
by &GROUP &PARM;
output out=a (drop=_type_ _freq_)
n=n
mean=mean
std=stand;
id &ID;

proc sort;
by n;

data &output;
merge a (in=in1) temp.hfun;
array col {99} col1-col99;
by n;
if in1;

/* maximum number of samples.  Anything above



C-4

this number uses the theory that
(X-u)/(S/Sqrt(n)) follows N(0,1)*/
 _max_n_  = 1000;

temp=10*stand;

/* constants for the table of h values
used to calculate "Land's method" of UCL
for the 95% UCL.  This assumes constant
interval sized for the whole H table. */

 /* If the sigma is lower than what is found
    in the table, use the lowest interval */
 IF temp < 1 THEN temp = 1;

 /* If the sigma is higher than what is found
    in the table, use the highest interval */
 IF temp > 99 THEN temp = 99;

index=int(temp);

  /* Interpolate for new H value. */
h=col(index)*(index+1-temp)+col(index+1)*(temp-index);

IF N <= _max_n_ then
    UCL_95 = exp(mean + 0.5*stand*stand + stand * H/SQRT(N-1));
*Calculate Upper 95% Confidence Limit via "Land's Method".;

ELSE UCL_95 = exp(mean + stand*stand/2 + tinv(.95,n-1)*SQRT(stand*stand/N +
    stand*stand*stand*stand/(2*(N+1))));

    /* Calculate Upper 95% Confidence Limit via Cox's method
       exp((y+S^2/2) + Z.95*Beta)  Y = sample mean
       Beta = SQRT(S^2/(nu+1) + S^4/(2*(nu+2)))
       Z.95 = 95 percentile of N(0,1) = 1.645.
       t-95 substituted for z-95 to force exact agreement with
       lnor macro--RLS.*/

keep n &GROUP &PARM &ID UCL_95 mean stand;
label ucl_95="Land's lognormal 95% UCL"
n="Observed"
mean='Log-scale mean'
stand='Log-scale standard deviation';
rename n=_obs;

run;
%mend logconf;
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The SAS program used to print the input data, to call the SAS macros, and to produce the output
files is listed below.
   /********************************************************************\
   *   SAS program that prints the data, calls the SAS macros, and prints the output
   *
   *   © 1999
   *     Lockheed Martin Energy Research Corporation                                                      
   *     All rights reserved
   *                      
   *    Neither the Government nor LMER makes any warrantee, express or implied, or 
   *    assumes any liability or responsibility for the use of this software.                                          
                *
   \********************************************************************/
options ls=72 ps=60 sasautos='../macros' symbolgen mlogic mprint noovp nodate
nonumber;
libname there '/home/sun4/u5/schmoyer/lyon/project/transport.sam';

proc print data=there.subset label split='*';
title1 ' ';
title2 ' ';
title3
'Table 1. Groundwater Lead Concentrations (mg/L) from Y-12 Fuel Station';
var date_col result lower qual;
by station;
id station;
label station='Monitoring*Station'
result='Analytical*Result/Detection*Limit'
date_col='Date*Collected'
qual='Qualifier'
lower='Lower (for*lnor.sas)';
format date_col date7. lower result 5.4;

%lnor (there.subset, outputl, station, result, lower, qual, analysis, ,
.95,.50 .75 .90);
run;

options ls=72 ps=56;
proc contents  data = outputl;
title1 ' ';
title2 ' ';
title3 "Table 2. SAS Macro lnor.sas Output Data Set Contents";
title4 "for Groundwater Lead (Y-12 Fuel Station)";
run;

options ls=72 ps=63;
proc print data=outputl label split=',';
title1 ' ';
title2 ' ';
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title3 'Table 3. Output of SAS Macro lnor.sas';
title4 'for Groundwater Lead (Y-12 Fuel Station)';
id station;
var _OBS _DET _MIN _MAX _AR_LCL _AR_MN _AR_UCL _AR_SEM
_LN_LCL _LN_MN _LN_UCL _LT500 _QU500 _UT500
_LT750 _QU750 _UT750 _LT900 _QU900 _UT900 _LS_MN _LS_SEM _LS_STD
_N_LCL _N_MN _N_UCL _N_SEM _N_STD
_NL500 _NQ500 _NU500 _NL750 _NQ750 _NU750 _NL900 _NQ900 _NU900;
label _LT500='95% LTB, 50%-ile'
_QU500='Estimate, 50%-ile'
_UT500='95% UTB, 50%-ile'
_LT750='95% LTB, 75%-ile'
_QU750='Estimate, 75%-ile'
_UT750='95% UTB, 75%-ile'
_LT900='95% LTB, 90%-ile'
_QU900='Estimate, 90%-ile'
_UT900='95% UTB, 90%-ile'
station='Station'
_ls_std = "Ln-scale,std. dev."
_NQ500='Normal Model, Estimate, 50%-ile'
_NQ750='Normal Model, Estimate, 75%-ile'
_NQ900='Normal Model, Estimate, 90%-ile'
_NL500='Normal Model, 95% LTB, 50%-ile'
_NL750='Normal Model, 95% LTB, 75%-ile'
_NL900='Normal Model, 95% LTB, 90%-ile'
_NU500='Normal Model, 95% UTB, 50%-ile'
_NU750='Normal Model, 95% UTB, 75%-ile'
_NU900='Normal Model, 95% UTB, 90%-ile';
run;

%ple (there.subset, outputp, station, result, qual, analysis, ,
.95,.50 .75 .90);

options ls=72 ps=56;
proc contents  data = outputp;
footnote;
title1 ' ';
title2 ' ';
title3 "Table 4. SAS Macro ple.sas Output Data Set Contents";
title4 "for Groundwater Lead (Y-12 Fuel Station)";
run;

options ls=72 ps=60;
proc print data=outputp label split=',';
title1 ' ';
title2 ' ';
title3 'Table 5. Output of SAS Macro ple.sas';
title4 'for Groundwater Lead (Y-12 Fuel Station)';
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id station;
var _OBS _DET _MIN _MAX _AR_LCL _AR_MN _AR_UCL _AR_SEM _PL_LCL _PL_MN
_PL_UCL _PL_SEM _LT50 _QU50 _UT50 _LT75 _QU75 _UT75 _LT90 _QU90 _UT90;
label _LT50='95% LTB, 50%-ile'
_QU50='Estimate, 50%-ile'
_UT50='95% UTB, 50%-ile'
_LT75='95% LTB, 75%-ile'
_QU75='Estimate, 75%-ile'
_UT75='95% UTB, 75%-ile'
_LT90='95% LTB, 90%-ile'
_QU90='Estimate, 90%-ile'
_UT90='95% UTB, 90%-ile'
station='Station';
run;

proc print data=there.subsetd label split='*';
title1 ' ';
title2 ' ';
title3
'Table 6. Groundwater Barium Concentrations (mg/L) from Y-12 Fuel Station';
var date_col result;
by station;
id station;
label station='Monitoring*Station'
result='Analytical*Result'
date_col='Date*Collected';
format date_col date7. result 4.2;

%logconf(there.subsetd, outputl, station , RESULT, analysis, );

options ls=72 ps=56;
proc contents  data = outputl;
title1 ' ';
title2 ' ';
title3 "Table 7. SAS Macro logconf.sas Output Data Set Contents";
title4 "for Groundwater Barium (Y-12 Fuel Station)";
run;

options ls=72 ps=63;
proc print data=outputl label split=',';
title1 ' ';
title2 ' ';
title3 'Table 8. Output of SAS Macro logconf.sas';
title4 'for Groundwater Barium (Y-12 Fuel Station)';
var _obs mean stand ucl_95;
id station;
label station='Station';
run;


